
 Policy Framework Working Group J. Strassner
 Internet-draft Cisco Systems
 Category: Standards Track E. Ellesson
 B. Moore
 IBM Corporation
 October 1999

Policy Framework LDAP Core Schema
draft-ietf-policy-core-schema-05.txt

October 05, 1999 15:16

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 Abstract

 This document takes as its starting point the object-oriented
 information model for representing policy information currently under
 joint development in the Service Level Agreements (SLA) Policy working
 group of the Distributed Management Task Force (DMTF) and in the
 IETF's Policy Framework working group. The IETF document defining
 this information model is the "Policy Framework Core Information
 Model" [10]. This model defines two hierarchies of object classes:
 structural classes representing policy information and control of
 policies, and relationship classes that indicate how instances of the
 structural classes are related to each other. In general, both of
 these class hierarchies will need to be mapped to a particular data
 store.

 This draft defines the mapping of these information model classes to a

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 directory that uses LDAPv3 as its access protocol. When mapping to an
 LDAP schema, the structural classes can be mapped more or less
 directly. The relationship hierarchy, however, must be mapped to a

Strassner, et. al. Expires: April 4, 2000 [Page 1]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 form suitable for directory implementation. Since this mapping of the
 relationship classes could be done in a number of different ways,
 there is the risk of non-interoperable implementations. To avoid this
 possibility, this document provides a single mapping that all
 implementations using an LDAP directory as their policy repository
 SHALL use.

 Classes are also added to the LDAP schema to improve the performance
 of a client's interactions with an LDAP server when the client is
 retrieving large amounts of policy-related information. These classes
 exist only to optimize LDAP retrievals: there are no classes in the
 information model that correspond to them.

 The LDAP schema described in this document consists of six very
 general classes: policy (an abstract class), policyGroup, policyRule,
 policyConditionAuxClass, policyTimePeriodConditionAuxClass, and
 policyActionAuxClass. The schema also contains two less general
 classes: vendorPolicyConditionAuxClass and
 vendorPolicyActionAuxClass. To achieve the mapping of the information
 model's relationships, the schema contains two auxiliary classes:
 policyGroupContainmentAuxClass and policyRuleContainmentAuxClass.
 Capturing the distinction between rule-specific and reusable policy
 conditions and policy actions introduces five other classes:
 policyRuleConditionAssociation, policyRuleActionAssociation,
 policyConditionInstance, policyActionInstance, and policyRepository.
 Finally, the schema includes two classes policySubtreesPtrAuxClass and
 policyElementAuxClass for optimizing LDAP retrievals. In all,
 therefore, the schema contains 17 classes.

 Within the context of this document, the term "Core [Policy] Schema"
 is used to refer to the LDAP class definitions it contains.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

Strassner, et. al. Expires: April 4, 2000 [Page 2]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 Table of Contents
1. Introduction..3
2. The Policy Core Information Model.................................4
3. Inheritance Hierarchy for the LDAP Core Policy Schema.............5
4. General Discussion of Mapping the Information Model to LDAP.......6

4.1. Summary of Class and Relationship Mappings...................6
4.2. Naming Attributes in the Core Schema.........................7
4.3. Rule-Specific and Reusable Conditions and Actions............8
4.4. Location and Retrieval of Policy Objects in the Directory...10
4.4.1. Aliases and Other DIT-Optimization Techniques.............13

5. Class Definitions..14
5.1. The Abstract Class "policy".................................15
5.2. The Class policyGroup.......................................15
5.3. The Class policyRule..17
5.4. The Class policyRuleConditionAssociation....................20
5.5. The Class policyRuleActionAssociation.......................22
5.6. The Class policyConditionAuxClass...........................24
5.7. The Class policyTimePeriodConditionAuxClass.................24
5.8. The Class vendorPolicyConditionAuxClass.....................26
5.9. The Class policyActionAuxClass..............................26
5.10. The Class vendorPolicyActionAuxClass.......................27
5.11. The Class policyConditionInstance..........................27
5.12. The Class policyActionInstance.............................29
5.13. The Auxiliary Class policyElementAuxClass..................30
5.14. The Class policyRepository.................................30
5.15. The Auxiliary Class policySubtreesPtrAuxClass..............31
5.15.1. The Attribute policySubtreesAuxContainedSet..............32
5.16. The Auxiliary Class policyGroupContainmentAuxClass.........33
5.16.1. The Attribute policyGroupsAuxContainedSet................33
5.17. The Auxiliary Class policyRuleContainmentAuxClass..........34
5.17.1. The Attribute policyRulesAuxContainedSet.................34

6. Extending the Core Schema..35
6.1. Subclassing policyCondition and policyAction................35
6.2. Using the Vendor Policy Encoding Attributes.................35
6.3. Using Time Validity Periods.................................35

7. Security Considerations..36
8. Intellectual Property..38
9. Acknowledgments..38
10. References..38
11. Authors' Addresses..39
12. Full Copyright Statement..40

1. Introduction

 This document takes as its starting point the object-oriented
 information model for representing policy information currently under

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 joint development in the Service Level Agreements working group of the
 Distributed Management Task Force (DMTF) and in the IETF's Policy
 Framework working group. The IETF document defining this information
 model is the "Policy Framework Core Information Model" [10]. This

Strassner, et. al. Expires: April 4, 2000 [Page 3]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 model defines two hierarchies of object classes: structural classes
 representing policy information and control of policies, and
 relationship classes that indicate how instances of the structural
 classes are related to each other. In general, both of these class
 hierarchies will need to be mapped to a particular data store.

 This draft defines the mapping of these information model classes to a
 directory that uses LDAPv3 as its access protocol. Two types of
 mappings are involved:

 o For the structural classes in the information model, the mapping is
 basically one-for-one: information model classes map to LDAP
 classes, information model properties map to LDAP attributes.

 o For the relationship classes in the information model, different
 mappings are possible. In this document the information model's
 relationship classes and their properties are mapped in three ways:
 to LDAP auxiliary classes, to attributes representing DN pointers,
 and to containment in the Directory Information Tree (DIT).

 Implementations that use an LDAP directory as their policy repository
 SHALL use the LDAP policy schema defined in this document. The use of
 the information model defined in reference [10] as the starting point
 enables the schema and the relationship class hierarchy to be
 extensible, such that other types of policy repositories, such as
 relational databases, can also use this information.

 This document fits into the overall framework for representing,
 deploying, and managing policies being developed by the Policy
 Framework Working Group. The initial work to define this framework is
 in reference [1]. Current work appears in references [12] through
 [15]. More specifically, this document builds on the core policy
 classes first introduced in references [2] and [3]. It also draws on
 the work done for the Directory-enabled Networks (DEN) specification,
 reference [4]. Work on the DEN specification by the DEN Ad-Hoc
 Working Group itself has been completed. Further work to standardize
 the models contained in it will be the responsibility of selected
 working groups of the Common Information Model (CIM) effort in the
 Distributed Management Task Force (DMTF). Standardization of the core
 policy model in the DMTF is the responsibility of the SLA Policy
 working group.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, reference
 [5].

2. The Policy Core Information Model

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt
https://datatracker.ietf.org/doc/html/rfc2119

 This document contains an LDAP schema representing the Policy Core
 Information Model, which is defined in the companion document "Policy

Strassner, et. al. Expires: April 4, 2000 [Page 4]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 Framework Core Information Model" [10]. Other documents may
 subsequently be produced, with mappings of this same Core Information
 Model to other storage technologies. Since the detailed semantics of
 the Core Policy classes appear only in reference [10], that document
 is a prerequisite for reading and understanding this document.

3. Inheritance Hierarchy for the LDAP Core Policy Schema

 The following diagram illustrates the class hierarchy for the LDAP
 Core Policy Schema classes:

 top
 |
 +--policy (abstract)
 | |
 | +--policyGroup (structural)
 | |
 | +--policyRule (structural)
 | |
 | +--policyRuleConditionAssociation (structural)
 | |
 | +--policyRuleActionAssociation (structural)
 | |
 | +--policyConditionInstance (structural)
 | |
 | +--policyActionInstance (structural)
 | |
 | +--policyElementAuxClass (auxiliary)
 |
 +--policyConditionAuxClass (auxiliary)
 | |
 | +---policyTimePeriodConditionAuxClass (auxiliary)
 | |
 | +---vendorPolicyConditionAuxClass (auxiliary)
 |
 +--policyActionAuxClass (auxiliary)
 | |
 | +---vendorPolicyActionAuxClass (auxiliary)
 |
 +--policyRepository (structural)
 |
 +--policySubtreesPtrAuxClass (auxiliary)
 |
 +--policyGroupContainmentAuxClass (auxiliary)
 |
 +--policyRuleContainmentAuxClass (auxiliary)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 Figure 1. LDAP Class Inheritance Hierarchy for the Core Policy
 Schema

Strassner, et. al. Expires: April 4, 2000 [Page 5]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

4. General Discussion of Mapping the Information Model to LDAP

 The classes described in Section 5 below contain certain optimizations
 for a directory that uses LDAP as its access protocol. One example of
 this is the use of auxiliary classes to represent some of the
 relationships defined in the information model. Other data stores
 might need to implement these relationships differently. A second
 example is the introduction of classes specifically designed to
 optimize retrieval of large amounts of policy-related data from a
 directory. This section discusses some general topics related to the
 mapping from the information model to LDAP.

4.1. Summary of Class and Relationship Mappings

 Eight of the classes in the LDAP Core Policy Schema come directly from
 corresponding classes in the information model. Note that names of
 classes begin with an upper case character in the information model
 (although for CIM in particular, case is not significant in class and
 property names), but with a lower case character in LDAP.

 +---------------------------+-----------------------------------+
 | Information Model | LDAP Class |
 +---------------------------+-----------------------------------+
 +---------------------------+-----------------------------------+
 | Policy | policy |
 +---------------------------+-----------------------------------+
 | PolicyGroup | policyGroup |
 +---------------------------+-----------------------------------+
 | PolicyRule | policyRule |
 +---------------------------+-----------------------------------+
 | PolicyCondition | policyConditionAuxClass |
 +---------------------------+-----------------------------------+
 | PolicyAction | policyActionAuxClass |
 +---------------------------+-----------------------------------+
 | VendorPolicyCondition | vendorPolicyConditionAuxClass |
 +---------------------------+-----------------------------------+
 | VendorPolicyAction | vendorPolicyActionAuxClass |
 +---------------------------+-----------------------------------+
 | PolicyTimePeriodCondition | policyTimePeriodConditionAuxClass |
 +---------------------------+-----------------------------------+
 Figure 2. Mapping of Information Model Classes to LDAP

 The relationships in the information model map to DN-pointer
 attributes or to Directory Information Tree (DIT) containment in LDAP.
 Two of the DN-pointer attributes appear in auxiliary classes, which
 allows each of them to represent several relationships from the

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 information model.

Strassner, et. al. Expires: April 4, 2000 [Page 6]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 +--------------------------------+-----------------------------------+
 | Information Model Relationship | LDAP Attribute / Class |
 +--------------------------------+-----------------------------------+
 +--------------------------------+-----------------------------------+
 | GroupJurisdiction | policyGroupsAuxContainedSet in |
 | | policyGroupContainmentAuxClass |
 +--------------------------------+-----------------------------------+
 | PolicyGroupInPolicyGroup | policyGroupsAuxContainedSet in |
 | | policyGroupContainmentAuxClass |
 +--------------------------------+-----------------------------------+
 | RuleJurisdiction | policyRulesAuxContainedSet in |
 | | policyRuleContainmentAuxClass |
 +--------------------------------+-----------------------------------+
 | PolicyRuleInPolicyGroup | policyRulesAuxContainedSet in |
 | | policyRuleContainmentAuxClass |
 +--------------------------------+-----------------------------------+
ConditionInPolicyRule	DIT containment
	[+ policyConditionDN in
	policyRuleConditionAssociation]
+--------------------------------+-----------------------------------+	
ActionInPolicyRule	DIT containment
	[+ policyActionDN in
	policyRuleActionAssociation]
+--------------------------------+-----------------------------------+	
PolicyRuleValidityPeriod	policyRuleValidityPeriodList in
	policyRule
+--------------------------------+-----------------------------------+	
ConditionInAdminDomain	DIT containment
+--------------------------------+-----------------------------------+	
ActionInAdminDomain	DIT containment
 +--------------------------------+-----------------------------------+
 Figure 3. Mapping of Information Model Relationships to LDAP

 Of the remaining classes in the LDAP Core Schema, two
 (policyElementAuxClass, and policySubtreesPtrAuxClass) are included to
 make navigation through the DIT and retrieval of the entries found
 there more efficient. This topic is discussed in Section 4.4 below.

 The remaining five classes in the LDAP Core Schema,
 policyRuleConditionAssociation, policyRuleActionAssociation,
 policyConditionInstance, policyActionInstance, and policyRepository
 are all involved with the representation of policy conditions and
 policy actions in an LDAP directory. This topic is discussed in

Section 4.3 below.

4.2. Naming Attributes in the Core Schema

 Instances in a directory are identified by distinguished names (DNs),

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 which provide the same type of hierarchical organization that a file
 system provides in a computer system. A distinguished name is a
 sequence of relative distinguished names (RDNs), where an RDN provides
 a unique identifier for an instance within the context of its

Strassner, et. al. Expires: April 4, 2000 [Page 7]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 immediate superior, in the same way that a filename provides a unique
 identifier for a file within the context of the folder in which it
 resides.

 To preserve maximum naming flexibility for policy administrators, each
 of the structural classes defined in this schema has its own naming
 attribute. (The naming attribute policyConditionName is used in two
 structural class: policyRuleConditionAssociation and
 policyConditionInstance. As discussed below in Section 4.3, these are
 the two structural classes to which the auxiliary class
 policyConditionAuxClass may be attached. The naming attribute
 policyActionName is similarly associated with two structural classes.)
 Since the naming attributes are different, a policy administrator can,
 by using these attributes, guarantee that there will be no name
 collisions between instances of different classes, even if the same
 VALUE is assigned to the instances' respective naming attributes.

 The X.500 attribute commonName (cn) is included as a MAY attribute in
 the abstract class policy, and thus by inheritance in all of its
 subclasses. In X.500, commonName typically functions as an RDN
 attribute, for naming instances of such classes as X.500's person.

 Each of the Core Schema classes thus has two attributes suitable for
 naming: cn and its own class-specific attribute. Either of these
 attributes MAY be used for naming an instance of a Core Schema class.
 Consequently, implementations MUST be able to accommodate instances
 named in either of these ways.

 Note that since they are required ("MUST") attributes, the class-
 specific naming attributes are always present in instances of their
 respective classes, even if they are not being used for naming the
 instances. In these cases the class-specific naming attributes may be
 used for other purposes. Note that "cn" and a class-specific naming
 attribute SHOULD NOT be used together to form a multi-part RDN, since
 support for multi-part RDNs is limited among existing directory
 implementations.

4.3. Rule-Specific and Reusable Conditions and Actions

 The Core Information Model [10] distinguishes between two types of
 policy conditions and policy actions: ones associated with a single
 policy rule, and ones that are reusable, in the sense that they may be
 associated with more than one policy rule. There is no inherent
 difference between a rule-specific condition or action and a reusable
 one. There are, however, differences in how they are treated in a
 policy repository. For example, it's natural to make the access
 permissions for a rule-specific condition or action identical to those
 for the rule itself. It's also natural for a rule-specific condition

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 or action to be removed from the policy repository at the same time
 the rule is. With reusable conditions and actions, on the other hand,
 access permissions and existence criteria must be expressible without
 reference to a policy rule.

Strassner, et. al. Expires: April 4, 2000 [Page 8]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 The preceding paragraph does not contain an exhaustive list of the
 ways in which reusable and rule-specific conditions should be treated
 differently. Its purpose is merely to justify making a semantic
 distinction between rule-specific and reusable, and then reflecting
 this distinction in the policy repository itself.

 When the policy repository is realized in an LDAP-accessible
 directory, the distinction between rule-specific and reusable
 conditions and actions is realized via DIT containment. Figure 4
 illustrates a policy rule Rule1 with one rule-specific condition CA
 and one rule-specific action AB. Because the condition and action are
 specific to Rule1, the auxiliary classes ca and ab that represent them
 are attached, respectively, to the structural classes CA and AB.
 These structural classes represent not the condition ca and action ab
 themselves, but rather Rule1's ASSOCIATION to ca and ab.

 Note that the existence dependency of a rule-specific condition or
 action on its policy rule follows in this case from the semantics of
 DNs. Note also that for directory implementations supporting subtree-
 based access permissions, it's easy to indicate that parties with
 access to Rule1 also have access to its condition and action.

 +-----+
 |Rule1|
 | |
 +-----+
 * *
 * *
 **** ****
 * *
 * *
 +-----+ +-----+
 |CA+ca| |AB+ab|
 +-----+ +-----+

 +------------------------------+
 |LEGEND: |
 | ***** DIT containment |
 | + auxiliary attachment |
 +------------------------------+

 Figure 4. Rule-Specific Policy Conditions and Actions

 Figure 5 illustrates the same policy rule Rule1, but this time its
 condition and action are reusable. The association classes CA and AB
 are still present, and they are still DIT contained under Rule1. But
 rather than having the auxiliary classes ca and ab attached to

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 themselves, CA and AB now contain DN pointers to other entries to
 which these auxiliary classes are attached. These other entries, CIA
 and AIB, are DIT contained under RepositoryX, which is an instance of

Strassner, et. al. Expires: April 4, 2000 [Page 9]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 the class policyRepository. Because they are named under an instance
 of policyRepository, ca and ab are clearly identified as reusable.

 +-----+ +-------------+
 |Rule1| | RepositoryX |
 | | | |
 +-----+ +-------------+
 * * * *
 * * * *
 **** **** * *
 * * * *
 * +--+ * *
 * |AB| +------+ *
 * | -|-------->|AIB+ab| *
 +--+ +--+ +------+ *
 |CA| +------+
 | -|------------------------->|CIA+ca|
 +--+ +------+

 +------------------------------+
 |LEGEND: |
 | ***** DIT containment |
 | + auxiliary attachment |
 | ----> DN pointer |
 +------------------------------+

 Figure 5. Reusable Policy Conditions and Actions

 The classes policyConditionAuxClass and policyActionAuxClass do not
 themselves represent actual conditions and actions: these are
 introduced in their subclasses. What policyConditionAuxClass and
 policyActionAuxClass do introduce are the semantics of being a policy
 condition or a policy action. These are the semantics that all the
 subclasses of policyCondition and policyAction inherit. Among these
 semantics are those of representing either a rule-specific or a
 reusable policy condition or policy action.

 In order to preserve the ability to represent either a rule-specific
 or a reusable condition or action, all the subclasses of
 policyCondition and policyAction MUST also be auxiliary classes.

4.4. Location and Retrieval of Policy Objects in the Directory

 When a Policy Consumer goes to an LDAP directory to retrieve the
 policy object instances relevant to the Policy Targets it serves, it
 is faced with two related problems:

 o How does it locate and retrieve the directory entries that apply to

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 its Policy Targets? These entries may include instances of the
 Core Schema classes, instances of domain-specific subclasses of

Strassner, et. al. Expires: April 4, 2000 [Page 10]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 these classes, and instances of other classes modeling such
 resources as user groups, interfaces, and address ranges.

 o How does it retrieve the directory entries it needs in an efficient
 manner, so that retrieval of policy information from the directory
 does not become a roadblock to scalability? There are two facets
 to this efficiency: retrieving only the relevant directory
 entries, and retrieving these entries using as few LDAP calls as
 possible.

 The placement of objects in the Directory Information Tree (DIT)
 involves considerations other than how the policy-related objects will
 be retrieved by a Policy Consumer. Consequently, all that the Core
 Schema can do is to provide a "toolkit" of classes to assist the
 policy administrator as the DIT is being designed and built. A Policy
 Consumer SHOULD be able to take advantage of any tools that the policy
 administrator is able to build into the DIT, but it MUST be able to
 use a less efficient means of retrieval if that is all it has
 available to it.

 The basic idea behind the LDAP optimization classes is a simple one:
 make it possible for a Policy Consumer to retrieve all the policy-
 related objects it needs, and only those objects, using as few LDAP
 calls as possible. An important assumption underlying this approach
 is that the policy administrator has sufficient control over the
 underlying DIT structure to define subtrees for storing policy
 information. If the policy administrator does not have this level of
 control over DIT structure, a Policy Consumer can still retrieve the
 policy-related objects it needs individually. But it will require
 more LDAP access operations to do the retrieval in this way.

 Figure 6 illustrates how LDAP optimization is accomplished.

 +-----+
 ---------------->| A |
 DN pointer to | | DN pointers to subtrees +---+
 starting object +-----+ +------------------------->| C |
 | o--+----+ +---+ +---+
 | o--+------------->| B | / \
 +-----+ +---+ / \
 / \ / \ / ... \
 / \ / \
 / \ / ... \

 Figure 6. Using a policyContainer Object to Scope Policies

 The Policy Consumer is configured initially with a DN pointer to some
 entry in the DIT. The structural class of this entry is not

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 important; the Policy Consumer is interested only in the
 policySubtreesPtrAuxClass attached to it. This auxiliary class
 contains a multi-valued attribute with DN pointers to objects that
 anchor subtrees containing policy-related objects of interest to the

Strassner, et. al. Expires: April 4, 2000 [Page 11]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 Policy Consumer. Since policySubtreesPtrAuxClass is an auxiliary
 class, it can be attached to an entry that the Policy Consumer would
 need to access anyway - perhaps an entry containing initial
 configuration settings for the Policy Consumer, or for a Policy Target
 that uses the Policy Consumer.

 Once it has retrieved the DN pointers, the Policy Consumer will direct
 to each of the objects identified by them an LDAP request that all
 entries in its subtree be evaluated against the selection criteria
 specified in the request. The LDAP-enabled directory then returns all
 entries in that subtree that satisfy the specified criteria.

 The selection criteria always specify that object class = "policy".
 Since all classes representing policy rules, policy conditions, and
 policy actions, both in the Core Schema and in any domain-specific
 schema derived from it, are subclasses of the abstract class policy,
 this criterion evaluates to TRUE for all instances of these classes.
 To accommodate special cases where a Policy Consumer needs to retrieve
 objects that are not inherently policy-related (for example, an IP
 address range object pointed to by a subclass of policyAction
 representing the DHCP action "assign from this address range), the
 auxiliary class policyElementAuxClass can be used to "tag" an entry,
 so that it will be found by the selection criterion "object class =
 policy".

 The approach described in the preceding paragraph will not work for
 certain directory implementations, because these implementations do
 not support matching of auxiliary classes in the objectClass
 attribute. For environments where these implementations are expected
 to be present, the "tagging" of entries as relevant to policy can be
 accomplished by inserting the special value "POLICY" into the list of
 values contained in the policyKeywords attribute.

 If a Policy Consumer needs only a subset of the policy-related objects
 in the indicated subtrees, then it can be configured with additional
 selection criteria based on the policyKeywords attribute defined in
 the policy class. This attribute supports both standardized and
 administrator-defined values. Thus a Policy Consumer could be
 configured to request only those policy-related objects containing the
 keywords "DHCP" and "Eastern US".

 To optimize what is expected to be a typical case, the initial request
 from the client includes not only the object to which its "seed" DN
 pointer points, but also the subtree contained under this object. The
 filter for searching this subtree is whatever the client is going to
 use later to search the other subtrees: "object class = policy",
 presence of the keyword "POLICY", or presence of a more specific
 policyKeyword.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 Returning to the example in Figure 6, we see that in the best case, a
 Policy Consumer can get all the policy-related objects it needs, and
 only these objects, with exactly three LDAP requests: one to its

Strassner, et. al. Expires: April 4, 2000 [Page 12]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 starting object A to get the pointers to B and C, as well as the
 policy-related objects it needs from the subtree under A, and then one
 each to B and C to get all the policy-related objects that pass the
 selection criteria with which it was configured. Once it has
 retrieved all of these objects, the Policy Consumer can then traverse
 their various DN pointers locally to understand the semantic
 relationships among them. The Policy Consumer should also be prepared
 to find a pointer to another subtree attached to any of the objects it
 retrieves, and to follow this pointer first, before it follows any of
 the semantically significant pointers it has received. This recursion
 permits a structured approach to identifying related policies. In
 Figure 6, for example, if the subtree under B includes departmental
 policies and the one under C includes divisional policies, then there
 might be a pointer from the subtree under C to an object D that roots
 the subtree of corporate-level policies.

 Since a Policy Consumer has no guarantee that the entity that
 populates the directory won't use the policySubtreesPtrAuxClass, a
 Policy Consumer SHOULD understand this class, SHOULD be capable of
 retrieving and processing the entries in the subtrees it points to,
 and SHOULD be capable of doing all of this recursively. The same
 requirements apply to any other entity needing to retrieve policy
 information from the directory. Thus a Policy Management Tool that
 retrieves policy entries from the directory in order to perform
 validation and conflict detection SHOULD also understand and be
 capable of using the policySubtreesPtrAuxClass. All of these
 requirements are "SHOULD"s rather than "MUST"s because an LDAP client
 that doesn't implement them can still access and retrieve the
 directory entries it needs . The process of doing so will just be
 less efficient than it would have been if the client had implemented
 these optimizations.

 When it is serving as a tool for creating policy entries in the
 directory, a Policy Management Tool SHOULD support creation of
 policySubtreePtrAuxClass entries and their DN pointers.

4.4.1. Aliases and Other DIT-Optimization Techniques

 Additional flexibility in DIT structure is available to the policy
 administrator via LDAP aliasing. Figure 7 illustrates this
 flexibility.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

Strassner, et. al. Expires: April 4, 2000 [Page 13]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 +-----+
 ---------------->| A |
 DN pointer to | | DN pointers to subtrees +---+
 starting object +-----+ +------------------------->| C |
 | o--+----+ +---+ +---+
 | o--+------------->| B | / \
 +-----+ +---+ / \
 / \ / \ / ... \
 / \ / \
 / \ / \
 +---+ / +------+ \
 | X |<***************************|aliasX|
 +---+ +------+

 Figure 7. Addition of an Alias Object

 Even if it is necessary to store a policy entry X in a directory
 location separate from the other policy entries, batch retrieval using
 policy subtrees can still be done. The administrator simply inserts
 into one of the subtrees of policy entries an alias entry aliasX
 pointing to the outlying entry X. When the Policy Consumer requests
 all entries in the subtree under B, a response will be returned for
 entry X, just as responses are returned for all the (non-alias)
 entries that actually are in the subtree.

 Since resolution of an alias to its true entry is handled entirely by
 the LDAP directory, and is invisible to directory clients, Policy
 Consumers need not do anything extra to support aliases. A Policy
 Management Tool MAY make available to a policy administrator the
 ability to create alias entries like the one in Figure 7.

 In addition to aliases, there are several other techniques for
 managing the placement of entries in the DIT and their retrieval by
 directory clients. Among these other techniques are referrals, LDAP
 URLs, attributes like seeAlso, and the extensible matching rule for
 dereferencing DN pointers discussed in reference [16]. Discussion of
 how these other techniques might be applied to policy-related entries
 in a directory is outside the scope of this document.

5. Class Definitions

 The semantics for the LDAP classes mapped directly from the
 information model are detailed in reference [10]. Consequently, all
 that this document presents for these classes is a bare specification
 of the LDAP classes and attributes. More details are provided for the
 attributes listed above in Figure 3, which realize in LDAP the
 relationships defined in the information model. Finally, the classes

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 that exist only in the LDAP Core Schema are documented fully in this
 document.

Strassner, et. al. Expires: April 4, 2000 [Page 14]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 The formal language for specifying the classes, attributes, and DIT
 structure and content rules is that defined in reference [7].

5.1. The Abstract Class "policy"

 The abstract class "policy" is a direct mapping of the abstract class
 Policy from the Core Information Model. The four properties in Policy
 map directly to attributes in the class "policy".

 The class value "policy" is also used as the mechanism for identifying
 policy-related instances in the Directory Information Tree. An
 instance of any class may be "tagged" with this class value by
 attaching to it the auxiliary class policyElementAuxClass.

 The class definition is as follows:

 (<oid-oc1> NAME 'policy'
 DESC 'An abstract class with four attributes for describing
 a policy-related instance.'
 SUP top
 ABSTRACT
 MAY (cn $ caption $ description $ policyKeywords)
)

 The attributes "cn" and "description" are defined in X.520. The
 remaining two attributes are defined as:

 (<oid-at1> NAME 'caption'
 DESC 'A one-line description of this policy-related object.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE
)

 (<oid-at3> NAME 'policyKeywords'
 DESC 'A set of keywords to assist directory clients in
 locating the policy objects applicable to them. Each
 value of the multi-valued attribute contains a single
 keyword. Standard keyword values are listed in the
 Policy Core Information Model document.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
)

5.2. The Class policyGroup

 The class definition for policyGroup is as follows. Note that this
 class definition does not include attributes to realize the
 PolicyRuleInPolicyGroup and PolicyGroupInPolicyGroup associations from

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 the object model, since a policyGroup object points to instances of
 policyGroup and policyRule via, respectively, the pointer in

Strassner, et. al. Expires: April 4, 2000 [Page 15]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 policyGroupContainmentAuxClass and the pointer in
 policyRuleContainmentAuxClass.

 (<oid-oc2> NAME 'policyGroup'
 DESC 'A container for either a set of related policyRules or
 a set of related policyGroups.'
 SUP policy
 MUST (policyGroupName)
)

 The following DIT content rule indicates that an instance of
 policyGroup may have attached to it either DN pointers to one or more
 other policyGroups, or DN pointers to one or more policyRules.

 (<oid-oc2>
 NAME 'policyGroupContentRule'
 DESC 'shows what auxiliary classes go with this object'
 AUX (policyGroupContainmentAuxClass $
 policyRuleContainmentAuxClass)
)

 The following DIT structure rules indicate that an instance of
 policyGroup may be named under any superior, using either the cn or
 the policyGroupName attribute.

 (<oid-nf1> NAME 'policyGroupNameForm1'
 OC policyGroup
 MUST (cn)
)

 (1 NAME 'policyGroupStructuralRule1'
 FORM policyGroupNameForm1
)

 (<oid-nf2> NAME 'policyGroupNameForm2'
 OC policyGroup
 MUST (policyGroupName)
)

 (2 NAME 'policyGroupStructuralRule2'
 FORM policyGroupNameForm2
)

 The one attribute of policyGroup is defined as:

 (<oid-at4> NAME 'policyGroupName'
 DESC 'The user-friendly name of this policy group.'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE

Strassner, et. al. Expires: April 4, 2000 [Page 16]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

)

5.3. The Class policyRule

 This class represents the "If Condition then Action" semantics
 associated with a policy. The conditions and actions associated with
 a policy rule are modeled, respectively, with auxiliary subclasses of
 the auxiliary classes policyConditionAuxClass and
 policyActionAuxClass. Each of these auxiliary subclasses is attached
 to an instance of one of two structural classes. A subclass of
 policyConditionAuxClass is attached either to an instance of
 policyRuleConditionAssociation or to an instance of
 policyConditionInstance. Similarly, a subclass of
 policyActionAuxClass is attached either to an instance of
 policyRuleActionAssociation or to an instance of policyActionInstance.

 Of the eight attributes in the policyRule class, seven are mapped
 directly from corresponding properties in the information model. The
 eighth attribute, policyRuleValidityPeriodList, realizes the
 PolicyRuleValidityPeriod association from the information model.
 Since this association has no "extra" properties (besides those that
 tie the association to its associated objects), the attribute
 policyRuleValidityPeriodList is simply a multi-valued DN pointer.
 (Relationships in the information model can have "extra" properties
 because CIM represents relationships as classes. See Sections 5.4 and
 5.5 for examples of "extra" properties and how they are mapped to
 LDAP.) This attribute provides an unordered set of DN pointers to one
 or more instances of the policyTimePeriodConditionAuxClass, indicating
 when the policy rule is scheduled to be active and when it is
 scheduled to be inactive. A policy rule is scheduled to be active if
 it is active according to AT LEAST ONE of the
 policyTimePeriodConditionAuxClass instances pointed to by this
 attribute.

 The ConditionInPolicyRule and ActionInPolicyRule associations,
 however, have additional properties: ActionInPolicyRule has an
 integer to sequence the actions, and ConditionInPolicyRule has an
 integer to group the conditions, and a Boolean to specify whether a
 condition is to be negated. In the Core Schema, these extra
 association properties are represented as attributes of two classes
 introduced specifically to model the associations:
 policyRuleConditionAssociation and policyRuleActionAssociation,
 defined, respectively, in Sections 5.4 and 5.5. Thus they do not
 appear as attributes of the class policyRule.

 The class definition of policyRule is as follows:

 (<oid-oc3> NAME 'policyRule'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 DESC 'The central class for representing the "If Condition
 then Action" semantics associated with a policy rule.'
 SUP policy
 MUST (policyRuleName)

Strassner, et. al. Expires: April 4, 2000 [Page 17]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 MAY (policyRuleEnabled $ policyRuleConditionListType $
 policyRuleValidityPeriodList $ policyRuleUsage $
 policyRulePriority $ policyRuleMandatory $
 policyRuleSequencedActions)
)

 The following DIT structure rules indicate that an instance of
 policyRule may be named under an instance of policyGroup, where each
 of these instances may be named using either cn or their respective
 class-specific naming attributes.

 EDITOR'S NOTE: This restriction that an instance of policyRule may be
 named only under an instance of policyGroup is new -- it came in with
 Ryan's ABNF. It's easy enough to change it to say that an instance of
 policyRule can be named under anything, to allow for the case of a
 deployment with so few rules that the grouping provided by policyGroup
 is not needed. We just have to decide which way we want it.

 (<oid-nf3> NAME 'policyRuleNameForm1'
 OC policyRule
 MUST (cn)
)

 (3 NAME 'policyRuleStructuralRule1'
 FORM policyRuleNameForm1
 SUP 1 2
)

 (<oid-nf4> NAME 'policyRuleNameForm2'
 OC policyRule
 MUST (policyRuleName)
)

 (4 NAME 'policyRuleStructuralRule2'
 FORM policyRuleNameForm2
 SUP 1 2
)

 The attributes of policyRule are defined as follows:

 (<oid-at5> NAME 'policyRuleName'
 DESC 'The user-friendly name of this policy rule.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE
)

 (<oid-at6> NAME 'policyRuleEnabled'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 DESC 'An enumeration indicating whether a policy rule is
 administratively enabled, administratively disabled, or
 enabled for debug mode. The defined values for this

Strassner, et. al. Expires: April 4, 2000 [Page 18]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 attribute are enabled(1), disabled(2), and
 enabledForDebug(3).'
 SYNTAX INTEGER
 EQUALITY integerMatch
 SINGLE-VALUE
)

 (<oid-at7> NAME 'policyRuleConditionListType'
 DESC 'Indicates whether the list of policy conditions
 associated with this policy rule is in disjunctive
 normal form (DNF) or conjunctive normal form (CNF).
 Defined values are DNF(1) and CNF(2).'
 SYNTAX INTEGER
 EQUALITY integerMatch
 SINGLE-VALUE
)

 (<oid-at8> NAME 'policyRuleValidityPeriodList'
 DESC 'Distinguished names of policyTimePeriodConditions that
 determine when the policyRule is scheduled to be active
 / inactive. No order is implied.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
)

 (<oid-at9> NAME 'policyRuleUsage'
 DESC 'This attribute is used to provide guidelines on how
 this policy should be used.'
 SYNTAX DirectoryString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

 (<oid-at10> NAME 'policyRulePriority'
 DESC 'A non-negative integer for prioritizing this policyRule
 relative to other policyRules. A larger value indicates
 a higher priority.'
 SYNTAX INTEGER
 EQUALITY integerMatch
 SINGLE-VALUE
)

 (<oid-at11> NAME 'policyRuleMandatory'
 DESC 'A flag indicating that the evaluation of the
 policyConditions and execution of policyActions (if the
 condition list evaluates to True) is required.'
 SYNTAX Boolean
 EQUALITY booleanMatch

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 SINGLE-VALUE
)

 (<oid-at12> NAME 'policyRuleSequencedActions'

Strassner, et. al. Expires: April 4, 2000 [Page 19]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 DESC 'An enumeration indicating how to interpret the action
 ordering indicated via the policyRuleActionList
 attribute. The defined values for this attribute are
 mandatory(1), recommended(2), and dontCare(3).'
 SYNTAX INTEGER
 EQUALITY integerMatch
)

5.4. The Class policyRuleConditionAssociation

 This class contains attributes to represent the "extra" properties of
 the information model's ConditionInPolicyRule association. Instances
 of this class are related to an instance of policyRule via DIT
 containment. The policy conditions themselves are represented by
 auxiliary subclasses of the auxiliary class policyConditionAuxClass.
 These auxiliary classes are attached directly to instances of
 policyRuleConditionAssociation for rule-specific policy conditions.
 For a reusable policy condition, the auxiliary class is attached to an
 instance of the class policyConditionInstance, and there is a DN
 pointer to this instance from the instance of
 policyRuleConditionAssociation.

 The class definition is as follows:

 (<oid-oc4> NAME 'policyRuleConditionAssociation'
 DESC 'The class contains attributes characterizing the
 relationship between a policy rule and one of its
 policy conditions.'
 SUP policy
 MUST (policyConditionGroupNumber $ policyConditionNegated $
 policyConditionName)
 MAY (policyConditionDN)
)

 The following DIT content rule indicates that an instance of
 policyRuleConditionAssociation may have attached to it the auxiliary
 class policyConditionAuxClass, or one of its subclasses. This
 combination represents a rule-specific policy condition.

 (<oid-oc4>
 NAME 'policyRuleConditionAssociationContentRule'
 DESC 'shows what auxiliary classes go with this object'
 AUX (policyConditionAuxClass)
)

 The following DIT structure rules indicate that an instance of
 policyRuleConditionAssociation may be named under an instance of
 policyRule, where each of these instances may be named using either cn

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 or their respective class-specific naming attributes.

 (<oid-nf5> NAME 'policyRuleConditionAssociationNameForm1'

Strassner, et. al. Expires: April 4, 2000 [Page 20]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 OC policyRuleConditionAssociation
 MUST (cn)
)

 (5 NAME 'policyRuleConditionAssociationStructuralRule1'
 FORM policyRuleConditionAssociationNameForm1
 SUP 3 4
)

 (<oid-nf6> NAME 'policyRuleConditionAssociationNameForm2'
 OC policyRuleConditionAssociation
 MUST (policyConditionName)
)

 (6 NAME 'policyRuleConditionAssociationStructuralRule2'
 FORM policyRuleConditionAssociationNameForm2
 SUP 3 4
)

 The attributes of policyRuleConditionAssociation are defined as
 follows. Note that the class-specific naming attribute
 policyConditionName is also used in the class policyConditionInstance,
 where it identifies a reusable policy condition.

 (<oid-at13>
 NAME 'policyConditionName'
 DESC 'A user-friendly name for a policy condition.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE
)

 (<oid-at14>
 NAME 'policyConditionGroupNumber'
 DESC 'The number of the group to which a policy condition
 belongs. These groups are used to form the DNF or
 CNF expression associated with a policy rule.
 SYNTAX INTEGER
 EQUALITY integerMatch
 SINGLE-VALUE
)

 (<oid-at15>
 NAME 'policyConditionNegated'
 DESC 'Indicates whether a policy condition is negated in
 the DNF or CNF expression associated with a policy
 rule. The value TRUE indicates that a condition is
 negated'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 SYNTAX Boolean
 EQUALITY booleanMatch
 SINGLE-VALUE
)

Strassner, et. al. Expires: April 4, 2000 [Page 21]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 (<oid-at16>
 NAME 'policyConditionDN'
 DESC 'A DN pointer to a reusable policy condition.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
 SINGLE-VALUE
)

5.5. The Class policyRuleActionAssociation

 This class contains an attribute to represent the one "extra" property
 of the information model's ActionInPolicyRule association, which makes
 it possible to specify an order for executing the actions associated
 with a policy rule. Instances of this class are related to an
 instance of policyRule via DIT containment. The actions themselves
 are represented by auxiliary subclasses of the auxiliary class
 policyActionAuxClass. These auxiliary classes are attached directly
 to instances of policyRuleActionAssociation for rule-specific policy
 actions. For a reusable policy action, the auxiliary class is
 attached to an instance of the class policyActionInstance, and there
 is a DN pointer to this instance from the instance of
 policyRuleActionAssociation.

 The class definition is as follows:

 (<oid-oc5> NAME 'policyRuleActionAssociation'
 DESC 'The class contains an attribute that represents an
 execution order for an action in the context of a
 policy rule.'
 SUP policy
 MUST (policyActionOrder $
 policyActionName)
 MAY (policyActionDN)
)

 The following DIT content rule indicates that an instance of
 policyRuleActionAssociation may have attached to it the auxiliary
 class policyActionAuxClass, or one of its subclasses. This
 combination represents a rule-specific policy action.

 (<oid-oc5>
 NAME 'policyRuleActionAssociationContentRule'
 DESC 'shows what auxiliary classes go with this object'
 AUX (policyActionAuxClass)
)

 The following DIT structure rules indicate that an instance of

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 policyRuleActionAssociation may be named under an instance of
 policyRule, where each of these instances may be named using either cn
 or their respective class-specific naming attributes.

Strassner, et. al. Expires: April 4, 2000 [Page 22]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 (<oid-nf7> NAME 'policyRuleActionAssociationNameForm1'
 OC policyRuleActionAssociation
 MUST (cn)
)

 (7 NAME 'policyRuleActionAssociationStructuralRule1'
 FORM policyRuleActionAssociationNameForm1
 SUP 3 4
)

 (<oid-nf8> NAME 'policyRuleActionAssociationNameForm2'
 OC policyRuleActionAssociation
 MUST (policyActionName)
)

 (8 NAME 'policyRuleActionAssociationStructuralRule2'
 FORM policyRuleActionAssociationNameForm2
 SUP 3 4
)

 The attributes of policyRuleActionAssociation are defined as follows.
 Note that the class-specific naming attribute policyActionName is also
 used in the class policyActionInstance, where it identifies a reusable
 policy action.

 (<oid-at17>
 NAME 'policyActionName'
 DESC 'A user-friendly name for a policy action.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE
)

 (<oid-at33>
 NAME 'policyActionOrder'
 DESC 'An integer indicating the relative order of an action
 in the context of a policy rule.
 SYNTAX INTEGER
 EQUALITY integerMatch
 SINGLE-VALUE
)

 (<oid-at34>
 NAME 'policyActionDN'
 DESC 'A DN pointer to a reusable policy action.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
 SINGLE-VALUE

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

)

Strassner, et. al. Expires: April 4, 2000 [Page 23]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

5.6. The Class policyConditionAuxClass

 The purpose of a policy condition is to determine whether or not the
 set of actions (contained in the policyRule that the condition applies
 to) should be executed or not. This auxiliary class can be attached
 to instances of two other classes in the Core Policy Schema. When it
 is attached to an instance of policyConditionAssociation, it
 represents a rule-specific policy condition. When it is attached to
 an instance of policyConditionInstance, it represents a reusable
 policy condition.

 Since both of the classes to which this auxiliary class may be
 attached are derived from "policy", the attributes of "policy" will
 already be defined for the entries to which this class attaches. Thus
 this class is derived directly from "top".

 The class definition is as follows:

 (<oid-oc6> NAME 'policyConditionAuxClass'
 DESC 'A class representing a condition to be evaluated in
 conjunction with a policy rule.'
 SUP top
 AUXILIARY
)

5.7. The Class policyTimePeriodConditionAuxClass

 This class provides a means of representing the time periods during
 which a policy rule is valid, i.e., active. The class definition is
 as follows. Note that instances of this class are named with the
 attributes cn and policyConditionName that they inherit, respectively,
 from policy and from policyCondition.

 (<oid-oc7> NAME 'policyTimePeriodConditionAuxClass'
 DESC 'A class that provides the capability of enabling /
 disabling a policy rule according to a predetermined
 schedule.'
 SUP policyConditionAuxClass
 AUXILIARY
 MAY (ptpConditionTime $ ptpConditionMonthOfYearMask $
 ptpConditionDayOfMonthMask $ ptpConditionDayOfWeekMask $
 ptpConditionTimeOfDayMask $ ptpConditionTimeZone)
)

 The attributes of policyTimePeriodConditionAuxClass are defined as
 follows:

 (<oid-at19>

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 NAME 'ptpConditionTime'
 DESC 'The range of calendar dates on which a policy rule is
 valid. The format of the string is

Strassner, et. al. Expires: April 4, 2000 [Page 24]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 [yyyymmddhhmmss]:[yyyymmddhhmmss]'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

 (<oid-at20>
 NAME 'ptpConditionMonthOfYearMask'
 DESC 'A mask identifying the months of the year in which a
 policy rule is valid. The format is a string of 12
 ASCII '0's and '1's, representing the months of the
 year from January through December.'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

 (<oid-at21>
 NAME 'ptpConditionDayOfMonthMask'
 DESC 'A mask identifying the days of the month on which a
 policy rule is valid. The format is a string of 31
 ASCII '0's and '1's.'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

 (<oid-at22>
 NAME 'ptpConditionDayOfWeekMask'
 DESC 'A mask identifying the days of the week on which a
 policy rule is valid. The format is a string of seven
 ASCII '0's and '1's, representing the days of the week
 from Sunday through Saturday.'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

 (<oid-at23>
 NAME 'ptpConditionTimeOfDayMask'
 DESC 'The range of times at which a policy rule is valid. If
 the second time is earlier than the first, then the
 interval spans midnight. The format of the string is
 hhmmss:hhmmss'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 (<oid-at24>
 NAME 'ptpConditionTimeZone'
 DESC 'The definition of the time zone for the
 policyTimePeriodConditionAuxClass. The format of

Strassner, et. al. Expires: April 4, 2000 [Page 25]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 the string is either 'Z' (UTC) or <'+'|'-'><hhmm>'
 SYNTAX PrintableString
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
)

5.8. The Class vendorPolicyConditionAuxClass

 The class definition is as follows:

 (<oid-oc8> NAME 'vendorPolicyConditionAuxClass'
 DESC 'A class that defines a registered means to describe a
 policy condition.'
 SUP policyConditionAuxClass
 AUXILIARY
 MAY (vendorPolicyConstraintData $
 vendorPolicyConstraintEncoding)
)

 The attribute definitions for vendorPolicyCondition are as follows:

 (<oid-at25>
 NAME 'vendorPolicyConstraintData'
 DESC 'Escape mechanism for representing constraints that have
 not been modeled as specific attributes. The format of
 the values is identified by the OID stored in the
 attribute vendorPolicyConstraintEncoding.'
 SYNTAX OctetString
 EQUALITY octetStringMatch
)

 (<oid-at26>
 NAME 'vendorPolicyConstraintEncoding'
 DESC 'An OID identifying the format and semantics for this
 instance"s vendorPolicyConstraintData attribute.'
 SYNTAX OID
 EQUALITY objectIdentifierMatch
 SINGLE-VALUE
)

5.9. The Class policyActionAuxClass

 The purpose of a policy action is to execute one or more operations
 that will affect network traffic and/or systems, devices, etc. in
 order to achieve a desired policy state. This auxiliary class can be
 attached to instances of two other classes in the Core Policy Schema.
 When it is attached to an instance of policyActionAssociation, it
 represents a rule-specific policy action. When it is attached to an

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 instance of policyActionInstance, it represents a reusable policy
 action.

Strassner, et. al. Expires: April 4, 2000 [Page 26]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 Since both of the classes to which this auxiliary class may be
 attached are derived from "policy", the attributes of "policy" will
 already be defined for the entries to which this class attaches. Thus
 this class is derived directly from "top".

 The class definition is as follows:

 (<oid-oc9> NAME 'policyActionAuxClass'
 DESC 'A class representing an action to be performed as a
 result of a policy rule.'
 SUP top
 AUXILIARY
)

5.10. The Class vendorPolicyActionAuxClass

 The class definition is as follows:

 (<oid-oc10> NAME 'vendorPolicyActionAuxClass'
 DESC 'A class that defines a registered means to describe a
 policy action.'
 SUP policyActionAuxClass
 AUXILIARY
 MAY (vendorPolicyActionData $ vendorPolicyActionEncoding)
)

 The attribute definitions for vendorPolicyActionAuxClass are as
 follows:

 (<oid-at28>
 NAME 'vendorPolicyActionData'
 DESC 'Escape mechanism for representing actions that have not
 been modeled as specific attributes. The format of the
 values is identified by the OID stored in the attribute
 vendorPolicyActionEncoding.'
 SYNTAX OctetString
 EQUALITY octetStringMatch
)

 (<oid-at29>
 NAME 'vendorPolicyActionEncoding'
 DESC 'An OID identifying the format and semantics for this
 instance"s vendorPolicyActionData attribute.'
 SYNTAX OID
 EQUALITY objectIdentifierMatch
 SINGLE-VALUE
)

5.11. The Class policyConditionInstance

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 The role of this class in the Core Schema is to serve as the
 structural class to which the auxiliary class policyCondition is

Strassner, et. al. Expires: April 4, 2000 [Page 27]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 attached to form a reusable policy condition. See Section 4.3 for a
 complete discussion of reusable policy conditions and the role that
 this class plays in how they are represented.

 In addition to the cn attribute it inherits from "policy", this class
 uses the naming attribute policyConditionName, which was defined above
 in Section 5.4.

 The class definition is as follows:

 (<oid-oc11> NAME 'policyConditionInstance'
 DESC 'A structural class that contains a reusable policy
 condition.'
 SUP policy
 MUST (policyConditionName)
)

 The following DIT content rule indicates that an instance of
 policyConditionInstance may have attached to it an instance of the
 auxiliary class policyCondition.

 (<oid-oc11>
 NAME 'policyConditionInstanceContentRule'
 DESC 'shows what auxiliary classes go with this class'
 AUX (policyConditionAuxClass)
)

 The following DIT structure rules indicate that an instance of
 policyConditionInstance may be named under an instance of
 policyRepository, using either cn or its class-specific naming
 attribute policyConditionName.

 (<oid-nf9> NAME 'policyConditionInstanceNameForm1'
 OC policyConditionInstance
 MUST (cn)
)

 (9 NAME 'policyConditionInstanceStructuralRule1'
 FORM policyConditionInstanceNameForm1
 SUP 13 14
)

 (<oid-nf10> NAME 'policyConditionInstanceNameForm2'
 OC policyConditionInstance
 MUST (policyConditionName)
)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 (10 NAME 'policyConditionInstanceStructuralRule2'
 FORM policyConditionInstanceNameForm2
 SUP 13 14

Strassner, et. al. Expires: April 4, 2000 [Page 28]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

)

5.12. The Class policyActionInstance

 The role of this class in the Core Schema is to serve as the
 structural class to which the auxiliary class policyAction is attached
 to form a reusable policy action. See Section 4.3 for a complete
 discussion of reusable policy actions and the role that this class
 plays in how they are represented.

 In addition to the cn attribute it inherits from "policy", this class
 uses the naming attribute policyActionName, which was defined above in

Section 5.5.

 The class definition is as follows:

 (<oid-oc12> NAME 'policyActionInstance'
 DESC 'A structural class that contains a reusable policy
 action.'
 SUP policy
 MUST (policyActionName)
)

 The following DIT content rule indicates that an instance of
 policyActionInstance may have attached to it an instance of the
 auxiliary class policyAction.

 (<oid-oc12>
 NAME 'policyActionInstanceContentRule'
 DESC 'shows what auxiliary classes go with this class'
 AUX (policyActionAuxClass)
)

 The following DIT structure rules indicate that an instance of
 policyActionInstance may be named under an instance of
 policyRepository, using either cn or its class-specific naming
 attribute policyActionName.

 (<oid-nf11> NAME 'policyActionInstanceNameForm1'
 OC policyActionInstance
 MUST (cn)
)

 (11 NAME 'policyActionInstanceStructuralRule1'
 FORM policyActionInstanceNameForm1
 SUP 13 14
)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 (<oid-nf12> NAME 'policyActionInstanceNameForm2'
 OC policyActionInstance

Strassner, et. al. Expires: April 4, 2000 [Page 29]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 MUST (policyActionName)
)

 (12 NAME 'policyActionInstanceStructuralRule2'
 FORM policyActionInstanceNameForm2
 SUP 13 14
)

5.13. The Auxiliary Class policyElementAuxClass

 This class introduces no additional attributes, beyond those defined
 in the class "policy" from which it is derived. Its role is to "tag"
 an instance of a class defined outside the realm of policy as being
 nevertheless relevant to a policy specification. This tagging can
 potentially take place at two levels:

 o Every instance to which policyElementAuxClass is attached becomes
 an instance of the class "policy", since policyElementAuxClass is a
 subclass of "policy". Thus a DIT search with the filter
 "objectClass=policy" will return the instance. (As noted earlier,
 this approach does not work for some directory implementations. To
 accommodate these implementations, policy-related entries SHOULD be
 tagged with the keyword "POLICY".)

 o With the policyKeywords attribute that it inherits from "policy",
 an instance to which policyElementAuxClass is attached can be
 tagged as being relevant to a particular type or category of
 policy, using standard keywords, administrator-defined keywords, or
 both.

 The class definition is as follows:

 (<oid-oc13> NAME 'policyElementAuxClass'
 DESC 'An auxiliary class used to tag instances of classes
 defined outside the realm of policy as relevant to a
 particular policy specification.'
 SUP policy
 AUXILIARY
)

5.14. The Class policyRepository

 This class provides a container for reusable policy information, such
 as reusable policy conditions and/or reusable policy actions.

 The class definition is as follows:

 (<oid-oc17> NAME 'policyRepository'
 DESC 'A container for reusable information.'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 SUP top
 MUST (policyRepositoryName)
 MAY(cn)

Strassner, et. al. Expires: April 4, 2000 [Page 30]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

)

 The following DIT structure rules indicate that an instance of
 policyRepository may be named under any superior, using either the cn
 or the policyRepositoryName attribute.

 (<oid-nf13> NAME 'policyRepositoryNameForm1'
 OC policyRepository
 MUST (cn)
)

 (13 NAME 'policyRepositoryStructuralRule1'
 FORM policyRepositoryNameForm1
)

 (<oid-nf14> NAME 'policyRepositoryNameForm2'
 OC policyRepository
 MUST (policyRepositoryName)
)

 (14 NAME 'policyRepositoryStructuralRule2'
 FORM policyRepositoryNameForm2
)

 The one attribute of policyRepository is defined as:

 (<oid-at35> NAME 'policyRepositoryName'
 DESC 'The user-friendly name of this policy repository.'
 SYNTAX IA5String
 EQUALITY caseExactIA5Match
 SINGLE-VALUE
)

5.15. The Auxiliary Class policySubtreesPtrAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 points to a set of objects that are at the root of DIT subtrees
 containing policy-related information. By attaching this attribute to
 instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the policy information relevant
 to it.

 These entries may be placed in the DIT such that a well-known DN can
 be used by placing the structural entry (e.g. container) with the
 policySubtreesPtrAuxClass attached thereto in the root of the
 directory suffix. In this case, the subtree entry point can contain
 and/or point to all related policy entries for any well-known policy
 disciplines. Similarly, the subtree entry point may be placed in the

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 DIT such that the Policy Consumer's starting point is a subtree with
 policy-related entries that are dependent on a hierarchically-related
 set of subtrees (e.g., region, division, corporate). In this latter

Strassner, et. al. Expires: April 4, 2000 [Page 31]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 case, DNs may be provided to the Policy Consumers via SNMP or other
 techniques.

 This object does not provide the semantic linkages between individual
 policy objects, such as those between a policy group and the policy
 rules that belong to it. Its only role is to enable efficient bulk
 retrieval of policy-related objects, as described in Section 4.4.
 Once the objects have been retrieved, a directory client can determine
 the semantic linkages by following DN pointers such as
 policyRulesAuxContainedSet locally.

 Since policy-related objects will often be included in the DIT subtree
 beneath an object to which this auxiliary class is attached, a client
 SHOULD request the policy-related objects from the subtree under the
 object with these pointers at the same time that it requests the
 pointers themselves.

 Since clients are expected to behave in this way, the policy
 administrator SHOULD make sure that this subtree does not contain so
 many objects unrelated to policy that an initial search done in this
 way results in a performance problem. For example,
 policySubtreesPtrAuxClass SHOULD NOT be attached to the partition root
 for a large directory partition containing a relatively few policy-
 related objects along with a large number of objects unrelated to
 policy. A better approach would be to introduce a container object
 immediately below the partition root, attach policySubtreesPtrAuxClass
 to this container object, and then place the policy-related objects in
 the subtree under it.

 The class definition is as follows:

 (<oid-oc14> NAME 'policySubtreesPtrAuxClass'
 DESC 'An auxiliary class providing DN pointers to roots of
 DIT subtrees containing policy-related objects.'
 SUP top
 AUXILIARY
 MAY (policySubtreesAuxContainedSet)
)

5.15.1. The Attribute policySubtreesAuxContainedSet

 This attribute provides an unordered set of DN pointers to one or more
 objects under which policy-related information is present. The
 objects pointed to may or may not themselves contain policy-related
 information.

 The attribute definition is as follows:

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 (<oid-at30>
 NAME 'policySubtreesAuxContainedSet'
 DESC 'Distinguished names of objects that serve as roots for

Strassner, et. al. Expires: April 4, 2000 [Page 32]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 DIT subtrees containing policy-related objects. No
 order is implied.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
)

5.16. The Auxiliary Class policyGroupContainmentAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 points to a set of policyGroups. By attaching this attribute to
 instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the policyGroups relevant to
 it.

 As is the case with policyRules, a policy administrator might have
 several different pointers to a policyGroup in the overall directory
 structure. The policyGroupContainmentAuxClass is the mechanism that
 makes it possible for the policy administrator to define all these
 pointers.

 The class definition is as follows:

 (<oid-oc15> NAME 'policyGroupContainmentAuxClass'
 DESC 'An auxiliary class used to bind policyGroups to an
 appropriate container object.'
 SUP top
 AUXILIARY
 MAY (policyGroupsAuxContainedSet)
)

5.16.1. The Attribute policyGroupsAuxContainedSet

 This attribute provides an unordered set of DN pointers to one or more
 policyGroups associated with the instance of a structural class to
 which this attribute has been appended. The attribute definition is
 as follows:

 (<oid-at31>
 NAME 'policyGroupsAuxContainedSet'
 DESC 'Distinguished names of policyGroups associated in some
 way with the instance to which this attribute has been
 appended. No order is implied.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

Strassner, et. al. Expires: April 4, 2000 [Page 33]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

5.17. The Auxiliary Class policyRuleContainmentAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 points to a set of policyRules. By attaching this attribute to
 instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the policyRules relevant to it.

 A policy administrator might have several different pointers to a
 policyRule in the overall directory structure. For example, there
 might be pointers to all policyRules for traffic originating in a
 particular subnet from a directory entry that represents that subnet.
 At the same time, there might be pointers to all policyRules related
 to a particular DiffServ setting from an instance of a policyGroup
 explicitly introduced as a container for DiffServ-related policyRules.
 The policyRuleContainmentAuxClass is the mechanism that makes it
 possible for the policy administrator to define all these pointers.

 Note that the cn attribute does NOT need to be defined for this class.
 This is because an auxiliary class is used as a means to collect
 common attributes and treat them as properties of an object. A good
 analogy is a #include file, except that since an auxiliary class is a
 class, all the benefits of a class (e.g., inheritance) can be applied
 to an auxiliary class.

 The class definition is as follows:

 (<oid-oc16> NAME 'policyRuleContainmentAuxClass'
 DESC 'An auxiliary class used to bind policyRules to an
 appropriate container object.'
 SUP top
 AUXILIARY
 MAY (policyRulesAuxContainedSet)
)

5.17.1. The Attribute policyRulesAuxContainedSet

 This attribute provides an unordered set of DN pointers to one or more
 policyRules associated with the instance of a structural class to
 which this attribute has been appended. The attribute definition is:

 (<oid-at32>
 NAME 'policyRulesAuxContainedSet'
 DESC 'Distinguished names of policyRules associated in some
 way with the instance to which this attribute has been
 appended. No order is implied.'
 SYNTAX DN
 EQUALITY distinguishedNameMatch
)

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

Strassner, et. al. Expires: April 4, 2000 [Page 34]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

6. Extending the Core Schema

 The following subsections provide general guidance on how to create a
 domain-specific schema derived from the Core Schema, discuss how the
 vendor classes in the Core Schema should be used, and explain how
 policyTimePeriodConditions are related to other policy conditions.

6.1. Subclassing policyCondition and policyAction

 In Section 4.3 above, there is a discussion of how, by representing
 policy conditions and policy actions as auxiliary classes in a schema,
 the flexibility is retained to instantiate a particular condition or
 action as either rule-specific or reusable. This flexibility is lost
 if a condition or action class is defined as structural rather than
 auxiliary. For standardized schemata, this document specifies that
 domain-specific information MUST be expressed in auxiliary subclasses
 of policyCondition and policyAction. It is RECOMMENDED that non-
 standardized schemata follow this practice as well.

6.2. Using the Vendor Policy Encoding Attributes

 As discussed Section 5.8 "The Class vendorPolicyConditionAuxClass",
 the attributes vendorPolicyConstraintData and
 vendorPolicyConstraintEncoding are included in
 vendorPolicyConditionAuxClass to provide an escape mechanism for
 representing "exceptional" policy conditions. The attributes
 vendorPolicyActionData and vendorPolicyActionEncoding in
 vendorPolicyActionAuxClass class play the same role with respect to
 actions. This enables interoperability between different vendors.

 For example, imagine a network composed of access devices from vendor
 A, edge and core devices from vendor B, and a policy server from
 vendor C. It is desirable for this policy server to be able to
 configure and manage all of the devices from vendors A and B.
 Unfortunately, these devices will in general have little in common
 (e.g., different mechanisms, different ways for controlling those
 mechanisms, different operating systems, different commands, and so
 forth). The escape conditions provide a way for vendor-specific
 commands to be encoded as OctetStrings, so that devices from different
 vendors can be commonly managed by a single policy server.

6.3. Using Time Validity Periods

 Time validity periods are defined as a subclass of policyCondition,
 called policyTimePeriodCondition. This is to allow their inclusion in
 the AND/OR condition definitions for a policyRule. Care should be
 taken not to subclass policyTimePeriodCondition to add domain-specific
 condition properties. For example, it would be incorrect to add
 IPSec- or QoS-specific condition properties to the

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 policyTimePeriodCondition class, just because IPSec or QoS includes
 time in its condition definition. The correct subclassing would be to
 create IPSec or QoS-specific subclasses of policyCondition and then

Strassner, et. al. Expires: April 4, 2000 [Page 35]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 combine instances of these domain-specific condition classes with the
 validity period criteria. This is accomplished using the AND/OR
 association capabilities for policyConditions in policyRules.

7. Security Considerations

 o General: See reference [10].

 o Users: See reference [10].

 o Administrators of Schema: In general, most LDAP-accessible
 directories do not permit old or out-of-date schemas, or schema
 elements to be deleted. Instead, they are rendered inactive. This
 makes it that much more important to get it right the first time on
 an operational system, in order to avoid complex inactive schema
 artifacts from lying about in the operational directory. The good
 news is that it is expected that large network operators will
 change schema design infrequently, and, when they do, the schema
 creation changes will be tested on an off-line copy of the
 directory before the operational directory is updated. Typically,
 a small group of directory schema administrators will be authorized
 to make these changes in a service provider or enterprise
 environment. The ability to maintain audit trails is also required
 here.

 o Administrators of Schema Content (Directory Entries): This group
 requires authorization to load values (entries) into a policy
 repository directory schema, i.e. read/write access. An audit
 trail capability is also required here.

 o Applications and Policy Consumers: These entities must be
 authorized for read-only access to the policy repository directory,
 so that they may acquire policy for the purposes of passing it to
 their respective enforcement entities.

 o Security Disciplines:

 o Audit Trail (Non-repudiation): In general, standardizing
 mechanisms for non-repudiation is outside the scope of the IETF;
 however, we can certainly document the need for this function in
 systems which maintain and distribute policy. The dependency for
 support of this function is on the implementers of these systems,
 and not on any specific standards for implementation. The
 requirement for a policy system is that a minimum level of
 auditing via an auditing facility must be provided. Logging
 should be enabled. This working group will not specify what this
 minimal auditing function consists of.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 o Access Control/Authorization: Access Control List (ACL)
 functionality must be provided. Standards for directories which
 use LDAPv3 as an access mechanism are still being worked on in

Strassner, et. al. Expires: April 4, 2000 [Page 36]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 the LDAPext working group, as of this writing. The two
 administrative sets of users documented above will form the basis
 for two administrative use cases which require support.

 o Authentication: In the LDAP-accessible directory case, both TLS
 and Kerboros are acceptable for authentication. Existing LDAP
 implementations provide these functions within the context of the
 BIND request, which is adequate. We advise against using weaker
 mechanisms, such as clear text and HTTP Digest. Mutual
 authentication is recommended. The LDAPv3 protocol supports
 this, but implementations vary in the functionality that they
 support.

 o Integrity/Privacy: In the LDAP-accessible directory case, TLS
 is acceptable for encryption and data integrity on the wire. If
 physical or virtual access to the policy repository is in
 question, it may also be necessary to encrypt the policy data as
 it is stored on the file system; however, specification of
 mechanisms for this purpose are outside the scope of this
 working group. In any case, we recommend that the physical
 server be located in a physically secure environment.

 In the case of Policy Consumer-to-Policy Target communications, the
 use of IPSEC is recommended for providing confidentiality, data
 origin authentication, integrity and replay prevention. See
 reference [11].

 o Denial of Service: We recommend the use of multiple policy
 repository directories, such that a denial of service attack on any
 one directory server will not make all policy data inaccessible to
 legitimate users. However, this still leaves a denial of service
 attack exposure. Our belief is that the use of a policy schema, in
 a centrally administered but physically distributed policy
 directory, does not increase the risk of denial of service attacks;
 however, such attacks are still possible. If executed
 successfully, such an attack could prevent Policy ConsumerÆs from
 accessing a policy repository, and thus prevent them from acquiring
 new policy. In such a case, the Policy Consumers, and associated
 Policy Targets would continue operating under the policies in force
 before the denial of service attack was launched. Note that
 exposure of policy systems to denial of service attacks is not any
 greater than the exposure of DNS with DNSSEC in place.

 o Other LDAP-accessible Directory Schema Considerations:

 o Replication: Replication among directory copies across servers
 should also be protected. Replicating over connections secured
 by SSL or IPSEC is recommended.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

Strassner, et. al. Expires: April 4, 2000 [Page 37]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to pertain
 to the implementation or use of the technology described in this
 document or the extent to which any license under such rights might or
 might not be available; neither does it represent that it has made any
 effort to identify any such rights. Information on the IETF's
 procedures with respect to rights in standards-track and standards-
 related documentation can be found in BCP-11.

 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this specification
 can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

9. Acknowledgments

 This document is closely aligned with the work being done in the
 Distributed Management Task Force (DMTF) Service Level Agreements and
 Networks working groups. As noted, the Core Schema described here was
 initially defined in references [2] and [3]. We would especially like
 to thank Raju Rajan, Sanjay Kamat, Andrea Westerinen, Lee Rafalow, Raj
 Yavatkar, Glenn Waters, David Black, Michael Richardson, Mark Stevens,
 David Jones, and Hugh Mahon for their helpful comments. Special
 thanks also to Ryan Moats, for providing the ABNF representation of
 the Core Policy Schema.

10. References

 [1] Strassner, J., and E. Ellesson, "Terminology for describing network
 policy and services", draft-ietf-policy-terms-00.txt, June 1999.

 [2] Bhattacharya, P., and R. Adams, W. Dixon, R. Pereira, R. Rajan, "An
 LDAP Schema for Configuration and Administration of IPSec based
 Virtual Private Networks (VPNs)", Internet-Draft work in progress,
 October 1998

 [3] Rajan, R., and J. C. Martin, S. Kamat, M. See, R. Chaudhury, D.
 Verma, G. Powers, R. Yavatkar, "Schema for Differentiated Services

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/draft-ietf-policy-terms-00.txt

 and Integrated Services in Networks", Internet-Draft work in
 progress, October 1998

Strassner, et. al. Expires: April 4, 2000 [Page 38]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 [4] Strassner, J. and S. Judd, "Directory-Enabled Networks", version
 3.0c5 (August 1998).

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Hovey, R., and S. Bradner, "The Organizations Involved in the IETF
 Standards Process", BCP 11, RFC 2028, October 1996.

 [7] Wahl, M., and A. Coulbeck, T. Howes, S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions", RFC

2252, December 1997.

 [8] Strassner, J., policy architecture BOF presentation, 42nd IETF
 Meeting, Chicago, Illinois, October, 1998

 [9] DMTF web site, http://www.dmtf.org.

 [10] Moore, B., and E. Ellesson, J. Strassner, "Policy Framework Core
 Information Model", draft-ietf-policy-core-info-model-01.txt,
 October 1999.

 [11] Yavatkar, R., and R. Guerin, D. Pendarakis, "A Framework for
 Policy-based Admission Control", draft-ietf-rap-framework-03.txt,
 June 1999.

 [12] Stevens, M., and W. Weiss, H. Mahon, B. Moore, J. Strassner, G.
 Waters, A. Westerinen, J. Wheeler, "Policy Framework", draft-ietf-

policy-framework-00.txt, September, 1999.

 [13] Mahon, H., "Requirements for a Policy Management System", draft-
ietf-policy-req-00.txt, September 1999.

 [14] Snir, Y., and Y. Ramberg, J. Strassner, "QoS Policy Framework
 Information Model", draft-ietf-qos-policy-schema-01.txt, September
 1999.

 [15] Weiss, W., and J. Strassner, A. Westerinen, "Terminology for
 describing network policy and services", draft-weiss-policy-device-

qos-model-00.txt, June 1999.

 [16] Moats, R., and J. Maziarski, J. Strassner, "Extensible Match Rule
 to Dereference Pointers", draft-moats-ldap-dereference-match-00.txt
 June 1999.

11. Authors' Addresses

 John Strassner

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2028
https://datatracker.ietf.org/doc/html/rfc2252
https://datatracker.ietf.org/doc/html/rfc2252
http://www.dmtf.org
https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-info-model-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-req-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-req-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-qos-policy-schema-01.txt
https://datatracker.ietf.org/doc/html/draft-weiss-policy-device-qos-model-00.txt
https://datatracker.ietf.org/doc/html/draft-weiss-policy-device-qos-model-00.txt
https://datatracker.ietf.org/doc/html/draft-moats-ldap-dereference-match-00.txt

 Cisco Systems, Bldg 15
 170 West Tasman Drive
 San Jose, CA 95134

Strassner, et. al. Expires: April 4, 2000 [Page 39]

Internet Draft draft-ietf-policy-core-schema-05.txt October 1999

 Phone: +1 408-527-1069
 Fax: +1 408-527-1722
 E-mail: johns@cisco.com

 Ed Ellesson
 IBM Corporation, JDGA/501
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709
 Phone: +1 919-254-4115
 Fax: +1 919-254-6243
 E-mail: ellesson@raleigh.ibm.com

 Bob Moore
 IBM Corporation, JDGA/501
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709
 Phone: +1 919-254-4436
 Fax: +1 919-254-6243
 E-mail: remoore@us.ibm.com

12. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of developing
 Internet standards in which case the procedures for copyrights defined
 in the Internet Standards process must be followed, or as required to
 translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
 NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
 WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-core-schema-05.txt

 Strassner, et. al. Expires: April 4, 2000 [Page 40]

