
 Internet Draft C. Wallace
draft-ietf-pkix-tap-00.txt CygnaCom Solutions

 February 2003 S. Chokhani
 Expires August 2003 Orion Security

 Trusted Archive Protocol (TAP)

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced or made obsolete by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 A Trusted Archive Authority (TAA) is a service that supports long-
 term non-repudiation by maintaining secure storage of
 cryptographically refreshed information. This document defines a set
 of transactions for interacting with a Trusted Archive Authority
 (TAA) and establishes a means of representing archived information.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].
 Trusted Archive Protocol (TAP) February 2003

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-tap-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Table of Contents

1. Introduction...3
1.1 Terminology..3
1.2 Data...4
1.3 Entities...4
1.4 Services...4
1.5 Applications...5

2. Trusted Archive Protocol.......................................5
2.1 Archive submission request format..........................7
2.2 Archive submission response format.........................9
2.3 Archive retrieval request format..........................11
2.4 Archive retrieval response................................13
2.5 Archive deletion request..................................15
2.6 Archive deletion response.................................16

3. Validation..17
3.1 Submission..17
3.2 Retrieval...18
3.3 Deletion..19

4. Transports..19
4.1 TAP over HTTP...19

5. ArchiveControls, TrackingInfos and CryptoInfos................21
5.1 Archive Controls..21
5.2 TrackingInfos...22
5.3 CryptoInfos...22

6. TAP ASN.1 Module..23
7. Security Considerations.......................................28

 7.1 Trust Anchors for Timestamp and Other Signature Verification
 on Archive Retrieval..28

7.2 Algorithm and Technology Advances.........................29
7.3 Authorizations..29
7.4 TSA Policy..30
7.5 Other...30

8. Intellectual Property...30
 Normative References...32
 Informative References...32
 Authors' Addresses...33

Appendix A: Support for non-TAP aware clients and alternative
 submission request formats.......................................34

Wallace & Chokhani Expires August 2003 [Page 2]

 Trusted Archive Protocol (TAP) February 2003

1. Introduction

 A Trusted Archive Authority (TAA) is a service that supports long-
 term non-repudiation by maintaining secure storage of
 cryptographically refreshed information. This document defines a
 trusted archive protocol (TAP) that provides a set of transactions
 for interactions with a TAA (i.e. submission, retrieval and deletion
 of information).

1.1 Terminology

 A TAA generates and maintains various data as part of the archive
 process. Throughout this document, entities submitting data to the
 TAA for archival are referred to as submitters and entities
 requesting retrieval or deletion of data are referred to as
 requestors. This document uses the following terms to describe the
 artifacts of the archive process:

 Archived data: archived data is the data presented to the TAA by the
 submitter.

 Archive token: an archive token is an object generated by the TAA
 when data is submitted and accepted for archiving. The archive token
 is returned to the submitter and may be used to request retrieval or
 deletion of the archived data and associated cryptographic
 information. For purposes of future retrieval or deletion,
 applications may treat the archive token as an opaque blob. The
 archive token includes: submitter DN, timestamp token, TAA date and
 time upon submission and, optionally, tracking information. To
 verify the accuracy of information archived by the TAA, submitters
 MUST verify the contents of the archive token as described below in

section 3.

 Archive record: an archive record contains the cryptographic refresh
 history compiled by the TAA. The initial archive record is the
 timestamp token obtained for the submitted data. The timestamp token
 format is defined in [RFC3161] and consists of a ContentInfo object
 containing a TSTInfo object. Upon each refresh, the most recent
 archive record becomes the prevArchRecord field of a new
 TimeStampedData object, a timestamp is obtained for the
 TimeStampedData object and is placed in the timestamp field of a new
 ArchiveRecordData and the entire ArchiveRecordData structure placed
 in a ContentInfo object. The ContentInfo object serves as the new
 archive record. When verifying an archive record, verification
 terminates when the original timestamp token is verified against the
 archived data.

https://datatracker.ietf.org/doc/html/rfc3161

Wallace & Chokhani Expires August 2003 [Page 3]

 Trusted Archive Protocol (TAP) February 2003

 Archive package: an archive package is an object containing,
 minimally, the archive token, archive record and archived data. The
 archive package MAY include additional cryptographic information.

1.2 Data

 A TAA may be able to archive any data format or a TAA MAY implement
 features that limit the types of data that will be accepted for
 archiving. A TAA MAY implement additional support for some data
 formats, e.g. a TAA could implement a CMS message verification
 feature. Additional features SHOULD be implemented using an archive
 control.

 Data submitted to a TAA MAY include all, some or none of the
 cryptographic information necessary for long-term dispute resolution.
 Archived data MAY be submitted with or without type information
 and/or instructions that request the TAA to act upon the data prior
 to archival, i.e. an archive control. A TAA MAY implement features
 that assist in the collection and/or validation of cryptographic
 information or otherwise act upon the submitted data. Submitters MAY
 submit data that is thought to be cryptographically valid or invalid.
 Retrieval clients MAY submit information sufficient to identify 0 or
 more archive records for retrieval.

1.3 Entities

 This specification identifies four entities involved in TAP: TAA,
 timestamp authority (TSA), submission client and retrieval/deletion
 client. The TAA MAY be aware of the archived data format or not
 aware. The submission client MAY be TAP-aware or non-TAP-aware. The
 retrieval/deletion client MUST be TAP-aware and MAY be aware of the
 archived data format or not aware. The TSA MAY be independent of the
 TAA (i.e. the TAA acts as a timestamp client) or the TAA MAY be a
 TSA.

 The provision for non-TAP-aware submission clients is intended to
 support simple, existing clients, such as a FTP client. In such
 cases a TAP-aware client should be used to process the TAA response,
 which may be delivered via a different transport.

 TAA certificates MUST include an instance of the extendedKeyUsage
 extension permitting operation as a TAA. The value must be set to
 id-kp-trustedArchive.

1.4 Services

 A TAA MUST provide the following services:

 - Archived data preservation

Wallace & Chokhani Expires August 2003 [Page 4]

 Trusted Archive Protocol (TAP) February 2003

 - Archive token generation (including acquisition of a timestamp
 for the archived data)
 - Periodic refresh of archive record
 - Trusted cryptographic information preservation for verification
 of an archive record (i.e. trust anchors, certificates, CRLs,
 OCSP responses, OCSP responder certificates, etc.)
 - Archive package retrieval and deletion

 A TAA MAY provide additional, optional services, for example:

 - Historical trust anchor preservation
 - PKI information collection and/or validation
 - Cryptographic message validation

 Like the RFC on Electronic Signature Formats for long-term electronic
 signatures [RFC3126], this draft relies on CMS [RFC3369] and the Time
 Stamp Protocol [RFC3161]. This specification defines the following:

 - A data transfer protocol between TAAs and clients
 - Artifacts that can be used to archive and preserve any
 cryptographic service, such as digital signatures, and to archive
 any non-cryptographic data.

 TAP uses a timestamp refresh approach that greatly reduces (and can
 be used to eliminate) the need to trust the TAA for the integrity of
 the archive data. In other words, data modifications made to the
 archive records by the TAA can be detected.

1.5 Applications

 The TAA can be unaware of the data being archived and can be used to
 archive cryptographic data or non-cryptographic data. Cryptographic
 data can be signed, encrypted or both.

 In support of long-term preservation of digital signatures,
 submitters can package all the certificates, revocation information
 (CRLs and OCSP responses) and, optionally, trust anchors in the
 submitted data to facilitate signature verification at any time in
 the future without needing the services of a repository or other
 source for certificates and revocation information. If the retrieval
 client uses another trusted source for trust anchors for signature
 verification and for trusted timestamp verification, then the TAA
 need not be trusted for the integrity of the data. The TSA MUST be
 trusted in all cases.

2. Trusted Archive Protocol

 The following sections describe the transaction formats that comprise
 the TAP. Submission and retrieval requests sent to a TAA MAY be
 signed, not authenticated or authenticated using other means such as

https://datatracker.ietf.org/doc/html/rfc3126
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3161

Wallace & Chokhani Expires August 2003 [Page 5]

 Trusted Archive Protocol (TAP) February 2003

 client-authenticated SSL/TLS. Deletion requests MUST be
 authenticated. Messages sent from a TAA are always signed using the
 CMS SignedData ([RFC3369]) format with a TAP response payload. All
 response messages from a TAA MUST be signed and MUST NOT contain any
 signatures other than the signature of the TAA.

 Unsigned requests consist of an ArchiveSubmissionReq,
 ArchiveRetrievalReq or ArchiveDeletionReq encapsulated in a
 ContentInfo object. An overview of this structure is provided below.
 Many details are not shown, but the way that TAP makes use of CMS is
 clearly illustrated.

 ContentInfo {
 contentType, -- id-tap-archiveReq, id-tap-archiveRetrievalReq
 -- or id-tap-archiveDeletionReq

 content -- ArchiveSubmissionReq, ArchiveRetrievalReq
 -- or ArchiveDeletionReq
 }

 Signed requests and signed responses consist of an
 ArchiveSubmissionReq, ArchiveRetrievalReq, ArchiveDeletionReq,
 ArchiveSubOrDelResp or ArchiveRetrievalResp encapsulated in a
 SignedData, which is in turn encapsulated in a ContentInfo. An
 overview of this structure is provided below. Again, many details are
 not shown, but the way that TAP makes use of CMS is clearly
 illustrated.

 ContentInfo {
 contentType, -- id-signedData (1.2.840.113549.1.7.2)
 content -- SignedData
 }

 SignedData {
 version,
 digestAlgorithms,
 encapContentInfo, -- contents as described below
 certificates, -- (Optional)
 crls, -- (Optional)
 signerInfos -- (only one in TAP)
 }

 SignerInfo {
 version,
 sid,
 digestAlgorithm,
 signedAttrs, -- (Required)
 signatureAlgorithm,
 signature,

https://datatracker.ietf.org/doc/html/rfc3369

 unsignedAttrs

Wallace & Chokhani Expires August 2003 [Page 6]

 Trusted Archive Protocol (TAP) February 2003

 }

 EncapsulatedContentInfo {
 eContentType, -- id-tap-archiveReq,
 -- id-tap-archiveRetrievalReq,
 -- id-tap-archiveDeletionReq,
 -- id-tap-archiveSubOrDelResp or
 -- id-tap-archiveRetrievalResp

 eContent -- OCTET STRING containing
 -- ArchiveSubmissionReq, ArchiveRetrievalReq,
 -- ArchiveDeletionReq, ArchiveSubOrDelResp or
 -- ArchiveRetrievalResp
 }

 The syntaxes for SignedData and ContentInfo are defined in [RFC3369].
 The syntaxes for all request and response types are defined below.

 For all response messages, the TAA server MUST include its own
 certificate in the certificates field within SignedData. Other
 certificates MAY be included. The TAA server MAY provide one or more
 CRLs in the crls field within SignedData. The signedAttrs within
 SignerInfo MUST include the content-type and message-digest
 attributes defined in [RFC3369] (because the content type of the
 EncapsulatedContentInfo value is not id-data).

2.1 Archive submission request format

 Archive submission requests are defined as follows:

 ArchiveSubmissionReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 submitterName GeneralName,
 policy OBJECT IDENTIFIER OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL,
 archivedData ArchivedData
 }

 TAA implementations MAY require authentication via CMS, SSL/TLS, or
 other means. TAA implementations MAY support alternative submission
 formats in addition to ArchiveSubmissionReq.

2.1.1 version

 The version field (currently v1) describes the version of the archive
 submission request.

https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3369

Wallace & Chokhani Expires August 2003 [Page 7]

 Trusted Archive Protocol (TAP) February 2003

 TAPVersion ::= INTEGER { v1(0) }

2.1.2 submitterName

 The submitterName field identifies the entity submitting the
 associated data for archiving. If authentication is performed, TAA
 implementations SHOULD confirm that the value in the submitterName
 field is consistent with authenticated information. For successful
 requests, TAAs MUST include the submitterName contained in a request
 in the resulting archive token.

2.1.3 policy

 The policy field, if present, indicates the policy under which the
 archive service SHOULD operate with regard to the data submitted as
 part of the request.

2.1.4 archiveControls

 The archiveControls field may be used to request the TAA to perform
 additional actions, for example, server-side validation of the data
 field of archiveData or inclusion of a nonce in the response.

 TAAs MUST reject requests containing unrecognized or unsupported
 archive controls. Archive controls SHOULD be defined such that for
 each control included in a request a corresponding control is
 included in the response.

 ArchiveControls ::= SEQUENCE SIZE (1..MAX) OF ArchiveControl
 ArchiveControl ::= SEQUENCE
 {
 archiveControlType OBJECT IDENTIFIER
 archiveControlValue ANY DEFINED BY archiveControlType OPTIONAL
 }

2.1.5 archivedData

 The archivedData field contains the data to be archived and,
 optionally, type information. The type field of archivedData is
 advisory and is for use when processing archiveControls and/or for
 use by retrieval/deletion clients. The data field of archivedData
 contains the data to archive.

 ArchivedData ::= SEQUENCE
 {
 type ArchivedDataType OPTIONAL,

Wallace & Chokhani Expires August 2003 [Page 8]

 Trusted Archive Protocol (TAP) February 2003

 data OCTET STRING
 }

 ArchivedDataType ::= CHOICE
 {
 oid OBJECT IDENTIFIER,
 mimeType UTF8String
 }

 When type information is included in a submission request, TAAs
 SHOULD return type information in future retrieval responses
 containing the associated archived data.

2.2 Archive submission response format

 Archive submission responses are defined as follows:

 ArchiveSubOrDelResp ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 status ArchiveStatus,
 archiveToken ArchiveToken OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 ArchiveSubOrDelResp objects MUST be returned in the eContent field of
 a CMS SignedData message.

2.2.1 version

 The version field (currently v1) describes the version of the archive
 submission response.

2.2.2 status

 The status field indicates the outcome of request processing and is
 comprised of a status code and an optional status string.

 ArchiveStatus ::= SEQUENCE
 {
 code ArchiveStatusCode,
 statusString UTF8String OPTIONAL
 }

 ArchiveStatusCode ::= ENUMERATED
 {
 success (0), -- success
 genericFailure (1), -- misc. unspecified failure

Wallace & Chokhani Expires August 2003 [Page 9]

 Trusted Archive Protocol (TAP) February 2003

 authenticationFailed (2), -- authentication failed (or absent)
 unauthorizedRequest (3), -- submitter(or request) not authorized
 unrecognizedControl (4), -- unrecognized or disallowed control
 controlFailure (5), -- control processing failed
 policyFailure (6), -- policy not supported
 timestampFailure (7), -- timestamp could not be obtained
 retrievalDelayed (8),-- retrieval may require manual action
 unsupportedDataFormat(9) -- format of submitted data not supported
 -- add more status codes
 }

2.2.3 archiveToken

 The archiveToken field contains information that can be used to
 request retrieval or deletion of the archived data in the future. An
 archiveToken MUST be included in all successful submission responses.
 Submitters MUST verify archive tokens as described in section 3 to
 ensure that the archive token accurately reflects the submitted data,
 i.e. the values in the submitterName, curTime and timestamp fields
 are consistent with request.

 ArchiveToken ::= ContentInfo
 -- content type: id-tap-archiveToken
 -- content: ArchiveTokenData

 ArchiveTokenData ::= SEQUENCE
 {
 submitterName GeneralName,
 timestamp TimeStampToken,
 curTime GeneralizedTime,
 trackingInfo TrackingInfos OPTIONAL
 }

 TrackingInfos ::= SEQUENCE SIZE (1..MAX) OF TrackingInfo
 TrackingInfo ::= ContentInfo

 The submitterName field contains the value from the submitterName
 field in the request.

 The timestamp field contains a timestamp generated for the archived
 data.

 The curTime field contains the TAA time when the archive token was
 created.

 The trackingInfo field, if present, MAY contain information relevant
 only to the TAA and/or MAY contain information that identifies the
 TAA, i.e. a URL. Submission clients and retrieval/deletion clients

Wallace & Chokhani Expires August 2003 [Page 10]

 Trusted Archive Protocol (TAP) February 2003

 are not required to process the contents of the trackingInfo field
 but SHOULD be capable of processing the TAALocation TrackingInfo.

2.2.4 archiveControls

 The archiveControls field is used to return information associated
 with a control included in the request, for example, the outcome of
 server-side validation or a nonce from the request. TAAs MUST NOT
 include controls in a response that are not associated with controls
 in a request. Submission clients SHOULD be able to process controls
 in accordance with the control definition.

2.3 Archive retrieval request format

 Archive retrieval requests are defined as follows:

 ArchiveRetrievalReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 requestorName GeneralName,
 retrievalRequest ArchiveRetrievalInfo OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 The request includes information identifying the archived data to
 retrieve or to initiate a search.

 TAA implementations MAY require authentication via CMS, SSL/TLS, or
 other means.

2.3.1 version

 The version field (currently v1) describes the version of the archive
 retrieval request.

2.3.2 requestorName

 The requestorName field identifies the entity requesting retrieval of
 an archive package. If authentication is performed, TAA
 implementations SHOULD confirm that the value in the requestorName
 field is consistent with authenticated information.

2.3.3 retrievalRequest

Wallace & Chokhani Expires August 2003 [Page 11]

 Trusted Archive Protocol (TAP) February 2003

 The ArchiveRetrievalInfo structure permits clients to fully identify
 an archive using an archive token, to initiate a search using a
 partial set of information or to complete a delayed request using a
 poll reference. The retrievalRequest field may be omitted when the
 archiveControls field contains all necessary information, such as
 when requesting only trust anchor information via a
 TrustAnchorRequest control.

 ArchiveRetrievalInfo ::= CHOICE
 {
 archiveToken [0] ArchiveToken,
 archiveInfo [1] ArchiveInfo,
 pollReference [2] OCTET STRING
 }

 The archiveToken field can be used to identify a specific archive
 package for retrieval. ArchiveRetrievalResps associated with
 ArchiveRetrievalReqs containing an archive token MUST contain a
 single ArchivePackage. The archiveInfo field can be used to retrieve
 a collection of tokens or archive packages. The pollReference field
 can be used to complete a delayed request. The value included in
 pollReference is the value returned by the TAA in an
 ArchiveRetrievalResp with status set to retrievalDelayed.

 ArchiveInfo::= SEQUENCE
 {
 tokensOnly BOOLEAN DEFAULT TRUE,
 submitterName [0] GeneralName OPTIONAL,
 timestamp [1] TimeStampToken OPTIONAL,
 timeInfo [2] ArchiveTimeInfo OPTIONAL,
 }

 ArchiveTimeInfo ::= SEQUENCE
 {
 time GeneralizedTime,
 accuracy Accuracy OPTIONAL
 }

 The tokensOnly field of ArchiveInfo can be used to avoid retrieving
 data and cryptographic information for each archive that matches the
 query. The fields of ArchiveInfo can be used to query for archive
 tokens or archive packages that match the specified search
 parameters.

 The accuracy field in ArchiveTimeInfo is applied to the time field to
 define a range of time used when searching. Accuracy is defined in
 [RFC3161].

https://datatracker.ietf.org/doc/html/rfc3161

Wallace & Chokhani Expires August 2003 [Page 12]

 Trusted Archive Protocol (TAP) February 2003

2.3.4 archiveControls

 The archiveControls field may be used to request additional, optional
 services from a TAA, such as a limit on the number of returned
 results, a nonce or an indication to return trust anchors known to
 the TAA at the time an archive was created.

 TAAs MUST reject requests containing unrecognized or unsupported
 archive controls.

2.4 Archive retrieval response

 Archive retrieval responses are defined as follows:

 ArchiveRetrievalResp ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 status ArchiveStatus,
 archiveControls [0] ArchiveControls OPTIONAL,
 results ArchiveRetrievalResults OPTIONAL
 }

 ArchiveRetrievalResp objects MUST be returned as the eContent field
 of a CMS SignedData message.

2.4.1 version

 The version field (currently v1) describes the version of the archive
 retrieval response.

2.4.2 status

 The status field indicates that outcome of the request processing and
 is comprised of a status code and an optional status string.

2.4.3 archiveControls

 The archiveControls field is used to return information associated
 with a control included in the request. TAAs MUST NOT include
 controls in a response that are not associated with controls in a
 request. Retrieval/deletion clients SHOULD be able to process
 controls in accordance with the control definition.

Wallace & Chokhani Expires August 2003 [Page 13]

 Trusted Archive Protocol (TAP) February 2003

2.4.4 results

 The results of a successful retrieval request are returned as a
 sequence of at least one ArchivePackage, which contains the archive
 token and (optionally) the archive package data. A pollReference MAY
 be returned in cases where the archive package is not immediately
 available, for example, when manual intervention is required to
 retrieve an archive.

 ArchiveRetrievalResults ::= SEQUENCE SIZE (1..MAX) OF ArchivePackage

 ArchivePackage ::= SEQUENCE
 {
 archiveToken ArchiveToken,
 packageData [0] ArchivePackageData OPTIONAL,
 pollReference [1] OCTET STRING OPTIONAL
 }

 ArchivePackageData ::= SEQUENCE
 {
 digestAlgorithms DigestAlgorithmIdentifiers,
 policy OBJECT IDENTIFIER OPTIONAL,
 archiveRecord ArchiveRecord,
 cryptoInfos [0] CryptoInfos OPTIONAL,
 archivedData ArchivedData
 }

 The digestAlgorithms field identifies all digest algorithms that were
 applied to the archived data over the lifetime of the archive record.
 To successfully verify all archive record components, the archived
 data MUST be hashed using each of the algorithms identified in the
 digestAlgorithms field.

 The archiveRecord field contains a nested structure with the complete
 refresh history for the archived data. TAAs SHOULD store all
 cryptographic information necessary to verify each layer of the
 archive record in the certificates, crls and unsignedAttrs fields of
 the timestamp token, i.e. each timestamp token in the history SHOULD
 be self-contained for validation purposes under protection of the
 next layer in the archive record. A CryptoInfos unsignedAttrs field
 MAY be used to convey OCSP responses and/or trust anchor information.
 The object identifier id-tap-cryptoInfos identifies the CryptoInfos
 attribute. CryptoInfos attribute values have the ASN.1 type
 CryptoInfos.

 ArchiveRecord ::= ContentInfo
 -- content type: id-tap-archiveRecordData
 -- content: ArchiveRecordData

Wallace & Chokhani Expires August 2003 [Page 14]

 Trusted Archive Protocol (TAP) February 2003

 ArchiveRecordData ::= SEQUENCE
 {
 timestampedData TimeStampedData, -- covered by timestamp
 timestamp TimeStampToken
 }

 TimeStampedData ::= SEQUENCE
 {
 prevArchRecord ContentInfo, -- previous record
 messageImprint MessageImprint -- hash of archived data
 }

 The cryptoInfos field contains additional information that may be
 useful when verifying the archived data. This information may be
 included as a service by a TAA or due to collection of information
 requested via an archive control, etc. Retrieval/deletion clients
 are free to ignore any or all CryptoInfos contained in an archive
 package.

 CryptoInfos ::= SEQUENCE SIZE (1..MAX) OF CryptoInfo
 CryptoInfo ::= SEQUENCE
 {
 cryptoInfoType OBJECT IDENTIFIER
 cryptoInfoValue ANY DEFINED BY cryptoInfoType
 }

 The archivedData field contains the data that was submitted to the
 TAA and, optionally, type information. The data field within the
 ArchivedData structure contains the data to hash using the algorithms
 identified in the digestAlgorithms field of ArchivePackageData.

2.5 Archive deletion request

 Archive deletion requests are defined as follows:

 ArchiveDeletionReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 requestorName GeneralName,
 archiveToken ArchiveToken,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 The request includes information identifying the archived data to
 delete. Deletion requests MUST be authenticated.

2.5.1 version

Wallace & Chokhani Expires August 2003 [Page 15]

 Trusted Archive Protocol (TAP) February 2003

 The version field (currently v1) describes the version of the archive
 deletion request.

2.5.2 requestorName

 The requestorName field identifies the entity requesting retrieval of
 an archive package. If authentication is performed, TAA
 implementations SHOULD confirm that the value in the requestorName
 field is consistent with authenticated information.

2.5.3 archiveToken

 The archive token field identifies the archived data to delete.

2.5.4 archiveControls

 The archiveControls field may be used to request additional, optional
 services from a TAA.

 TAAs MUST reject requests containing unrecognized or unsupported
 archive controls.

2.6 Archive deletion response

 Archive deletion responses are of type ArchiveSubOrDelResp as defined
 above. The meaning of each field in the context of a deletion
 response is described below.

 ArchiveSubOrDelResp objects MUST be returned in the eContent field of
 a CMS SignedData message.

2.6.1 version

 The version field (currently v1) describes the version of the archive
 deletion response.

2.6.2 status

 The status field indicates that outcome of the request processing and
 is comprised of a status code and an optional status string.

Wallace & Chokhani Expires August 2003 [Page 16]

 Trusted Archive Protocol (TAP) February 2003

2.6.3 archiveToken

 The archiveToken field contains information identifying the deleted
 archive data. Successful responses MUST include an archiveToken
 identifying the archive that was deleted. The archiveToken MUST
 match the archiveToken contained in the deletion request.

2.6.4 archiveControls

 The archiveControls field is used to return information associated
 with a control included in the request. TAAs MUST NOT include
 controls in a response that are not associated with controls in a
 request. Retrieval/deletion clients SHOULD be able to process
 controls in accordance with the control definition.

3. Validation

 The signature on all TAA responses MUST be verified. TAA signatures
 on protocol transactions should be verified using current trust
 anchors known to the client. This section discusses additional
 validation steps for each type of transaction.

3.1 Submission

 After verifying the signature of a successful ArchiveSubOrDelResp,
 compliant submission clients MUST perform the following processing of
 the submission response contents:

 - Process each archive control per definition of control;
 - Verify the signature of the Time Stamp Authority (TSA) on the
 timestamp token contained in the archive token;
 - Verify that the hash contained in the timestamp token
 represents the hash of the data submitted by the client to the
 TAA; and
 - Verify that the time on the timestamp token is reasonably close
 to the current time.

 Verification that the curTime in the archive token is reasonably
 close to the current time is RECOMMENDED and confirmation that the
 submitterName is correct is RECOMMENDED.

 For the signature verification of the TSA, the submitter can choose
 to use the trust anchors returned by the TAA, if present, or rely on
 its own list of trust anchors.

 Controls that involve TAA-alteration of submitted data, i.e.
 collection and inclusion of relevant cryptographic information in the
 submitted data, may impact the verification of the timestamp field.

Wallace & Chokhani Expires August 2003 [Page 17]

 Trusted Archive Protocol (TAP) February 2003

3.2 Retrieval

 After verifying the signature of a successful ArchiveRetrievalResp,
 compliant retrieval/deletion clients MUST perform the following
 processing of the retrieval response contents:

 - If an archive token was included in the request, the archive
 token the ArchivePackage should be compared with the requested
 archive token;
 - Process each archive control per definition of control;
 - Hash the data field of the archived data using each of the
 algorithms identified in the digestAlgorithms field of the
 ArchivePackage data structure;
 - Verify the outermost timestamp token;
 - Verify that the timestamp on the outermost token is current;
 - Verify all remaining timestamp tokens; and
 - Verify that in each instance a new timestamp token was applied
 prior to the preceding timestamp token expiry.

 See the security considerations section for additional information
 regarding selection of the trust anchors to be used for timestamp
 token verification.

 The verification of the archived data is beyond the scope of this
 specification. This specification provides mechanism to carry all
 the data required to make such verification possible, but the TAA
 need not be aware of the data format. For example, if a submitter
 submits a signed CMS message with all the certificates, revocation
 information (CRLs and OCSP responses), and trust anchors required to
 verify the message, that message could be verified upon retrieval to
 prove that the signature was valid at the time of the inner most
 timestamp on the retrieved data.

 The archiveRecord MUST be verified as described above by verifying
 the timestamp present in each layer of the ArchiveRecord structure.
 Layers should be validated in turn beginning with the outermost layer
 and ending with the innermost layer. The innermost layer is simply
 the timestamp obtained for the archived data; outer layers are
 ArchiveRecord structures, which contain the previous record, a hash
 of the archived data and a timestamp. When verifying the innermost
 timestamp, verify that the hash contained in the timestamp token
 represents the hash of the archived data. When verifying outer
 timestamps, verify that the hash contained in the timestamp token
 matches the hash of the corresponding TimeStampedData structure and
 that the hash contained in the TimeStampedData structure represents a
 hash of the archived data.

 Timestamp token signatures MAY be verified using client-obtained

 trust anchor and revocation information or using information provided

Wallace & Chokhani Expires August 2003 [Page 18]

 Trusted Archive Protocol (TAP) February 2003

 by the TAA. TAAs MAY provide relevant cryptographic information in
 the CryptoInfos unsigned attribute of the SignerInfo structure and
 the certificates and crls fields of the SignedData structure of each
 timestamp token.

 ArchiveRecord verification terminates when the innermost ContentInfo
 object containing a timestamp token (covering the archived data) is
 verified.

 * ContentType: id-tap-archiveRecordData *
 * Content: ArchiveRecordData w/ previous archive record *
 * *---* *
 * * ContentType: id-tap-archiveRecordData * *
 * * Content: ArchiveRecordData w/ previous archive record * *
 * * *--* * *
 * * * ContentType: id-ct-TSTInfo * * *
 * * * Content: TSTInfo covering archived data * * *
 * * *--* * *
 * *---* *

 Figure 1: ArchiveRecord following two refresh operations

3.3 Deletion

 Following receipt and verification of a successful
 ArchiveSubOrDelResp no further validation steps need be performed.
 However, inspection of the ArchiveControls and/or ArchiveToken
 returned in the response SHOULD be performed.

 Deletion requests MUST be authenticated; it is RECOMMENDED that
 deletion requests be digitally signed in order to protect against
 unauthorized parties from issuing or modifying deletion requests.
 The deletion request client MUST perform the following processing of
 the deletion response in order to be compliant with this
 specification:

 - Process each archive control per definition of control;
 - Verify the signature of the TAA on the response; and
 - Match the archive token returned with archive token requested.

4. Transports

 There are no mandatory transport mechanisms for TAP messages. The
 mechanisms described below are optional.

4.1 TAP over HTTP

Wallace & Chokhani Expires August 2003 [Page 19]

 Trusted Archive Protocol (TAP) February 2003

 This section describes the formatting conventions for TAP requests
 and responses when carried by HTTP.

4.1.1 TAP Requests

 HTTP-based TAP requests can use the POST method to submit their
 requests. Where confidentiality is a requirement, TAP transactions
 exchanged using HTTP MAY be protected using either TLS/SSL or some
 other lower layer protocol.

 When authentication is a requirement, the request could be signed or
 the TAP transactions exchanged using HTTP MAY be protected using
 client authenticated TLS/SSL or some other lower layer protocol.

 A TAP request using the POST method is constructed as follows:

 The Content-Type header MUST have the value "application/tap-
 request".

 The Content-Length header MUST be present and have the exact
 length of the request.

 The body of the message is the binary value of the DER encoding
 of the request. Other HTTP headers MAY be present and MAY be
 ignored if not understood by the requestor.

 Sample Content-Type header:
 Content-Type: application/tap-request

4.1.2 TAP Response

 An HTTP-based TAP response is composed of the appropriate HTTP
 headers, followed by the binary value of the DER encoding of the
 response.

 The Content-Type header MUST have the value "application/tap-
 response".

 The Content-Length header MUST be present and specify the
 length of the response.

 Other HTTP headers MAY be present and MAY be ignored if not
 understood by the requestor.

Wallace & Chokhani Expires August 2003 [Page 20]

 Trusted Archive Protocol (TAP) February 2003

5. ArchiveControls, TrackingInfos and CryptoInfos

5.1 Archive Controls

 This document defines several ArchiveControls that MAY be supported
 by TAA implementations. Additional controls MAY also be supported.
 When a TAA receives a request with an unrecognized or unsupported
 control a response indicating failure MUST be generated and returned
 to the submitter of the request. Archive controls typically work in
 a request/response fashion, i.e. when a client includes an
 ArchiveControl in a request a corresponding control is expected in
 the response.

5.1.1 Nonce

 A nonce may be included in an ArchiveControls structure using the id-
 tap-nonce object identifier and following ASN.1 structure:

 Nonce ::= OCTET STRING

 A successful, associated response message MUST include an archive
 control with the archiveControlType field set to id-tap-nonce and the
 nonce from the request in the archiveControlValue field.

5.1.2 TrustAnchorRequest

 As part of an ArchiveRetrievalRequest, requestors may request the set
 of trust anchors known to the TAA at a specific time using the id-
 tap-trustAnchorRequest object identifier and following ASN.1
 structure:

 TrustAnchorRequest ::= GeneralizedTime

 A successful, associated ArchiveRetrievalResponse MUST include an
 archive control with the archiveControlType field set to id-tap-
 trustAnchorResponse and a TrustAnchorResponse in the
 archiveControlValue field. TrustAnchorResponse contains information
 about the trust anchors that were known to the TAA at the specified
 time. This information may be useful when verifying signatures
 applied to archived data.

 TrustAnchorResponse::= SEQUENCE SIZE (0..MAX) OF TrustAnchorInfo

 TrustAnchorInfo ::= CHOICE
 {
 cert Certificate,
 rawInfo [0] RawTrustAnchorInfo
 }

Wallace & Chokhani Expires August 2003 [Page 21]

 Trusted Archive Protocol (TAP) February 2003

 RawTrustAnchorInfo ::= SEQUENCE
 {
 name Name,
 algorithm AlgorithmIdentifier,
 pubKey BIT STRING
 }

5.1.3 TSA Policy

 The TSAPolicy archive control can be used to request that the initial
 timestamp obtained for an archived data submission be issued under a
 specific policy. A policy may be included in an ArchiveControls
 structure using the id-tap-tsaPolicy object identifier and following
 ASN.1 structure:

 TSAPolicy ::= OBJECT IDENTIFIER

 The TSAPolicy ArchiveControl has no response component.

5.2 TrackingInfos

 This specification defines a TrackingInfo. TAA implementations are
 free to define tracking information objects as necessary. Clients
 are not required to process tracking information but SHOULD be
 capable of processing the TAALocation TrackingInfo.

5.2.1 TAALocation

 Long-term identification of a TAA may not be practical. TAAs MAY
 include a TAALocation TrackingInfo to assist bearers of an archive
 token to locate a TAA for retrieval or deletion purposes.

 TAALocations may be included in a TrackingInfos structure using the
 id-tap-taaLocation object identifier and following ASN.1 structure:

 TAALocation ::= GeneralName

5.3 CryptoInfos

 Clients are not required to process CryptoInfos. This document
 defines several CryptoInfos that MAY be supported by client or TAA
 implementations.

5.3.1 Certificates

Wallace & Chokhani Expires August 2003 [Page 22]

 Trusted Archive Protocol (TAP) February 2003

 Certificates may be included in a CryptoInfos structure using the id-
 tap-certificates object identifier and following ASN.1 structure:

 Certificates ::= SEQUENCE SIZE (1..MAX) OF Certificate

5.3.2 OCSPResponses

 OCSPResponses may be included in a CryptoInfos structure using the
 id-tap-ocspResponses object identifier and following ASN.1 structure:

 OCSPResponses ::= SEQUENCE SIZE (1..MAX) OF OCSPResponse

5.3.3 CRLs

 CRLs may be included in a CryptoInfos structure using the id-tap-crls
 object identifier and following ASN.1 structure:

 CRLs ::= SEQUENCE SIZE (1..MAX) OF CertificateList

6. TAP ASN.1 Module

 PKIXTAP
 -- {iso(1) identified-organization(3) dod(6) internet(1)
 -- security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tap(TBD) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 TimeStampToken, Accuracy
 FROM
 PKIXTSP {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13) }

 Name
 FROM
 InformationFramework { joint-iso-itu-t ds(5) module(1)
 informationFramework(1) 3 }

 ContentInfo
 FROM
 CryptographicMessageSyntax {iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1)}

Wallace & Chokhani Expires August 2003 [Page 23]

 Trusted Archive Protocol (TAP) February 2003

 Certificate, CertificateList, AlgorithmIdentifier
 FROM
 AuthenticationFramework {joint-iso-itu-t ds(5) module(1)
 usefulDefinitions(0) 4}

 GeneralName
 FROM
 CertificateExtensions {joint-iso-itu-t ds(5) module(1)
 certificateExtensions(26) 4}

 OCSPResponse
 FROM
 OCSP;

 --Submission transactions
 ArchiveSubmissionReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 submitterName GeneralName,
 policy OBJECT IDENTIFIER OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL,
 archivedData ArchivedData
 }

 TAPVersion ::= INTEGER { v1(0) }

 ArchiveControls ::= SEQUENCE SIZE (1..MAX) OF ArchiveControl
 ArchiveControl ::= SEQUENCE
 {
 archiveControlType OBJECT IDENTIFIER,
 archiveControlValue ANY DEFINED BY archiveControlType OPTIONAL
 }

 ArchivedData ::= SEQUENCE
 {
 type ArchivedDataType OPTIONAL,
 data OCTET STRING
 }

 ArchivedDataType ::= CHOICE
 {
 oid OBJECT IDENTIFIER,
 mimeType UTF8String
 }

 ArchiveSubOrDelResp ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 status ArchiveStatus,

Wallace & Chokhani Expires August 2003 [Page 24]

 Trusted Archive Protocol (TAP) February 2003

 archiveToken ArchiveToken OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 ArchiveStatus ::= SEQUENCE
 {
 code ArchiveStatusCode,
 statusString UTF8String OPTIONAL
 }

 ArchiveStatusCode ::= ENUMERATED
 {
 success (0),-- success
 genericFailure (1),-- misc. unspecified failure
 authenticationFailed (2),-- authentication failed (or absent)
 unauthorizedRequest (3),-- submitter(or requestor) not authorized
 unrecognizedControl (4),-- unrecognized or disallowed control
 controlFailure (5),-- control processing failed
 policyFailure (6),-- policy not supported
 timestampFailure (7),-- timestamp could not be obtained
 retrievalDelayed (8),-- retrieval may require manual action
 unsupportedDataFormat(9) -- format of submitted data not supported
 -- add more status codes
 }

 ArchiveToken ::= ContentInfo
 -- content type: id-tap-archiveToken
 -- content: ArchiveTokenData

 ArchiveTokenData ::= SEQUENCE
 {
 submitterName GeneralName,
 timestamp TimeStampToken,
 curTime GeneralizedTime,
 trackingInfo TrackingInfos OPTIONAL
 }

 TrackingInfos ::= SEQUENCE SIZE (1..MAX) OF TrackingInfo
 TrackingInfo ::= ContentInfo

 --Retrieval transactions
 ArchiveRetrievalReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 requestorName GeneralName,
 retrievalRequest ArchiveRetrievalInfo OPTIONAL,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 ArchiveRetrievalInfo ::= CHOICE

Wallace & Chokhani Expires August 2003 [Page 25]

 Trusted Archive Protocol (TAP) February 2003

 {
 archiveToken [0] ArchiveToken,
 archiveInfo [1] ArchiveInfo,
 pollReference [2] OCTET STRING
 }

 ArchiveInfo::= SEQUENCE
 {
 tokensOnly BOOLEAN DEFAULT TRUE,
 submitterName [0] GeneralName OPTIONAL,
 timestamp [1] TimeStampToken OPTIONAL,
 timeInfo [2] ArchiveTimeInfo OPTIONAL
 }

 ArchiveTimeInfo ::= SEQUENCE
 {
 time GeneralizedTime,
 accuracy Accuracy OPTIONAL
 }

 ArchiveRetrievalResp ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 status ArchiveStatus,
 archiveControls [0] ArchiveControls OPTIONAL,
 results ArchiveRetrievalResults OPTIONAL
 }

 ArchiveRetrievalResults ::= SEQUENCE SIZE (1..MAX) OF ArchivePackage

 ArchivePackage ::= SEQUENCE
 {
 archiveToken ArchiveToken,
 packageData [0] ArchivePackageData OPTIONAL,
 pollReference [1] OCTET STRING OPTIONAL
 }

 ArchivePackageData ::= SEQUENCE
 {
 digestAlgorithms DigestAlgorithmIdentifiers,
 policy OBJECT IDENTIFIER OPTIONAL,
 archiveRecord ArchiveRecord,
 cryptoInfos [0] CryptoInfos OPTIONAL,
 archivedData ArchivedData
 }

 ArchiveRecord ::= ContentInfo
 -- content type: id-tap-archiveRecordData
 -- content: ArchiveRecordData

Wallace & Chokhani Expires August 2003 [Page 26]

 Trusted Archive Protocol (TAP) February 2003

 CryptoInfos ::= SEQUENCE SIZE (1..MAX) OF CryptoInfo
 CryptoInfo ::= ContentInfo

 ArchiveRecordData ::= SEQUENCE
 {
 timestampedData TimeStampedData, -- covered by timestamp
 timestamp TimeStampToken
 }

 TimeStampedData ::= SEQUENCE
 {
 prevArchRecord ContentInfo, -- previous record
 messageImprint MessageImprint -- hash of archived data
 }

 --Deletion transactions
 ArchiveDeletionReq ::= SEQUENCE
 {
 version TAPVersion DEFAULT v1,
 requestorName GeneralName,
 archiveToken ArchiveToken,
 archiveControls [0] ArchiveControls OPTIONAL
 }

 -- ArchiveControls, TrackingInfos and CryptoInfos
 Nonce ::= OCTET STRING

 TSAPolicy ::= OBJECT IDENTIFIER

 TrustAnchorRequest ::= GeneralizedTime
 TrustAnchorResponse::= SEQUENCE SIZE (0..MAX) OF TrustAnchorInfo

 TrustAnchorInfo ::= CHOICE
 {
 cert Certificate,
 rawInfo [0] RawTrustAnchorInfo
 }

 RawTrustAnchorInfo ::= SEQUENCE
 {
 name Name,
 algorithm AlgorithmIdentifier,
 pubKey BIT STRING
 }

 -- tracking infos
 TAALocation ::= GeneralName

 -- crypto infos
 Certificates ::= SEQUENCE SIZE (1..MAX) OF Certificate

Wallace & Chokhani Expires August 2003 [Page 27]

 Trusted Archive Protocol (TAP) February 2003

 CRLs ::= SEQUENCE SIZE (1..MAX) OF CertificateList
 OCSPResponses ::= SEQUENCE SIZE (1..MAX) OF OCSPResponse
 TrustAnchorInfos::= SEQUENCE SIZE (1..MAX) OF TrustAnchorInfo

 -- oid categories
 -- id-tap OBJECT IDENTIFIER ::= {id-pkix 22}
 -- id-tap-msgs OBJECT IDENTIFIER ::= {id-tap 1}
 -- id-tap-types OBJECT IDENTIFIER ::= {id-tap 2}
 -- id-tap-cryptoInfos OBJECT IDENTIFIER ::= {id-tap 3}
 -- id-tap-controls OBJECT IDENTIFIER ::= {id-tap 4}
 -- id-tap-trackingInfos OBJECT IDENTIFIER ::= {id-tap 5}

 -- oids related to protocol messages
 -- id-tap-archiveReq OBJECT IDENTIFIER ::={id-tap-msgs 1}
 -- id-tap-archiveSubOrDelResp OBJECT IDENTIFIER ::={id-tap-msgs 2}
 -- id-tap-archiveRetrievalReq OBJECT IDENTIFIER ::={id-tap-msgs 3}
 -- id-tap-archiveRetrievalResp OBJECT IDENTIFIER ::={id-tap-msgs 4}
 -- id-tap-archiveDeletionReq OBJECT IDENTIFIER ::={id-tap-msgs 5}

 -- extended key usage oid
 -- id-kp-trustedArchive OBJECT IDENTIFIER ::= {id-kp 15}

 -- oids for content info or attribute types
 -- id-tap-archiveRecordData OBJECT IDENTIFIER::={id-tap-types 1}
 -- id-tap-cryptoInfos OBJECT IDENTIFIER::={id-tap-types 2}
 -- id-tap-archiveToken OBJECT IDENTIFIER::={id-tap-types 3}

 -- oids for crypto info types
 -- id-tap-certificates OBJECT IDENTIFIER ::={id-tap-cryptoInfos 1}
 -- id-tap-crls OBJECT IDENTIFIER ::={id-tap-cryptoInfos 2}
 -- id-tap-ocspResponses OBJECT IDENTIFIER ::={id-tap-cryptoInfos 3}
 -- id-tap-TAInfos OBJECT IDENTIFIER ::={id-tap-cryptoInfos 4}

 -- oids for archive controls
 -- id-tap-nonce OBJECT IDENTIFIER::={id-tap-controls 1}
 -- id-tap-trustAnchorRequest OBJECT IDENTIFIER::={id-tap-controls 2}
 -- id-tap-tsaPolicy OBJECT IDENTIFIER::={id-tap-controls 3}

 -- oids for tracking infos
 -- id-tap-taaLocation OBJECT IDENTIFIER ::= {id-tap-trackingInfos 1}

 END

7. Security Considerations

7.1 Trust Anchors for Timestamp and Other Signature Verification on
 Archive Retrieval

Wallace & Chokhani Expires August 2003 [Page 28]

 Trusted Archive Protocol (TAP) February 2003

 TAAs can provide all or some of the trust anchors upon retrieval.
 These include all the trust anchors required to verify the various
 timestamps in the archive record and/or all the trust anchors known
 to the TAA at the time of the archive submission (i.e., the timestamp
 on the archived data). The latter set of trust anchors may be useful
 in digital signature verification on the archived data, if the data
 was signed.

 Trust anchors provided by the TAA upon archive retrieval are
 transmitted securely since they are included in the signed envelope
 of the retrieval response. The relying party (i.e., the retrieval
 client) MUST use a trust anchor it trusts independent of the trust
 anchors provided by the TAA to verify the TAA signature on the
 retrieval response.

 The relying party (i.e., the retrieval client) can trust the TAA
 provided trust anchors or can ignore them. In the latter case, only
 the TSA (and not the TAA) needs to be trusted for the integrity of
 the archived data. In other words, the relying party will be able to
 detect the modifications made to the archived data by the TAA.
 Refreshing the timestamp on the archived data before the latest
 (i.e., most current or outermost) timestamp expires ensures this.

7.2 Algorithm and Technology Advances

 In order to protect against algorithm (i.e., hashing and digital
 signature) compromise and/or computing technology advances,
 timestamps are periodically refreshed. For each timestamp token
 refresh, the archived data is hashed using the latest secure hashing
 algorithm and a timestamp token generated using a current, secure
 digital signature algorithm.

7.3 Authorizations

 Who is "authorized" to use the TAA is the matter of local policy. If
 an authorization model is implemented for any of the archive services
 (i.e., submission, deletion, and retrieval), the corresponding
 service request MUST be authenticated by the TAA in order to validate
 the requestor authorization.

 This specification does not mandate any authorization requirements.

 To claim compliance with this specification, the deletion request
 MUST be authenticated.

 It is RECOMMENDED that a prudent local policy be established to check
 the authorizations for deletion requests. For example, only the
 submitter or authorized requestors from submitting organizations
 should be able to delete the data.

Wallace & Chokhani Expires August 2003 [Page 29]

 Trusted Archive Protocol (TAP) February 2003

7.4 TSA Policy

 This specification does not mandate how a timestamp under a specific
 TSA policy is requested. It is left as a matter of local policy.
 Some of the examples for requesting specific TSA policy are:

 - Use of archive control (control identified by id-tap-tsaPolicy
 serves this purpose)
 - TAA not requesting any policy
 - TAA requesting specific policy based on its own requirements
 - TAA mapping the TAA policy to TSA policy

7.5 Other

 Data formats archived by a TAA may have requirements that relate to
 long-term non-repudiation beyond those identified in this
 specification.

 TAAs should be operated with appropriate physical, procedural and
 personnel security controls.

 TAAs must be able to obtain a trusted timestamp (either by
 implementing timestamp functionality or by access to a timestamp
 service). Timestamp-related security considerations apply (see
 [RFC3161]).

 In support of dispute resolution, it may be desirable for TAAs to
 archive Certificate Policy and Certification Practice Statement
 documents.

 It may be desirable to maintain archive data on Write Once/Read Many
 (WORM) media.

 ArchiveControls that request server-side alteration of data, i.e.
 collection of certificates and CRLs, should use a response format
 that permits submitters to verify the timestamp contained in the
 archive token.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in [RFC2028]. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to

https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc2028

Wallace & Chokhani Expires August 2003 [Page 30]

 Trusted Archive Protocol (TAP) February 2003

 obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights, which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

 [RFC3161] identifies the following eight (8) United States Patents
 related to time stamping, listed in chronological order. This may
 not be an exhaustive list. Other patents MAY exist or be issued at
 any time. This list is provided for informational purposes; to date,
 the IETF has not been notified of intellectual property rights
 claimed in regard to any of the specification contained in this
 document. Should this situation change, the current status may be
 found at the online list of claimed rights (IETF Page of Intellectual
 Property Rights Notices).

 Implementers of this protocol SHOULD perform their own patent search
 and determine whether or not any encumbrances exist on their
 implementation.

 Users of this protocol SHOULD perform their own patent search and
 determine whether or not any encumbrances exist on the use of this
 standard.

 # 5,001,752 Public/Key Date-Time Notary Facility
 Filing date: October 13, 1989
 Issued: March 19, 1991
 Inventor: Addison M. Fischer

 # 5,022,080 Electronic Notary
 Filing date: April 16, 1989
 Issued: June 4, 1991
 Inventors: Robert T. Durst, Kevin D. Hunter

 # 5,136,643 Public/Key Date-Time Notary Facility
 Filing date: December 20, 1990
 Issued: August 4, 1992
 Inventor: Addison M. Fischer
 Note: This is a continuation of patent # 5,001,752.)

 # 5,136,646 Digital Document Time-Stamping with Catenate Certificate
 Filing date: August 2, 1990
 Issued: August 4, 1992
 Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.
 (assignee) Bell Communications Research, Inc.,

Wallace & Chokhani Expires August 2003 [Page 31]

 Trusted Archive Protocol (TAP) February 2003

 # 5,136,647 Method for Secure Time-Stamping of Digital Documents
 Filing date: August 2, 1990
 Issued: August 4, 1992
 Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.
 (assignee) Bell Communications Research, Inc.,

 # 5,373,561 Method of Extending the Validity of a Cryptographic
 Certificate
 Filing date: December 21, 1992
 Issued: December 13, 1994
 Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.
 (assignee) Bell Communications Research, Inc.,

 # 5,422,953 Personal Date/Time Notary Device
 Filing date: May 5, 1993
 Issued: June 6, 1995
 Inventor: Addison M. Fischer

 # 5,781,629 Digital Document Authentication System
 Filing date: February 21, 1997
 Issued: July 14, 1998
 Inventor: Stuart A. Haber, Wakefield S. Stornetta Jr.
 (assignee) Surety Technologies, Inc.,

Normative References

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2028] Bradner, S. and R. Hovey, "The Organizations Involved in
 the IETF Standards Process", BCP 11, RFC 2028, October
 1996.

 [RFC2119] Bradner, S. and , "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3161] Adams, C., Cain, P., Pinkas, D. and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, August 2001.

 [RFC3369] Housley, R., "Cryptographic Message Syntax", RFC 3369,
 August 2002.

Informative References

 [RFC3126] Pinkas, D., Ross, J., and N. Pope, "Electronic Signature
 Formats for long term electronic signatures", RFC 3126,
 September 2001.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2028
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3126

Wallace & Chokhani Expires August 2003 [Page 32]

 Trusted Archive Protocol (TAP) February 2003

Authors' Addresses

 Carl Wallace
 Cygnacom Solutions
 7927 Jones Branch Dr. Suite 100 West
 McLean, VA 22102-3305
 Email: cwallace@cygnacom.com

 Santosh Chokhani
 Orion Security Solutions
 3410 N. Buchanan Street
 Arlington, VA 22207
 Email: chokhani@orionsec.com

Wallace & Chokhani Expires August 2003 [Page 33]

 Trusted Archive Protocol (TAP) February 2003

Appendix A: Support for non-TAP aware clients and alternative submission
request formats

 In some cases it may be desirable to accept archive submissions from
 clients that are not TAP-aware. The following table describes the
 submission alternatives.

 Client Auth. Message format Archive target
 software method

 TAP-aware Transport ContentInfo containing Contents of
 and/or CMS SignedData w/ data field in
 ArchiveSubmissionReq in ArchivedData
 encapContentInfo field structure

 TAP-aware Transport ContentInfo containing Contents of
 ArchiveSubmissionReq data field in
 ArchivedData
 structure

 Non-TAP- Transport Any other format Entire message
 aware and/or (possibly unknown or
 message determined from
 format transport, i.e. mime
 type, file extension,
 etc.)

 Retrieval and deletion requests are likely to be relatively rare
 compared to submission requests. In the interest of supporting a
 broad range of submission clients, it may be desirable to support
 alternative archive submission formats, for example, an XML
 submission request. Non-TAP-compliant submission formats MUST NOT
 use TAP-defined transport layer type information. TAA
 implementations could support alternative submission types via a
 plug-in architecture. Regardless of submission means, archive
 information MUST be represented using TAP-defined archive tokens,
 records and packages for retrieval and deletion requests.

Wallace & Chokhani Expires August 2003 [Page 34]

