
Network Working Group M. Mathis
Internet-Draft J. Heffner
Expires: August 21, 2005 PSC
 K. Lahey
 Freelance
 February 20, 2005

Path MTU Discovery
draft-ietf-pmtud-method-04

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 21, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes a robust method for Path MTU Discovery that
 relies on TCP or some other Packetization Layer to probe an Internet
 path with progressively larger packets. This method is described as
 an extension to RFC 1191 and RFC 1981, which specify ICMP based Path
 MTU Discovery for IP versions 4 and 6, respectively.

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Mathis, et al. Expires August 21, 2005 [Page 1]

Internet-Draft Path MTU Discovery February 2005

 The general strategy of the new algorithm is to start with a small
 MTU and search upward, testing successively larger MTUs by probing
 with single packets. If the probe is successfully delivered and
 satisfies a subsequent verification phase then the MTU is raised. If
 the probe is lost, it is treated as an MTU limitation and not as a
 congestion signal.

 There are several options for integrating PLPMTUD with classical path
 MTU discovery. PLPMTUD can be minimally configured to perform ICMP
 black hole recovery to increase the robustness of classical path MTU
 discovery, or ICMP processing can be completely disabled, and PLPMTUD
 can completely replace classical path MTU discovery.

 In the latter configuration, PLPMTUD exactly parallels congestion
 control. An end-to-end transport protocol adjusts non-protocol
 properties of the data stream (window size or packet size) while
 using packet losses to deduce the appropriateness of the adjustments.
 This technique seems to be more philosophically consistent with the
 end-to-end principle than relying on ICMP messages containing
 transcribed headers of multiple protocol layers.

Mathis, et al. Expires August 21, 2005 [Page 2]

Internet-Draft Path MTU Discovery February 2005

Table of Contents

1. Introduction . 5
1.1 Revision History . 5

 1.1.1 Changes since version -02, July 19th 2004 (IETF 60) . 6
2. Overview . 7
3. Terminology . 9
4. Requirements . 12
5. Layering . 14
5.1 Accounting for Header Sizes 14
5.2 Storing PMTU information 15
5.3 Accounting for IPsec 16
5.4 Measuring path MTU . 16

6. The Probing Sequence and Lower Layers 17
6.1 Normal sequence of events to raise the MTU 17
6.2 Processing MTU Indications 18
6.2.1 Processing ICMP PTB messages 18
6.2.2 Packetization Layer Detects Lost Packets 19
6.2.3 Packetization Layer Retransmission Timeout 21
6.2.4 Packetization Layer Full Stop Timeout 21

6.3 Probing Intervals . 22
6.4 Host fragmentation . 24
6.5 Multicast . 25

7. Common Packetization Properties 25
7.1 Mechanism to detect loss 25
7.2 Generating Probes . 26
7.3 Mechanism to support provisional MTUs 26
7.4 Selecting the initial MPS 27
7.5 Common MPS Search Strategy 28
7.5.1 Fine Scans . 29

7.6 Congestion Control and Window Management 30
8. Specific Packetization Layers 31
8.1 Probing method using TCP 31
8.2 Probing method using SCTP 32
8.3 Probing method for IP fragmentation 34
8.4 Probing method for applications 35

9. Operational Integration 36
9.1 Interoperation with prior algorithms 37
9.2 Operation over subnets with dissimilar MTUs 37
9.3 Interoperation with tunnels 38
9.4 Diagnostic tools . 38
9.5 Management interface 39

10. References . 40
10.1 Normative References . 40
10.2 Informative References 40

 Authors' Addresses . 41
A. Security Considerations 41
B. IANA considerations . 42

Mathis, et al. Expires August 21, 2005 [Page 3]

Internet-Draft Path MTU Discovery February 2005

C. Acknowledgements . 42
 Intellectual Property and Copyright Statements 43

Mathis, et al. Expires August 21, 2005 [Page 4]

Internet-Draft Path MTU Discovery February 2005

1. Introduction

 This document describes a method for Packetization Layer Path MTU
 Discovery (PLPMTUD) which is an extension to existing Path MTU
 discovery methods as described in RFC 1191 [2] and RFC 1981 [3]. The
 proper MTU is determined by starting with small packets and probing
 with successively larger packets. The bulk of the algorithm is
 implemented above IP, in the transport layer (e.g. TCP) or other
 "Packetization Protocol" that is responsible for determining packet
 boundaries.

 This document draws heavily RFC 1191 [2] and RFC 1981 [3] for
 terminology, ideas and some of the text.

 This document describes methods to discover the path MTU using
 features of existing protocols. The methods apply to IPv4 and IPv6,
 and many transport protocols. They do not require cooperation from
 the lower layers (except that they are consistent about what packet
 sizes are acceptable) or the far node. Variants in implementations
 will not cause interoperability problems.

 The methods described in this document are carefully designed to
 maximize robustness in the presence of less than ideal
 implementations of other protocols or Internet components.

 For sake of clarity we uniformly prefer TCP and IPv6 terminology. In
 the terminology section we also present the analogous IPv4 terms and
 concepts for the IPv6 terminology. In a few situations we describe
 specific details that are different between IPv4 and IPv6.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [4].

 This draft is a product of the Path MTU Discovery (pmtud) working
 group of the IETF. Please send comments and suggestions to
 pmtud@ietf.org. Interim drafts and other useful information will be
 posted at http://www.psc.edu/~mathis/MTU/pmtud/index.html .

1.1 Revision History

 These are all recent substantive changes, in reverse chronological
 order. This section will be removed prior to publication as an RFC.
 Note that there are still some missing details that need to be
 resolved. These are flagged by @@@@. None of the missing details
 are serious.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2119
http://www.psc.edu/~mathis/MTU/pmtud/index.html

Mathis, et al. Expires August 21, 2005 [Page 5]

Internet-Draft Path MTU Discovery February 2005

1.1.1 Changes since version -02, July 19th 2004 (IETF 60)

 Many minor updates throughout the document.

 Added a section describing the interactions between PLPMTUD and
 congestion control.

 Removed a difficult to implement requirement for future data to
 transmit.

 Added "IP Fragmentation" and "Application protocol" as Packetization
 Layers.

 Clarified interactions between TCP SACK and MTU.

 Updated SCTP section to reflect new probing method using "PAD
 chunks".

 Distilled the protocol specific material into separate subsections
 for each protocol.

 Added a section on common requirements and functions for all
 Packetization Layers. More accurately characterized the
 "bidirectional" (and other) requirements of the PL protocol. Updated
 the search strategy in this new section.

 Change "ICMP can't fragment" and "packet too big" to uniformly use
 "ICMP PTB message" everywhere.

 Added Stanislav Shalunov's observation that PLPMTUD parallels
 congestion control.

 Better described the range of interoperability with classical pMTUd
 in the introduction.

 Removed vague language about "not being a protocol" and "excessive
 Loss".

 Slightly redefined flow: the granularity of PLPMTUD within a path.

 Many English NITs and clarifications per Gorry Fairhurst and others.
 Passes strict xml2rfc checking.

 Add a paragraph encouraging interface MTUs that are the optimal for
 the NIC, rather than standard for the media.

 Added a revision history section.

Mathis, et al. Expires August 21, 2005 [Page 6]

Internet-Draft Path MTU Discovery February 2005

2. Overview

 This document describes a method for TCP or other packetization
 protocols to dynamically discover the MTU of a path without relying
 on explicit signals from the network. These procedures are
 applicable to TCP and other transport- or application-level protocols
 that are responsible for choosing packet boundaries (e.g. segment
 sizes) and have an acknowledgement structure that delivers to the
 sender accurate and timely indications of which packets were lost.

 The general strategy of the new procedure is for the packetization
 layer to find an appropriate path MTU by probing with progressively
 larger packets. A "probe sequence" consists of a single "probe
 packet", which initiates a "probe phase", followed by a "transition
 phase" and a "verification phase".

 If a probe packet is successfully delivered, then the path MTU is
 provisionally raised to the probe size during the transition phase.
 If there are no losses during the subsequent verification phase, then
 the path MTU is confirmed (verified) to be at least as large as the
 provisional MTU. Each conclusive probe sequence narrows the MTU
 search range, converging toward the true path MTU.

 The verification phase is used to detect some situations where
 raising the MTU raises the packet loss rate. For example, if a link
 is striped across multiple physical channels with inconsistent MTUs,
 it is possible that a probe will be delivered even if it is too large
 for some of the physical channels. In such cases raising the path
 MTU to the probe size will cause severe periodic loss and abysmal
 performance. The verification phase is designed to prevent the path
 MTU from being raised if doing so causes excessive packet losses.

 A conservative implementation of PLPMTUD would use a full round trip
 time for the verification phase. In this case the entire probe
 sequence takes three full round trip times. It takes one round trip
 for the probe phase, during which the probe propagates to the far
 node and an acknowledgment is returned. The second round trip is the
 transitional phase, during which data packets using the provisional
 MTU propagate to the far node and are acknowledged. During he third
 and final round trip time, it is verified that raising the MTU did
 not cause any additional losses.

 The isolated loss of a probe packet (with or without an ICMP PTB
 message) is treated as an indication of an MTU limit, and not as a
 congestion indicator. In this case alone, the packetization protocol
 is permitted to retransmit any missing data without adjusting the
 congestion window.

Mathis, et al. Expires August 21, 2005 [Page 7]

Internet-Draft Path MTU Discovery February 2005

 If there is a timeout, or additional packets are lost during any of
 the three phases, the loss is treated as a congestion indication as
 well as an indication of some sort of failure of the PLPMTUD process.
 The congestion indication is treated like any other congestion
 indication: window or rate adjustments are mandatory per the relevant
 congestion control standards [8]. Probing can resume after a delay
 which is determined by the nature of the detected failure.

 The most likely (and least serious) PLPMTUD failure is the link
 experiencing congestion related losses while probing. In this case
 it is appropriate to retry a probe of the same size as soon as the
 packetization layer has fully adapted to the congestion and recovered
 from the losses.

 In other cases, additional losses or timeouts indicate problems with
 the link or packetization layer. In these situations it is desirable
 to use longer delays depending on the severity of the error.

 There are a range of options for integrating PLPMTUD with classical
 path MTU discovery. In the most conservative configuration, from a
 deployment point of view, classical path MTU discovery is fully
 functional (all correct ICMP PTB messages are unconditionally
 processed) and PLPMTUD is invoked only to recover from ICMP black
 holes.

 In the most conservative configuration, from a security point of
 view, all ICMP PTB messages are ignored, and PLPMTUD is the sole
 method used to discover the path MTU. This protects against
 malicious or erroneous ICMP PTB messages which might otherwise cause
 MTU discovery to arrive at the incorrect MTU for a path.

 Note that in the latter configuration, PLPMTUD parallels congestion
 control. An end-to-end transport protocol adjusts non-protocol
 properties of the data stream (window size or packet size) while
 using packet losses to deduce the appropriateness of the adjustments.
 This technique seems to be more philosophically consistent with the
 end-to-end principle of the Internet than relying on ICMP messages
 containing transcribed headers of multiple protocol layers.

 We advocate a compromise, in which ICMP PTB messages are only
 processed in conjunction with probing (described in section 6.2.1),
 and Packetization Layer timeouts (described in section 6.2.3), and
 ignored in all other situations.

 Most of the difficulty in implementing PLPMTUD arises because it
 needs to be implemented in several different places within a single
 node. In general, each packetization protocol needs to have its own
 implementation of PLPMTUD. Furthermore, the natural mechanism to

Mathis, et al. Expires August 21, 2005 [Page 8]

Internet-Draft Path MTU Discovery February 2005

 share path MTU information between concurrent or subsequent
 connections over the same path is a path information cache in the IP
 layer. The various packetization protocols need to have the means to
 access and update the shared cache in the IP layer. This memo
 describes PLPMTUD in terms of its primary subsystems without fully
 describing how they are assembled into a complete implementation.

 Section 3 provides a complete glossary of terms.

 Relatively few details of PLPMTUD affect interoperability with other
 standards or Internet protocols. These details are specified in

RFC2119 standards language in section 4. The vast majority of the
 implementation details described in this document are recommendations
 based on experiences with earlier versions of path MTU discovery.
 These recommendations are motivated by a desire to maximize
 robustness of PLPMTUD in the presence of less than ideal network
 conditions as they exist in the field.

 Section 5 describes how to partition PLPMTUD into layers, and how to
 manage the "path information cache" in the IP layer.

 Section 6 describes the details of a probe sequence, including how
 to process MTU and error indications, necessary to raise the MTU by
 one step.

 Section 7 describes the general search strategy and Packetization
 Layer features needed to implement PLPMTUD.

 Section 8 discusses specific implementation details for some
 specific protocols, including TCP.

 Section 9 describes ways to minimize deployment problems for
 PLPMTUD, by including a number of good management features. It also
 addresses some potentially serious interactions with nodes that do
 not honor the IPv4 DF bit.

3. Terminology

 We use the following terms in this document:

 IP: Either IPv4 [1] or IPv6 [7].

 Node: A device that implements IP.

 Router: A node that forwards IP packets not explicitly addressed to
 itself.

https://datatracker.ietf.org/doc/html/rfc2119

Mathis, et al. Expires August 21, 2005 [Page 9]

Internet-Draft Path MTU Discovery February 2005

 Host: Any node that is not a router.

 Upper layer: A protocol layer immediately above IP. Examples are
 transport protocols such as TCP and UDP, control protocols such as
 ICMP, routing protocols such as OSPF, and Internet or lower-layer
 protocols being "tunneled" over (i.e., encapsulated in) IP such as
 IPX, AppleTalk, or IP itself.

 Link: A communication facility or medium over which nodes can
 communicate at the link layer, i.e., the layer immediately below
 IP. Examples are Ethernets (simple or bridged); PPP links; X.25,
 Frame Relay, or ATM networks; and Internet (or higher) layer
 "tunnels", such as tunnels over IPv4 or IPv6. Occasionally we use
 the slightly more general term "lower layer" for this concept.

 Interface: A node's attachment to a link.

 Address: An IP-layer identifier for an interface or a set of
 interfaces.

 Packet: An IP header plus payload.

 MTU: Maximum Transmission Unit, the size in bytes of the largest IP
 packet, including the IP header and payload, that can be
 transmitted on a link or path. Note that this could more properly
 be called the IP MTU, to be consistent with how other standards
 organizations use the acronym MTU.

 Link MTU: The Maximum Transmission Unit, i.e., maximum IP packet size
 in bytes, that can be conveyed in one piece over a link. Beware
 that this definition differers from the definition used by other
 standards organizations.

 For IETF documents, link MTU is uniformly defined as the IP MTU
 over the link. This includes the IP header, but excludes link
 layer headers and other framing which is not part of IP or the IP
 payload.

 Be aware that other standards organizations generally define link
 MTU to include the link layer headers.

 Path: The set of links traversed by a packet between a source node
 and a destination node

 Path MTU, or pMTU: The minimum link MTU of all the links in a path
 between a source node and a destination node.

Mathis, et al. Expires August 21, 2005 [Page 10]

Internet-Draft Path MTU Discovery February 2005

 Classical path MTU discovery: Process described in RFC 1191 and RFC
1981, in which nodes rely on ICMP "Packet Too Big" (PTB) messages

 to learn the MTU of a path.

 Packetization Layer: The layer of the network stack which segments
 data into packets.

 PLPMTUD: Packetization Layer Path MTU Discovery, the method described
 in this document, which is an extension to classical PMTU
 discovery.

 PTB (Packet Too Big) message: An ICMP message reporting that an IP
 packet is too large to forward. This is the IPv6 term that
 corresponds to the IPv4 "ICMP Can't fragment" message.

 Flow: A context in which MTU discovery algorithms can be invoked.
 This is naturally an instance of the packetization protocol, e.g.
 one side of a TCP connection.

 MPS: The maximum IP payload size available over a specific path.
 Typically this is the path MTU minus the IP header. As an
 example, this is the maximum TCP packet size, including TCP
 payload and headers but not including IP headers. This has also
 been called the "Layer 3 MTU".

 MSS: The TCP Maximum Segment Size, the maximum payload size available
 to the TCP layer. This is typically the path MPS minus the size
 of the TCP header.

 Probe packet: A packet which is being used to test a path for a
 larger MTU.

 Probe size: The size of a packet being used to probe for a larger
 MTU.

 Successful probe: The probe packet was delivered through the network
 and acknowledged by the Packetization Layer on the far node.

 Inconclusive probe: The probe packet was not delivered, but there
 were other lost packets close enough to the probe where it can not
 be presumed that the probe was lost because it was larger than the
 path MTU. By implication the probe might have been lost due to
 something other than MTU (such as congestion), so the results are
 inconclusive.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1981

Mathis, et al. Expires August 21, 2005 [Page 11]

Internet-Draft Path MTU Discovery February 2005

 Failed probe: The probe packet was not delivered and there were no
 other lost packets close to the probe. This is taken as an
 indication that the probe was larger than the path MTU, and future
 probes should be smaller.

 Errored probe: There were losses or timeouts during the verification
 phase which suggest a potentially disruptive failure or network
 condition. These are generally retried only after substantially
 longer intervals.

 Probe gap: The payload data that will be lost and need to be
 retransmitted if the probe is not delivered.

 Probe phase: The interval (time or protocol events) between when a
 probe is sent and when it is determined that the the probe
 succeeded, failed or was inconclusive

 Verification phase: An additional interval during which the new path
 MTU is considered provisional. Packet losses or timeouts are
 treated as an indication that there may be a problem with the
 provisional MTU.

 Transition phase: The interval between the probe phase and the
 verification phase, during which packets using the new MTU
 propagate to the far node and the acknowledgment propagates back.

 Probe sequence: The sequence of events to raise the MTU by one step,
 starting with the transmission of a probe packet followed by
 probe, transition and verification phases.

 Search strategy: The heuristics used to choose successive probe sizes
 to converge on the proper path MTU, as described in section 7.5.

 Full stop timeout: a timeout where none of the packets transmitted
 after some event are acknowledged by the receiver, including any
 retransmissions. This is taken as an indication of some failure
 condition in the network, such as a routing change onto a link
 with a smaller MTU. For the sake of PLPMTUD we suggest the
 following definition of a full stop timeout: the loss of one full
 window of data and at least one retransmission or at least 6
 consecutive packets including at least 2 retransmissions (along
 with two retransmission timer expirations). [@@@ This probably
 needs some experimentation.]

4. Requirements

 All Internet nodes SHOULD implement PLPMTUD in order to discover and

Mathis, et al. Expires August 21, 2005 [Page 12]

Internet-Draft Path MTU Discovery February 2005

 take advantage of the largest MTU supported along the Internet path.

 Links MUST NOT deliver packets that are larger than their MTU. Links
 that have parametric limitations (e.g. MTU bounds due to limited
 clock stability) MUST include explicit mechanisms to consistently
 reject packets that might otherwise be nondeterministically
 delivered.

 All hosts SHOULD use IPv4 fragmentation in a mode that mimics IPv6
 functionality. All fragmentation SHOULD be done on the host, and all
 IPv4 packets, including fragments, SHOULD have the DF bit set such
 that they will not be fragmented (again) in the network. See Section

6.4.

 The requirements below only apply to those implementations that
 include PLPMTUD.

 To use PLPMTUD a Packetization Layer MUST have a loss reporting
 mechanism that provides the sender with timely and accurate
 indications of which packets were lost in the network.

 Normal congestion control algorithms MUST remain in effect under all
 conditions except when only an isolated probe packet is detected as
 lost. In this case alone the normal congestion (window or data rate)
 reduction MAY be suppressed. If any other data loss is detected,
 standard congestion control MUST take place.

 Suppressed congestion control (as above) MUST be rate limited such
 that it occurs less frequently than the worst case loss rate for TCP
 congestion control at a comparable data rate over the same path (i.e.
 less than the "TCP-friendly" loss rate [@@]). This SHOULD be
 enforced by requiring a minimum headway between a suppressed
 congestion adjustment (due to a failed probe) and the next attempted
 probe, which is equal to one round trip time for each packet
 permitted by the congestion window. Alternatively this may be
 enforced by not suppressing congestion control if a 2nd probe is lost
 too soon after the 1st lost probe. This and other issues relating to
 congestion control are discussed in section 7.6.

 Whenever the MTU is raised, the congestion state variables MUST be
 rescaled so as not to raise the window size in bytes (or data rate in
 bytes per seconds).

 Whenever the MTU is reduced (e.g. when processing ICMP PTB messages)
 the congestion state variable SHOULD be rescaled not to raise the
 window size in packets.

 If PLPMTUD updates the MTU for a particular path, all Packetization

Mathis, et al. Expires August 21, 2005 [Page 13]

Internet-Draft Path MTU Discovery February 2005

 Layer sessions that share the path representation SHOULD be notified
 to make use of the new MTU and make the required congestion
 adjustments.

 All implementations MUST include a mechanism to implement diagnostic
 tools that do not rely on the operating systems implementation of
 path MTU discovery. This specifically requires the ability to send
 packets that are larger than the known MTU for the path, and
 collecting any resultant ICMP error message. See section 9.4 for
 further discussion of MTU diagnostics.

5. Layering

 Packetization Layer Path MTU Discovery is most easily implemented by
 splitting its functions between layers. The IP layer is the best
 place to keep shared state, collect the ICMP messages, track IP
 header sizes and manage MTU information provided by the link layer
 interfaces. However the procedures that PLPMTUD uses for probing,
 verification and scanning for the path MTU are very tightly coupled
 to the data recovery and congestion control state machines in the
 Packetization Layers. The most difficult part of implementing
 PLPMTUD is properly splitting the implementation between the layers.

 Note that this layering approach is consistent with the advice in the
 current PMTUD specifications [2][3]. Many implementations of
 classical PMTU Discovery are already split along these same layers.

5.1 Accounting for Header Sizes

 Early implementation of PLPMTUD revealed that it is critically
 important to have a good clean mechanism for accounting header sizes
 at all layers. This is because each Packetization Layer does its
 calculations in its own natural data unit, which are almost always a
 reflection of the service that the Packetization Layer provides to
 the application or other upper layers. For example, TCP naturally
 performs all of its calculations in terms of sequence numbers and
 segment sizes. However, the MTU size being probed, MTU size reported
 in ICMP PTB messages, etc are measures of full packets, which not
 only include the TCP payload (measured in sequence space) but also
 include fixed TCP and IP headers, and may include IPv6 extension
 headers or IPv4 options, TCP options and even IPsec AH or ESP
 headers.

 PLPMTUD requires frequent translation between these two domains: the
 Packetization Layer's natural data unit and full IP packet sizes.
 While there are a number of possible ways to accurately implement
 dual size measures, our experience has been that it is best if the
 boundary between the IP layer and the Packetization layer communicate

Mathis, et al. Expires August 21, 2005 [Page 14]

Internet-Draft Path MTU Discovery February 2005

 in terms of the IP Maximum Payload Size or MPS. The MPS is the only
 size measure that is common to both layers because it exactly matches
 the boundary between the layers. The IP Layer is responsible for
 adding or deducting its own headers when translating between MTU and
 MPS. Likewise the Packetization Layer is responsible for adding or
 deducting its own headers when calculations in its natural data
 units. For example, the MPS and TCP's MSS are different by the TCP
 header size.

 Be aware that a casual reading of this document might give the
 impression that MTU, MPS and Packetization Layer data size (e.g. TCP
 MSS) are used interchangeably. They are not. Our choice of
 terminology is consistent with the protocol layer being discussed in
 the surrounding context. All implementors must pay attention to the
 distinction between these terms and include all necessary
 conversions, even when thy are not explicitly indicated in this
 document.

5.2 Storing PMTU information

 The IP layer is the best place to store cached MPS values and other
 shared state such as MTU values reported by ICMP PTB messages.
 Ideally this shared state should be associated with a specific path
 traversed by packets exchanged between the source and destination
 nodes. However, in most cases a node will not have enough
 information to completely and accurately identify such a path.
 Rather, a node must associate a MPS value with some local
 representation of a path. It is left to the implementation to select
 the local representation of a path.

 An implementation could use the destination address as the local
 representation of a path. The MPS value associated with a
 destination would be the minimum MPS learned across the set of all
 paths in use to that destination. The set of paths in use to a
 particular destination is expected to be small, in many cases
 consisting of a single path. This approach will result in the use of
 optimally sized packets on a per-destination basis. This approach
 integrates nicely with the conceptual model of a host as described in
 [RFC 2461]: a MPS value could be stored with the corresponding entry
 in the destination cache. However, NAT and other forms of middle
 boxes may exhibit differing MTUs at as single IP address.

 Note that network or subnet numbers are not suitable to use as
 representations of a path, because there is not a general mechanism
 to determine the network mask at the remote host.

 If IPv6 flows are in use, an implementation could use the IPv6 flow
 id [7][14] as the local representation of a path. Packets sent to a

https://datatracker.ietf.org/doc/html/rfc2461

Mathis, et al. Expires August 21, 2005 [Page 15]

Internet-Draft Path MTU Discovery February 2005

 particular destination but belonging to different flows may use
 different paths, with the choice of path depending on the flow id.
 This approach will result in the use of optimally sized packets on a
 per-flow basis, providing finer granularity than MPS values
 maintained on a per-destination basis.

 For source routed packets, i.e. packets containing an IPv6 routing
 header, or IPv4 LSRR or SSRR options, the source route may further
 qualify the local representation of a path. An implementation could
 use source route information in the local representation of a path.

5.3 Accounting for IPsec

 This document does not take a stance on the placement of IPsec, which
 logically sits between IP and the Packetization Layer. As far as
 PLPMTUD is concerned IPsec can be treated either as part of IP or as
 part of the Packetization Layer, as long as the accounting is
 consistent within the implementation. If IPsec is treated as part of
 the IP layer, then each security association to a remote node may
 need to be treated as a separate path, i.e., the the security
 association is used to represent the path. If IPsec is treated as
 part of the packetization layer, the IPsec header size has to be
 included in the Packetization Layer's header size calculations.

5.4 Measuring path MTU

 This memo uses the concept of a "flow" to define the scope of the
 path MTU discovery algorithms. For many implementations, a flow
 would naturally correspond to an instance of each protocol, i.e.,
 each connection or session. In such implementations the algorithms
 described in this document are performed within each session for each
 protocol. The observed MPS can be shared between different flows
 sharing a common path representation.

 Alternatively, PLPMTUD could be implemented such that the complete
 PLPMTUD state is associated with the path representations. Such an
 implementation could use multiple connections or sessions for each
 probe sequence. For example, one connection could do the initial
 probe and set the provisional MTU and one or more subsequent
 connection could verify the MTU. This approach may converge much
 more quickly in some environments such as when the application uses
 many small connections, each of which is too short to complete a
 probe sequence.

 These approaches are not mutually exclusive. However, due to
 differing constraints on generating probes (section Section 7.2) and
 the MPS searching algorithm (section Section 7.5), it may not be
 feasible for different packetization layer protocols to share PLPMTUD

Mathis, et al. Expires August 21, 2005 [Page 16]

Internet-Draft Path MTU Discovery February 2005

 state. This suggests that it may be possible for some protocols to
 share probing state, but not others. In this case, the different
 protocols can still share the observed MPS but they will have
 differing convergence properties.

6. The Probing Sequence and Lower Layers

 This section describes the details of a probe sequence, including how
 to process MTU and error indications, necessary to raise the MTU by
 one step.

6.1 Normal sequence of events to raise the MTU

 If the probe size is smaller than the actual path MTU and there are
 no other losses, the normal sequence of events to raise the MTU is:
 1. Confirm probing preconditions: no outstanding Packetization Layer
 losses, sufficient congestion window per section 7.6, sufficient
 elapsed time since previous probe per section 6.3, if candidate
 MPS has not been set from ICMP MPS, then compute the candidate
 MPS per MPS search strategy in section 7.5.

 2. A new MTU is tested by sending one "probe packet", of size "probe
 size" (computed from the candidate MPS). The probe is sent,
 followed by additional packets at the current MTU. By definition
 PLPMTUD enters the probe phase. The probe propagates through the
 network and the far node acknowledges it (or possibly latter
 data, if acknowledgments are cumulative and delayed
 acknowledgment is in effect).

 3. The acknowledgment for the probe reaches the data sender. By
 definition, this ends the probe phase.

 4. The packetization layer provisionally raises the MTU to the probe
 size. PLPMTUD enters the transitional phase when it starts
 sending data using the provisional MTU.

 Note that implementations that use packet counts for congestion
 accounting (e.g. keep cwnd in units of packets) must re-scale
 their congestion accounting such that raising the MTU does not
 raise the data rate (bytes/second) or the total congestion window
 in bytes, as required in section 4 and discussed in 7.6.

 If the implementation packetizes the data at the application
 programming interface, it may transmit already queued data at the
 current MTU before raising the MTU. In this case this data is
 not part of either the probing or transition phases, because all
 of the packets in flight fit within the current MTU.

Mathis, et al. Expires August 21, 2005 [Page 17]

Internet-Draft Path MTU Discovery February 2005

 5. Once the first packet of the transitional phase is acknowledged,
 PLPMTUD enters the verification phase. In principle the
 verification phase can be of arbitrary duration, however at this
 time we are recommending one full window of data (i.e one full
 round trip time) for most Packetization Layers.

 6. Once there has been sufficient data delivered and acknowledged
 the provisional MTU is considered verified and the path MTU is
 updated. PLPMTUD can then probe for an even larger MTU, as
 described in the searching strategy in section 7.5.

 Other events described in the next section are treated as exceptions
 and alter or cancel some of the steps above.

6.2 Processing MTU Indications

 When the probe sequence fails to raise the MTU, it will be due to one
 of three broad classes of outcomes: the probe was inconclusive,
 failed or errored. If the probe was inconclusive, it means that
 there were other losses seemingly unrelated to the probe, such that
 the probe outcome was ambiguous. Inclusive probes should be retried
 with the same probe size. If the probe failed, this is an indication
 that the probe size was larger than the path MTU, and probing should
 continue with a smaller size, as selected by the MTU searching
 algorithm. In some situations there can be indications that the
 probing sequence caused some unexpected event. In these error
 conditions, it is desirable to use progressively longer delays
 between probes to minimize the possible impact on the network.

6.2.1 Processing ICMP PTB messages

 Classical PMTU discovery specifies the generation of ICMP PTB
 Messages if an over-sized packet (e.g. a probe) encounters a link
 that has a smaller MTU. Since these messages can not be
 authenticated they introduce a number of well documented attacks
 against classical PMTUD [5].

 With PLPMTUD these messages are not required for correct operation,
 and in principle can be summarily ignored at the expense of slower
 convergence to the proper MTU. However, we believe that a slightly
 better approach is to save the reported PTB size (computed from the
 ICMP MTU) in the path information cache and act on it only in
 conjunction with a lost PLPMTUD probe or a full-stop timeout.

 Every ICMP PTB Message should be subjected to the following checks:
 o If globally forbidden then discard the message.

Mathis, et al. Expires August 21, 2005 [Page 18]

Internet-Draft Path MTU Discovery February 2005

 o If forbidden by the application then discard the message.

 o If this path has been tagged "bogus ICMP messages" then discard
 the message.

 o If the reported MTU fails consistency checks then set "bogus ICMP
 messages" flag for this path and discards the message. These
 consistency checks include:
 * unrecognized or unparseable enclosed header, or
 * reported MTU is larger than the size indicated by the enclosed
 header, or
 * larger than the current MTU, provisional MTU or probe size as
 appropriate, or
 * fails a ICMP consistency checks specific to the Packetization
 Layer. (E.g. The SCTP Verification-Tag mechanism [9][16])
 To ease migration, it is suggested that implementations may
 include global controls to emulate legacy operation by suppressing
 some or all of the consistency checks.

 If the ICMP PTB message is acceptable under all of these checks then
 save the "ICMP MPS" computed from the MTU field in the ICMP message.
 If the global configuration switch is set to emulate classical path
 MTU discovery then process the message immediately, i.e., set the
 path MPS to the ICMP MPS and invoke any protocol specific actions.
 Otherwise, the saved ICMP MPS will be acted upon if and only if there
 are other PLPMTUD events such as lost probes, etc as indicated in the
 next section. This delayed processing of ICMP PTB messages makes it
 more difficult for an attacker to interfere with correct PLPMTUD
 operation by injecting fraudulent ICMP PTB messages.

 In either case if the Packetization Layer calls for specific actions
 in response to a PTB message, that action should be invoked only at
 the point when the path MPS is updated from the ICMP MPS.

6.2.2 Packetization Layer Detects Lost Packets

 Each packetization protocol has its own mechanism to detect lost
 packets and request the retransmission of missing data. The primary
 signals used by PLPMTUD are these protocol-specific loss indications.
 The packetization layer is responsible for retransmitting the lost
 data if necessary, and notifying PLPMTUD that there was a loss.
 o If the probe itself was lost, and there were no other losses
 during the probe phase (The RTT between when the probe was sent
 and the loss detected) then it is taken as an indication that the
 path MTU is smaller than the probe size. In this specific
 situation, the Packetization Layer may choose not to treat this

Mathis, et al. Expires August 21, 2005 [Page 19]

Internet-Draft Path MTU Discovery February 2005

 loss as a congestion signal, and continue with the same congestion
 window or data transmission rate.

 If an accepted ICMP PTB message was received after the probe was
 sent, and it passes the additional checks that the ICMP MTU value
 is less than the probe size, and corresponds to an MPS greater
 than that in use for the path, then set the candidate MPS from the
 ICMP MTU value, and restart the probe sequence from step 1 in

section 6.1.

 If there was not an accepted PTB Message, then the indicated event
 is a "probe failure", which can be retried with a smaller probe
 size after a suitable delay for a probe_fail_event. See section

6.2.2 for more complete descriptions of failure events.

 o If there are losses during the probe phase yet the probe was
 acknowledged as received, then the probe was successful. However,
 since additional losses have the potential to spoil the
 verification phase, it is important that PLPMTUD not progress into
 the transition phase (step 4 above) until after the Packetization
 Layer has fully recovered from the losses and completed the
 congestion window (or rate) adjustment.

 o If there are losses during the probe phase and the probe was also
 lost the outcome depends on the presence an ICMP MTU set by an
 acceptable PTB message.

 If there was an accepted PTB message received after the probe was
 sent, it should be treated in the same manner as if there were no
 other losses (see above).

 If there was not an acceptable ICMP PTB message, then the probe is
 inconclusive because the lost probe might have been caused by
 congestion. The probe can be retried after a suitable delay for
 a probe_inconclusive_event.

 o It is unlikely that losses during the transition phase are caused
 by PLPMTUD; however, the presence of loss does potentially
 complicate the verification phase. Note that we are referring to
 losses that are bracketed by acknowledgment of packets that were
 sent at the old MTU, while the transition to the provisional MTU
 is still propagating through the network. The first
 acknowledgment from the provisional MTU (and the transition to the
 verification phase) is most likely going to occur during the
 recovery of the losses in transition phase. It is important that
 the Packetization Layer retransmission machinery distinguish
 between losses at the old MTU (transition phase) and the
 provisional MTU (the verification phase, discussed next).

Mathis, et al. Expires August 21, 2005 [Page 20]

 o Losses during the verification phase are taken as an indication
 that the path may have a non-uniform MTU or other condition such
 that raising the MTU raises the loss rate. If so, this is
 potentially a very serious problem. The provisional MTU is
 considered unsuitable, and the cached path MTU is set back to the
 previously verified MTU.

 Packet loss during the verification phase might also be due to
 coincidental congestion on the path, unrelated to the probe, so it
 would seem desirable to re-probe the path. The risk is that this
 effectively raises the tolerated loss threshold because even
 though raising the MTU seemed to cause additional loss, there is a
 statistical chance that repeated attempts to verify a new MTU may
 yield as false pass. The compromise is to re-probe once with the
 same probe size (after delay probe_inconclusive_event), and if
 this also fails, then the probe may not be retried until after a
 suitable delay for a verification_error_event, which exponentially
 increases on each successive failure.

6.2.3 Packetization Layer Retransmission Timeout

 Note that the we do not make distinctions between the various methods
 that different Packetization Layers might use for detecting and
 retransmitting lost packets. It is preferable that the Packetization
 Layer uses a recovery mechanism similar to TCP SACK or fast
 retransmit designed to detect and report losses to recover as quickly
 as possible.

 Under some conditions the Packetization Layer may have to rely on
 retransmission timeouts or other fairly disruptive techniques to
 detect and recover from losses. Since these greatly increase the
 cost of failed probes, it is recommended that PLPMTUD use even longer
 delays before re-probing. In these situations replace
 probe_fail_event with probe_timeout_event.

6.2.4 Packetization Layer Full Stop Timeout

 Under all conditions (not just during MTU probing) a full stop
 timeout should be taken as an indication of some significantly
 disruptive event in the network, such as a router failure or a
 routing change to a path with a smaller MTU.

 If an ICMP PTB message was recently received, even if its its MTU
 value was less than the current path MTU value in use, then the path
 MTU can be reduced to the ICMP MTU. A full stop timeout is the only
 situation outside of a probe that we recommended that the path MTU is
 set from the ICMP MTU. (In section 9.1 we relax this recommendation
 to facilitate migration to PLPMTUD in exchange for slightly less
 protection from corrupt ICMP PTB messages).

Mathis, et al. Expires August 21, 2005 [Page 21]

Internet-Draft Path MTU Discovery February 2005

 Note that whenever a problem with the path that causes a full-stop
 timeout (also known as a "persistent timeout" in other documents),
 several different path restart/recovery algorithms may be invoked at
 different layers in the stack. Some device drivers may be restarted
 [@@], router discovery [@@], ES-IS [@@] and so forth. We recommend
 that in most situation the first action should be to reset the path
 MTU down. Note that this recommendation is really beyond the scope
 of this document, and may require substantial additional research.

 If there is a full stop timeout and there was not an ICMP message
 indicating a reason (PTB, Net unreachable, etc, or the ICMP messages
 was ignored for some reason), we suggest that the first recovery
 action should be to set the path MTU down to a safe minimum "restart
 MTU" value, and the reset PLPMTUD search state, so PLPMTUD will start
 over again searching for the proper MTU. The default IPV4
 restart_MTU should be the minimum MTU as specified by IPv4 (576
 Bytes)[1]. The default IPV6 restart_MTU should be the minimum MTU as
 specified by IPv6 (1280 Bytes) [7]. Unless the default MTU is
 overridden by some global control (See section 9.5).

 If, and only if, the full stop timeout happens during the probe or
 transition phases, e.g., after sending data using the provisional MTU
 but before any of it is acknowledged, is it considered likely that
 raising the MTU caused the full stop timeout. If so, this situation
 is is likely to be cyclic, because resetting the PLPMTUD search state
 is likely to eventually cause re-probing the same problematic MTU.
 It is tempting to define additional states to detect recurrent full
 stop timeouts. However in today's hostile network environment, there
 is little tolerance for nodes that are so fragile that they can be
 disrupted by something as simple as oversized packets. Therefore, we
 do not feel that it is worth the overhead of specifying a state
 machine that is capable of automatically detecting these situations
 and disabling PLPMTUD. However, it is important that there be a
 manual way to disable or limit probing on specific paths. See

section 9.5.

6.3 Probing Intervals

 The previous sections describe a number of events that prevent a
 probe sequences from raising the path MTU. In all cases the basic
 response is the same: to wait some time interval (dependent on the
 specific event and possibly the history) and then to probe again.
 For events that are "inconclusive," it is generally appropriate to
 re-probe with the same probe size. For events that are identified as
 "failed probes," it is generally appropriate to re-probe with a
 smaller probe size. The search strategy described in section 7.5 is
 used to select probe sizes.

Mathis, et al. Expires August 21, 2005 [Page 22]

Internet-Draft Path MTU Discovery February 2005

 Many of the intervals described below are specified in terms of
 elapsed round trips relative to the current congestion window. This
 is because TCP and other Packetization Layer protocols tend to
 exhibit periodic loses which cause periodic variations of the
 congestion window and possibly the data rate. It is preferable that
 the PLPMTUD probes be scheduled near the low point of these cycles to
 minimize ambiguities caused by congestion losses.

 In order from least to most serious:
 probe_converge_event: The candidate probe size has already been
 probed so there is no need for further searching. Delay 5 minutes
 and then re-probe last SEARCH_HIGH.

 probe_inconclusive_event: Other lost packets near the lost probe made
 the probe result ambiguous. Since the loss of non-probe packets
 requires a window (or data rate) reduction, it is desirable to
 schedule the re-probe (at the same probe size) roughly one round
 trip time after the end of the loss recovery. This will be almost
 the minimum congestion window size, with a small cushion to
 minimize the chances that correlated losses caused by some other
 bursty connection spoil another probe.

 probe_fail_event: A probe fail event is the one situation under which
 the Packetization layer is permitted not to treat loss as a
 congestion signal. Because there is some small risk that
 suppressing congestion control might have unanticipated
 consequences (even for one isolated loss), we require that probe
 fail events be less frequent than the normal period for losses
 under standard congestion control. Specifically after a probe
 fail event and suppressed congestion control, PLPMTUD may not
 probe again until an interval which is comparable to the expected
 interval between congestion control events. This is required in

section 4 and discussed further in section 7.6.

 The simplest estimate of the interval to the next congestion event
 is the same number of round trips as the current window in
 packets.

 probe_timeout_event: Since this event was detected by a timeout, it
 is relatively disruptive to protocol operation. Furthermore,
 since the event indirectly includes a window adjustment that may
 have been caused by the MTU probe, it is important that the probe
 not be repeated until congestion control has had more than
 sufficient time to recover from the loss. Therefore we recommend
 five times the probe_fail_event interval, i.e., five times as many
 round trips as the current congestion window in packets.

Mathis, et al. Expires August 21, 2005 [Page 23]

Internet-Draft Path MTU Discovery February 2005

 verification_error_event: A verification fail event indicates that a
 probe was delivered and the verification phase failed twice
 separated by a congestion adjustment (so the second verification
 phase was at a low point in the congestion control cycle). This
 is an indication that one of the following three things might have
 happened: repeated losses unrelated to PLPMTUD; the path is
 striped across links with dissimilar MTUs, or the link layer has
 some parametric limitation such that raising the MTU greatly
 increases the random error rate.

 The optimal method responding to this situation is an open
 research question. We believe that the correct response is some
 combination of exponentially lengthening back-offs, e.g., starting
 at 1 minute and quadrupling on each repeat, and implicitly
 treating the situation as a probe fail (and choosing a smaller
 probe size) after some threshold number of repeated
 verification_error_events.

6.4 Host fragmentation

 Packetization layers are encouraged to avoid sending messages that
 will require fragmentation. (For the case against fragmentation, see
 [17], [18]). However, entirely preventing fragmentation is not
 always possible. Some packetization layers, such as a UDP
 application outside the kernel, may be unable to change the size of
 messages it sends, resulting in datagram sizes that exceed the path
 MTU.

 IPv4 permitted such applications to send packets without the DF bit
 set. Oversized packets without the DF bit set would be fragmented in
 the network or sending host when they encountered a link with a MTU
 smaller than the packet. In some case, packets could be fragmented
 more than once if there were cascaded links with progressively
 smaller MTUs.

 This approach is no longer recommended. We now recommend that IPv4
 implementations use a strategy that mimics IPv6 functionality. When
 an application sends datagrams that are larger than the known path
 MTU they should be fragmented to the path MTU in the host IP layer
 even if they are smaller than the link MTU of the first network hop
 directly attached to the host. The DF bit should be set on the
 fragments, so they will not be fragmented again in the network.

 This technique will minimize future surprises as the Internet
 migrates to IPv6. Otherwise, the potential exists for widely
 deployed applications or services relying on IPv4 fragmentation in a
 way that cannot be implemented in IPv6. At least one major operating
 system already uses this strategy.

Mathis, et al. Expires August 21, 2005 [Page 24]

Internet-Draft Path MTU Discovery February 2005

 Note that IP fragmentation divides data into packets, so it is
 minimally a Packetization Layer. However it does not have a
 mechanism to detect lost packets, so it can not support a native
 implementation of PLPMTUD. Fragmentation-based PLPMTUD requires an
 adjunct protocol as described in section 8.3.

6.5 Multicast

 In the case of a multicast destination address, copies of a packet
 may traverse many different paths to reach many different nodes. The
 local representation of the "path" to a multicast destination must in
 fact represent a potentially large set of paths.

 Minimally, an implementation could maintain a single MPS value to be
 used for all packets originated from the node. This MPS value would
 be the minimum MPS learned across the set of all paths in use by the
 node. This approach is likely to result in the use of smaller
 packets than is necessary for many paths.

 If the application using multicast gets complete delivery reports
 (unlikely because this requirement has poor scaling properties),
 PLPMTUD could be implemented in multicast protocols.

7. Common Packetization Properties

 This section describes general Packetization Layer properties and
 characteristics needed to implement PLPMTUD. It also describes some
 implementation issues that are common to all Packetization Layers.

7.1 Mechanism to detect loss

 It is important that the Packetization Layer has a timely and robust
 mechanism for detecting and reporting losses. PLPMTUD makes MTU
 adjustments on the basis of detected losses. Any delays or
 inaccuracy in loss notification is likely to result in incorrect MTU
 decisions or slow convergence.

 It is best if Packetization Protocols use fairly explicit loss
 notification such as Selective acknowledgments, although implicit
 mechanisms such as TCP Reno style duplicate acknowledgments counting
 are sufficient. It is important that the mechanism can robustly
 distinguish between the isolated loss of just a probe and other
 combinations of losses.

 Many protocol implementation have complicated mechanisms such as SACK
 scoreboards to distinguish between real losses and temporary missing
 data due to reordering in the network. In these implementation is
 desirable to signal losses to PLPMTUD as a side effect of the data

Mathis, et al. Expires August 21, 2005 [Page 25]

Internet-Draft Path MTU Discovery February 2005

 retransmission. This approach offer the maximum protection from
 confusing signals due to reordering and other events that might mimic
 losses.

 PLPMTUD can also be implemented in protocols that rely on timeouts as
 their primary mechanism for loss recovery, although this should be
 used only when there are no other alternatives.

7.2 Generating Probes

 There are several possible ways to alter packetization layers to
 generate probes. The different techniques incur different overheads
 in three areas: difficulty in generating the probe packet (in terms
 of packetization layer implementation complexity and extra data
 motion) possible additional network capacity consumed by the probes
 and the overhead of recovering from failed probes (both network and
 protocol overheads).

 Some protocols might be extended to allow arbitrary padding with
 dummy data. This greatly simplifies the implementation because the
 probing can be performed without participation from higher layers and
 if the probe fails, the missing data (the "probe gap") is assured to
 fit within the current MTU when it is retransmitted. This is
 probably the most appropriate method for protocols that support
 arbitrary length options or multiplexing within the protocol itself.

 Many Packetization Layer protocols can carry pure control messages
 (without any data from higher protocol layers) which can be padded to
 arbitrary lengths. For example the SCTP HEARTBEAT message can be
 used it this manner (See section 8.2) . This approach has the
 advantage that nothing needs to be retransmitted if the probe is
 lost.

 These techniques do not work for TCP, because there is not a separate
 length field or other mechanism to differentiate between padding and
 real payload data. With TCP the only approach is to send additional
 payload data in an over-sized segment. There are at least two
 variants of this approach, discussed in section 8.1.

 In a few cases there may no reasonable mechanisms to generate probes
 within the Packetization Layer protocol itself. As a last resort it
 may be possible to rely an an adjunct protocol, such as ICMP ECHO
 (aka "ping"), to send probe packets. See section 8.3 for further
 discussion of this approach.

7.3 Mechanism to support provisional MTUs

 The verification phase requires a mechanism provisionally raise the

Mathis, et al. Expires August 21, 2005 [Page 26]

Internet-Draft Path MTU Discovery February 2005

 MPS and if there are additional losses, restore the old MPS. While
 this is not difficult for most potential Packetization Layers, there
 are a few (e.g. ISO TP4 [ISOTP]) that are not allowed to
 re-packetize when doing a retransmission. That is, once an attempt
 is made to transmit a segment of a certain size, the transport cannot
 split the contents of the segment into smaller segments for
 retransmission. In such a case, the original segment can be
 fragmented by the IP layer during retransmission as described in

section 6.4. Subsequent segments, when transmitted for the first
 time, should be no larger than allowed by the path MTU.

 Note that while padding is an appropriate mechanism for probing, it
 is too wasteful for use during the verification phase.

 Unresolved problem: if 2 PL are using the same path and one can only
 verify constrained sizes (e.g blocks+headers) then the verified MTU
 might be the actual packet size for the constrained PL, not the
 probed size. @@@@

 Unresolved problem: what to do about very short flows? No
 verification phase? @@@@@

7.4 Selecting the initial MPS

 If if there is already a cached MPS value for this path, PLPMTUD may
 use the saved MPS value. Unless it is very recent (how recent?
 @@@@@) SEARCH_HIGH should be set to SEARCH_MAX, to restart the search
 process from the old MPS.

 Note that there are tradeoffs to how long the path information cache
 entries is retained when it is not being used by any flows. If they
 are kept for to long they waste memory, if too short it will cause
 frequent re-probing. We suggest an adjustable Least Recently Used
 algorithm to purge old entries. @@@@ This belongs some place else.

 When the PLPMTUD process is started the recommended initial MPS
 should normally be set such that the Packetization Layer can carry 1
 kByte data segments. This initial MPS would be 1 kByte plus space
 for Packetization layer headers. (see section 5 on accounting for
 headers). With the this MPS, RFC2414 [6] allows TCP and other
 transport protocols to start with an initial window of 4 packets.

 [We suspect, but have not confirmed that] TCP completes sooner for
 short connections when started with four 1kB packets rather than
 three 1500 byte packets because the 2nd ACK occurs one round trip
 earlier

 This initial MPS should also be configurable. One of the

https://datatracker.ietf.org/doc/html/rfc2414

Mathis, et al. Expires August 21, 2005 [Page 27]

Internet-Draft Path MTU Discovery February 2005

 configuration options should be to mimic classical PMTUD behavior by
 setting the initial MPS from the interface MTU. This option
 facilitates using PLPMTUD in a mode that mimics classical PMTU
 discovery. (See section 9.1)

7.5 Common MPS Search Strategy

 The MPS search strategy described here is a only rough guide for
 implementors. It is difficult to imagine a completely standard
 algorithm because the strategy can include many Packetization Layer
 specific heuristics to optimize MPS selection. There is significant
 opportunity for future improvements to this portion of PLPMTUD.

 The search strategy is trying to find the largest "candidate MPS"
 that meets the constraints of both the Packetization and the link
 layers. Although this algorithm is primarily described in terms of
 MPS, it needs to use knowledge about link layer MTUs and
 Packetization Layer buffer sizes.

 The search strategy uses three variables:
 SEARCH_MAX is the largest MPS that a Packetization Layer might be
 able to use. It is determined by such considerations as interface
 MTU, widths of protocol length fields, and possibly other
 protocol-dependent values, such as the the TCP MSS option. In
 many cases it would be the same as the classical MTU discovery
 initial MTU, minus the IP layer headers.
 SEARCH_LOW is the largest validated MPS, the same as them current
 MPS in use by the packetization layer. The initial value for
 SEARCH_LOW is described in section 7.4.
 SEARCH_HIGH is the least invalidated MPS. In most cases is will
 be the most recent failed candidate MPS. When PLPMTUD is
 initialized SEARCH_HIGH should be set to SEARCH_MAX, indicating
 that there have been no failed probes.

 For many Packetization Layer protocols, the cost for a failed probe
 is significantly higher than the cost of a successful probe due to
 the additional time and overhead needed for retransmission and
 recovery. For this reason it is often desirable to bias the search
 strategy to make more smaller steps.

 The search strategy first computes an initial candidate MPS using one
 of these methods:
 If SEARCH_HIGH >= SEARCH_MAX, there have been no recent failed
 probes so use a coarse (geometric doubling) scan. Set
 candidate MPS = MIN(2 * SEARCH_LOW, SEARCH_MAX). Otherwise use
 one of several possible fins scan candidate MPS values:
 Select a candidate MPS that corresponds to a common MTU possibly
 minus common tunnel header sizes between SEARCH_LOW and

Mathis, et al. Expires August 21, 2005 [Page 28]

Internet-Draft Path MTU Discovery February 2005

 SEARCH_HIGH. There is a fine scan heuristic described section
7.5.1 that might be used.

 Use a simple weighted binary search by selecting the candidate MPS
 some prorated distance between SEARCH_LOW and SEARCH_HIGH. E.g.
 set
 candidate MPS = SEARCH_LOW * (1 - alpha) + SEARCH_HIGH * alpha,
 for some alpha between 0 and 1. If you choose an alpha slightly
 less than 0.5, PLPMTUD will tend to converge from below,
 minimizing the number of failed probes. Alternatively alpha can
 be selected to optimally converge for some common MTUs, such as
 1500 bytes.
 If the Packetization Layer has preferred data sizes (e.g. carries
 block data), optionally round the candidate MPS to an efficient size
 for the Packetization Layer. The rounded candidate MPS would
 typically be a multiple of the optimal data block size plus space for
 Packetization Layer headers. The MPS can be rounded up or down, but
 should avoid selecting previously probed valued if possible, per the
 convergence test below. Packetization Layer that do not have
 intrinsically preferred data sizes may still choose to round the
 candidate MPS to some convenient increment such as 4 or 8 bytes, to
 prevent excessive hunting. Note that this step is intrinsically
 Packetization Layer dependent, and may be different for different
 packetization Layers.

 If the resulting candidate MPS is not between SEARCH_LOW and
 SEARCH_HIGH, then the probe process has converged and further probing
 will not yield a better value for the MPS for this protocol. To
 detect if a routing change has raised the path MTU, the path should
 be re-probed after a suitable delay as indicated by a
 probe_converge_event (See section 6.3). If the probe succeeds, then
 SEARCH_HIGH should be set to SEARCH_MAX to restart the probing
 process from the current MPS.

 MPS searching can be implicitly disabled by setting the SEARCH_HIGH
 to SEARCH_LOW.

 Note that if two different Packetization Layers are sharing a path,
 they may choose different MPS due to differences in the protocols.
 It is even possible for one of the Packetization Protocol to consider
 the process converged, while the other continues to probe. In this
 case one of the Packetization Layers does may chose not to use the
 full MPS, and instead chooses some slightly smaller but more
 efficient packet size.

7.5.1 Fine Scans

 If SEARCH_LOW does not correspond to a common link MTU, and there is
 a common link MTU between SEARCH_LOW and SEARCH_HIGH, set the

Mathis, et al. Expires August 21, 2005 [Page 29]

Internet-Draft Path MTU Discovery February 2005

 candidate MPS from the most common link MTU between SEARCH_LOW and
 SEARCH_HIGH.

 If SEARCH_LOW does not correspond to a common link MTU, and there is
 not a common link MTU between SEARCH_LOW and SEARCH_HIGH, then set
 the candidate MPS to either the weighted binary search between
 SEARCH_LOW and SEARCH_HIGH or to SEARCH_HIGH, reduced by a reasonable
 increments for tunnel headers.

 If SEARCH_LOW corresponds to a common link MTU, set the candidate MPS
 to SEARCH_LOW plus some small delta. If this fails, we found the
 proper MPS, otherwise we need to keep searching.

 @@@@@ common link MTUs are: 1500...... ?

 @@@@@ common tunnel header sizes are....

7.6 Congestion Control and Window Management

 PLPMTUD and congestion control share the same slice of the protocol
 stack. Both algorithms nominally run inside of a transport protocol
 and rely on packet losses as their primary signal to adjust
 parameters of the data stream (packet size or window size).
 Furthermore both push up the controlled parameter until the onset of
 packet losses, and then back off to a smaller value. Due to the
 close proximity of these two algorithms there is the potential for
 side effects and unexpected interactions between them.

 This section describes potential interactions between PLPMTUD and
 congestion control. In general PLPMTUD is designed to minimize its
 potential impact on congestion control. This is appropriate because
 correctly functioning congestion control is critical to the overall
 operation of the Internet.

 The requirements in section 4 protect congestion control from
 PLPMTUD. It is important that MTU changes do not raise the
 congestion window. Given that we do not know a priori the nature of
 the network bottleneck, PLPMTUD should not raise either the data rate
 (bytes per second) or the packet rate (packets per second).

 Since there is a risk that lost probes might actually be congestion
 losses, and not MTU losses at all, we limit the maximum allowed rate
 for suppressing congestion control to less than the loss rate
 required to throttle the flow to the "TCP friendly" rate. This
 guarantees that the losses due to PLPMTUD are less than the losses
 needed for normal congestion control.

 If there is some node which is accounting queue length in bytes

Mathis, et al. Expires August 21, 2005 [Page 30]

Internet-Draft Path MTU Discovery February 2005

 (rather than packets), there is even the possibility that a probe
 might cause a loss due to driving the queue over some threshold and
 into congestion. For this reason it recommended that all PLPMTUD
 implementations use some strategy to slightly depress the actual
 window during the probe process. It may be sufficient to require
 that the excess data in the probe packet fits within the current
 congestion control window.

 If a probe is carrying real application data that must be
 retransmitted, it is important to suppress (or restore) all of the
 congestion control state changes normally associated with the
 retransmission. For example if a TCP connection is in slow-start
 when a probe is lost, it is important that ssthresh is not changed as
 a side effect of the probing. It is for this reason that it is
 strongly recommended that packetization protocols use some
 combination of out-of-band echo message and padding, if at all
 possible. Lost probes that do not carry any real application data do
 not need to be retransmitted.

 It is recommended that TCP should not probe a new MPS if that MPS
 will likely result in a cwnd of less than 5 segments.

 If the network becomes too congested, it is recommended that the MPS
 be reduced to a smaller size as determined by a heuristic. The
 recommended heuristic is to reduce the MPS by half if ssthresh is
 reduced to 5 segments or smaller, with a minimum MPS of 512 bytes.

8. Specific Packetization Layers

 This section discusses specific implementation details for different
 protocols that can be used as Packetization Layer protocols. All
 Packetization Layer protocols must consider all of the issues
 discussed in section Section 7. For most protocols it is self
 evident how to address many of these issues. It is hoped that the
 protocols described here will be sufficient illustration for
 implementors to adapt other protocols.

8.1 Probing method using TCP

 TCP has no mechanism that could be used to distinguish between real
 application data and some other form of padding that might be used to
 fill out probe packets. Therefore, TCP must generate probes by
 sending oversized segments that are carrying real data from upper
 layers. There are two approaches that TCP might use to minimize the
 overheads associated with the probing sequence.

 A TCP implementation of PLPMTUD can elect to send subsequent segments
 overlapping the probe as though the probe segment was not oversized.

Mathis, et al. Expires August 21, 2005 [Page 31]

Internet-Draft Path MTU Discovery February 2005

 This has the advantage that TCP only need to retransmit one segment
 at the current MTU to recover from failed probes. However the
 duplicate data in the probe does consume network resources and will
 cause duplicate acknowledgments. It is important that these extra
 duplicate acknowledgments not trigger Fast Retransmit. This can be
 guaranteed by limiting the largest probe segment size to twice the
 current segment size (causing at most 1 duplicate acknowledgment) or
 three times the current segment size (causing at most 2 duplicate
 acknowledgments).

 The other approach is to send non-overlapping segments following the
 probe. Although this is cleaner from a protocol architecture
 standpoint it clashes with many of the optimizations used improve the
 efficiency of data motion within many operating systems. In
 particular many implementations divide the data into segments and
 pre-compute checksums as the data is copied out of application
 buffers. In these implementation it can be relatively expensive to
 adjust segment boundaries after the data is already queued.

 If TCP is using SACK or any other variable length headers, the
 headers on the probe and verification packets should be padded to the
 maximum possible length. Otherwise, unexpected options on
 bidirectional data may cause cause IP packets that are larger than
 the tested MTU.

 At the point when TCP is ready to start the verification phase, it is
 permitted transmit already queued data at the old MTU rather than
 re-packetizes it. This postpones the verification process by the
 time required to send the queued data.

 If the verification phase experiences any segment losses, TCP is
 required to pull back to the prior MSS. Since failing the
 verification phase should be an infrequent error condition it is less
 important that this be as efficient as probing.

8.2 Probing method using SCTP

 In the SCTP protocol [9][16] the application writes messages to SCTP
 and SCTP "chunkifies" them into smaller pieces suitable for
 transmission through the network. Once a message has been
 chunkified, they are assigned TSN's. Once some TSNs have been
 transmitted SCTP can not change the chunk sizes. SCTP multi-path
 support normally requires SCTP to chunkify its messages to fit the
 smallest MPS (maximum payload size, same as MTU - IP headers) of all
 paths. Although not required, implementations may bundle multiple
 data chunks together to make larger IP packets to allow for support
 for larger MPSs on different paths. Note that SCTP must
 independently probe and verify the MPS on each path to the peer.

Mathis, et al. Expires August 21, 2005 [Page 32]

Internet-Draft Path MTU Discovery February 2005

 The recommended method for generating probes is to add a chunk
 consisting only of padding to an SCTP message. There are two methods
 to implement this padding.

 In method 1, the message is padded with an SCTP heart beat (HB), of
 the necessary size to construct an IP packet the desired probe size.
 The peer SCTP implementation will acknowledge a successful probe
 without delay by the returning the same Heartbeat as a HEARTBEAT-ACK.
 This method is fully compatible with current SCTP standards and
 implementations, but is exposed to MPS limitation on the return path,
 which might cause the HEARTBEAT-ACK to be lost.

 In method 2, a new "PAD" chunk type would have to be defined. This
 chunk would be silently discard by the peer. The PAD chunk could be
 attached to another message (either a minimum length HB or other
 application data which will be acknowledged by the peer) to build a
 probe packet. The default action for an unknown chunk types in the
 range 128 to 190, (high bits = 10) is to "Skip this chunk and
 continue processing" [RFC2960] - exactly the required behavior for a
 PAD chunk. Any currently unused type in this range will work for a
 PAD chunk type. This method is fully compatible with all current
 SCTP implementations, but requires adding a new type to the current
 standards. It has the advantage that restrictions due to the return
 path MPS are not applied to the forward path.

 The verification phase is most efficiently implemented by picking a
 new chunk size such that the new MPS and all of the old multi-path
 MPSs are larger than different multiples of the new chunk size, by at
 least the required header sizes. This approach permits chunks from
 SCTP application messages to be assembled into packets that are
 suitable for any path to the peer at either the old or new MPS. This
 is the easiest method to permit the provisional MPS to be withdrawn,
 if there are losses during the verification phase.

 Once each of old path MPSs has been updated to a new verified MPS,
 SCTP may be able to pick a new larger chunk size that will fit into
 all paths. However, if the MPS is later reduced (say due to a
 routing change and subsequent ICMP PTB message) SCTP will be forced
 to use IP fragmentation to transmit application messages that are
 already chunkified, as described in section 7.3.

 The constraints on efficiently choosing chunk sizes are complicated
 enough to make it difficult if not impossible to efficiently support
 arbitrary combinations of old and new MPSs. It greatly simplify the
 implementation to add constraints, such as making the chunk size
 itself a multiple of some common size, such as 512 bytes. This in
 turn constrains the searching algorithm to test MPSs that are
 multiples of 512 bytes, plus the appropriate headers. Clearly the

https://datatracker.ietf.org/doc/html/rfc2960

Mathis, et al. Expires August 21, 2005 [Page 33]

Internet-Draft Path MTU Discovery February 2005

 PLPMTUD search heuristic for SCTP must be constrained to pick
 candidate MPSs that are consistent with the limitations of the
 algorithm for choosing appropriate chunk sizes.

 The SCTP Verification-Tag is designed to increase SCTPs robustness in
 the presence of a number of attacks, including forged ICMP messages.
 It relies on a 32 bit Verification Tag which is initialized to a
 random value during connection establishment and placed in the first
 64 bits of all SCTP messages. All subsequent messages (including
 ICMP messages, which copy at least the first 64 bits of the message)
 must match the original Verification Tag, or they are rejected as
 being likely attacks against the connection.

 It is believed that the Verification Tag mechanism is strong enough
 where SCTP could unconditionally process ICMP PTB messages that would
 reduce the path MPS at arbitrary times. As written, this document
 does not encourage this method. The PLPMTUD ICMP validity checks are
 cascaded with the SCTP checks, such that the messages are processed
 only if they meet all consistency checks for both protocols. In
 particular, PLPMTUD only uses the ICMP MPS value following a probe,
 during MPS verification, or following a full stop timeout.

 Alternatively, an SCTP implementation could suppress some of the
 checks in section 6.2.1.

8.3 Probing method for IP fragmentation

 As mentioned in section 6.4, datagram protocols (such as UDP) might
 rely on IP fragmentation as a packetization layer. However,
 implementing PLPMTUD with IP fragmentation is problematic because the
 IP layer has no mechanism to to determine if the packets are
 ultimately delivered properly to the far node, without participation
 by the application.

 To support IP fragmentation as a packetization layer under an
 unmodified application, we propose the use of an adjunct MTU
 measurement protocol (ICMP ECHO) and a separate path MTU discovery
 daemon (described here) to perform PLPMTUD and update the stored path
 MTU information.

 For IP fragmentation the initial MPS should be selected as described
 in section 7.4, except with a separate global control for the default
 initial MPS for connectionless protocols. Since connectionless
 protocols may not keep enough state to effectively diagnose MTU black
 holes, it would be more robust to error on the side of using too
 small of an initial MTU (e.g. 1kBytes or less) prior initiating
 probing of the path to measure the MTU.

Mathis, et al. Expires August 21, 2005 [Page 34]

Internet-Draft Path MTU Discovery February 2005

 Since many protocols that rely on IP fragmentation are
 connectionless, there is an additional problem with the path
 information cache: there are no events corresponding to connection
 establishment and tear-down to use to manage the cache itself. We
 take this approach: if there is no entry in the path information
 cache for a particular packet being transmitted, it uses an immutable
 cache entry for the "default path", which has a MPS that is fixed at
 the initial value. A new path cache entry is not created until there
 is an attempt to set the MPS.

 The path MTU discovery daemon should be triggered as a side effect of
 IP fragmentation. Once the number of fragmented datagrams via any
 particular path reaches some configurable threshold (say 5
 datagrams), the daemon can start probing the path with ICMP ECHO
 packets. These probes must use the diagnostic interface described in

section 9.4 and have DF set. The daemon can implement all of the
 PLPMTUD probe sequence and search strategy, collect all of the ICMP
 responses (ECHO REPLY, ICMP PTB, etc) and only the saved PTB in the
 path information cache in the IP layer.

 Alternatively, most of the PLPMTUD state machinery can be implemented
 within the path information cache in the IP layer, which can
 specifically invoke the path MTU discovery daemon to perform
 specified measurements on specific paths and report the results back
 to the IP layer.

 Using ICMP ECHO to measure the MTU has a number of potential
 robustness problems. Note that the most likely failures are due to
 losses unrelated to MTU (e.g. nodes that discriminate on the basis
 of protocol type). These non-MTU losses can prevent PLPMTUD from
 raising the MTU, forcing the Packetization Layer protocol to use a
 smaller MTU than necessary. Since these failures are not likely to
 cause interoperability problem they are relatively benign.

 However there does exist other more serious failure modes, such as
 layer 3 or 4 routers choosing different paths for different protocol
 types or sessions. In such environments, adjunct protocols may
 experience different MTUs than the primary protocol. If the adjunct
 protocol has a larger MTU than the primary protocol, PLPMTUD will
 select a non-functional MTU. This does not seem to be likely
 situation.

8.4 Probing method for applications

 The disadvantages of probing with ICMP ECHO can be overcome by
 implementing the path MTU discovery daemon within the application
 itself, using applications own protocol.

Mathis, et al. Expires August 21, 2005 [Page 35]

Internet-Draft Path MTU Discovery February 2005

 The application must have some suitable method for generating probes.
 The ideal situation is a lightweight echo function, that confirms
 message delivery, plus a mechanism for padding the messages out to
 the desired MTU, such that the padding is not echoed. This
 combination (akin to the SCTP HB plus PAD) has is preferred because
 you can send large probes that causes small acknowledgments. For
 protocols that can not implement these messages directly there are
 often alternate methods for generating probes. E.g the protocol may
 have a variable length echo (that measures both the forward and
 return path) or if there is no echo function, there may be a way to
 add padding to regular messages carrying real application data.
 There may to others ways to generate probes. As a last resort, it
 may be feasible to extend the protocol with new message types to
 support MTU discovery.

 Probing within an application introduces one new issues: many
 applications do not currently concern themselves with MTU and rely on
 IP fragmentation to deliver datagrams that just happen to be larger
 than the path MTU. PLPMTUD requires that the protocol can send
 probes that are larger than the IP layers current notion of the path
 MTU, but are marked not to be fragmented. This requires an alternate
 method for sending these datagrams.

 As with ICMP MTU probing, there is considerable flexibility in how
 the PLPMTUD algorithms can be divided between the Application and the
 path information cache.

 Some applications send large datagrams no matter what the link size,
 and rely on IP fragmentation to deliver the datagrams. It has been
 known for a long time that this has some undesirable consequences
 [@@harm1]. Recently it has come to light that IPv4 fragmentation is
 not sufficiently robust for general use in today's Internet. The
 16-bit IP identification field is not large enough to prevent
 frequent misassociated IP fragments and the TCP and UDP checksums are
 insufficient to prevent the resulting corrupted data from being
 delivered to higher protocol layers. [@@harm2]

 None the less, there are a number of higher layer protocols, such as
 NFS [@@NFS] which use IP fragmentation as a mechanism to reduce CPU
 load. NFS typically sends fragmented 8k Byte datagram's over all
 link types, no matter what the link MTU. The other common case, in
 which the application wants to use the largest possible datagram that
 fits within the MTU is most easily treated as a special case of the
 fragmenting case.

9. Operational Integration

 This section describes ways to minimize deployment problems for

Mathis, et al. Expires August 21, 2005 [Page 36]

Internet-Draft Path MTU Discovery February 2005

 PLPMTUD, by including a number of good management features:
 mechanisms to diagnose problems with path MTU discovery, and
 configuration controls such that the more risky properties can be
 progressively deployed. We also address some potentially serious
 interactions with nodes that do not honor the DF bit.

9.1 Interoperation with prior algorithms

 Properly functioning Path MTU discovery is critical to the robust and
 efficient operation of the Internet. Any major change (as described
 in this document) has the potential to be very disruptive if it
 contains any errors or oversights. Therefore, we offer a deployment
 strategy in which classical PMTUD operation as described in RFC 1191
 and RFC 1981 is unmodified and PLPMTUD is only invoked following a
 full stop timeout, presumably due to an "ICMP black hole". To do
 this:
 o Relax the ICMP checks in section 6.2.1 specifically to allow an
 ICMP Packet Too Large message to reduce the MTU at arbitrary
 times.
 o When there is no cached MTU, use the Interface MTU as specified by
 classical PMTU discovery, rather the initial MTU as specified in

section 7.4
 o MTU searching as described in section 7.5 is disabled by setting
 SEARCH_HIGH equal to SEARCH_LOW and the initial MPS.
 o A full stop timeout is processed as described in section 6.2.4.
 This becomes the only mechanism to invoke the rest of PLPMTUD.

 When configured in this manner, PLPMTUD will increase the robustness
 of classical PMTU discovery in the presence of ICMP black holes and
 other ICMP problems, with minimal exposure to unanticipated problems
 during deployment. Since this configuration does not help robustness
 in the presence of malicious or erroneous ICMP messages, it is not
 recommended for the long term.

9.2 Operation over subnets with dissimilar MTUs

 With classical PMTUD, the ingress router to a subnet is responsible
 for knowing what size packets can be delivered to every node attached
 to that subnets. For most subnet types, this requires that the
 entire subnet has a single MTU which is common to every attached
 node. (For a few subnets types, such as ATM[12] the nodes on a
 subnet can negotiate the MTU on a pairwise basis, and the ingress
 router is responsible for knowing the MTU to each of it peers).

 This requirement has proven to be a major impediment to deploying
 larger MTUs in the operational Internet. Often one single node which
 does not support a larger MTU effectively vetoes raising the MTU on a
 subnet, because the ingress router does not have a mechanism to

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Mathis, et al. Expires August 21, 2005 [Page 37]

Internet-Draft Path MTU Discovery February 2005

 generate the proper ICMP PTB message for the one attached node with a
 smaller MTU.

 With PLPMTUD, this requirement is completely relaxed. As long as
 oversized packets addressed to nodes with the smaller MTU are
 reliably discarded, PLPMTUD will find the proper MTU for these nodes.

 Once there sufficient field experience to demonstrate that PLPMTUD is
 robust, we recommend that OS vendors consider updating default MTUs
 for Network Interface Cards. It would raise the overall performance
 of the Internet if all NICs were configured to default to the MTU
 which is most efficient for the NIC (lowest overhead per byte),
 rather than the standard MTU for the media or switch. This is most
 likely to be the largest MTU supported by the NIC chip set or some
 other logical boundary, such as memory page sizes.

9.3 Interoperation with tunnels

 PLPMTUD is specifically designed to solve many of the problems that
 people are experiencing today due to poor interactions between
 classical MTU discovery, IPsec, and various sorts of tunnels [5]. As
 long as the tunnel reliably discards packets that are too large,
 PLPMTUD will discover an appropriate MTU for the path.

 Unfortunately due to the pervasive problems with classical PMTU
 discovery, many manufacturers of various types of VPN/tunneling
 equipment have resorted to ignoring the DF bit under some conditions.
 This not only violates the IP standard and many recommendations to
 the contrary [17][18], it also violates the only requirement that
 PLPMTUD places on the link layer: that oversized packets are reliably
 discarded. It is imperative that people understand the impact of
 ignoring the DF bit both to applications and to PLPMTUD.

 We do understand the reality of the situation. It is important that
 vendors who are building devices the violate the DF specification
 understand that PLPMTUD requires that probe packets be discarded, and
 that sending ICMP PTB messages alone is insufficient to prevent
 wholesale fragmentation if the probe packets are delivered.

 Therefore, it is imperative that devices that do not honor DF include
 packet size history caches and other heuristics to robustly detect
 and discard probe packets, if delivering them would require
 fragmentation.

9.4 Diagnostic tools

 All implementations MUST include facilities for MTU discovery
 diagnostic tools that implement PLPMTUD or other MTU discovery

Mathis, et al. Expires August 21, 2005 [Page 38]

Internet-Draft Path MTU Discovery February 2005

 algorithms in user mode without help or interference by the PMTUD
 algorithm present in the operating system. This requires an
 mechanism where a diagnostic application can send packets that are
 larger than the operating system's notion of the current path MTU and
 for the diagnostic application to collect any resulting ICMP PTB
 messages or other ICMP messages. For IPv4, the diagnostic
 application must be able to set the DF bit.

 At this time nearly all operating systems support two modes for
 sending UDP datagrams: one which silently fragments packets that are
 too large, and another that rejects packets that are too large.
 Neither of these modes are suitable for efficiently diagnosing
 problems with the MTU discovery, such as routers that return ICMP PTB
 messages containing incorrect size information.

9.5 Management interface

 It is suggested that an implementation provide a way for a system
 utility program to:
 o Globally disable all ICMP Packet Tool Large message processing
 o Globally suppress some or all ICMP consistency checks described in

section 6.2.1. Setting this option fore goes some possible
 security improvements, in exchange for making PLPMTUD behave more
 like classical PMTU discovery. (See section 9.1)
 o Globally permit ICMP Packet Tool Large messages to unconditionally
 reduce the MTU, even if there were not lost lost packets. Setting
 option fore goes some possible security improvements, in exchange
 for making PLPMTUD behave more like classical PMTU discovery.
 (See section 9.1)
 o Globally adjust timer intervals for specific classes of probe
 failures

 In addition, it is important that there be a mechanism to permit per
 path controls to override specific parts of the PLPMTUD algorithm.
 All of these per path controls should be preset from similar global
 controls:
 o Disable MTU searching a given path, such that new MTU values are
 never probed.
 o Set the initial MTU for a given path. This could be used to speed
 convergence in relatively static environments. There should be an
 option to cause PLPMTUD to choose the same initial value as would
 be chosen by classical PMTU discovery. I.e. typically the
 Interface MTU. This is used in the mode described in section 9.1
 where PLPMTUD is used only for black hole detection in classical
 PMTU discovery.
 o Limit the maximum probed MTU for a given path. This permits a
 manual configuration to work around a link that spuriously
 delivers packets that are larger than the useful path MTU.

Mathis, et al. Expires August 21, 2005 [Page 39]

Internet-Draft Path MTU Discovery February 2005

 o Per path and per application controls to disable ICMP processing,
 to further limit possible damage from malicious ICMP PTB messages
 (in addition to the global controls).

10. References

10.1 Normative References

 [1] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

 [2] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [3] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP
 version 6", RFC 1981, August 1996.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [6] Allman, M., Floyd, S. and C. Partridge, "Increasing TCP's
 Initial Window", RFC 2414, September 1998.

 [7] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [8] Floyd, S., "Congestion Control Principles", BCP 41, RFC 2914,
 September 2000.

 [9] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
 H., Taylor, T., Rytina, I., Kalla, M., Zhang, L. and V. Paxson,
 "Stream Control Transmission Protocol", RFC 2960, October 2000.

10.2 Informative References

 [10] Mogul, J., Kent, C., Partridge, C. and K. McCloghrie, "IP MTU
 discovery options", RFC 1063, July 1988.

 [11] Knowles, S., "IESG Advice from Experience with Path MTU
 Discovery", RFC 1435, March 1993.

 [12] Atkinson, R., "Default IP MTU for use over ATM AAL5", RFC 1626,
 May 1994.

 [13] Sung, T., "TCP And UDP Over IPX Networks With Fixed Path MTU",
RFC 1791, April 1995.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1435
https://datatracker.ietf.org/doc/html/rfc1626
https://datatracker.ietf.org/doc/html/rfc1791

Mathis, et al. Expires August 21, 2005 [Page 40]

Internet-Draft Path MTU Discovery February 2005

 [14] Partridge, C., "Using the Flow Label Field in IPv6", RFC 1809,
 June 1995.

 [15] Lahey, K., "TCP Problems with Path MTU Discovery", RFC 2923,
 September 2000.

 [16] Stewart, R., "Stream Control Transmission Protocol (SCTP)
 Implementors Guide", draft-ietf-tsvwg-sctpimpguide-10 (work in
 progress), December 2003.

 [17] Kent, C. and J. Mogul, "Fragmentation considered harmful",
 Proc. SIGCOMM '87 vol. 17, No. 5, October 1987.

 [18] Mathis, M., Heffner, J. and B. Chandler, "Fragmentation
 Considered Very Harmful", draft-mathis-frag-harmful-00 (work in
 progress), July 2004.

Authors' Addresses

 Matt Mathis
 Pittsburgh Supercomputing Center
 4400 Fifth Avenue
 Pittsburgh, PA 15213
 US

 Phone: 412-268-3319
 EMail: mathis@psc.edu

 John W. Heffner
 Pittsburgh Supercomputing Center
 4400 Fifth Avenue
 Pittsburgh, PA 15213
 US

 Phone: 412-268-2329
 EMail: jheffner@psc.edu

 Kevin Lahey
 Freelance

 EMail: kml@patheticgeek.net

Appendix A. Security Considerations

 Under all conditions the PLPMTUD procedure described in this document

https://datatracker.ietf.org/doc/html/rfc1809
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctpimpguide-10
https://datatracker.ietf.org/doc/html/draft-mathis-frag-harmful-00

Mathis, et al. Expires August 21, 2005 [Page 41]

Internet-Draft Path MTU Discovery February 2005

 is at least as secure as the current standard path MTU discovery
 procedures described in RFC 1191 [2] and RFC 1981 [3].

 It the recommended configuration, PLPMTUD is significantly harder to
 attack than current procedures, because ICMP messages are cached and
 only processed in connection with lost packets. This effectively
 prevents blind attacks on the path MTU discovery system.

 Furthermore, since this algorithm is designed for robust operation
 without any ICMP (or other messages from the network), it can be
 configured to ignore all ICMP messages (globally or on a per
 application basis). In this configuration it can not be attacked,
 unless the attacker can identify and selectively cause probe packets
 to be lost.

Appendix B. IANA considerations

 None.

Appendix C. Acknowledgements

 Many ideas and even some of the text come directly from RFC1191 and
RFC1981.

 Many people made significant contributions to this document,
 including: Randall Stewart for SCTP text, Michael Richardson for
 material from an earlier ID on tunnels that ignore DF, Stanislav
 Shalunov for the idea that pure PLPMTUD parallels congestion control,
 and Matt Zekauskas for maintaining focus during the meetings. Thanks
 to the early implementors: Kevin Lahey, John Heffner and Rao Shoaib
 who provided concrete feedback on weaknesses in earlier drafts.
 Thanks also to all of the people who made constructive comments in
 the working group meetings and on the mailing list. I am sure I have
 missed many deserving people.

 Matt Mathis and John Heffner are supported in this work by a grant
 from Cisco Systems, Inc.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Mathis, et al. Expires August 21, 2005 [Page 42]

Internet-Draft Path MTU Discovery February 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Mathis, et al. Expires August 21, 2005 [Page 43]

