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Abstract

   This document describes a robust method for Path MTU Discovery that
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   path with progressively larger packets.  This method is described as
   an extension to RFC 1191 and RFC 1981, which specify ICMP based Path
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   The general strategy of the new algorithm is to start with a small
   MTU and search upward, testing successively larger MTUs by probing
   with single packets.  If the probe is successfully delivered and
   satisfies a subsequent verification phase then the MTU is raised.  If
   the probe is lost, it is treated as an MTU limitation and not as a
   congestion signal.

   There are several options for integrating PLPMTUD with classical path
   MTU discovery.  PLPMTUD can be minimally configured to perform ICMP
   black hole recovery to increase the robustness of classical path MTU
   discovery, or ICMP processing can be completely disabled, and PLPMTUD
   can completely replace classical path MTU discovery.

   In the latter configuration, PLPMTUD exactly parallels congestion
   control.  An end-to-end transport protocol adjusts non-protocol
   properties of the data stream (window size or packet size) while
   using packet losses to deduce the appropriateness of the adjustments.
   This technique seems to be more philosophically consistent with the
   end-to-end principle than relying on ICMP messages containing
   transcribed headers of multiple protocol layers.
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1.  Introduction

   This document describes a method for Packetization Layer Path MTU
   Discovery (PLPMTUD) which is an extension to existing Path MTU
   discovery methods as described in RFC 1191 [2] and RFC 1981 [3].  The
   proper MTU is determined by starting with small packets and probing
   with successively larger packets.  The bulk of the algorithm is
   implemented above IP, in the transport layer (e.g.  TCP) or other
   "Packetization Protocol" that is responsible for determining packet
   boundaries.

   This document draws heavily RFC 1191 [2] and RFC 1981 [3] for
   terminology, ideas and some of the text.

   This document describes methods to discover the path MTU using
   features of existing protocols.  The methods apply to IPv4 and IPv6,
   and many transport protocols.  They do not require cooperation from
   the lower layers (except that they are consistent about what packet
   sizes are acceptable) or the far node.  Variants in implementations
   will not cause interoperability problems.

   The methods described in this document are carefully designed to
   maximize robustness in the presence of less than ideal
   implementations of other protocols or Internet components.

   For sake of clarity we uniformly prefer TCP and IPv6 terminology.  In
   the terminology section we also present the analogous IPv4 terms and
   concepts for the IPv6 terminology.  In a few situations we describe
   specific details that are different between IPv4 and IPv6.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [4].

   This draft is a product of the Path MTU Discovery (pmtud) working
   group of the IETF.  Please send comments and suggestions to
   pmtud@ietf.org.  Interim drafts and other useful information will be
   posted at http://www.psc.edu/~mathis/MTU/pmtud/index.html .

1.1  Revision History

   These are all recent substantive changes, in reverse chronological
   order.  This section will be removed prior to publication as an RFC.
   Note that there are still some missing details that need to be
   resolved.  These are flagged by @@@@.  None of the missing details
   are serious.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2119
http://www.psc.edu/~mathis/MTU/pmtud/index.html
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1.1.1  Changes since version -02, July 19th 2004 (IETF 60)

   Many minor updates throughout the document.

   Added a section describing the interactions between PLPMTUD and
   congestion control.

   Removed a difficult to implement requirement for future data to
   transmit.

   Added "IP Fragmentation" and "Application protocol" as Packetization
   Layers.

   Clarified interactions between TCP SACK and MTU.

   Updated SCTP section to reflect new probing method using "PAD
   chunks".

   Distilled the protocol specific material into separate subsections
   for each protocol.

   Added a section on common requirements and functions for all
   Packetization Layers.  More accurately characterized the
   "bidirectional" (and other) requirements of the PL protocol.  Updated
   the search strategy in this new section.

   Change "ICMP can't fragment" and "packet too big" to uniformly use
   "ICMP PTB message" everywhere.

   Added Stanislav Shalunov's observation that PLPMTUD parallels
   congestion control.

   Better described the range of interoperability with classical pMTUd
   in the introduction.

   Removed vague language about "not being a protocol" and "excessive
   Loss".

   Slightly redefined flow: the granularity of PLPMTUD within a path.

   Many English NITs and clarifications per Gorry Fairhurst and others.
   Passes strict xml2rfc checking.

   Add a paragraph encouraging interface MTUs that are the optimal for
   the NIC, rather than standard for the media.

   Added a revision history section.
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2.  Overview

   This document describes a method for TCP or other packetization
   protocols to dynamically discover the MTU of a path without relying
   on explicit signals from the network.  These procedures are
   applicable to TCP and other transport- or application-level protocols
   that are responsible for choosing packet boundaries (e.g.  segment
   sizes) and have an acknowledgement structure that delivers to the
   sender accurate and timely indications of which packets were lost.

   The general strategy of the new procedure is for the packetization
   layer to find an appropriate path MTU by probing with progressively
   larger packets.  A "probe sequence" consists of a single "probe
   packet", which initiates a "probe phase", followed by a "transition
   phase" and a "verification phase".

   If a probe packet is successfully delivered, then the path MTU is
   provisionally raised to the probe size during the transition phase.
   If there are no losses during the subsequent verification phase, then
   the path MTU is confirmed (verified) to be at least as large as the
   provisional MTU.  Each conclusive probe sequence narrows the MTU
   search range, converging toward the true path MTU.

   The verification phase is used to detect some situations where
   raising the MTU raises the packet loss rate.  For example, if a link
   is striped across multiple physical channels with inconsistent MTUs,
   it is possible that a probe will be delivered even if it is too large
   for some of the physical channels.  In such cases raising the path
   MTU to the probe size will cause severe periodic loss and abysmal
   performance.  The verification phase is designed to prevent the path
   MTU from being raised if doing so causes excessive packet losses.

   A conservative implementation of PLPMTUD would use a full round trip
   time for the verification phase.  In this case the entire probe
   sequence takes three full round trip times.  It takes one round trip
   for the probe phase, during which the probe propagates to the far
   node and an acknowledgment is returned.  The second round trip is the
   transitional phase, during which data packets using the provisional
   MTU propagate to the far node and are acknowledged.  During he third
   and final round trip time, it is verified that raising the MTU did
   not cause any additional losses.

   The isolated loss of a probe packet (with or without an ICMP PTB
   message) is treated as an indication of an MTU limit, and not as a
   congestion indicator.  In this case alone, the packetization protocol
   is permitted to retransmit any missing data without adjusting the
   congestion window.
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   If there is a timeout, or additional packets are lost during any of
   the three phases, the loss is treated as a congestion indication as
   well as an indication of some sort of failure of the PLPMTUD process.
   The congestion indication is treated like any other congestion
   indication: window or rate adjustments are mandatory per the relevant
   congestion control standards [8].  Probing can resume after a delay
   which is determined by the nature of the detected failure.

   The most likely (and least serious) PLPMTUD failure is the link
   experiencing congestion related losses while probing.  In this case
   it is appropriate to retry a probe of the same size as soon as the
   packetization layer has fully adapted to the congestion and recovered
   from the losses.

   In other cases, additional losses or timeouts indicate problems with
   the link or packetization layer.  In these situations it is desirable
   to use longer delays depending on the severity of the error.

   There are a range of options for integrating PLPMTUD with classical
   path MTU discovery.  In the most conservative configuration, from a
   deployment point of view, classical path MTU discovery is fully
   functional (all correct ICMP PTB messages are unconditionally
   processed) and PLPMTUD is invoked only to recover from ICMP black
   holes.

   In the most conservative configuration, from a security point of
   view, all ICMP PTB messages are ignored, and PLPMTUD is the sole
   method used to discover the path MTU.  This protects against
   malicious or erroneous ICMP PTB messages which might otherwise cause
   MTU discovery to arrive at the incorrect MTU for a path.

   Note that in the latter configuration, PLPMTUD parallels congestion
   control.  An end-to-end transport protocol adjusts non-protocol
   properties of the data stream (window size or packet size) while
   using packet losses to deduce the appropriateness of the adjustments.
   This technique seems to be more philosophically consistent with the
   end-to-end principle of the Internet than relying on ICMP messages
   containing transcribed headers of multiple protocol layers.

   We advocate a compromise, in which ICMP PTB messages are only
   processed in conjunction with probing (described in section 6.2.1),
   and Packetization Layer timeouts (described in section 6.2.3), and
   ignored in all other situations.

   Most of the difficulty in implementing PLPMTUD arises because it
   needs to be implemented in several different places within a single
   node.  In general, each packetization protocol needs to have its own
   implementation of PLPMTUD.  Furthermore, the natural mechanism to
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   share path MTU information between concurrent or subsequent
   connections over the same path is a path information cache in the IP
   layer.  The various packetization protocols need to have the means to
   access and update the shared cache in the IP layer.  This memo
   describes PLPMTUD in terms of its primary subsystems without fully
   describing how they are assembled into a complete implementation.

   Section  3 provides a complete glossary of terms.

   Relatively few details of PLPMTUD affect interoperability with other
   standards or Internet protocols.  These details are specified in

RFC2119 standards language in section 4.  The vast majority of the
   implementation details described in this document are recommendations
   based on experiences with earlier versions of path MTU discovery.
   These recommendations are motivated by a desire to maximize
   robustness of PLPMTUD in the presence of less than ideal network
   conditions as they exist in the field.

   Section  5 describes how to partition PLPMTUD into layers, and how to
   manage the "path information cache" in the IP layer.

   Section  6 describes the details of a probe sequence, including how
   to process MTU and error indications, necessary to raise the MTU by
   one step.

   Section  7 describes the general search strategy and Packetization
   Layer features needed to implement PLPMTUD.

   Section  8 discusses specific implementation details for some
   specific protocols, including TCP.

   Section  9 describes ways to minimize deployment problems for
   PLPMTUD, by including a number of good management features.  It also
   addresses some potentially serious interactions with nodes that do
   not honor the IPv4 DF bit.

3.  Terminology

   We use the following terms in this document:

   IP: Either IPv4 [1] or IPv6 [7].

   Node: A device that implements IP.

   Router: A node that forwards IP packets not explicitly addressed to
      itself.

https://datatracker.ietf.org/doc/html/rfc2119
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   Host: Any node that is not a router.

   Upper layer: A protocol layer immediately above IP.  Examples are
      transport protocols such as TCP and UDP, control protocols such as
      ICMP, routing protocols such as OSPF, and Internet or lower-layer
      protocols being "tunneled" over (i.e., encapsulated in) IP such as
      IPX, AppleTalk, or IP itself.

   Link: A communication facility or medium over which nodes can
      communicate at the link layer, i.e., the layer immediately below
      IP.  Examples are Ethernets (simple or bridged); PPP links; X.25,
      Frame Relay, or ATM networks; and Internet (or higher) layer
      "tunnels", such as tunnels over IPv4 or IPv6.  Occasionally we use
      the slightly more general term "lower layer" for this concept.

   Interface: A node's attachment to a link.

   Address: An IP-layer identifier for an interface or a set of
      interfaces.

   Packet: An IP header plus payload.

   MTU: Maximum Transmission Unit, the size in bytes of the largest IP
      packet, including the IP header and payload, that can be
      transmitted on a link or path.  Note that this could more properly
      be called the IP MTU, to be consistent with how other standards
      organizations use the acronym MTU.

   Link MTU: The Maximum Transmission Unit, i.e., maximum IP packet size
      in bytes, that can be conveyed in one piece over a link.  Beware
      that this definition differers from the definition used by other
      standards organizations.

      For IETF documents, link MTU is uniformly defined as the IP MTU
      over the link.  This includes the IP header, but excludes link
      layer headers and other framing which is not part of IP or the IP
      payload.

      Be aware that other standards organizations generally define link
      MTU to include the link layer headers.

   Path: The set of links traversed by a packet between a source node
      and a destination node

   Path MTU, or pMTU: The minimum link MTU of all the links in a path
      between a source node and a destination node.



Mathis, et al.          Expires August 21, 2005                [Page 10]



Internet-Draft             Path MTU Discovery              February 2005

   Classical path MTU discovery: Process described in RFC 1191 and RFC
1981, in which nodes rely on ICMP "Packet Too Big" (PTB) messages

      to learn the MTU of a path.

   Packetization Layer: The layer of the network stack which segments
      data into packets.

   PLPMTUD: Packetization Layer Path MTU Discovery, the method described
      in this document, which is an extension to classical PMTU
      discovery.

   PTB (Packet Too Big) message: An ICMP message reporting that an IP
      packet is too large to forward.  This is the IPv6 term that
      corresponds to the IPv4 "ICMP Can't fragment" message.

   Flow: A context in which MTU discovery algorithms can be invoked.
      This is naturally an instance of the packetization protocol, e.g.
      one side of a TCP connection.

   MPS: The maximum IP payload size available over a specific path.
      Typically this is the path MTU minus the IP header.  As an
      example, this is the maximum TCP packet size, including TCP
      payload and headers but not including IP headers.  This has also
      been called the "Layer 3 MTU".

   MSS: The TCP Maximum Segment Size, the maximum payload size available
      to the TCP layer.  This is typically the path MPS minus the size
      of the TCP header.

   Probe packet: A packet which is being used to test a path for a
      larger MTU.

   Probe size: The size of a packet being used to probe for a larger
      MTU.

   Successful probe: The probe packet was delivered through the network
      and acknowledged by the Packetization Layer on the far node.

   Inconclusive probe: The probe packet was not delivered, but there
      were other lost packets close enough to the probe where it can not
      be presumed that the probe was lost because it was larger than the
      path MTU.  By implication the probe might have been lost due to
      something other than MTU (such as congestion), so the results are
      inconclusive.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1981
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   Failed probe: The probe packet was not delivered and there were no
      other lost packets close to the probe.  This is taken as an
      indication that the probe was larger than the path MTU, and future
      probes should be smaller.

   Errored probe: There were losses or timeouts during the verification
      phase which suggest a potentially disruptive failure or network
      condition.  These are generally retried only after substantially
      longer intervals.

   Probe gap: The payload data that will be lost and need to be
      retransmitted if the probe is not delivered.

   Probe phase: The interval (time or protocol events) between when a
      probe is sent and when it is determined that the the probe
      succeeded, failed or was inconclusive

   Verification phase: An additional interval during which the new path
      MTU is considered provisional.  Packet losses or timeouts are
      treated as an indication that there may be a problem with the
      provisional MTU.

   Transition phase: The interval between the probe phase and the
      verification phase, during which packets using the new MTU
      propagate to the far node and the acknowledgment propagates back.

   Probe sequence: The sequence of events to raise the MTU by one step,
      starting with the transmission of a probe packet followed by
      probe, transition and verification phases.

   Search strategy: The heuristics used to choose successive probe sizes
      to converge on the proper path MTU, as described in section 7.5.

   Full stop timeout: a timeout where none of the packets transmitted
      after some event are acknowledged by the receiver, including any
      retransmissions.  This is taken as an indication of some failure
      condition in the network, such as a routing change onto a link
      with a smaller MTU.  For the sake of PLPMTUD we suggest the
      following definition of a full stop timeout:  the loss of one full
      window of data and at least one retransmission or at least 6
      consecutive packets including at least 2 retransmissions (along
      with two retransmission timer expirations).  [@@@ This probably
      needs some experimentation.]

4.  Requirements

   All Internet nodes SHOULD implement PLPMTUD in order to discover and
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   take advantage of the largest MTU supported along the Internet path.

   Links MUST NOT deliver packets that are larger than their MTU.  Links
   that have parametric limitations (e.g.  MTU bounds due to limited
   clock stability) MUST include explicit mechanisms to consistently
   reject packets that might otherwise be nondeterministically
   delivered.

   All hosts SHOULD use IPv4 fragmentation in a mode that mimics IPv6
   functionality.  All fragmentation SHOULD be done on the host, and all
   IPv4 packets, including fragments, SHOULD have the DF bit set such
   that they will not be fragmented (again) in the network.  See Section

6.4.

   The requirements below only apply to those implementations that
   include PLPMTUD.

   To use PLPMTUD a Packetization Layer MUST have a loss reporting
   mechanism that provides the sender with timely and accurate
   indications of which packets were lost in the network.

   Normal congestion control algorithms MUST remain in effect under all
   conditions except when only an isolated probe packet is detected as
   lost.  In this case alone the normal congestion (window or data rate)
   reduction MAY be suppressed.  If any other data loss is detected,
   standard congestion control MUST take place.

   Suppressed congestion control (as above) MUST be rate limited such
   that it occurs less frequently than the worst case loss rate for TCP
   congestion control at a comparable data rate over the same path (i.e.
   less than the "TCP-friendly" loss rate [@@]).  This SHOULD be
   enforced by requiring a minimum headway between a suppressed
   congestion adjustment (due to a failed probe) and the next attempted
   probe, which is equal to one round trip time for each packet
   permitted by the congestion window.  Alternatively this may be
   enforced by not suppressing congestion control if a 2nd probe is lost
   too soon after the 1st lost probe.  This and other issues relating to
   congestion control are discussed in section 7.6.

   Whenever the MTU is raised, the congestion state variables MUST be
   rescaled so as not to raise the window size in bytes (or data rate in
   bytes per seconds).

   Whenever the MTU is reduced (e.g.  when processing ICMP PTB messages)
   the congestion state variable SHOULD be rescaled not to raise the
   window size in packets.

   If PLPMTUD updates the MTU for a particular path, all Packetization
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   Layer sessions that share the path representation SHOULD be notified
   to make use of the new MTU and make the required congestion
   adjustments.

   All implementations MUST include a mechanism to implement diagnostic
   tools that do not rely on the operating systems implementation of
   path MTU discovery.  This specifically requires the ability to send
   packets that are larger than the known MTU for the path, and
   collecting any resultant ICMP error message.  See section 9.4 for
   further discussion of MTU diagnostics.

5.  Layering

   Packetization Layer Path MTU Discovery is most easily implemented by
   splitting its functions between layers.  The IP layer is the best
   place to keep shared state, collect the ICMP messages, track IP
   header sizes and manage MTU information provided by the link layer
   interfaces.  However the procedures that PLPMTUD uses for probing,
   verification and scanning for the path MTU are very tightly coupled
   to the data recovery and congestion control state machines in the
   Packetization Layers.  The most difficult part of implementing
   PLPMTUD is properly splitting the implementation between the layers.

   Note that this layering approach is consistent with the advice in the
   current PMTUD specifications [2][3].  Many implementations of
   classical PMTU Discovery are already split along these same layers.

5.1  Accounting for Header Sizes

   Early implementation of PLPMTUD revealed that it is critically
   important to have a good clean mechanism for accounting header sizes
   at all layers.  This is because each Packetization Layer does its
   calculations in its own natural data unit, which are almost always a
   reflection of the service that the Packetization Layer provides to
   the application or other upper layers.  For example, TCP naturally
   performs all of its calculations in terms of sequence numbers and
   segment sizes.  However, the MTU size being probed, MTU size reported
   in ICMP PTB messages, etc are measures of full packets, which not
   only include the TCP payload (measured in sequence space) but also
   include fixed TCP and IP headers, and may include IPv6 extension
   headers or IPv4 options, TCP options and even IPsec AH or ESP
   headers.

   PLPMTUD requires frequent translation between these two domains: the
   Packetization Layer's natural data unit and full IP packet sizes.
   While there are a number of possible ways to accurately implement
   dual size measures, our experience has been that it is best if the
   boundary between the IP layer and the Packetization layer communicate
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   in terms of the IP Maximum Payload Size or MPS.  The MPS is the only
   size measure that is common to both layers because it exactly matches
   the boundary between the layers.  The IP Layer is responsible for
   adding or deducting its own headers when translating between MTU and
   MPS.  Likewise the Packetization Layer is responsible for adding or
   deducting its own headers when calculations in its natural data
   units.  For example, the MPS and TCP's MSS are different by the TCP
   header size.

   Be aware that a casual reading of this document might give the
   impression that MTU, MPS and Packetization Layer data size (e.g.  TCP
   MSS) are used interchangeably.  They are not.  Our choice of
   terminology is consistent with the protocol layer being discussed in
   the surrounding context.  All implementors must pay attention to the
   distinction between these terms and include all necessary
   conversions, even when thy are not explicitly indicated in this
   document.

5.2  Storing PMTU information

   The IP layer is the best place to store cached MPS values and other
   shared state such as MTU values reported by ICMP PTB messages.
   Ideally this shared state should be associated with a specific path
   traversed by packets exchanged between the source and destination
   nodes.  However, in most cases a node will not have enough
   information to completely and accurately identify such a path.
   Rather, a node must associate a MPS value with some local
   representation of a path.  It is left to the implementation to select
   the local representation of a path.

   An implementation could use the destination address as the local
   representation of a path.  The MPS value associated with a
   destination would be the minimum MPS learned across the set of all
   paths in use to that destination.  The set of paths in use to a
   particular destination is expected to be small, in many cases
   consisting of a single path.  This approach will result in the use of
   optimally sized packets on a per-destination basis.  This approach
   integrates nicely with the conceptual model of a host as described in
   [RFC 2461]: a MPS value could be stored with the corresponding entry
   in the destination cache.  However, NAT and other forms of middle
   boxes may exhibit differing MTUs at as single IP address.

   Note that network or subnet numbers are not suitable to use as
   representations of a path, because there is not a general mechanism
   to determine the network mask at the remote host.

   If IPv6 flows are in use, an implementation could use the IPv6 flow
   id [7][14] as the local representation of a path.  Packets sent to a

https://datatracker.ietf.org/doc/html/rfc2461
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   particular destination but belonging to different flows may use
   different paths, with the choice of path depending on the flow id.
   This approach will result in the use of optimally sized packets on a
   per-flow basis, providing finer granularity than MPS values
   maintained on a per-destination basis.

   For source routed packets, i.e.  packets containing an IPv6 routing
   header, or IPv4 LSRR or SSRR options, the source route may further
   qualify the local representation of a path.  An implementation could
   use source route information in the local representation of a path.

5.3  Accounting for IPsec

   This document does not take a stance on the placement of IPsec, which
   logically sits between IP and the Packetization Layer.  As far as
   PLPMTUD is concerned IPsec can be treated either as part of IP or as
   part of the Packetization Layer, as long as the accounting is
   consistent within the implementation.  If IPsec is treated as part of
   the IP layer, then each security association to a remote node may
   need to be treated as a separate path, i.e., the the security
   association is used to represent the path.  If IPsec is treated as
   part of the packetization layer, the IPsec header size has to be
   included in the Packetization Layer's header size calculations.

5.4  Measuring path MTU

   This memo uses the concept of a "flow" to define the scope of the
   path MTU discovery algorithms.  For many implementations, a flow
   would naturally correspond to an instance of each protocol, i.e.,
   each connection or session.  In such implementations the algorithms
   described in this document are performed within each session for each
   protocol.  The observed MPS can be shared between different flows
   sharing a common path representation.

   Alternatively, PLPMTUD could be implemented such that the complete
   PLPMTUD state is associated with the path representations.  Such an
   implementation could use multiple connections or sessions for each
   probe sequence.  For example, one connection could do the initial
   probe and set the provisional MTU and one or more subsequent
   connection could verify the MTU.  This approach may converge much
   more quickly in some environments such as when the application uses
   many small connections, each of which is too short to complete a
   probe sequence.

   These approaches are not mutually exclusive.  However, due to
   differing constraints on generating probes (section Section 7.2) and
   the MPS searching algorithm (section Section 7.5), it may not be
   feasible for different packetization layer protocols to share PLPMTUD
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   state.  This suggests that it may be possible for some protocols to
   share probing state, but not others.  In this case, the different
   protocols can still share the observed MPS but they will have
   differing convergence properties.

6.  The Probing Sequence and Lower Layers

   This section describes the details of a probe sequence, including how
   to process MTU and error indications, necessary to raise the MTU by
   one step.

6.1  Normal sequence of events to raise the MTU

   If the probe size is smaller than the actual path MTU and there are
   no other losses, the normal sequence of events to raise the MTU is:
   1.  Confirm probing preconditions: no outstanding Packetization Layer
       losses, sufficient congestion window per section 7.6, sufficient
       elapsed time since previous probe per section 6.3, if candidate
       MPS has not been set from ICMP MPS, then compute the candidate
       MPS per MPS search strategy in section 7.5.

   2.  A new MTU is tested by sending one "probe packet", of size "probe
       size" (computed from the candidate MPS).  The probe is sent,
       followed by additional packets at the current MTU.  By definition
       PLPMTUD enters the probe phase.  The probe propagates through the
       network and the far node acknowledges it (or possibly latter
       data, if acknowledgments are cumulative and delayed
       acknowledgment is in effect).

   3.  The acknowledgment for the probe reaches the data sender.  By
       definition, this ends the probe phase.

   4.  The packetization layer provisionally raises the MTU to the probe
       size.  PLPMTUD enters the transitional phase when it starts
       sending data using the provisional MTU.

       Note that implementations that use packet counts for congestion
       accounting (e.g.  keep cwnd in units of packets) must re-scale
       their congestion accounting such that raising the MTU does not
       raise the data rate (bytes/second) or the total congestion window
       in bytes, as required in section 4 and discussed in 7.6.

       If the implementation packetizes the data at the application
       programming interface, it may transmit already queued data at the
       current MTU before raising the MTU.  In this case this data is
       not part of either the probing or transition phases, because all
       of the packets in flight fit within the current MTU.
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   5.  Once the first packet of the transitional phase is acknowledged,
       PLPMTUD enters the verification phase.  In principle the
       verification phase can be of arbitrary duration, however at this
       time we are recommending one full window of data (i.e one full
       round trip time) for most Packetization Layers.

   6.  Once there has been sufficient data delivered and acknowledged
       the provisional MTU is considered verified and the path MTU is
       updated.  PLPMTUD can then probe for an even larger MTU, as
       described in the searching strategy in section 7.5.

   Other events described in the next section are treated as exceptions
   and alter or cancel some of the steps above.

6.2  Processing MTU Indications

   When the probe sequence fails to raise the MTU, it will be due to one
   of three broad classes of outcomes: the probe was inconclusive,
   failed or errored.  If the probe was inconclusive, it means that
   there were other losses seemingly unrelated to the probe, such that
   the probe outcome was ambiguous.  Inclusive probes should be retried
   with the same probe size.  If the probe failed, this is an indication
   that the probe size was larger than the path MTU, and probing should
   continue with a smaller size, as selected by the MTU searching
   algorithm.  In some situations there can be indications that the
   probing sequence caused some unexpected event.  In these error
   conditions, it is desirable to use progressively longer delays
   between probes to minimize the possible impact on the network.

6.2.1  Processing ICMP PTB messages

   Classical PMTU discovery specifies the generation of ICMP PTB
   Messages if an over-sized packet (e.g.  a probe) encounters a link
   that has a smaller MTU.  Since these messages can not be
   authenticated they introduce a number of well documented attacks
   against classical PMTUD [5].

   With PLPMTUD these messages are not required for correct operation,
   and in principle can be summarily ignored at the expense of slower
   convergence to the proper MTU.  However, we believe that a slightly
   better approach is to save the reported PTB size (computed from the
   ICMP MTU) in the path information cache and act on it only in
   conjunction with a lost PLPMTUD probe or a full-stop timeout.

   Every ICMP PTB Message should be subjected to the following checks:
   o  If globally forbidden then discard the message.
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   o  If forbidden by the application then discard the message.

   o  If this path has been tagged "bogus ICMP messages" then discard
      the message.

   o  If the reported MTU fails consistency checks then set "bogus ICMP
      messages" flag for this path and discards the message.  These
      consistency checks include:
      *  unrecognized or unparseable enclosed header, or
      *  reported MTU is larger than the size indicated by the enclosed
         header, or
      *  larger than the current MTU, provisional MTU or probe size as
         appropriate, or
      *  fails a ICMP consistency checks specific to the Packetization
         Layer.  (E.g.  The SCTP Verification-Tag mechanism [9][16])
      To ease migration, it is suggested that implementations may
      include global controls to emulate legacy operation by suppressing
      some or all of the consistency checks.

   If the ICMP PTB message is acceptable under all of these checks then
   save the "ICMP MPS" computed from the MTU field in the ICMP message.
   If the global configuration switch is set to emulate classical path
   MTU discovery then process the message immediately, i.e., set the
   path MPS to the ICMP MPS and invoke any protocol specific actions.
   Otherwise, the saved ICMP MPS will be acted upon if and only if there
   are other PLPMTUD events such as lost probes, etc as indicated in the
   next section.  This delayed processing of ICMP PTB messages makes it
   more difficult for an attacker to interfere with correct PLPMTUD
   operation by injecting fraudulent ICMP PTB messages.

   In either case if the Packetization Layer calls for specific actions
   in response to a PTB message, that action should be invoked only at
   the point when the path MPS is updated from the ICMP MPS.

6.2.2  Packetization Layer Detects Lost Packets

   Each packetization protocol has its own mechanism to detect lost
   packets and request the retransmission of missing data.  The primary
   signals used by PLPMTUD are these protocol-specific loss indications.
   The packetization layer is responsible for retransmitting the lost
   data if necessary, and notifying PLPMTUD that there was a loss.
   o  If the probe itself was lost, and there were no other losses
      during the probe phase (The RTT between when the probe was sent
      and the loss detected) then it is taken as an indication that the
      path MTU is smaller than the probe size.  In this specific
      situation, the Packetization Layer may choose not to treat this
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      loss as a congestion signal, and continue with the same congestion
      window or data transmission rate.

      If an accepted ICMP PTB message was received after the probe was
      sent, and it passes the additional checks that the ICMP MTU value
      is less than the probe size, and corresponds to an MPS greater
      than that in use for the path, then set the candidate MPS from the
      ICMP MTU value, and restart the probe sequence from step 1 in

section 6.1.

      If there was not an accepted PTB Message, then the indicated event
      is a "probe failure", which can be retried with a smaller probe
      size after a suitable delay for a probe_fail_event.  See section

6.2.2 for more complete descriptions of failure events.

   o  If there are losses during the probe phase yet the probe was
      acknowledged as received, then the probe was successful.  However,
      since additional losses have the potential to spoil the
      verification phase, it is important that PLPMTUD not progress into
      the transition phase (step 4 above) until after the Packetization
      Layer has fully recovered from the losses and completed the
      congestion window (or rate) adjustment.

   o  If there are losses during the probe phase and the probe was also
      lost the outcome depends on the presence an ICMP MTU set by an
      acceptable PTB message.

      If there was an accepted PTB message received after the probe was
      sent, it should be treated in the same manner as if there were no
      other losses (see above).

      If there was not an acceptable ICMP PTB message, then the probe is
      inconclusive because the lost probe might have been caused by
      congestion.  The probe can be retried  after a suitable delay for
      a probe_inconclusive_event.

   o  It is unlikely that losses during the transition phase are caused
      by PLPMTUD; however, the presence of loss does potentially
      complicate the verification phase.  Note that we are referring to
      losses that are bracketed by acknowledgment of packets that were
      sent at the old MTU, while the transition to the provisional MTU
      is still propagating through the network.  The first
      acknowledgment from the provisional MTU (and the transition to the
      verification phase) is most likely going to occur during the
      recovery of the losses in transition phase.  It is important that
      the Packetization Layer retransmission machinery distinguish
      between losses at the old MTU (transition phase) and the
      provisional MTU (the verification phase, discussed next).
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   o  Losses during the verification phase are taken as an indication
      that the path may have a non-uniform MTU or other condition such
      that raising the MTU raises the loss rate.  If so, this is
      potentially a very serious problem.  The provisional MTU is
      considered unsuitable, and the cached path MTU is set back to the
      previously verified MTU.

      Packet loss during the verification phase might also be due to
      coincidental congestion on the path, unrelated to the probe, so it
      would seem desirable to re-probe the path.  The risk is that this
      effectively raises the tolerated loss threshold because even
      though raising the MTU seemed to cause additional loss, there is a
      statistical chance that repeated attempts to verify a new MTU may
      yield as false pass.  The compromise is to re-probe once with the
      same probe size (after delay probe_inconclusive_event), and if
      this also fails, then the probe may not be retried until after a
      suitable delay for a verification_error_event, which exponentially
      increases on each successive failure.

6.2.3  Packetization Layer Retransmission Timeout

   Note that the we do not make distinctions between the various methods
   that different Packetization Layers might use for detecting and
   retransmitting lost packets.  It is preferable that the Packetization
   Layer uses a recovery mechanism similar to TCP SACK or fast
   retransmit designed to detect and report losses to recover as quickly
   as possible.

   Under some conditions the Packetization Layer may have to rely on
   retransmission timeouts or other fairly disruptive techniques to
   detect and recover from losses.  Since these greatly increase the
   cost of failed probes, it is recommended that PLPMTUD use even longer
   delays before re-probing.  In these situations replace
   probe_fail_event with probe_timeout_event.

6.2.4  Packetization Layer Full Stop Timeout

   Under all conditions (not just during MTU probing) a full stop
   timeout should be taken as an indication of some significantly
   disruptive event in the network, such as a router failure or a
   routing change to a path with a smaller MTU.

   If an ICMP PTB message was recently received, even if its its MTU
   value was less than the current path MTU value in use, then the path
   MTU can be reduced to the ICMP MTU.  A full stop timeout is the only
   situation outside of a probe that we recommended that the path MTU is
   set from the ICMP MTU.  (In section 9.1 we relax this recommendation
   to facilitate migration to PLPMTUD in exchange for slightly less
   protection from corrupt ICMP PTB messages).
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   Note that whenever a problem with the path that causes a full-stop
   timeout (also known as a "persistent timeout" in other documents),
   several different path restart/recovery algorithms may be invoked at
   different layers in the stack.  Some device drivers may be restarted
   [@@], router discovery [@@], ES-IS [@@] and so forth.  We recommend
   that in most situation the first action should be to reset the path
   MTU down.  Note that this recommendation is really beyond the scope
   of this document, and may require substantial additional research.

   If there is a full stop timeout and there was not an ICMP message
   indicating a reason (PTB, Net unreachable, etc, or the ICMP messages
   was ignored for some reason), we suggest that the first recovery
   action should be to set the path MTU down to a safe minimum "restart
   MTU" value, and the reset PLPMTUD search state, so PLPMTUD will start
   over again searching for the proper MTU.  The default IPV4
   restart_MTU should be the minimum MTU as specified by IPv4 (576
   Bytes)[1].  The default IPV6 restart_MTU should be the minimum MTU as
   specified by IPv6 (1280 Bytes) [7].  Unless the default MTU is
   overridden by some global control (See section 9.5).

   If, and only if, the full stop timeout happens during the probe or
   transition phases, e.g., after sending data using the provisional MTU
   but before any of it is acknowledged, is it considered likely that
   raising the MTU caused the full stop timeout.  If so, this situation
   is is likely to be cyclic, because resetting the PLPMTUD search state
   is likely to eventually cause re-probing the same problematic MTU.
   It is tempting to define additional states to detect recurrent full
   stop timeouts.  However in today's hostile network environment, there
   is little tolerance for nodes that are so fragile that they can be
   disrupted by something as simple as oversized packets.  Therefore, we
   do not feel that it is worth the overhead of specifying a state
   machine that is capable of automatically detecting these situations
   and disabling PLPMTUD.  However, it is important that there be a
   manual way to disable or limit probing on specific paths.  See

section 9.5.

6.3  Probing Intervals

   The previous sections describe a number of events that prevent a
   probe sequences from raising the path MTU.  In all cases the basic
   response is the same: to wait some time interval (dependent on the
   specific event and possibly the history) and then to probe again.
   For events that are "inconclusive," it is generally appropriate to
   re-probe with the same probe size.  For events that are identified as
   "failed probes," it is generally appropriate to re-probe with a
   smaller probe size.  The search strategy described in section 7.5 is
   used to select probe sizes.
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   Many of the intervals described below are specified in terms of
   elapsed round trips relative to the current congestion window.  This
   is because TCP and other Packetization Layer protocols tend to
   exhibit periodic loses which cause periodic variations of the
   congestion window and possibly the data rate.  It is preferable that
   the PLPMTUD probes be scheduled near the low point of these cycles to
   minimize ambiguities caused by congestion losses.

   In order from least to most serious:
   probe_converge_event: The candidate probe size has already been
      probed so there is no need for further searching.  Delay 5 minutes
      and then re-probe last SEARCH_HIGH.

   probe_inconclusive_event: Other lost packets near the lost probe made
      the probe result ambiguous.  Since the loss of non-probe packets
      requires a window (or data rate) reduction, it is desirable to
      schedule the re-probe (at the same probe size) roughly one round
      trip time after the end of the loss recovery.  This will be almost
      the minimum congestion window size, with a small cushion to
      minimize the chances that correlated losses caused by some other
      bursty connection spoil another probe.

   probe_fail_event: A probe fail event is the one situation under which
      the Packetization layer is permitted not to treat loss as a
      congestion signal.  Because there is some small risk that
      suppressing congestion control might have unanticipated
      consequences (even for one isolated loss), we require that probe
      fail events be less frequent than the normal period for losses
      under standard congestion control.  Specifically after a probe
      fail event and suppressed congestion control, PLPMTUD may not
      probe again until an interval which is comparable to the expected
      interval between congestion control events.  This is required in

section 4 and discussed further in section 7.6.

      The simplest estimate of the interval to the next congestion event
      is the same number of round trips as the current window in
      packets.

   probe_timeout_event: Since this event was detected by a timeout, it
      is relatively disruptive to protocol operation.  Furthermore,
      since the event indirectly includes a window adjustment that may
      have been caused by the MTU probe, it is important that the probe
      not be repeated until congestion control has had more than
      sufficient time to recover from the loss.  Therefore we recommend
      five times the probe_fail_event interval, i.e., five times as many
      round trips as the current congestion window in packets.
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   verification_error_event: A verification fail event indicates that a
      probe was delivered and the verification phase failed twice
      separated by a congestion adjustment (so the second verification
      phase was at a low point in the congestion control cycle).  This
      is an indication that one of the following three things might have
      happened: repeated losses unrelated to PLPMTUD; the path is
      striped across links with dissimilar MTUs, or the link layer has
      some parametric limitation such that raising the MTU greatly
      increases the random error rate.

      The optimal method responding to this situation is an open
      research question.  We believe that the correct response is some
      combination of exponentially lengthening back-offs, e.g., starting
      at 1 minute and quadrupling on each repeat, and implicitly
      treating the situation as a probe fail (and choosing a smaller
      probe size) after some threshold number of repeated
      verification_error_events.

6.4  Host fragmentation

   Packetization layers are encouraged to avoid sending messages that
   will require fragmentation.  (For the case against fragmentation, see
   [17], [18]).  However, entirely preventing fragmentation is not
   always possible.  Some packetization layers, such as a UDP
   application outside the kernel, may be unable to change the size of
   messages it sends, resulting in datagram sizes that exceed the path
   MTU.

   IPv4 permitted such applications to send packets without the DF bit
   set.  Oversized packets without the DF bit set would be fragmented in
   the network or sending host when they encountered a link with a MTU
   smaller than the packet.  In some case, packets could be fragmented
   more than once if there were cascaded links with progressively
   smaller MTUs.

   This approach is no longer recommended.  We now recommend that IPv4
   implementations use a strategy that mimics IPv6 functionality.  When
   an application sends datagrams that are larger than the known path
   MTU they should be fragmented to the path MTU in the host IP layer
   even if they are smaller than the link MTU of the first network hop
   directly attached to the host.  The DF bit should be set on the
   fragments, so they will not be fragmented again in the network.

   This technique will minimize future surprises as the Internet
   migrates to IPv6.  Otherwise, the potential exists for widely
   deployed applications or services relying on IPv4 fragmentation in a
   way that cannot be implemented in IPv6.  At least one major operating
   system already uses this strategy.
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   Note that IP fragmentation divides data into packets, so it is
   minimally a Packetization Layer.  However it does not have a
   mechanism to detect lost packets, so it can not support a native
   implementation of PLPMTUD.  Fragmentation-based PLPMTUD requires an
   adjunct protocol as described in section 8.3.

6.5  Multicast

   In the case of a multicast destination address, copies of a packet
   may traverse many different paths to reach many different nodes.  The
   local representation of the "path" to a multicast destination must in
   fact represent a potentially large set of paths.

   Minimally, an implementation could maintain a single MPS value to be
   used for all packets originated from the node.  This MPS value would
   be the minimum MPS learned across the set of all paths in use by the
   node.  This approach is likely to result in the use of smaller
   packets than is necessary for many paths.

   If the application using multicast gets complete delivery reports
   (unlikely because this requirement  has poor scaling properties),
   PLPMTUD could be implemented in multicast protocols.

7.  Common Packetization Properties

   This section describes general Packetization Layer properties and
   characteristics needed to implement PLPMTUD.  It also describes some
   implementation issues that are common to all Packetization Layers.

7.1  Mechanism to detect loss

   It is important that the Packetization Layer has a timely and robust
   mechanism for detecting and reporting losses.  PLPMTUD makes MTU
   adjustments on the basis of detected losses.  Any delays or
   inaccuracy in loss notification is likely to result in incorrect MTU
   decisions or slow convergence.

   It is best if Packetization Protocols use fairly explicit loss
   notification such as Selective acknowledgments, although implicit
   mechanisms such as TCP Reno style duplicate acknowledgments counting
   are sufficient.  It is important that the mechanism can robustly
   distinguish between the isolated loss of just a probe and other
   combinations of losses.

   Many protocol implementation have complicated mechanisms such as SACK
   scoreboards to distinguish between real losses and temporary missing
   data due to reordering in the network.  In these implementation is
   desirable to signal losses to PLPMTUD as a side effect of the data
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   retransmission.  This approach offer the maximum protection from
   confusing signals due to reordering and other events that might mimic
   losses.

   PLPMTUD can also be implemented in protocols that rely on timeouts as
   their primary mechanism for loss recovery, although this should be
   used only when there are no other alternatives.

7.2  Generating Probes

   There are several possible ways to alter packetization layers to
   generate probes.  The different techniques incur different overheads
   in three areas: difficulty in generating the probe packet (in terms
   of packetization layer implementation complexity and extra data
   motion) possible additional network capacity consumed by the probes
   and the overhead of recovering from failed probes (both network and
   protocol overheads).

   Some protocols might be extended to allow arbitrary padding with
   dummy data.  This greatly simplifies the implementation because the
   probing can be performed without participation from higher layers and
   if the probe fails, the missing data (the "probe gap") is assured to
   fit within the current MTU when it is retransmitted.  This is
   probably the most appropriate method for protocols that support
   arbitrary length options or multiplexing within the protocol itself.

   Many Packetization Layer protocols can carry pure control messages
   (without any data from higher protocol layers) which can be padded to
   arbitrary lengths.  For example the SCTP HEARTBEAT message can be
   used it this manner (See section 8.2) .  This approach has the
   advantage that nothing needs to be retransmitted if the probe is
   lost.

   These techniques do not work for TCP, because there is not a separate
   length field or other mechanism to differentiate between padding and
   real payload data.  With TCP the only approach is to send additional
   payload data in an over-sized segment.  There are at least two
   variants of this approach, discussed in section 8.1.

   In a few cases there may no reasonable mechanisms to generate probes
   within the Packetization Layer protocol itself.  As a last resort it
   may be possible to rely an an adjunct protocol, such as ICMP ECHO
   (aka "ping"), to send probe packets.  See section 8.3 for further
   discussion of this approach.

7.3  Mechanism to support provisional MTUs

   The verification phase requires a mechanism provisionally raise the
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   MPS and if there are additional losses, restore the old MPS.  While
   this is not difficult for most potential Packetization Layers, there
   are a few (e.g.  ISO TP4 [ISOTP]) that are not allowed to
   re-packetize when doing a retransmission.  That is, once an attempt
   is made to transmit a segment of a certain size, the transport cannot
   split the contents of the segment into smaller segments for
   retransmission.  In such a case, the original segment can be
   fragmented by the IP layer during retransmission as described in

section 6.4.  Subsequent segments, when transmitted for the first
   time, should be no larger than allowed by the path MTU.

   Note that while padding is an appropriate mechanism for probing, it
   is too wasteful for use during the verification phase.

   Unresolved problem: if 2 PL are using the same path and one can only
   verify constrained sizes (e.g blocks+headers) then the verified MTU
   might be the actual packet size for the constrained PL, not the
   probed size.  @@@@

   Unresolved problem: what to do about very short flows?  No
   verification phase?  @@@@@

7.4  Selecting the initial MPS

   If if there is already a cached MPS value for this path, PLPMTUD may
   use the saved MPS value.  Unless it is very recent (how recent?
   @@@@@) SEARCH_HIGH should be set to SEARCH_MAX, to restart the search
   process from the old MPS.

   Note that there are tradeoffs to how long the path information cache
   entries is retained when it is not being used by any flows.  If they
   are kept for to long they waste memory, if too short it will cause
   frequent re-probing.  We suggest an adjustable Least Recently Used
   algorithm to purge old entries.  @@@@ This belongs some place else.

   When the PLPMTUD process is started the recommended initial MPS
   should normally be set such that the Packetization Layer can carry 1
   kByte data segments.  This initial MPS would be 1 kByte plus space
   for Packetization layer headers.  (see section 5 on accounting for
   headers).  With the this MPS, RFC2414 [6] allows TCP and other
   transport protocols to start with an initial window of 4 packets.

   [We suspect, but have not confirmed that] TCP completes sooner for
   short connections when started with four 1kB packets rather than
   three 1500 byte packets because the 2nd ACK occurs one round trip
   earlier

   This initial MPS should also be configurable.  One of the

https://datatracker.ietf.org/doc/html/rfc2414
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   configuration options should be to mimic classical PMTUD behavior by
   setting the initial MPS from the interface MTU.  This option
   facilitates using PLPMTUD in a mode that mimics classical PMTU
   discovery.  (See section 9.1)

7.5  Common MPS Search Strategy

   The MPS search strategy described here is a only rough guide for
   implementors.  It is difficult to imagine a completely standard
   algorithm because the strategy can include many Packetization Layer
   specific heuristics to optimize MPS selection.  There is significant
   opportunity for future improvements to this portion of PLPMTUD.

   The search strategy is trying to find the largest "candidate MPS"
   that meets the constraints of both the Packetization and the link
   layers.  Although this algorithm is primarily described in terms of
   MPS, it needs to use knowledge about link layer MTUs and
   Packetization Layer buffer sizes.

   The search strategy uses three variables:
      SEARCH_MAX is the largest MPS that a Packetization Layer might be
      able to use.  It is determined by such considerations as interface
      MTU, widths of protocol length fields, and possibly other
      protocol-dependent values, such as the the TCP MSS option.  In
      many cases it would be the same as the classical MTU discovery
      initial MTU, minus the IP layer headers.
      SEARCH_LOW is the largest validated MPS, the same as them current
      MPS in use by the packetization layer.  The initial value for
      SEARCH_LOW is described in section 7.4.
      SEARCH_HIGH is the least invalidated MPS.  In most cases is will
      be the most recent failed candidate MPS.  When PLPMTUD is
      initialized SEARCH_HIGH should be set to SEARCH_MAX, indicating
      that there have been no failed probes.

   For many Packetization Layer protocols, the cost for a failed probe
   is significantly higher than the cost of a successful probe due to
   the additional time and overhead needed for retransmission and
   recovery.  For this reason it is often desirable to bias the search
   strategy to make more smaller steps.

   The search strategy first computes an initial candidate MPS using one
   of these methods:
      If SEARCH_HIGH >= SEARCH_MAX, there have been no recent failed
      probes so use a coarse (geometric doubling) scan.  Set
      candidate MPS = MIN(2 * SEARCH_LOW, SEARCH_MAX).  Otherwise use
      one of several possible fins scan candidate MPS values:
      Select a candidate MPS that corresponds to a common MTU possibly
      minus common tunnel header sizes between SEARCH_LOW and
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      SEARCH_HIGH.  There is a fine scan heuristic described section
7.5.1 that might be used.

      Use a simple weighted binary search by selecting the candidate MPS
      some prorated distance between SEARCH_LOW and SEARCH_HIGH.  E.g.
      set
      candidate MPS = SEARCH_LOW * (1 - alpha) + SEARCH_HIGH * alpha,
      for some alpha between 0 and 1.  If you choose an alpha slightly
      less than 0.5, PLPMTUD  will tend to converge from below,
      minimizing the number of failed probes.  Alternatively alpha can
      be selected to optimally converge for some common MTUs, such as
      1500 bytes.
   If the Packetization Layer has preferred data sizes (e.g.  carries
   block data), optionally round the candidate MPS to an efficient size
   for the Packetization Layer.  The rounded candidate MPS would
   typically be a multiple of the optimal data block size plus space for
   Packetization Layer headers.  The MPS can be rounded up or down, but
   should avoid selecting previously probed valued if possible, per the
   convergence test below.  Packetization Layer that do not have
   intrinsically preferred data sizes may still choose to round the
   candidate MPS to some convenient increment such as 4 or 8 bytes, to
   prevent excessive hunting.  Note that this step is intrinsically
   Packetization Layer dependent, and may be different for different
   packetization Layers.

   If the resulting candidate MPS is not between SEARCH_LOW and
   SEARCH_HIGH, then the probe process has converged and further probing
   will not  yield a better value for the MPS for this protocol.  To
   detect if a routing change has raised the path MTU, the path should
   be re-probed after a suitable delay as indicated by a
   probe_converge_event (See section 6.3).  If the probe succeeds, then
   SEARCH_HIGH should be set to SEARCH_MAX to restart the probing
   process from the current MPS.

   MPS searching can be implicitly disabled by setting the SEARCH_HIGH
   to SEARCH_LOW.

   Note that if two different Packetization Layers are sharing a path,
   they may choose different MPS due to differences in the protocols.
   It is even possible for one of the Packetization Protocol to consider
   the process converged, while the other continues to probe.  In this
   case one of the Packetization Layers does may chose not to use the
   full MPS, and instead chooses some slightly smaller but more
   efficient packet size.

7.5.1  Fine Scans

   If SEARCH_LOW does not correspond to a common link MTU, and there is
   a common link MTU between SEARCH_LOW and SEARCH_HIGH, set the
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   candidate MPS from the most common link MTU between SEARCH_LOW and
   SEARCH_HIGH.

   If SEARCH_LOW does not correspond to a common link MTU, and there is
   not a common link MTU between SEARCH_LOW and SEARCH_HIGH, then set
   the candidate MPS to either the weighted binary search between
   SEARCH_LOW and SEARCH_HIGH or to SEARCH_HIGH, reduced by a reasonable
   increments for tunnel headers.

   If SEARCH_LOW corresponds to a common link MTU, set the candidate MPS
   to SEARCH_LOW plus some small delta.  If this fails, we found the
   proper MPS, otherwise we need to keep searching.

   @@@@@ common link MTUs are: 1500......  ?

   @@@@@ common tunnel header sizes are....

7.6  Congestion Control and Window Management

   PLPMTUD and congestion control share the same slice of the protocol
   stack.  Both algorithms nominally run inside of a transport protocol
   and rely on packet losses as their primary signal to adjust
   parameters of the data stream (packet size or window size).
   Furthermore both push up the controlled parameter until the onset of
   packet losses, and then back off to a smaller value.  Due to the
   close proximity of these two algorithms there is the potential for
   side effects and unexpected interactions between them.

   This section describes potential interactions between PLPMTUD and
   congestion control.  In general PLPMTUD is designed to minimize its
   potential impact on congestion control.  This is appropriate because
   correctly functioning congestion control is critical to the overall
   operation of the Internet.

   The requirements in section 4 protect congestion control from
   PLPMTUD.  It is important that MTU changes do not raise the
   congestion window.  Given that we do not know a priori the nature of
   the network bottleneck, PLPMTUD should not raise either the data rate
   (bytes per second) or the packet rate (packets per second).

   Since there is a risk that lost probes might actually be congestion
   losses, and not MTU losses at all, we limit the maximum allowed rate
   for suppressing congestion control to less than the loss rate
   required to throttle the flow to the "TCP friendly" rate.  This
   guarantees that the losses due to PLPMTUD are less than the losses
   needed for normal congestion control.

   If there is some node which is accounting queue length in bytes
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   (rather than packets), there is even the possibility that a probe
   might cause a loss due to driving the queue over some threshold and
   into congestion.  For this reason it recommended that all PLPMTUD
   implementations use some strategy to slightly depress the actual
   window during the probe process.  It may be sufficient to require
   that the excess data in the probe packet fits within the current
   congestion control window.

   If a probe is carrying real application data that must be
   retransmitted, it is important to suppress (or restore) all of the
   congestion control state changes normally associated with the
   retransmission.  For example if a TCP connection is in slow-start
   when a probe is lost, it is important that ssthresh is not changed as
   a side effect of the probing.  It is for this reason that it is
   strongly recommended that packetization protocols use some
   combination of out-of-band echo message and padding, if at all
   possible.  Lost probes that do not carry any real application data do
   not need to be retransmitted.

   It is recommended that TCP should not probe a new MPS if that MPS
   will likely result in a cwnd of less than 5 segments.

   If the network becomes too congested, it is recommended that the MPS
   be reduced to a smaller size as determined by a heuristic.  The
   recommended heuristic is to reduce the MPS by half if ssthresh is
   reduced to 5 segments or smaller, with a minimum MPS of 512 bytes.

8.  Specific Packetization Layers

   This section discusses specific implementation details for different
   protocols that can be used as Packetization Layer protocols.  All
   Packetization Layer protocols must consider all of the issues
   discussed in section Section 7.  For most protocols it is self
   evident how to address  many of these issues.  It is hoped that the
   protocols described here will be sufficient illustration for
   implementors to adapt other protocols.

8.1  Probing method using TCP

   TCP has no mechanism that could be used to distinguish between real
   application data and some other form of padding that might be used to
   fill out probe packets.  Therefore, TCP must generate probes by
   sending oversized segments that are carrying real data from upper
   layers.  There are two approaches that TCP might use to minimize the
   overheads associated with the probing sequence.

   A TCP implementation of PLPMTUD can elect to send subsequent segments
   overlapping the probe as though the probe segment was not oversized.
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   This has the advantage that TCP only need to retransmit one segment
   at the current MTU to recover from failed probes.  However the
   duplicate data in the probe does consume network resources and will
   cause duplicate acknowledgments.  It is important that these extra
   duplicate acknowledgments not trigger Fast Retransmit.  This can be
   guaranteed by limiting the largest probe segment size to twice the
   current segment size (causing at most 1 duplicate acknowledgment) or
   three times the current segment size (causing at most 2 duplicate
   acknowledgments).

   The other approach is to send non-overlapping segments following the
   probe.  Although this is cleaner from a protocol architecture
   standpoint it clashes with many of the optimizations used improve the
   efficiency of data motion within many operating systems.  In
   particular many implementations divide the data into segments and
   pre-compute checksums as the data is copied out of application
   buffers.  In these implementation it can be relatively expensive to
   adjust segment boundaries after the data is already queued.

   If TCP is using SACK or any other variable length headers, the
   headers on the probe and verification packets should be padded to the
   maximum possible length.  Otherwise, unexpected options on
   bidirectional data may cause cause IP packets that are larger than
   the tested MTU.

   At the point when TCP is ready to start the verification phase, it is
   permitted transmit already queued data at the old MTU rather than
   re-packetizes it.  This postpones the verification process by the
   time required to send the queued data.

   If the verification phase experiences any segment losses, TCP is
   required to pull back to the prior MSS.  Since failing the
   verification phase should be an infrequent error condition it is less
   important  that this be  as efficient as probing.

8.2  Probing method using SCTP

   In the SCTP protocol [9][16] the application writes messages to SCTP
   and SCTP "chunkifies" them into smaller pieces suitable for
   transmission through the network.  Once a message has been
   chunkified, they are assigned TSN's.  Once some TSNs have been
   transmitted SCTP can not change the chunk sizes.  SCTP multi-path
   support normally requires SCTP to chunkify its messages to fit the
   smallest MPS (maximum payload size, same as MTU - IP headers) of all
   paths.  Although not required, implementations may bundle multiple
   data chunks together to make larger IP packets to allow for support
   for larger MPSs on different paths.  Note that SCTP must
   independently probe and verify the MPS on each path to the peer.
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   The recommended method for generating probes is to add a chunk
   consisting only of padding to an SCTP message.  There are two methods
   to implement this padding.

   In method 1, the message is padded with an SCTP heart beat (HB), of
   the necessary size to construct an IP packet the desired probe size.
   The peer SCTP implementation will acknowledge a successful probe
   without delay by the returning the same Heartbeat as a HEARTBEAT-ACK.
   This method is fully compatible with current SCTP standards and
   implementations, but is exposed to MPS limitation on the return path,
   which might cause the HEARTBEAT-ACK to be lost.

   In method 2, a new "PAD" chunk type would have to be defined.  This
   chunk would be silently discard by the peer.  The PAD chunk could be
   attached to another message (either a minimum length HB or other
   application data which will be acknowledged by the peer) to build a
   probe packet.  The default action for an unknown chunk types in the
   range 128 to 190, (high bits = 10 ) is to "Skip this chunk and
   continue processing" [RFC2960] - exactly the required behavior for a
   PAD chunk.  Any currently unused type in this range will work for a
   PAD chunk type.  This method is fully compatible with all current
   SCTP implementations, but requires adding a new type to the current
   standards.  It has the advantage that restrictions due to the return
   path MPS are not applied to the forward path.

   The verification phase is most efficiently implemented by picking a
   new chunk size such that the new MPS and all of the old multi-path
   MPSs are larger than different multiples of the new chunk size, by at
   least the required header sizes.  This approach permits chunks from
   SCTP application messages to be assembled into packets that are
   suitable for any path to the peer at either the old or new MPS.  This
   is the easiest method to permit the provisional MPS to be withdrawn,
   if there are losses during the verification phase.

   Once each of old path MPSs has been updated to a new verified MPS,
   SCTP may be able to pick a new larger chunk size that will fit into
   all paths.  However, if the MPS is later reduced (say due to a
   routing change and subsequent ICMP PTB message) SCTP will be forced
   to use IP fragmentation to transmit application messages that are
   already chunkified, as described in section 7.3.

   The constraints on efficiently choosing chunk sizes are complicated
   enough to make it difficult if not impossible to efficiently support
   arbitrary combinations of old and new MPSs.  It greatly simplify the
   implementation to add constraints, such as making the chunk size
   itself a multiple of some common size, such as 512 bytes.  This in
   turn constrains the searching algorithm to test MPSs that are
   multiples of 512 bytes, plus the appropriate headers.  Clearly the

https://datatracker.ietf.org/doc/html/rfc2960
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   PLPMTUD search heuristic for SCTP must be constrained to pick
   candidate MPSs that are consistent with the limitations of the
   algorithm for choosing appropriate chunk sizes.

   The SCTP Verification-Tag is designed to increase SCTPs robustness in
   the presence of a number of attacks, including forged ICMP messages.
   It relies on a 32 bit Verification Tag which is initialized to a
   random value during connection establishment and placed in the first
   64 bits of all SCTP messages.  All subsequent messages (including
   ICMP messages, which copy at least the first 64 bits of the message)
   must match the original Verification Tag, or they are rejected as
   being likely attacks against the connection.

   It is believed that the Verification Tag mechanism is strong enough
   where SCTP could unconditionally process ICMP PTB messages that would
   reduce the path MPS at arbitrary times.  As written, this document
   does not encourage this method.  The PLPMTUD ICMP validity checks are
   cascaded with the SCTP checks, such that the messages are processed
   only if they meet all consistency checks for both protocols.  In
   particular, PLPMTUD only uses the ICMP MPS value following a probe,
   during MPS verification, or following a full stop timeout.

   Alternatively, an SCTP implementation could suppress some of the
   checks in section 6.2.1.

8.3  Probing method for IP fragmentation

   As mentioned in section 6.4, datagram protocols (such as UDP) might
   rely on IP fragmentation as a packetization layer.  However,
   implementing PLPMTUD with IP fragmentation is problematic because the
   IP layer has no mechanism to to determine if the packets are
   ultimately delivered properly to the far node, without participation
   by the application.

   To support IP fragmentation as a packetization layer under an
   unmodified application, we propose the use of an adjunct MTU
   measurement protocol (ICMP ECHO) and a separate path MTU discovery
   daemon (described here) to perform PLPMTUD and update the stored path
   MTU information.

   For IP fragmentation the initial MPS should be selected as described
   in section 7.4, except with a separate global control for the default
   initial MPS for connectionless protocols.  Since connectionless
   protocols may not keep enough state to effectively diagnose MTU black
   holes, it would be more robust to error on the side of using too
   small of an initial MTU (e.g.  1kBytes or less) prior initiating
   probing of the path to measure the MTU.
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   Since many protocols that rely on IP fragmentation are
   connectionless, there is an additional problem with the path
   information cache: there are no events corresponding to connection
   establishment and tear-down to use to manage the cache itself.  We
   take this approach: if there is no entry in the path information
   cache for a particular packet being transmitted, it uses an immutable
   cache entry for the "default path", which  has a MPS that is fixed at
   the initial value.  A new path cache entry is not created until there
   is an attempt to set the MPS.

   The path MTU discovery daemon should be triggered as a side effect of
   IP fragmentation.  Once the number of fragmented datagrams via any
   particular path reaches some configurable threshold (say 5
   datagrams), the daemon can start probing the path with ICMP ECHO
   packets.  These probes must use the diagnostic interface described in

section 9.4 and have DF set.  The daemon can implement all of the
   PLPMTUD probe sequence and search strategy, collect all of the ICMP
   responses (ECHO REPLY, ICMP PTB, etc) and only the saved PTB in the
   path information cache in the IP layer.

   Alternatively, most of the PLPMTUD state machinery can be implemented
   within the path information cache in the IP layer, which can
   specifically invoke the path MTU discovery daemon to perform
   specified measurements on specific paths and report the results back
   to the IP layer.

   Using ICMP ECHO to measure the MTU has a number of potential
   robustness problems.  Note that the most likely failures are due to
   losses unrelated to MTU (e.g.  nodes that discriminate on the basis
   of protocol type).  These non-MTU losses can prevent PLPMTUD from
   raising the MTU, forcing the Packetization Layer protocol to use a
   smaller MTU than necessary.  Since these failures are not likely to
   cause interoperability problem they are relatively benign.

   However there does exist other more serious failure modes, such as
   layer 3 or 4 routers choosing different paths for different protocol
   types or sessions.  In such environments, adjunct protocols may
   experience different MTUs than the primary protocol.  If the adjunct
   protocol has a larger MTU than the primary protocol,  PLPMTUD will
   select a non-functional MTU.  This does not seem to be likely
   situation.

8.4  Probing method for applications

   The disadvantages of probing with ICMP ECHO can be overcome by
   implementing the path MTU discovery daemon within the application
   itself, using applications own protocol.
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   The application must have some suitable method for generating probes.
   The ideal situation is a lightweight echo function, that confirms
   message delivery, plus a mechanism for padding the messages out to
   the desired MTU, such that the padding is not echoed.  This
   combination (akin to the SCTP HB plus PAD) has is preferred because
   you can send large probes that causes small acknowledgments.  For
   protocols that can not implement these messages directly there are
   often alternate methods for generating probes.  E.g the protocol may
   have a variable length echo (that measures both the forward and
   return path) or if there is no echo function, there may be a way to
   add padding to regular messages carrying real application data.
   There may to others ways to generate probes.  As a last resort, it
   may be feasible to extend the protocol with new message types to
   support MTU discovery.

   Probing within an application introduces one new issues: many
   applications do not currently concern themselves with MTU and rely on
   IP fragmentation to deliver datagrams that just happen to be larger
   than the path MTU.  PLPMTUD requires that the protocol can send
   probes that are larger than the IP layers current notion of the path
   MTU, but are marked not to be fragmented.  This requires an alternate
   method for sending these datagrams.

   As with ICMP MTU probing, there is considerable flexibility in how
   the PLPMTUD algorithms can be divided between the Application and the
   path information cache.

   Some applications send large datagrams no matter what the link size,
   and rely on IP fragmentation to deliver the datagrams.  It has been
   known for a long time that this has some undesirable consequences
   [@@harm1].  Recently it has come to light that IPv4 fragmentation is
   not sufficiently robust for general use in today's Internet.  The
   16-bit IP identification field is not large enough to prevent
   frequent misassociated IP fragments and the TCP and UDP checksums are
   insufficient to prevent the resulting corrupted data from being
   delivered to higher protocol layers.  [@@harm2]

   None the less, there are a number of higher layer protocols, such as
   NFS [@@NFS] which use IP fragmentation as a mechanism to reduce CPU
   load.  NFS typically sends fragmented 8k Byte datagram's over all
   link types, no matter what the link MTU.  The other common case, in
   which the application wants to use the largest possible datagram that
   fits within the MTU is most easily treated as a special case of the
   fragmenting case.

9.  Operational Integration

   This section describes ways to minimize deployment problems for
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   PLPMTUD, by including a number of good management features:
   mechanisms to diagnose problems with path MTU discovery, and
   configuration controls such that the more risky properties can be
   progressively deployed.  We also address some potentially serious
   interactions with nodes that do not honor the DF bit.

9.1  Interoperation with prior algorithms

   Properly functioning Path MTU discovery is critical to the robust and
   efficient operation of the Internet.  Any major change (as described
   in this document) has the potential to be very disruptive if it
   contains any errors or oversights.  Therefore, we offer a deployment
   strategy in which classical PMTUD operation as described in RFC 1191
   and RFC 1981 is unmodified and PLPMTUD is only invoked following a
   full stop timeout, presumably due to an "ICMP black hole".  To do
   this:
   o  Relax the ICMP checks in section 6.2.1 specifically to allow an
      ICMP Packet Too Large message to reduce the MTU at arbitrary
      times.
   o  When there is no cached MTU, use the Interface MTU as specified by
      classical PMTU discovery, rather the initial MTU as specified in

section 7.4
   o  MTU searching as described in section 7.5 is disabled by setting
      SEARCH_HIGH equal to SEARCH_LOW and the initial MPS.
   o  A full stop timeout is processed as described in section 6.2.4.
      This becomes the only mechanism to invoke the rest of PLPMTUD.

   When configured in this manner, PLPMTUD will increase the robustness
   of classical PMTU discovery in the presence of ICMP black holes and
   other ICMP problems, with minimal exposure to unanticipated problems
   during deployment.  Since this configuration does not help robustness
   in the presence of malicious or erroneous ICMP messages, it is not
   recommended for the long term.

9.2  Operation over subnets with dissimilar MTUs

   With classical PMTUD, the ingress router to a subnet is responsible
   for knowing what size packets can be delivered to every node attached
   to that subnets.  For most subnet types, this requires that the
   entire subnet has a single MTU which is common to every attached
   node.  (For a few subnets types, such as ATM[12] the nodes on a
   subnet can negotiate the MTU on a pairwise basis, and the ingress
   router is responsible for knowing the MTU to each of it peers).

   This requirement has proven to be a major impediment to deploying
   larger MTUs in the operational Internet.  Often one single node which
   does not support a larger MTU effectively vetoes raising the MTU on a
   subnet, because the ingress router does not have a mechanism to

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
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   generate the proper ICMP PTB message for the one attached node with a
   smaller MTU.

   With  PLPMTUD, this requirement is completely relaxed.  As long as
   oversized packets addressed to nodes with the smaller MTU are
   reliably discarded, PLPMTUD will find the proper MTU for these nodes.

   Once there sufficient field experience to demonstrate that PLPMTUD is
   robust, we recommend that OS vendors consider updating default MTUs
   for Network Interface Cards.  It would raise the overall performance
   of the Internet if all NICs were configured to default to the MTU
   which is most efficient for the NIC (lowest overhead per byte),
   rather than the standard MTU for the media or switch.  This is most
   likely to be the largest MTU supported by the NIC chip set or some
   other logical boundary, such as memory page sizes.

9.3  Interoperation with tunnels

   PLPMTUD is specifically designed to solve many of the problems that
   people are experiencing today due to poor interactions between
   classical MTU discovery, IPsec, and various sorts of tunnels [5].  As
   long as the tunnel reliably discards packets that are too large,
   PLPMTUD will discover an appropriate MTU for the path.

   Unfortunately due to the pervasive problems with classical PMTU
   discovery, many manufacturers of various types of VPN/tunneling
   equipment have resorted to ignoring the DF bit under some conditions.
   This not only violates the IP standard and many recommendations to
   the contrary [17][18], it also violates the only requirement that
   PLPMTUD places on the link layer: that oversized packets are reliably
   discarded.  It is imperative that people understand the impact of
   ignoring the DF bit both to applications and to PLPMTUD.

   We do understand the reality of the situation.  It is important that
   vendors who are building devices the violate the DF specification
   understand that PLPMTUD requires that probe packets be discarded, and
   that sending ICMP PTB messages alone is insufficient to prevent
   wholesale fragmentation if the probe packets are delivered.

   Therefore, it is imperative that devices that do not honor DF include
   packet size history caches and other heuristics to robustly detect
   and discard probe packets, if delivering them would require
   fragmentation.

9.4  Diagnostic tools

   All implementations MUST include facilities for MTU discovery
   diagnostic tools that implement PLPMTUD or other MTU discovery
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   algorithms in user mode without help or interference by the PMTUD
   algorithm present in the operating system.  This requires an
   mechanism where a diagnostic application can send packets that are
   larger than the operating system's notion of the current path MTU and
   for the diagnostic application to collect any resulting ICMP PTB
   messages or other ICMP messages.  For IPv4, the diagnostic
   application must be able to set the DF bit.

   At this time nearly all operating systems support two modes for
   sending UDP datagrams: one which silently fragments packets that are
   too large, and another that rejects packets that are too large.
   Neither of these modes are suitable for efficiently diagnosing
   problems with the MTU discovery, such as routers that return ICMP PTB
   messages containing incorrect size information.

9.5  Management interface

   It is suggested that an implementation provide a way for a system
   utility program to:
   o  Globally disable all ICMP Packet Tool Large message processing
   o  Globally suppress some or all ICMP consistency checks described in

section 6.2.1.  Setting this option fore goes some possible
      security improvements, in exchange for making PLPMTUD behave more
      like classical PMTU discovery.  (See section 9.1)
   o  Globally permit ICMP Packet Tool Large messages to unconditionally
      reduce the MTU, even if there were not lost lost packets.  Setting
      option fore goes some possible security improvements, in exchange
      for making PLPMTUD behave more like classical PMTU discovery.
      (See section 9.1)
   o  Globally adjust timer intervals for specific classes of probe
      failures

   In addition, it is important that there be a mechanism to permit per
   path controls to override specific parts of the PLPMTUD algorithm.
   All of these per path controls should be preset from similar global
   controls:
   o  Disable MTU searching a given path, such that new MTU values are
      never probed.
   o  Set the initial MTU for a given path.  This could be used to speed
      convergence in relatively static environments.  There should be an
      option to cause PLPMTUD to choose the same initial value as would
      be chosen by classical PMTU discovery.  I.e.  typically the
      Interface MTU.  This is used in the mode described in section 9.1
      where PLPMTUD is used only for black hole detection in classical
      PMTU discovery.
   o  Limit the maximum probed MTU for a given path.  This permits a
      manual configuration to work around a link that spuriously
      delivers packets that are larger than the useful path MTU.
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   o  Per path and per application controls to disable ICMP processing,
      to further limit possible damage from malicious ICMP PTB messages
      (in addition to the global controls).
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   is at least as secure as the current standard path MTU discovery
   procedures described in RFC 1191 [2] and RFC 1981 [3].

   It the recommended configuration, PLPMTUD is significantly harder to
   attack than current procedures, because ICMP messages are cached and
   only processed in connection with lost packets.  This effectively
   prevents blind attacks on the path MTU discovery system.

   Furthermore, since this algorithm is designed for robust operation
   without any ICMP (or other messages from the network), it can be
   configured to ignore all ICMP messages (globally or on a per
   application basis).  In this configuration it can not be attacked,
   unless the attacker can identify and selectively cause probe packets
   to be lost.

Appendix B.  IANA considerations

   None.
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