
Internet Engineering Task Force John Strassner
INTERNET DRAFT Stephen Schleimer
17 November 1998 Cisco Systems

 Policy Framework Definition Language
draft-ietf-policy-framework-pfdl-00.txt

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.ietf.org (US East Coast), nic.nordu.net
(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

Abstract

Recently, the IETF has developed protocols that classify packets in
order to treat certain classes or flows of packets in a particular
way compared to other classes or flows of packets. The successful
wide-scale deployment of these protocols depends on the ability to
administer and distribute consistent policy information to different
types of network devices as well as hosts and servers that participate
in policy decision making, administration, distribution and control.
There is a clear need to develop a scalable framework for policy
administration and distribution that will enable interoperability
among multiple devices and device types that must work together to
achieve a consistent implementation of policy.
This document defines a language, called the Policy Framework
Definition Language (PFDL), that maps requirements for services to be
provided by the network as defined in a business specification (e.g.,
an SLA) to a common vendor- and device-independent intermediate form.
This enables policy information and specifications to be shared among
the heterogeneous components that comprise the policy framework, and
allows multiple vendors to use multiple devices to implement that
framework. The PFDL is the common 'currency' that is exchanged between
these heterogeneous components to enable them all to perform their
function in providing, securing, distributing, and administering
policy. The PFDL becomes the way to ensure that multiple vendors
interpret the policy the same way while enabling vendors to provide
value-added services.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 1]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

Definition of Key Word Usage

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document
are to be interpreted as described in RFC 2119 [TERMS]. These words
will be capitalized to ensure that their intent in this context is
easily discernible.

Table of Contents

Status of this memo
Abstract

1. Introduction

2. Difference Between the PFDL and Other Languages

3. The Structure of Policies in the PFDL
3.1 Policy Component Hierarchy
3.1.1 The ComplexPolicy class
3.1.2 The SimplePolicy class
3.1.3 The PolicyRule class
3.1.4 The PolicyCondition class hierarchy
3.1.5 The PolicyAction class
3.2 Policy Conflict Detection
3.2.1 Types of Policy Conflicts
3.2.2 Intra-Policy Conflicts
3.2.3 Inter-Policy Conflicts
3.3 Service and Usage Policies
3.3.1 Service Policies
3.3.2 Usage Policies
3.4 Collective Aspects of Policy
3.4.1 Roles
3.4.2 Groups

4. The Grammar of the PFDL
<lots of additional sections here>

5. Examples of Using the PFDL

6. Security Considerations

7. Acknowledgements

8. References

9. Author's Addresses

APPENDICES
Appendix A: PFDL Syntax in BNF

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt
https://datatracker.ietf.org/doc/html/rfc2119

Strassner and Schleimer Expires 5 March 1999 [Page 2]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

1. Introduction and Motivation

A policy is a named object that represents an aggregation of Policy
Rules. The policy describes the overall business function(s) to be
accomplished, while the set of policy rules defines how those business
functions will be met. A policy rule defines a sequence of actions to
be initiated when a corresponding set of conditions is satisfied. It
should be noted that a condition may be negated (e.g., NOT (user IN
GoldSLAGroup)). Therefore, this policy condition is satisfied when the
specified user is NOT a member of the GoldSLAGroup.

Policies are the link between a high-level business specification of
desired services and low-level device configurations that provide those
services. The Policy Framework Working Group will define a secure
framework for policy administration, representation and distribution
for multiple devices and device types. This includes devices whose
primary job is to enforce the policy (e.g., a network element) as well
as other devices that have one or more of the following roles: policy
storage, distribution, decision-making, conflict detection, conflict
resolution, administration, and management.

A framework that is comprised of heterogeneous components requires a
common definition of policy. Furthermore, policy MUST be able to be
represented and managed in an unambiguous, interoperable manner within
a single network administrator's domain. Here, interoperability means
providing a vendor- and device-independent specification of what the
device configuration must do in order to provide the desired services.
The Policy Framework Definition Language (PFDL) quantifies this link as
a formal grammar. The purpose of the language is to translate from a
business specification, such as those found in a Service Level
Agreement, to a common vendor- and device-independent intermediate
form. This enables policy information and specifications to be shared
among the heterogeneous components that comprise the policy framework,
and allows multiple vendors to use multiple devices to implement that
framework. The PFDL is the common "currency" that is exchanged between
these heterogeneous components to enable them all to perform their
function in providing, securing, distributing, and administering
policy. The PFDL becomes the way to ensure that multiple vendors
interpret the policy the same way while enabling vendors to provide
value-added services.

The PFDL will first address the needs of expressing QoS policies for
the Differentiated Services, Integrated Services, RAP, and ISSLL
Working Groups. The design will be iterated as necessary while the
Policy Framework itself matures, and then further iterated to ensure
that the needs of detailed schemata are fulfilled.
This draft represents the initial design of the PFDL.

2. Difference Between the PFDL and Other Languages

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

< to be supplied >

Strassner and Schleimer Expires 5 March 1999 [Page 3]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3. The Structure of Policies in the PFDL

In addition to the requirements listed in Section 1 above, the Policy
Framework architecture must be scalable, interoperable and reusable.
Here, scalability refers to the ability to build reusable arbitrarily
complex policies from a set of simple ones. Interoperability means that
the PFDL must be expressed in a way that enables essential information
to be communicated between different vendors' policy management systems
and the devices of different vendors that are controlled by the policy
management systems of different vendors. Specifically, a policy
management system should be able to be constructed from multiple
vendors, and it should be able to convey policy information to multiple
vendors' devices.

This requires a canonical definition of the structure of a policy.
Reusability means that each component of a policy should be reusable by
other policies.

3.1 Policy Component Hierarchy

The design of the PFDL is based on satisfying the Policy Information
Model being designed in the DMTF [PLYMDL]. The class and relationship
hierarchies of the Policy Information Model help define the structure
of the PFDL grammar. Accordingly, this section will provide a brief
overview of the components that define a policy in the Policy
Information Model that require specific constructs to be defined in the
PFDL.

3.1.1 The ComplexPolicy class

A ComplexPolicy can contain one or more SimplePolicies. This enables
reusability at the policy level. For example, when a user logs on to
the network, many different policies must be combined. Some of the
different policies that could be assigned to a user include:
 - Security policies to enable proper access to network resources, as
 well as possible accounting and auditing functions
 - A DHCP lease policy that allocates an IP Address depending on who
 the user is, what services the user is contracted for (which in
 turn can depend on the role of the user), how the user is
 logging in (e.g., Ethernet vs. PPP), and other factors
 - QoS policies that get activated when the user logs on as well as
 other QoS policies that get activated on demand

A ComplexPolicy is modeled as an aggregation of SimplePolicies. This
represents reusability at the highest (policy) level. The PFDL MUST be
able to express the aggregation of simple policies into a more complex
policy. Both of these concepts must be able to be identified as named
elements.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 4]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3.1.2 The SimplePolicy class

A SimplePolicy can contain one or more PolicyRules. Each SimplePolicy
(a.k.a., a PolicyRule class) contains a SET of PolicyConditions and a
SET of PolicyActions.

The reason for this is that a PolicyRule is itself domain-specific.
There are PolicyRules that define security mechanisms (e.g.,
authentication methods and ACL settings), QoS mechanisms (e.g., PHBs
that will manage traffic), and other mechanisms for other related
services. Each of these has its own definitions that are specific to
its domain of knowledge, requiring a set of domain-specific conditions
and actions. However, at a more abstract level, certain policies need
one or more of these policy rules to be aggregated in order to provide
the service(s) requested by a client.

For example, when a user logs on, the Policy Information Model can
describe the binding between the user and the services that a network
provides by aggregating a set of policy rules. This might consist of an
overall Security Policy that governs how the user will be authenticated
and what services the user is authorized to utilize based on a number
of factors (time of day, method of login, etc.). There might be a set
of QoS policies that get activated based on the user's SLA. There might
be a DHCP Lease Policy that controls what dynamic IP address the user
is assigned. There might be separate accounting and auditing policies
that get triggered on an as-needed basis.

It is essential that these diverse policy rules get aggregated into a
single consistent policy that can be associated with the user. The PFDL
MUST be able to specify and support the aggregation of multiple policy
rules into a single policy class. Furthermore, it must be able to treat
policy rules and policy classes as discrete named objects.

The concepts of order and priority are also needed. For example, assume
that a Policy is comprised of multiple PolicyRules, where one of the
PolicyRules expresses security restrictions. If the conditions of the
security policy rule are not satisfied, then it is irrelevant if the
conditions of the other policy rules are satisfied - the actions of all
policy rules will not be executed. Thus, the concept of rule ordering
is needed. Visually:
 IF SecurityPolicyRule is satisfied THEN
 IF DHCPLeasePolicy is satisfied THEN
 Execute QoSPolicies
 Execute AuditingPolicies
 ENDIF
 ENDIF

Similarly, rule priority is a useful concept. For example, this
provides one mechanism for resolving policy conflicts. Therefore, the

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

PFDL MUST be able to express relational and logical operators, along
with priority and ordering concepts.

Strassner and Schleimer Expires 5 March 1999 [Page 5]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3.1.3 The PolicyRule class

The PolicyRule class expresses a set of conditions that, when
satisfied, triggers a set of actions to be performed. A set of
conditions is used as part of a canonical template within each
policy knowledge domain. That is, security, QoS, DHCP, IPSEC, and other
policy knowledge domains will in general have their own specific
templates that define a particular set of conditions and an associated
actions that must be executed if those conditions are satisfied. A
"canonical template" is prescribed for interoperability reasons. It is
a fact that multiple vendors will be supplying multiple components as
part of any general policy architecture. Therefore, a common
communication methodology is needed. An extensible, canonical
definition of what constitutes the conditions and actions of a given
knowledge domain is offered as the solution to this interoperability
requirement. Therefore, the PFDL MUST support modeling a set of
conditions and a corresponding set of actions as an extensible
template.

Note that in addition to the above, a set of actions could be executed
if the set of conditions are not satisfied. However, this can be
modeled as a separate policy rule. This is preferred to complicating
the model and the resulting grammar. The PFDL MUST be able to model a
policy rule as an extensible template. The template consists of a set
of conditions that, when satisfied, triggers the execution of an
associated set of actions.

3.1.4 The PolicyCondition class hierarchy

A policy condition, in the context of the Policy Framework Working
Group, is defined as testing one or more aspects of users of the
network and/or traffic flowing through the network, in order to see if
either the correct policy state can be maintained, or if a newly
desired policy state can be achieved.

A PolicyRule is comprised of one or more policy conditions. Each policy
condition is represented by a PolicyConditionList. For simplicity, if
there are multiple PolicyConditionLists within a given PolicyRule, this
version of the PFDL requires that the PolicyConditionLists are
logically ORed together.

A PolicyConditionList aggregates one or more PolicyConditionStatements.
For simplicity, this version of this draft requires that each of the
PolicyConditionStatements within a given PolicyConditionList are
logically ANDed together.

A PolicyConditionStatement consists of two parts, called a
PolicyConditionCategory and a PolicyConditionValue. A
PolicyConditionStatement defines a relation between a

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

PolicyConditionCategory and a PolicyConditionValue.

Strassner and Schleimer Expires 5 March 1999 [Page 6]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

PolicyConditionCategories are predefined elements that are specific
to a particular knowledge domain. They form the structure of the
condition half of the policy rule template. For example, concepts like
user, location, application type, and service are all categories of
conditions that can be tested for a QoS policy, and hence are QoS
PolicyConditionCategories.

PolicyConditionValues represent the value that a given
PolicyConditionCategory can take. Some of the limits and other general
parameters of a PolicyConditionValue are pre-defied (e.g., a valid
network address must be entered), but only to enforce validation of a
specific value to be tested. PolicyConditionValues are the means to
represent user- and application-specific values of the category of
elements that are to be tested as part of this policy rule.
The PFDL MUST support the representation and structuring of policy
conditions as defined in this section.

3.1.5 The PolicyAction class hierarchy

The PolicyAction class is in reality a list of one or more policy
action statements. These policy action statement may be executed either
in any order (default case) or in a prescribed order, through the use
of specially defined attributes.

A policy action, in the context of the Policy Framework Working Group,
is defined as the changing of the configuration of one or more network
elements in order to achieve a desired policy state. This (new) policy
state provides one or more (new) behaviors.

A PolicyRule is comprised of one or more policy actions. Each policy
action is represented by a PolicyActionList. In contrast with
PolicyConditionLists, the PolicyActionLists are not by default ORed
together. In fact, the default relationship between a set of
PolicyActionLists is that they are all executed in ANY order. To
accommodate special situations, facilities exist for imposing an
ordering of the PolicyActionLists as well as conditional execution of
one or more PolicyActionLists based on the outcome (e.g., success or
failure) of a previously executed PolicyActionList.

A PolicyActionList aggregates one or more PolicyActionStatements. The
PolicyActionStatements within a given PolicyActionList are by default
executed in ANY order. However, facilities exist for imposing an
ordering of the PolicyActionStatements within a given PolicyActionList
as well as conditional execution of one or more PolicyActionStatements
based on the outcome (e.g., success or failure) of a previously
executed PolicyActionStatement.

A PolicyActionStatement is comprised of two parts, a
PolicyActionCategory and a PolicyActionValue. A PolicyActionStatement

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

defines a relation between a PolicyActionCategory and a
PolicyActionValue. However, the PolicyActionValue is dependent on the
type of PolicyActionCategory. Therefore, the PFDL combines these.

Strassner and Schleimer Expires 5 March 1999 [Page 7]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

The PolicyActionCategory defines a canonical set of operations or
treatments that can be given to traffic flowing into and out of a
network element (e.g., deny, change code point, etc.) in a vendor- and
device-independent manner. The PolicyActionValue specifies the type of
mechanism to be used to provide the specified operation or treatment.
PolicyActionCategories are predefined elements that are specific to a
particular knowledge domain. They form the structure of the action half
of the policy rule template. For example, concepts like providing a
specific service for a particular application or class of traffic are
categories of actions that can be performed for a QoS policy, and hence
are QoS PolicyActionCategories.

A PolicyActionValue represents the value that a given
PolicyActionCategory can take. Some of the limits and other general
parameters of a PolicyActionValue are pre-defied (e.g., a valid network
address must be entered), but only to enforce validation of a specific
action to be performed. PolicyActionValues are the means to represent
user- and application-specific values of the category of services that
are to be provided by a specified network element as part of this
policy rule.

The PFDL MUST support the representation and structuring of policy
actions as defined in this section.

3.2 Policy Conflict Detection

Policy conflict detection is crucial to the design of a scalable and
deployable policy framework. The concept of policy detection is
actually fairly straightforward. However, the implementation of policy
conflict detection can be quite complicated in the general case.
Therefore, this proposal explicitly limits the power and flexibility of
the PFDL in order to ensure that conflict detection and resolution is
both doable and implementable.

3.2.1 Types of Policy Conflicts

There are two fundamental types of policy conflicts: those caused by
within a policy (either a SimplePolicy or a ComplexPolicy) and those
that cause a conflicting action to be taken in the network. These are
referred to as Intra- and Inter-Policy conflicts.

3.2.2 Intra-Policy Conflicts

An intra-policy conflict occurs when the conditions of two or more
policies can be simultaneously satisfied, but the actions of at least
one of the policies can not be simultaneously executed. This implies
several things:
 - one or more policy rules of each of the policies is satisfied by
 the same request

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

 - each condition of each of the conflicting policy rules is
 satisfied by the same request

Strassner and Schleimer Expires 5 March 1999 [Page 8]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

 - one or more actions specified by one policy conflict with one or
 more actions specified by the other policy

Intra-policy conflicts can be resolved in a number of different ways.
The simplest is to change the conditions and/or actions of one of the
policies so that it no longer conflicts with the other policies.
However, if the policies must remain inherently conflicting, then there
are a number of ways to resolve the conflict on an individual event
basis, including the following:

 - apply a "match-first" criteria, wherein conflicts are resolved by
 matching the first policy that is found
 - apply a priority order criteria, wherein conflicts are resolved
 by finding all policy rules which match a given event and
 selecting only the rule with the highest priority
 - use additional metadata to determine which rule or rules should
 be applied. The difference between this and straight priority is
 that priority is inherently linear, whereas metadata enables non-
 linear solutions, such as branching, to be used.

The PFDL MUST support facilities to resolve conflicts.

3.2.3 Inter-Policy Conflicts

An inter-policy conflict is defined as two or more policies that, when
applied to the network, result in conflicting configuration commands
and/or mechanisms to be specified for one or more network devices. It
is important to note that in this case, the two (or more) conflicting
policies do not conflict when compared to each other, but do conflict
when applied to a specific network device or devices. For example, two
policies could specify conflicting configurations on a given interface,
or specify that a certain number of queues be used in one network
device and a different number of queues be used in another network
device for the same traffic flow.

The PFDL must support constructs that enable such conflicts to be
resolved.

3.3 Service and Usage Policies

There are two different types of policies. They are called Service
Policies and Usage Policies. It is not mandatory for the PFDL to
support explicit identification of whether a policy is categorized as a
service or a usage policy - this is really more for the convenience of
an associated UI and for the implementation of a Policy Server.
However, the PFDL should not prevent the optional specification of
whether a policy is categorized as a service or usage policy.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 9]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3.3.1 Service Policies

Service policies describe the creation of services in the network. They
organize the facilities that the network provides into services that
may be used later to satisfy the requirements of users of the network.
For example, creating various QoS service classes (VoiceTransport,
VideoTransport, ..., BestEffort) is done using service policies. This
is accomplished, for example, by establishing the PHBs needed on
backbone interfaces over which the traffic to be afforded the specific
service is to flow.

The application of a service policy results in the creation of one or
more named objects that represents network services that are available
for usage policies.

3.3.2 Usage Policies

Usage policies describe how to allocate the services created by Service
policies to requestors of services. Usage policies describe particular
mechanism(s) employed to either maintain the current state of the
object, or to transition an object from one state to a new state, in
order to utilize the specified services.

Usage policies associate services that are provided by the network to
clients of the network (e.g., users and applications). This can include
services provided indirectly (e.g., mark packets of this type with this
DS value) as well as directly (use this set of reservation parameters
for this class of traffic).

Usage policy actions are specifically limited to associating a service
with a particular PolicyActionCategory. For example, all users in the
QuarterEndFinance group are assigned Gold Service for the SAP
application under the following conditions.

Put another way, service policies describe what the network is capable
of providing, and usage policies describe how to configure the network
in order to take advantage of one or more services that the network
provides.

3.4 Collective Aspects of Policy

An essential attribute of policy is its collective nature. That is,
policies are created in order to control many possibly heterogeneous
objects of the system that are under the control of a policy management
infrastructure. For example, when we create a particular PHB, we want
to be able to apply it to all the interfaces to which it is
appropriate.

Two mechanisms are provided for the collective aspects of policy: roles
and groups.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 10]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3.4.1 Roles

A role is a label. A role indicates a function that an interface or
device in the network serves. For example, an interface in the core of
the network connecting to another interface in the core of the network
provides "backbone" services (it aggregates a large number of flows; it
is very high speed; etc). We assign to this interface the role
"BackBone". When we create a policy appropriate to interfaces serving a
backbone role, we assign the role "BackBone" to that policy.

Another important use of roles is to explicitly differentiate the
functions provided by a device. Continuing the above example, an "Edge"
role could be defined that describes the various services provided by
interfaces at the edge of the network (e.g., filtering, traffic
shaping, rate limiting, etc.). These services together describe the
functionality of an edge interface, but also serve to differentiate it
from the functionality of a core interface.

Roles enable an administrator to group the interfaces of multiple
devices into common groups. This enables the administrator to apply the
same policy to each of these interfaces collectively, as opposed to
individually.

A role may be associated with, at most, a single Policy (where a single
Policy may be as complex as necessary. Policies associated with a role
are specifically intended to apply to interfaces or devices that are
assigned the role.

An interface may be assigned multiple roles. When an interface is
assigned multiple roles, the policies designated by those roles are
intended to apply to that interface. Roles may be parameterized. This
is to enable the definition of more complex policies that define
configurations that contain values that depend on the combination of
type of interface, media being used, protocol being used, and other
factors. For example, a policy might be applied to all Frame Relay
interfaces. Depending on the actual network topology, the types of
congestion experienced in these interfaces might be different. The
parameterized policy offers a way to group these Frame Relay interfaces
together (to simplify administration) while providing an inherent
flexibility to accommodate the particular semantics of interfaces that
are identified by this role.

For example, some kind of conditional expression associated with a Role
which partitions the space of interfaces. Those interfaces included by
the conditional would take the role; those interfaces not included by
the conditional would not take the role.

When there are several roles assigned to an interface, inter-policy
conflicts may occur. They are resolved as described in section 3.2.2.

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 11]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

3.4.2 Groups

Grouping is a fundamental concept of aggregation. In most systems, a
group is a named object that contains individual objects as well as
possibly additional (sub-)groups of objects. The key point here is that
group membership is statically determined.

Unfortunately, networks are inherently dynamic in nature. This means
that the ability to "group" objects whose membership is determined
dynamically (e.g., a s a function of the state of the system) is
required. We will call this a "Dynamic Group". The most important
characteristic of a Dynamic Group is that its membership is determined
dynamically when a reference to the Dynamic Group is evaluated.

Dynamic Group objects can therefore represent either individual objects
or other groupings of objects. For example, a Dynamic Group ranging
over users may be used to limit which users on a certain set of
interfaces have a certain kind of QoS assigned to packets they
generate.

A Dynamic Group is only used as a value part of a condition of a
policy. If a PolicyConditionValue uses a grouping construct, then that
policy is satisfied if the object specified in the
PolicyConditionCategory satisfies the relationship specified in the
policy between the object in the PolicyConditionCatgegory and the
membership of the Dynamic Group specified in the PolicyConditionValue.
For example, suppose that a logon is in progress. Further suppose that
a policy tests for users who are engineers belonging to a group that is
to receive Gold QoS. Then, at the instant of the testing of the
condition, the set of user objects that the Dynamic Group specifies
(people that are entitled to receive Gold QoS) is determined.
If the object representing the user logging in is in the set specified
by the Dynamic Group, then this condition of the policy is satisfied.

The objects of a Dynamic Group are always determined by the range of
objects that the PolicyConditionCategory can specify. For example,
there are several ways in which the type <user_category> can specify
the objects that it contains. These same methods can be used by other
types of PolicyConditionCategories, but the different semantics of each
type of PolicyConditionCategory result in different memberships being
built for PolicyConditionCategory.

There are several ways in which a Dynamic Group can specify the objects
It designates: by characterization, by enumeration, or by a combination
of the two. A Dynamic Group uses characterization in order to be able
to explicitly define acceptable values for the attributes of the
object. For example, suppose that a <user_category> object has the
attributes name, job title, and supervisor. A group, LucasEngineers,
might be characterized as follows:

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 12]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

 Group over <user_category> named LucasEngineers:
 Job Title = "engineer",
 Supervisor = "Luca".

Then, a condition might be written as follows:

 <user_category> IN LucasEngineers

This condition would be satisfied in the user designated by the
object being tested in the <user_category> above had a supervisor
attribute named "Luca" and job title attribute named "engineer".

A Dynamic Group may also specify the objects that are its members using
enumeration. That is, the individual objects that the Dynamic Group is
to specify may simply be explicitly listed. For example, a Dynamic
Group of type <user_category> can refer to the objects it contains,
(e.g., LucasEngineers) by explicitly listing its members as opposed to
characterizing attributes or behaviors of those objects. If the
membership of the LucasEngineers Dynamic Group was explicitly defined,
it might look as follows:

 {<Cal>, <Tom>, <Steve>, <Edwin>}

where each of the bracketed entities refers to a user object.

Finally, a group may specify the object it designates by both
characterization and enumeration. The above examples could easily be
combined to yield such a group.

4. The Grammar of the PFDL

<This section will be finalized shortly>

5. Examples of Using the PFDL

<This section will be finalized shortly>

6. Security Considerations

Security and denial of service considerations are not explicitly
considered in this memo, as they are appropriate for the underlying
policy architecture. However, the policy architecture must be secure
as far as the following aspects are concerned. First, the mechanisms
proposed under the framework must minimize theft and denial of service
threats. Second, it must be ensured that the entities (such as PEPs and
PDPs) involved in policy control can verify each other's identity and
establish necessary trust before communicating.

7. Acknowledegments

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Many thanks to the useful discussions and suggestions from the Internet
Community at large but especially to <to be supplied>.

Strassner and Schleimer Expires 5 March 1999 [Page 13]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

8. References

 [TERMS] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", Internet RFC 2119, March 1997.

<more to be supplied>

9. Authors' Addresses

John Strassner
 Cisco Systems
 170 West Tasman Drive, Building 1
 San Jose, CA 95134
 Phone: +1-408-527-1069
 Fax: +1-408-527-1722
 E-mail: johns@cisco.com

Stephen Schleimer
 Cisco Systems
 170 West Tasman Drive, Building D
 San Jose, CA 95134
 Phone: +1-408-527-3291
 Fax: +1-408-???-????
 E-mail: sschlmr@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt
https://datatracker.ietf.org/doc/html/rfc2119

Strassner and Schleimer Expires 5 March 1999 [Page 14]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

Appendix A: BNF of the PFDL

<PFDL_Program>
 ::= [<policy_definition>]+

<policy_definition>
 ::= [<policy_rule>]+
 | <role_identifier> ':' [<policy_rule>]+

<policy_rule>
 ::= 'IF' <policy_condition_OR_list>
 'THEN' <policy_action_priority_list>

<policy_condition_OR_list> /* still have to put in priority */
 ::= <policy_condition_AND_list ['OR' <policy_condition_AND_list>]*

<policy_condition_AND_list>
 ::= <policy_condition_statement>
 ['AND' <policy_condition_statement>]*

<policy_condition_statement>
 ::= <policy_condition_expr>
 | 'NOT' <policy_condition_expr>

<policy_condition_expr>
 ::= <user_category_statement>
 | <application_category_statement>
 | <device_category_statement>
 | <interface_category_statement>
 | <protocol_category_statement>
 | <address_category_statement>
 | <traffic_category_statement>
 | <SLA_category_statement>
 | <time_category_statement>

<user_category_statement>
 ::= USER_CATEGORY_REFERENCE <rel_op>
 <user_category_value>

/* the values for <user_category_value> are all either email addresses
 or a Distinguished Name */
<user_category_value> /* the following are all DNs */
 ::= <user_name>
 | <user_group_name>
 | <organizational_unit_name> /* "division" */
 | <organization_name>

<application_category_statement>
 ::= APPLICATION_CATEGORY_REFERENCE <rel_op>
 <application_category_value>

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 15]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

<application_category_value>
 ::= <application_name>
 | 'SOURCE:' <application_port_number>
 | 'DESTINATION:' <application_port_number>

<device_category_statement>
 ::= DEVICE_CATEGORY_REFERENCE <rel_op>
 <device_category_value>

<device_category>
 ::= <device_name>
 | <address_spec>
 | <role_identifier>

<interface_category_statement>
 ::= INTERFACE_CATEGORY_REFERENCE <rel_op>
 <interface_category_value>

<interface_category_value>
 ::= <role_identifier>

<protocol_category_statement>
 ::= PROTOCOL_CATEGORY_REFERENCE <rel_op>
 <protocol_category_value>

<protocol_category_value>
 ::= <protocol_name> [<protocol_options>]*
 | <protocol_number> [<protocol_options>]*

<address_category_statement>
 ::= ADDRESS_CATEGORY_REFERENCE <rel_op>
 <address_category_value>

<address_category_value>
 ::= 'SOURCE:' <address_spec>
 | 'DESTINATION:' <address_spec>
 | 'BOTH:' <address_spec> <address_spec>

<traffic_category_statement>
 ::= TRAFFIC_CATEGORY_REFERENCE <rel_op>
 <traffic_category_value>

<traffic_category_value>
 ::= <ingress_DSV>
 | <ingress_ToS_byte_value>
 | <ingress_802.1_value>
 | <ingress_ATM_QoS>
 | <ingress_FR_QoS>

<SLA_category_statement>

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

 ::= SLA_CATEGORY_REFERENCE <rel_op>
 <sla_category_value>

Strassner and Schleimer Expires 5 March 1999 [Page 16]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

<SLA_category_value>
 ::= 'SLA NAME:' SLA_VALUE [<SLA_name_options>]*

<time_category_statement>
 ::= TIME_CATEGORY_REFERENCE <rel_op>
 <time_category_value>

<time_category_value>
 ::= <absolute_time_category_value>
 | <relative_time_category_value>

<absolute_time_category_value>
 ::= <valid_time_period>
 | <valid_time_period> <time_period_mask>

<relational_operator>
 ::= 'IN'
 | 'NOT IN'
 | 'EQUALS'
 | 'NOT EQUALS'
 | 'GREATER THAN'
 | 'GREATER THAN OR EQUAL TO'
 | 'LESS THAN'
 | 'LESS THAN OR EQUAL TO'

<policy_action_priority_list>
 ::= [<policy_action_statement>]+

<policy_action_statement>
 ::= <policy_action_category> [<apply_spec>] [<seq_num>]

<policy_action_category>
 ::= 'PERMIT' <permit_deny_category>
 | 'DENY' <permit_deny_category>
 | 'REMARK PACKET' <remark_spec>
 | 'START USING' <service_policy>
 | 'STOP USING' <service_policy>
 | 'Table Definition' <table_def>

<table_def>
 ::= '{' <table_type> <table_shape> <table_content> "}"

<table_type>
 ::= 'RED_THRESHOLDS'
 | 'TAIL_DROP'
 | ...

<table_shape>
 ::= '{' <table_dimensions> <table_axis_sizes> '}'

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

<table_dimensions>
 ::= INTEGER

Strassner and Schleimer Expires 5 March 1999 [Page 17]

INTERNET DRAFT draft-ietf-policy-framework-pfdl-00.txt 17 Nov 98

<table_axis_sizes>
 ::= '{' INTEGER* '}'

<table_content>
 ::= '{' <table_row>* '}'

<table_row>
 ::= '{' <table_column_entry>* '}'
 | <row_index> '{' <table_column_entry>* '}'

<table_column_entry>
 ::= INTEGER
 | <column_index> ':' INTEGER

<row_index>
 ::= INTEGER

<column_index>
 ::= INTEGER

https://datatracker.ietf.org/doc/html/draft-ietf-policy-framework-pfdl-00.txt

Strassner and Schleimer Expires 5 March 1999 [Page 18]

