
 Policy Framework Working Group B. Moore
 INTERNET-DRAFT L. Rafalow
 Category: Standards Track IBM
 Y. Ramberg
 Y. Snir
 J. Strassner
 A. Westerinen
 Cisco Systems
 R. Chadha
 Telcordia Technologies
 M. Brunner
 NEC
 R. Cohen
 Ntear LLC
 February, 2001

Policy Core Information Model Extensions

 <draft-ietf-policy-pcim-ext-00.txt>
 Friday, February 23, 2001, 11:07 AM

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months and
 may be updated, replaced, or obsoleted by other documents at any time.
 It is inappropriate to use Internet-Drafts as reference material or to
 cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 Abstract

 This document proposes a number of changes to the Policy Core Information
 Model (PCIM, RFC 3060). These changes include both extensions of PCIM
 into areas that it did not previously cover, and changes to the existing
 PCIM classes and associations. Both sets of changes are done in a way
 that, to the extent possible, preserves interoperability with

https://datatracker.ietf.org/doc/html/draft-ietf-policy-pcim-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3060

 implementations of the original PCIM model.

Moore, et al. Expires: Feb 2001 + 6 months [Page 1]

Internet Draft PCIM Extensions February 2001

 Table of Contents

1. Introduction..4
2. Overview of the Changes...4

2.1. How to Change an Information Model...........................4
2.2. List of Changes to the Model.................................5
2.2.1. Changes to PolicyRepository................................5
2.2.2. Additional Associations and Additional Reusable Elements...5
2.2.3. Priorities and Decision Strategies.........................5
2.2.4. Policy Roles...6
2.2.5. CompoundPolicyConditions and CompoundPolicyActions.........6
2.2.6. Variables and Values.......................................7
2.2.7. Packet Filtering...7

3. The Updated Class and Association Class Hierarchies...............7
4. Areas of Extension to PCIM.......................................11

4.1. Scope of Policies: Domain Policies and Device Policies.....11
4.2. Reusable Policy Elements....................................12
4.3. Policy Sets...13
4.4. Nested Policy Rules...13
4.4.1. Usage Rules for Nested Rules..............................13
4.4.2. Motivation..14
4.4.3. Usage Example...15
4.5. Priorities and Decision Strategies..........................16
4.5.1. Structuring Decision Strategies...........................17
4.5.2. Deterministic Decisions...................................18
4.5.3. Multiple PolicySet Trees For a Resource...................19
4.6. Policy Roles..19
4.6.1. Comparison of Roles in PCIM with Roles in snmpconf........19
4.6.2. Addition of PolicyRoleCollection to PCIMe.................20
4.6.3. Roles for PolicyGroups....................................21
4.7. Compound Policy Conditions and Compound Policy Actions......22
4.7.1. Compound Policy Conditions................................23
4.7.2. Compound Policy Actions...................................23
4.8. Variables and Values..25
4.8.1. Simple Policy Conditions..................................25
4.8.2. Using Simple Policy Conditions............................26
4.8.3. The Simple Condition Operator.............................27
4.8.4. SimplePolicyActions.......................................28
4.8.5. Policy Variables..30
4.8.6. Explicitly Bound Policy Variables.........................30
4.8.7. Implicitly Bound Policy Variables.........................31
4.8.8. Structure and Usage of Pre-Defined Variables..............32
4.8.9. Rationale for Modeling Implicit Variables as Classes......33
4.8.10. Policy Values..34
4.9. Packet Filtering..34

5. Class Definitions..36
5.1. The Abstract Class "PolicySet"..............................36
5.2. Updates to PCIM's Class "PolicyGroup".......................37

5.3. Updates to PCIM's Class "PolicyRule"........................37
5.4. The Class "SimplePolicyCondition"...........................38
5.5. The Class "CompoundPolicyCondition".........................38
5.6. The Class "CompoundFilterCondition".........................39

Moore, et al. Expires: Feb 2001 + 6 months [Page 2]

Internet Draft PCIM Extensions February 2001

5.7. The Class "SimplePolicyAction"..............................39
5.8. The Class "CompoundPolicyAction"............................40
5.9. The Abstract Class "PolicyVariable".........................41
5.10. The Class "PolicyExplicitVariable".........................41
5.10.1. The Single-Valued Property "ModelClass"..................42
5.10.2. The Single-Valued Property ModelProperty.................42
5.11. The Abstract Class "PolicyImplicitVariable"................42
5.11.1. The Multi-Valued Property "ValueTypes"...................42
5.12. Subclasses of "PolicyImplicitVariable" Specified in PCIMe..43
5.12.1. The Class "PolicySourceIPVariable".......................43
5.12.2. The Class "PolicyDestinationIPVariable"..................43
5.12.3. The Class "PolicySourcePortVariable".....................43
5.12.4. The Class "PolicyDestinationPortVariable"................44
5.12.5. The Class "PolicyIPProtocolVariable".....................44
5.12.6. The Class "PolicyIPVersionVariable"......................44
5.12.7. The Class "PolicyIPToSVariable"..........................44
5.12.8. The Class "PolicyDSCPVariable"...........................45
5.12.9. The Class "PolicySourceMACVariable"......................45
5.12.10. The Class "PolicyDestinationMACVariable"................45
5.12.11. The Class "PolicyVLANVariable"..........................45
5.12.12. The Class "PolicyCoSVariable"...........................46
5.12.13. The Class "PolicyEthertypeVariable".....................46
5.12.14. The Class "PolicySourceSAPVariable".....................46
5.12.15. The Class "PolicyDestinationSAPVariable"................46
5.12.16. The Class "PolicySNAPVariable"..........................47
5.12.17. The Class "PolicyFlowDirectionVariable".................47
5.13. The Abstract Class "PolicyValue"...........................47
5.14. Subclasses of "PolicyValue" Specified in PCIMe.............48
5.14.1. The Class "PolicyIPv4AddrValue"..........................48
5.14.2. The Class "PolicyIPv6AddrValue...........................49
5.14.3. The Class "PolicyMACAddrValue"...........................50
5.14.4. The Class "PolicyStringValue"............................50
5.14.5. The Class "PolicyBitStringValue".........................51
5.14.6. The Class "PolicyIntegerValue"...........................51
5.14.7. The Class "PolicyBooleanValue"...........................52
5.15. The Class "PolicyRoleCollection"...........................53
5.15.1. The Single-Valued Property "PolicyRole"..................53
5.16. The Class "ReusablePolicyContainer"........................53
5.17. Deprecation of PCIM's Class "PolicyRepository".............53

6. Association and Aggregation Definitions..........................54
6.1. The Abstract Aggregation "PolicySetComponent"...............54
6.2. Update to PCIM's Aggregation "PolicyGroupInPolicyGroup".....54
6.3. Update to PCIM's Aggregation "PolicyRuleInPolicyGroup"......55
6.4. The Aggregation "PolicyGroupInPolicyRule"...................55
6.5. The Aggregation "PolicyRuleInPolicyRule"....................56
6.6. The Abstract Aggregation "CompoundedPolicyCondition"........56
6.7. Update to PCIM's Aggregation "PolicyConditionInPolicyRule"..57
6.8. The Aggregation "PolicyConditionInPolicyCondition"..........57

6.9. The Abstract Aggregation "CompoundedPolicyAction"...........57
6.10. Update to PCIM's Aggregation "PolicyActionInPolicyRule"....57
6.11. The Aggregation "PolicyActionInPolicyAction"...............58
6.12. The Aggregation "PolicyVariableInSimplePolicyCondition"....58

Moore, et al. Expires: Feb 2001 + 6 months [Page 3]

Internet Draft PCIM Extensions February 2001

6.13. The Aggregation "PolicyValueInSimplePolicyCondition".......59
6.14. The Aggregation "PolicyVariableInSimplePolicyAction".......59
6.15. The Aggregation "PolicyValueInSimplePolicyAction"..........60
6.16. The Association "ReusablePolicy"...........................61
6.17. Deprecate PCIM's "PolicyConditionInPolicyRepository".......61
6.18. Deprecate PCIM's "PolicyActionInPolicyRepository"..........61
6.19. The Association PolicyValueConstraintInVariable............61
6.20. The Aggregation "PolicyContainerInPolicyContainer".........62
6.21. Deprecate PCIM's "PolicyRepositoryInPolicyRepository"......62
6.22. The Aggregation "ElementInPolicyRoleCollection"............63
6.22.1. The Weak Association "PolicyRoleCollectionInSystem"......63

7. Intellectual Property..64
8. Acknowledgements...64
9. Security Considerations..64
10. References..64
11. Authors' Addresses..65
12. Full Copyright Statement..67
13. Appendix A: Open Issues...67

1. Introduction

 This document (PCIM Extensions, abbreviated here to PCIMe) proposes a
 number of changes to the Policy Core Information Model (PCIM, RFC 3060
 [3]). These changes include both extensions of PCIM into areas that it
 did not previously cover, and changes to the existing PCIM classes and
 associations. Both sets of changes are done in a way that, to the extent
 possible, preserves interoperability with implementations of the original
 PCIM model.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, reference [1].

2. Overview of the Changes

2.1. How to Change an Information Model

 The Policy Core Information Model is closely aligned with the DMTF's CIM
 Core Policy model. Since there is no separately documented set of rules
 for specifying IETF information models such as PCIM, it is reasonable to
 look to the CIM specifications for guidance on how to modify and extend
 the model. Among the CIM rules for changing an information model are the
 following. Note that everything said here about "classes" applies to
 association classes (including aggregations) as well as to non-
 association classes.

 o Properties may be added to existing classes.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc2119

 o Classes, and individual properties, may be marked as DEPRECATED.
 If there is a replacement feature for the deprecated class or
 property, it is identified explicitly. Otherwise the notation "No

Moore, et al. Expires: Feb 2001 + 6 months [Page 4]

Internet Draft PCIM Extensions February 2001

 value" is used. In this document, the notation "DEPRECATED FOR
 <feature-name>" is used to indicate that a feature has been
 deprecated, and to identify its replacement feature.
 o Classes may be inserted into the inheritance hierarchy above
 existing classes, and properties from the existing classes may
 then be "pulled up" into the new classes. The net effect is that
 the existing classes have exactly the same properties they had
 before, but the properties are inherited rather than defined
 explicitly in the classes.
 o New subclasses may be defined below existing classes.

2.2. List of Changes to the Model

 The following subsections provide a very brief overview of the changes to
 PCIM being proposed in PCIMe.

2.2.1. Changes to PolicyRepository

 Because of the potential for confusion with the Policy Framework
 component Policy Repository (from the four-box picture: Policy Management
 Tool, Policy Repository, PDP, PEP), "PolicyRepository" is a bad name for
 the PCIM class representing a container of reusable policy elements.
 Thus the class PolicyRepository is being replaced with the class
 ReusablePolicyContainer. To accomplish this change, it is necessary to
 deprecate the PCIM class PolicyRepository and its three associations, and
 replace them with a new class ReusablePolicyContainer and new
 associations.

 As a separate change, the associations for ReusablePolicyContainer are
 being broadened, to allow a ReusablePolicyContainer to contain any
 reusable policy elements. In PCIM, the only associations defined for a
 PolicyRepository were for it to contain reusable policy conditions and
 policy actions.

2.2.2. Additional Associations and Additional Reusable Elements

 The PolicyRuleInPolicyRule and PolicyGroupInPolicyRule aggregations are
 being imported from QPIM. These associations make it possible to define
 larger "chunks" of reusable policy to place in a ReusablePolicyContainer.
 These aggregations also introduce new semantics representing the
 contextual implications of having one PolicyRule executing within the
 scope of another PolicyRule.

2.2.3. Priorities and Decision Strategies

 Drawing from both QPIM and ICIM, the Priority property is being
 deprecated in PolicyRule, and placed instead on the aggregations
 PolicyRuleInPolicyGroup, PolicyGroupInPolicyGroup,

 PolicyGroupInPolicyRule, and PolicyRuleInPolicyRule. (This is
 accomplished by placing the Priority property on the abstract aggregation
 PolicySetComponent, from which these four aggregations are derived.) The

Moore, et al. Expires: Feb 2001 + 6 months [Page 5]

Internet Draft PCIM Extensions February 2001

 QPIM rules for resolving relative priorities across nested PolicyGroups
 and PolicyRules are being incorporated into PCIMe as well. With the
 removal of the Priority property from PolicyRule, a new modeling
 dependency is introduced: in order to prioritize a PolicyRule relative to
 other PolicyRules, the rules must be placed in either a common
 PolicyGroup or a common PolicyRule.

 In the absence of any clear, general criterion for detecting policy
 conflicts, the PCIM restriction stating that priorities are relevant only
 in the case of conflicts is being removed. In its place, a
 PolicyDecisionStrategy property is being added to the PolicyGroup and
 PolicyRule classes, to allow the policy administrator to select one of
 two behaviors with respect to rule evaluation: either perform the actions
 for all PolicyRules whose conditions evaluate to TRUE, or perform the
 actions only for the highest-priority PolicyRule whose conditions
 evaluate to TRUE. (Once again this is accomplished by placing the
 PolicyDecisionStrategy property in an abstract class PolicySet, from
 which PolicyGroup and PolicyRule are derived.) The QPIM rules for
 applying decision strategies to a nested set of PolicyGroups and
 PolicyRules are also being imported.

2.2.4. Policy Roles

 The concept of policy roles is added to PolicyGroups (being present
 already in the PolicyRule class). This is accomplished via a new
 superclass for both PolicyRules and PolicyGroups - PolicySets. For
 nested PolicyRules and PolicyGroups, any roles associated with the outer
 rule or group are automatically "inherited" by the nested one.
 Additional roles may be added at the level of the nested rule or group.

 It was also observed that there was no mechanism in PCIM for assigning
 roles to resources. For example, while it was possible to associate a
 PolicyRule with the role "FrameRelay&&WAN", there was no way to indicate
 which interfaces matched this criterion. A new PolicyRoleCollection
 class is defined in PCIMe, representing the collection of resources
 associated with a particular role. The linkage between a PolicyRule or
 PolicyGroup and a set of resources is then represented by an instance of
 PolicyRoleCollection. Equivalent values should be defined in entries in
 the PolicyRoles property, inherited by PolicyRules and PolicyGroups from
 PolicySet, and in the PolicyRole property in PolicyRoleCollection.

2.2.5. CompoundPolicyConditions and CompoundPolicyActions

 The concept of a CompoundPolicyCondition is also being imported into
 PCIMe from QPIM, and broadened to include a parallel
 CompoundPolicyAction. In both cases the idea is to create reusable
 "chunks" of policy that can exist as named elements in a

 ReusablePolicyContainer. The "Compound" classes and their associations
 incorporate the condition and action semantics that PCIM defined at the
 PolicyRule level: DNF/CNF for conditions, and ordering for actions.

Moore, et al. Expires: Feb 2001 + 6 months [Page 6]

Internet Draft PCIM Extensions February 2001

 Compound conditions and actions are defined to work with any component
 conditions and actions. In other words, while the components may be
 instances, respectively, of SimplePolicyCondition and SimplePolicyAction
 (discussed immediately below), they need not be.

2.2.6. Variables and Values

 The SimplePolicyCondition / PolicyVariable / PolicyValue structure is
 being imported into PCIMe from QPIM. A list of PCIMe-level variables is
 defined, as well as a list of PCIMe-level values. Other variables and
 values may, if necessary, be defined in submodels of PCIMe.

 A corresponding SimplePolicyAction / PolicyVariable / PolicyValue
 structure is also defined. While the semantics of a
 SimplePolicyCondition are "variable matches value", a SimplePolicyAction
 has the semantics "set variable to value".

2.2.7. Packet Filtering

 For packet filtering done in the context of a PolicyCondition, a set of
 PolicyVariables and PolicyValues are defined, corresponding to the fields
 in an IP packet header plus the most common Layer 2 frame header fields.
 It is expected that policy conditions that filter on these header fields
 will be expressed in terms of CompoundPolicyConditions built up from
 SimplePolicyConditions that use these variables and values. An
 additional PolicyVariable, PacketDirection, is also defined, to indicate
 whether a packet being filtered is traveling inbound or outbound on an
 interface.

 For packet filtering in other contexts (specifically, for the packet
 classifier filters modeled in QDDIM), these variables and values need not
 be used. Filter classes derived from the CIM FilterEntryBase class
 hierarchy may still be used in these contexts.

3. The Updated Class and Association Class Hierarchies

 The following figure shows the class inheritance hierarchy for PCIMe.
 Changes from the PCIM hierarchy are noted parenthetically.

Moore, et al. Expires: Feb 2001 + 6 months [Page 7]

Internet Draft PCIM Extensions February 2001

 ManagedElement (abstract)
 |
 +--Policy (abstract)
 | |
 | +---PolicySet (abstract -- new - 4.3)
 | | |
 | | +---PolicyGroup (moved - 4.3)
 | | |
 | | +---PolicyRule (moved - 4.3)
 | |
 | +---PolicyCondition (abstract)
 | | |
 | | +---PolicyTimePeriodCondition
 | | |
 | | +---VendorPolicyCondition
 | | |
 | | +---SimplePolicyCondition (new - 4.8.1)
 | | |
 | | +---CompoundPolicyCondition (new - 4.7.1)
 | | |
 | | +---CompoundFilterCondition (new - 4.9)
 | |
 | +---PolicyAction (abstract)
 | | |
 | | +---VendorPolicyAction
 | | |
 | | +---SimplePolicyAction (new - 4.8.4)
 | | |
 | | +---CompoundPolicyAction (new - 4.7.2)
 | |
 | +---PolicyVariable (abstract -- new - 4.8.5)
 | | |
 | | +---PolicyExplicitVariable (new - 4.8.6)
 | | |
 | | +---PolicyImplicitVariable (abstract -- new - 4.8.7)
 | | |
 | | +---(subtree of more specific classes -- new - 5.12)
 | |
 | +---PolicyValue (abstract -- new - 4.8.10)
 | |
 | +---(subtree of more specific classes -- new - 5.14)
 |
 +--Collection (abstract -- newly referenced)
 |
 +--PolicyRoleCollection (new - 4.6.2)
 (continued on following page)

Moore, et al. Expires: Feb 2001 + 6 months [Page 8]

Internet Draft PCIM Extensions February 2001

 (continued from previous page)
 ManagedElement(abstract)
 |
 +--ManagedSystemElement (abstract)
 |
 +--LogicalElement (abstract)
 |
 +--System (abstract)
 |
 +--AdminDomain (abstract)
 |
 +---ReusablePolicyContainer (new - 4.2)
 |
 +---PolicyRepository (deprecated - 4.2)

 Figure 1. Class Inheritance Hierarchy for PCIMe

Moore, et al. Expires: Feb 2001 + 6 months [Page 9]

Internet Draft PCIM Extensions February 2001

 The following figure shows the association class hierarchy for PCIMe. As
 before, changes from PCIM are noted parenthetically.

 [unrooted]
 |
 +---PolicyComponent (abstract)
 | |
 | +---PolicySetComponent (abstract -- new - 4.3)
 | | |
 | | +---PolicyGroupInPolicyGroup (moved - 4.3)
 | | |
 | | +---PolicyRuleInPolicyGroup (moved - 4.3)
 | | |
 | | +---PolicyGroupInPolicyRule (new - 4.3)
 | | |
 | | +---PolicyRuleInPolicyRule (new - 4.3)
 | |
 | +---CompoundedPolicyCondition (abstract -- new - 4.7.1)
 | | |
 | | +---PolicyConditionInPolicyRule (moved - 4.7.1)
 | | |
 | | +---PolicyConditionInPolicyCondition (new - 4.7.1)
 | |
 | +---PolicyRuleValidityPeriod
 | |
 | +---CompoundedPolicyAction (abstract -- new - 4.7.2)
 | | |
 | | +---PolicyActionInPolicyRule (moved - 4.7.2)
 | | |
 | | +---PolicyActionInPolicyAction (new - 4.7.2)
 | |
 | +---PolicyVariableInSimplePolicyCondition (new - 4.8.2)
 | |
 | +---PolicyValueInSimplePolicyCondition (new - 4.8.2)
 | |
 | +---PolicyVariableInSimplePolicyAction (new - 4.8.4)
 | |
 | +---PolicyValueInSimplePolicyAction (new - 4.8.4)

 (continued on following page)

Moore, et al. Expires: Feb 2001 + 6 months [Page 10]

Internet Draft PCIM Extensions February 2001

 (continued from previous page)
 [unrooted]
 |
 +---Dependency (abstract)
 | |
 | +---PolicyInSystem (abstract)
 | | |
 | | +---PolicyGroupInSystem
 | | |
 | | +---PolicyRuleInSystem
 | | |
 | | +---ReusablePolicy (new - 4.2)
 | | |
 | | +---PolicyConditionInPolicyRepository (deprecated - 4.2)
 | | |
 | | +---PolicyActionInPolicyRepository (deprecated - 4.2)
 | |
 | +---PolicyValueConstraintInVariable (new - 4.8)
 | |
 | +---PolicyRoleCollectionInSystem (new - 4.6.2)
 |
 +---Component (abstract)
 | |
 | +---SystemComponent
 | |
 | +---PolicyContainerInPolicyContainer (new - 4.2)
 | |
 | +---PolicyRepositoryInPolicyRepository (deprecated - 4.2)
 |
 +---MemberOfCollection (newly referenced)
 |
 +--- ElementInPolicyRoleCollection (new - 4.6.2)

 Figure 2. Association Class Inheritance Hierarchy for PCIMe

 In addition to these changes that show up at the class and association
 class level, there are other changes from PCIM involving individual class
 properties. In some cases new properties are introduced into existing
 classes, and in other cases existing properties are deprecated (without
 deprecating the classes that contain them).

4. Areas of Extension to PCIM

 The following subsections describe each of the areas for which PCIM
 extensions are being defined.

4.1. Scope of Policies: Domain Policies and Device Policies

 Policies vary in level of abstraction, from the business-level expression
 of service level agreements (SLAs) to the specification of a set of rules

Moore, et al. Expires: Feb 2001 + 6 months [Page 11]

Internet Draft PCIM Extensions February 2001

 that apply to devices in a network. Those latter policies can,
 themselves, be classified into at least two groups: those policies
 consumed by a Policy Decision Point (PDP) that specify the rules for an
 administrative and functional domain, and those policies consumed by a
 Policy Enforcement Point (PEP) that specify the device-specific rules for
 a functional domain. The higher-level rules consumed by a PDP may have
 late binding variables unspecified, or specified by a classification,
 whereas the device-level rules are likely to have fewer unresolved
 bindings.

 There is a relationship between these levels of policy specification that
 is out of scope for this standards effort, but that is necessary in the
 development and deployment of a usable policy-based configuration system.
 An SLA-level policy transformation to the domain-level policy may be
 thought of as analogous to a visual builder that takes human input and
 develops a programmatic rule specification. The relationship between the
 domain-level policy and the device-level policy may be thought of as
 analogous to that of a compiler and linkage editor that translates the
 rules into specific instructions that can be executed on a specific type
 of platform.

 The policy core information model may be used to specify rules at any and
 all of these levels of abstraction. However, at different levels of
 abstraction, different mechanisms may be more or less appropriate.

4.2. Reusable Policy Elements

 In PCIM, a distinction was drawn between reusable PolicyConditions and
 PolicyActions and rule-specific ones. The PolicyRepository class was
 also defined, to serve as a container for these reusable elements. The
 name "PolicyRepository" has proven to be an unfortunate choice for the
 class that serves as a container for reusable policy elements. This term
 is already used in documents like the Policy Framework, to denote the
 location from which the PEP retrieves all policy specifications, and into
 which the Policy Management Tool places all policy specifications.
 Consequently, the PolicyRepository class is being deprecated, in favor of
 a new class ReusablePolicyContainer.

 When a class is deprecated, any associations that refer to it must also
 be deprecated. So replacements are needed for the two associations
 PolicyConditionInPolicyRepository and PolicyActionInPolicyRepository, as
 well as for the aggregation PolicyRepositoryInPolicyRepository. In
 addition to renaming the PolicyRepository class to
 ReusablePolicyContainer, however, PCIMe is also broadening the types of
 policy elements that can be reusable. Consequently, rather than
 providing one-for-one replacements for the two associations, a single
 higher-level association ReusablePolicy is defined. This new association
 allows any policy element (that is, an instance of any subclass of the

 abstract class Policy) to be placed in a ReusablePolicyContainer.

 Summarizing, the following changes in Sections 5 and 6 are the result of
 this item:

Moore, et al. Expires: Feb 2001 + 6 months [Page 12]

Internet Draft PCIM Extensions February 2001

 o The class ReusablePolicyContainer is defined.
 o PCIM's PolicyRepository class is deprecated.
 o The association ReusablePolicy is defined.
 o PCIM's PolicyConditionInPolicyRepository association is deprecated.
 o PCIM's PolicyActionInPolicyRepository association is deprecated.
 o The aggregation PolicyContainerInPolicyContainer is defined.
 o PCIM's PolicyRepositoryInPolicyRepository aggregation is deprecated.

4.3. Policy Sets

 A "policy" can be thought of as a coherent set of rules to administer,
 manage, and control access to network resources (PolTerm, reference
 [12]). The structuring of these coherent sets of rules into subsets is
 enhanced in this document. In section 4.4, we discuss the new options
 for the nesting of policy rules.

 A new abstract class, PolicySet, is introduced to provide an abstraction
 for a set of rules. It is derived from Policy, and it is inserted into
 the inheritance hierarchy above both PolicyGroup and PolicyRule. This
 reflects the additional structure flexibility and semantic capability of
 both subclasses.

 Two properties are defined in PolicySet: PolicyDecisionStrategy and
 PolicyRoles. PolicyDecisionStrategy is added to PolicySet to define the
 evaluation relationship between the rules in the policy set. See section

4.5 for more information. PolicyRoles is added to PolicySet to name the
 retrieval sets. See section 4.6 for more information.

 Along with the definition of the PolicySet class, a new abstract
 aggregation class is defined that will also be discussed in the following
 sections. PolicySetComponent is defined as a subclass of
 PolicyComponent; it provides the containment relationship for a
 PolicySet. PolicyGroupInPolicyGroup and PolicyRuleInPolicyGroup are
 modified to subclass from PolicySetComponent. PolicyGroupInPolicyRule
 and PolicyRuleInPolicyRule, discussed in the next section, are also
 defined as subclasses of PolicySetComponent.

4.4. Nested Policy Rules

 As previously discussed, policy is described by a set of policy rules
 that may be grouped into subsets. In this section we introduce the
 notion of nested rules, or the ability to define rules within rules.
 Nested rules are also called sub-rules, and we use both terms in this
 document interchangeably. Two new aggregations are defined for this
 purpose: PolicyRuleInPolicyRule and PolicyGroupInPolicyRule.

4.4.1. Usage Rules for Nested Rules

 The relationship between rules and sub-rules is defined as follows:

 o The parent rule's condition clause is a pre-condition for
 evaluation of all nested rules. If the parent rule's condition

Moore, et al. Expires: Feb 2001 + 6 months [Page 13]

Internet Draft PCIM Extensions February 2001

 clause evaluates to FALSE, all sub-rules SHALL be skipped and
 their condition clauses SHALL NOT be evaluated.
 o If the parent rule's condition evaluates to TRUE, the set of sub-
 rules SHALL BE executed according to the decision strategy and
 priorities as discussed in Section 4.5.
 o If the parent rule's condition evaluates to TRUE, the parent
 rule's set of actions is executed BEFORE the evaluation and
 execution of the sub-rules. The parent rule's actions are not to
 be confused with default actions. A default action is one that is
 to be executed only if none of the more specific sub-rules are
 executed. If a default action needs to be specified, it needs to
 be defined as an action that is part of a catchall sub-rule
 associated with the parent rule. The association linking the
 default action(s) in this special sub-rule should have the lowest
 priority relative to all other sub-rule associations:

 if precondition then parent rule's action
 if condA then actA
 if condB then ActB
 if True then default action

 Default actions have meaning when FirstMatching decision
 strategies are in effect (see section 4.5).

 o Policy rules have an implicit context in which they are executed.
 For example, the context of a policy rule could be all packets
 running on an interface or set of interfaces on which the rule is
 applied. Similarly, a parent rule provides a context to all of
 its sub-rules. The context of the sub-rules is the restriction of
 the context of the parent rule to the set of cases that match the
 parent rule's condition clause.

4.4.2. Motivation

 The motivation for introducing nested rules includes enhancing the
 definition of Policy, defining and reusing context hierarchies,
 optimizing how a rule is evaluated, and providing finer-grained control
 over condition evaluation.

 Rule nesting enhances Policy readability, expressiveness and reusability.
 The ability to nest policy rules and form sub-rules is important for
 manageability and scalability, as it enables complex policy rules to be
 constructed from multiple simpler policy rules. These enhancements ease
 the policy management tools' task, allowing policy rules to be expressed
 in a way closer to how humans think.

 Sub-rules enable the policy designer to define a hierarchy of rules.
 This hierarchy has the property that sub-rules can be scoped by their

 parent rules. This scoping, or context of evaluation and execution, is a
 powerful tool in enabling the policy designer to obtain the fine-grained
 control needed to appropriately manage resources for certain
 applications. The example in the following section demonstrates that

Moore, et al. Expires: Feb 2001 + 6 months [Page 14]

Internet Draft PCIM Extensions February 2001

 expressing relative bandwidth allocation rules can be done very naturally
 using a hierarchical rule structure.

 Rule nesting can be used to optimize the way policy rules are evaluated
 and executed. Once the parent rule's condition clause is evaluated to
 FALSE, all sub-rules are skipped, optimizing the number of lookups
 required. Note that this is not the prime reason for rule nesting, but
 rather a side benefit. Optimization of rule execution can be done in the
 PDP or in the PEP by dedicated code. This is similar to the relation
 between a high level programming language like C and machine code. An
 optimizer can create a more efficient machine code than any optimization
 done by the programmer within the source code. Nevertheless, if the PEP
 or PDP does not do optimization, the administrator writing the policy can
 optimize the policy rules for execution using rule nesting.

 In a model where condition evaluation may have side effects, nesting
 rules allow control of condition evaluation, as sub-rule conditions SHALL
 NOT be evaluated if the condition of the parent rule evaluates to FALSE.

 Nested rules are not designed for policy repository retrieval
 optimization. It is assumed that all rules and groups that are assigned
 to a role are retrieved by the PDP or PEP from the policy repository and
 enforced. Optimizing the number of rules retrieved should be done by
 clever selection of roles.

4.4.3. Usage Example

 This section provides a usage example that aims to clarify the motivation
 for the definition of rule nesting and the use of the relative context.
 Consider the following example, where a set of rules is used to specify
 the minimal bandwidth allocations on an interface. The policy reads:

 On any interface on which these rules apply, allocate at
 least 30% of the interface bandwidth to UDP flows, and at
 least 40% of the interface bandwidth to TCP flows.

 This single rule is translated to a set of two rules:

 If (IP protocol is UDP) THEN Set MinBW to 30% (1)
 If (IP protocol is TCP) THEN Set MinBW to 40% (2)

 Now, let's add some sub-rules to further differentiate how bandwidth
 should be allocated to specific UDP and TCP applications (indentation
 indicates rule nesting):

 If (IP protocol is UDP) THEN Set MinBW to 30% (1)
 If (protocol is TFTP) THEN Set MinBW to 10% (1a)
 If (protocol is NFS) THEN Set MinBW to 40% (1b)
 If (IP protocol is TCP) THEN Set MinBW to 40% (2)

 If (protocol is HTTP) THEN Set MinBW to 20% (2a)
 If (protocol is FTP) THEN Set MinBW to 30% (2b)

Moore, et al. Expires: Feb 2001 + 6 months [Page 15]

Internet Draft PCIM Extensions February 2001

 This means that for UDP flows, TFTP should be allocated 10% of the
 bandwidth while NFS should be allocated 40%. For TCP flows, HTTP should
 be allocated 20% of the bandwidth while FTP should be allocated 30%.

 The context of each of the two high-level rules (those marked (1) and (2)
 above) is all flows running on an interface. The two sub-rules of the
 UDP rule, marked (1a) and (1b) above specify a more granular context:
 within UDP flows, TFTP should be allocated 10% of the bandwidth while NFS
 should be allocated 40%. The context of these sub-rules is therefore UDP
 flows only. Similar functionality applies for the hierarchy of rules
 treating TCP flows.

 A context hierarchy enhances reusability. The rules that divide
 bandwidth between TFTP and NFS can be re-used and associated to rules
 that allocate different percentages of the bandwidth for different
 interfaces (or even for the same interface, but under different
 conditions) for UDP.

4.5. Priorities and Decision Strategies

 A "decision strategy" is used to specify the evaluation method for the
 policies in a PolicySet. Two decision strategies are defined:
 "FirstMatching" and "AllMatching." The FirstMatching strategy is used to
 cause the evaluation of the rules in a set such that the actions of only
 the first rule that matches are enforced on a given examination of the
 PolicySet. The AllMatching strategy is used to cause the evaluation of
 all rules in a set; for all of the rules that match, the actions are
 enforced. (Strawman: Implementations MUST support the FirstMatching
 decision strategy; implementations MAY support the AllMatching decision
 strategy.)

 As previously discussed, the PolicySet subclasses are PolicyGroup and
 PolicyRule, and either subclass may contain PolicySets of either
 subclass. Loops, including the degenerate case of a PolicySet that
 contains itself, are not allowed when PolicySets contain other
 PolicySets. The containment relationship is specified using the
 PolicySetComponent subclasses: PolicyGroupInPolicyGroup,
 PolicyRuleInPolicyGroup, PolicyGroupInPolicyRule and
 PolicyRuleInPolicyRule.

 The order of evaluation within a PolicySet is established by the Priority
 property of the PolicySetComponent aggregation. Instances of the
 subclasses of PolicySetComponent specify the relative priority of the
 contained policy groups and rules within the containing group or rule.
 The use of PCIM's PolicyRule.Priority property is deprecated in favor of
 this new property. The separation of the priority property from the rule
 has two advantages. First, it generalizes the concept of priority, so it
 can be used for both groups and rules; and, second, it places the

 priority on the relationship between the parent policy set and the
 subordinate policy group or rule. The assignment of a priority value,
 then, becomes much easier in that the value is used only in relationship
 to other priorities in the same set.

Moore, et al. Expires: Feb 2001 + 6 months [Page 16]

Internet Draft PCIM Extensions February 2001

 Together, the PolicySet.PolicyDecisionStrategy and
 PolicySetComponent.Priority determine the processing for the rules
 contained in a PolicySet. As before, the larger priority value
 represents the higher priority. Unlike the earlier definition,
 PolicySetComponent.Priority MUST have a unique value when compared with
 others defined for the aggregating PolicySet. Thus, the evaluation of
 rules within a set is deterministically specified.

 For a FirstMatching decision strategy, the order of evaluation, then, is
 high to low priority. The first rule (i.e., the one with the highest
 priority) in the set that evaluates to True, is the only rule whose
 actions are enforced for a particular evaluation pass through the
 PolicySet.

 For an AllMatching decision strategy, the order of evaluation is also
 from high priority to low priority; however, all of the matching rules
 are executed. Although higher priority rules are evaluated first, lower
 priority rules may get the "last word." So, for example, if two rules
 both evaluate to True, and the higher priority rule sets the DSCP to 3
 and the lower priority rule sets the DSCP to 4, the lower priority rule
 will be evaluated later and, therefore, will "win," in this example,
 setting the DSCP to 4. Thus, conflicts between rules are resolved by
 this evaluation order.

4.5.1. Structuring Decision Strategies

 When policy sets are nested, as shown in Figure 3, the decision
 strategies may be nested arbitrarily. In this example, the evaluation
 order for the nested rules is 1A, 1B1, 1X2, 1B3, 1C, 1C1, 1X2 and 1C3.
 (Note that PolicyRule 1X2 is included in both PolicyGroup 1B and
 PolicyRule 1C, but with different priorities.) Of course, the evaluation
 order is also dependent on which rules, if any, match.

Moore, et al. Expires: Feb 2001 + 6 months [Page 17]

Internet Draft PCIM Extensions February 2001

 PolicyGroup 1: FirstMatching
 |
 +-- Pri=6 -- PolicyRule 1A
 |
 +-- Pri=5 -- PolicyGroup 1B: AllMatching
 | |
 | +-- Pri=5 -- PolicyGroup 1B1: AllMatching
 | | |
 | | +---- etc.
 | |
 | +-- Pri=4 -- PolicyRule 1X2
 | |
 | +-- Pri=3 -- PolicyRule 1B3: FirstMatching
 | |
 | +---- etc.
 |
 +-- Pri=4 -- PolicyRule 1C: FirstMatching
 |
 +-- Pri=4 -- PolicyRule 1C1
 |
 +-- Pri=3 -- PolicyRule 1X2
 |
 +-- Pri=2 -- PolicyRule 1C3

 Figure 3. Nested PolicySets with Different Decision Strategies

 o Because PolicyGroup 1 has a FirstMatching decision strategy, if
 the conditions of PolicyRule 1A match, its actions are enforced
 and the evaluation stops.

 o If it does not match, PolicyGroup 1B is evaluated using an
 AllMatching strategy. Since PolicyGroup 1B1 also has an
 AllMatching strategy all of the rules and groups of rules
 contained in PolicyGroup 1B1 are evaluated and enforced as
 appropriate. PolicyRule 1X2 and PolicyRule 1B3 are also evaluated
 and enforced as appropriate. If any of the sub-rules in the
 subtrees of PolicyGroup 1B evaluate to True, then PolicyRule 1C is
 not evaluated because the FirstMatching strategy of PolicyGroup 1
 has been satisfied.

 o If neither PolicyRule 1A nor PolicyGroup 1B yield a match, then
 PolicyRule 1C is evaluated. Since it is first matching, rules
 1C1, 1X2, and 1C3 are evaluated until the first match, if any.

4.5.2. Deterministic Decisions

 As mentioned above, we propose that Priority values are to be unique

 within a containing PolicySet. Although there are certainly cases where
 rules need not have a unique priority value (i.e., where evaluation and
 execution order is not important), it is believed that the flexibility

Moore, et al. Expires: Feb 2001 + 6 months [Page 18]

Internet Draft PCIM Extensions February 2001

 gained by this capability is not sufficiently beneficial to justify the
 possible variations in implementation behavior and the resulting
 confusion that might occur.

 Therefore, all PolicySetComponent.Priority values MUST be unique among
 the values in the aggregating PolicySet. Each PolicySet, then, has a
 deterministic behavior based upon the decision strategy and uniquely
 defined order of evaluation.

4.5.3. Multiple PolicySet Trees For a Resource

 As shown in the example in Figure 3, PolicySet trees are defined by the
 PolicySet subclass instances and the PolicySetComponent subclass
 aggregation instances between them. Each PolicySet tree has a defined
 set of decision strategies and evaluation orders. However, a given
 resource may have multiple, disjoint PolicySet trees; we need a join
 algorithm that describes the decision strategy and evaluation order among
 the top-level (called "unrooted") PolicySet instances. (Note that an
 unrooted PolicySet instance may only be unrooted in a given context.)

 <<Solution under discussion - see Open Issue 9>>

4.6. Policy Roles

 A policy role is defined in [12] as "an administratively specified
 characteristic of a managed element (for example, an interface). It is a
 selector for policy rules and PRovisioning Classes (PRCs), to determine
 the applicability of the rule/PRC to a particular managed element."

 In PCIMe, PolicyRoles is defined as a property of PolicySet, which is
 inherited by both PolicyRules and PolicyGroups. In this draft, we also
 add PolicyRole as the identifying name of a collection of resources
 (PolicyRoleCollection), where each element in the collection has the
 specified role characteristic.

4.6.1. Comparison of Roles in PCIM with Roles in snmpconf

 In the Configuration Management with SNMP (snmpconf) working group's
 Policy Based Management MIB [13], policy rules are of the form

 if <policyFilter> then <policyAction>

 where <policyFilter> is a set of conditions that are used to determine
 whether or not the policy applies to an object instance. The policy
 filter can perform comparison operations on SNMP variables already
 defined in MIBS (e.g., "ifType == ethernet").

 The policy management MIB defined in [13] defines a Role table that
 enables one to associate Roles with elements, where roles have the same
 semantics as in PCIM. Then, since the policyFilter in a policy allows one
 to define conditions based on the comparison of the values of SNMP

Moore, et al. Expires: Feb 2001 + 6 months [Page 19]

Internet Draft PCIM Extensions February 2001

 variables, one can filter elements based on their roles as defined in the
 Role group.

 This approach differs from that adopted in PCIM in the following ways.
 First, in PCIM, a set of role(s) is associated with a policy rule as the
 values of the PolicyRoles property of a policy rule. The semantics of
 role(s) are then expected to be implemented by the PDP (i.e. policies are
 applied to the elements with the appropriate roles). In [draft-ietf-

snmpconf-pm-04], however, no special processing is required for realizing
 the semantics of roles; roles are treated just as any other SNMP
 variables and comparisons of role values can be included in the policy
 filter of a policy rule.

 Secondly, in PCIM, there is no formally defined way of associating a role
 with an object instance, whereas in [13] this is done via the use of the
 Role tables (pmRoleESTable and pmRoleSETable). The Role tables associate
 Role values with elements.

4.6.2. Addition of PolicyRoleCollection to PCIMe

 In order to remedy the latter shortcoming in PCIM (i.e. the lack of a way
 of associating a role with an object instance), we define a new class
 PolicyRoleCollection that subclasses from the CIM Collection class.
 Resources that share a common role belong to a PolicyRoleCollection
 instance. Membership in this collection is indicated using the
 aggregation ElementInPolicyRoleCollection. The resource's role is
 specified in the PolicyRole property of the PolicyRoleCollection class.

 A PolicyRoleCollection always exists in the context of a system. As was
 done in PCIM for PolicyRules and PolicyGroups, this is captured by an
 association, PolicyRoleCollectionInSystem. Remember that in PCIM, a
 System is a base class for describing network devices and administrative
 domains.

 When associating a PolicyRoleCollection with a System, this should be
 done consistently with the system that scopes the policy rules/groups
 that are applied to the resources in that collection. A
 PolicyRoleCollection is associated with the same system as the applicable
 PolicyRules and/or PolicyGroups, or to a System higher in the tree formed
 by the SystemComponent association. When a PEP belongs to multiple
 Systems (i.e., AdminDomains), and scoping by a single domain is
 impractical, two alternatives exist. One is to arbitrarily limit domain
 membership to one System/AdminDomain. The other option is to define a
 more global AdminDomain that simply includes the others, and/or that
 spans the business or enterprise.

 As an example, suppose that there are 20 traffic trunks in a network, and
 that an administrator would like to assign three of them to provide

https://datatracker.ietf.org/doc/html/draft-ietf-snmpconf-pm-04
https://datatracker.ietf.org/doc/html/draft-ietf-snmpconf-pm-04

 "gold" service. Also, the administrator has defined several policy rules
 which specify how the "gold" service is delivered. For these rules, the
 PolicyRoles property (inherited from PolicySet) is set to "Gold Service".

Moore, et al. Expires: Feb 2001 + 6 months [Page 20]

Internet Draft PCIM Extensions February 2001

 In order to associate three traffic trunks with "gold" service, an
 instance of the PolicyRoleCollection class is created and its PolicyRole
 property is also set to "Gold Service". Following this, the
 administrator associates three traffic trunks with the new instance of
 PolicyRoleCollection via the ElementInPolicyRoleCollection aggregation.
 This enables a PDP to determine that the "Gold Service" policy rules
 apply to the three aggregated traffic trunks.

 Note that roles are used to optimize policy retrieval. It is not
 mandatory to implement roles or, if they have been implemented, to group
 elements in a PolicyRoleCollection. However, if roles are used, then
 either the collection approach should be implemented, or elements should
 be capable of reporting their "pre-programmed" roles (as is done in
 COPS).

4.6.3. Roles for PolicyGroups

 In PCIM, role(s) are only associated with policy rules. However, it may
 be desirable to associate role(s) with groups of policy rules. For
 example, a network administrator may want to define a group of rules that
 apply only to Ethernet interfaces. A policy group can be defined with a
 role-combination="Ethernet", and all the relevant policy rules can be
 placed in this policy group. (Note that in PCIMe, role(s) are made
 available to PolicyGroups as well as to PolicyRules by moving PCIM's
 PolicyRoles property up from PolicyRule to the new abstract class
 PolicySet. The property is then inherited by both PolicyGroup and
 PolicyRule.) Then every policy rule in this policy group implicitly
 inherits this role-combination from the containing policy group. A
 similar implicit inheritance applies to nested policy groups.

 Note that there is no explicit copying of role(s) from container to
 contained entity. Obviously, this implicit inheritance of role(s) leads
 to the possibility of defining inconsistent role(s) (as explained in the
 example below); the handling of such inconsistencies is beyond the scope
 of PCIMe.

 As an example, suppose that there is a PolicyGroup PG1 that contains
 three PolicyRules, PR1, PR2, and PR3. Assume that PG1 has the roles
 "Ethernet" and "Fast". Also, assume that the contained policy rules have
 the role(s) shown below:

Moore, et al. Expires: Feb 2001 + 6 months [Page 21]

Internet Draft PCIM Extensions February 2001

 +------------------------------+
 | PolicyGroup PG1 |
 | PolicyRoles = Ethernet, Fast |
 +------------------------------+
 |
 | +------------------------+
 | | PolicyRule PR1 |
 |--------| PolicyRoles = Ethernet |
 | +------------------------+
 |
 | +--------------------------+
 | | PolicyRule PR2 |
 |--------| PolicyRoles = <undefined>|
 | +--------------------------+
 |
 | +------------------------+
 | | PolicyRule PR3 |
 |--------| PolicyRoles = Slow |
 +------------------------+

 Figure 4. Inheritance of Roles

 In this example, the PolicyRoles property value for PR1 is consistent
 with the value in PG1, and in fact, did not need to be redefined. The
 value of PolicyRoles for PR2 is undefined. Its roles are implicitly
 inherited from PG1. Lastly, the value of PolicyRoles for PR3 is "Slow".
 This appears to be in conflict with the role, "Fast," defined in PG1.
 However, whether these roles are actually in conflict is not clear. In
 one scenario, the policy administrator may have wanted only "Fast"-
 "Ethernet" rules in the policy group. In another scenario, the
 administrator may be indicating that PR3 applies to all "Ethernet"
 interfaces regardless of whether they are "Fast" or "Slow." Only in the
 former scenario (only "Fast"-"Ethernet" rules in the policy group) is
 there a role conflict.

 Note that it is possible to override implicitly inherited roles via
 appropriate conditions on a PolicyRule. For example, suppose that PR3
 above had defined the following conditions:

 (interface is not "Fast") and (interface is "Slow")

 This results in unambiguous semantics for PR3.

4.7. Compound Policy Conditions and Compound Policy Actions

 Compound policy conditions and compound policy actions are introduced to

 provide additional reusable "chunks" of policy.

Moore, et al. Expires: Feb 2001 + 6 months [Page 22]

Internet Draft PCIM Extensions February 2001

4.7.1. Compound Policy Conditions

 A CompoundPolicyCondition is a PolicyCondition representing a Boolean
 combination of simpler conditions. The conditions being combined may be
 SimplePolicyConditions (discussed below in section 4.7), but the utility
 of reusable combinations of policy conditions is not necessarily limited
 to the case where the component conditions are simple ones.

 The PCIM extensions to introduce compound policy conditions are
 relatively straightforward. Since the purpose of the extension is to
 apply the DNF / CNF logic from PCIM's PolicyConditionInPolicyRule
 aggregation to a compound condition that aggregates simpler conditions,
 the following changes are required:

 o Create a new aggregation PolicyConditionInPolicyCondition, with the
 same GroupNumber and ConditionNegated properties as
 PolicyConditionInPolicyRule. The cleanest way to do this is to
 move the properties up to a new abstract aggregation superclass
 CompoundedPolicyCondition, from which the existing aggregation
 PolicyConditionInPolicyRule and a new aggregation
 PolicyConditionInPolicyCondition are derived. For now there is no
 need to re-document the properties themselves, since they are
 already documented in PCIM as part of the definition of the
 PolicyConditionInPolicyRule aggregation.
 o It is also necessary to define a concrete subclass
 CompoundPolicyCondition of PolicyCondition, to introduce the
 ConditionListType property. This property has the same function,
 and works in exactly the same way, as the corresponding property
 currently defined in PCIM for the PolicyRule class.

 The class and property definitions for representing compound policy
 conditions are below, in Section 5.

4.7.2. Compound Policy Actions

 A compound action is a convenient construct to represent a sequence of
 actions to be applied as a single atomic action within a policy rule. In
 many cases, actions are related to each other and should be looked upon
 as sub-actions of one "logical" action. An example of such a logical
 action is "shape & mark" (i.e., shape a certain stream to a set of
 predefined bandwidth characteristics and then mark these packets with a
 certain DSCP value). This logical action is actually composed of two
 different QoS actions, which should be performed in a well-defined order
 and as a complete set.

 The CompoundPolicyAction construct allows one to create a logical
 relationship between a number of actions, and to define the activation
 logic associated with this logical action.

 The CompoundPolicyAction construct allows the reusability of these
 complex actions, by storing them in a ReusablePolicyContainer and reusing

Moore, et al. Expires: Feb 2001 + 6 months [Page 23]

Internet Draft PCIM Extensions February 2001

 them in different policy rules. Note that a compound action may also be
 aggregated by another compound action.

 As was the case with CompoundPolicyCondition, the PCIM extensions to
 introduce compound policy actions are relatively straightforward. This
 time the goal is to apply the property ActionOrder from PCIM's
 PolicyActionInPolicyRule aggregation to a compound action that aggregates
 simpler actions. The following changes are required:

 o Create a new aggregation PolicyActionInPolicyAction, with the same
 ActionOrder property as PolicyActionInPolicyRule. The cleanest way
 to do this is to move the property up to a new abstract aggregation
 superclass CompoundedPolicyAction, from which the existing
 aggregation PolicyActionInPolicyRule and a new aggregation
 PolicyActionInPolicyAction are derived. For now there is no need
 to re-document the ActionOrder property itself, since it is already
 documented in PCIM as part of the definition of the
 PolicyActionInPolicyRule aggregation.
 o It is also necessary to define a concrete subclass
 CompoundPolicyAction of PolicyAction, to introduce the
 SequencedActions property. This property has the same function,
 and works in exactly the same way, as the corresponding property
 currently defined in PCIM for the PolicyRule class.
 o Finally, a new property ExecutionStrategy is needed for both the
 PCIM class PolicyRule and the new class CompoundPolicyAction. This
 property allows the policy administrator to specify how the PEP
 should behave in the case where there are multiple actions
 aggregated by a PolicyRule or by a CompoundPolicyAction.

 The class and property definitions for representing compound policy
 actions are below, in Section 5.

 Compound actions allow the definition of logically complex policy rules
 and action behavior. The following example illustrates two advantages of
 using compound actions.

 A QoS policy domain may include a rule that defines the following
 behavior:

 If (CONDITION) Then Do:
 "Shape traffic to <X> and Set DSCP to EF (high priority traffic);
 if canÆt shape than Set DSCP to BE (best effort)."

 This rule can be realized by defining two CompoundPolicyAction instances,
 A and B. Two sub-actions are grouped into CompoundPolicyAction A:

 Shape traffic to <X>
 Mark to EF (DSCP).

 The ExecutionStrategy property of CompoundPolicyAction A would be defined
 as "Mandatory Do all". This means that if shaping or marking cannot both
 be done, then nothing should be done.

Moore, et al. Expires: Feb 2001 + 6 months [Page 24]

Internet Draft PCIM Extensions February 2001

 A second action, CompoundPolicyAction B, would hold the Mark to BE sub-
 action.

 CompoundPolicyAction A and CompoundPolicyAction B would be aggregated
 into the policy rule using the PolicyActionInPolicyRule aggregation. The
 CompoundPolicyAction A will be ordered for execution before the
 CompoundPolicyAction B. The PolicyRule's ExecutionStrategy property
 would be set to "Do until success". In this way, CompoundPolicyAction A
 will be enforced on all PEPs that support shaping, while
 CompoundPolicyAction B will be enforced otherwise.

4.8. Variables and Values

 The following subsections introduce several related concepts, including
 PolicyVariables and PolicyValues (and their numerous subclasses),
 SimplePolicyConditions, and SimplePolicyActions.

4.8.1. Simple Policy Conditions

 The SimplePolicyCondition class models elementary Boolean conditional
 expressions of the form: "If (<variable> MATCH <value>)". The "If"
 clause and the "MATCH" are implied in the formal notation. The
 relationship is always 'MATCH' and is interpreted based on the variable
 and the value. Section 4.8.3 explains the semantics of the operator and
 how to extend them. Arbitrarily complex Boolean expressions can be
 formed by chaining together any number of simple conditions using
 relational operators. Individual simple conditions can be negated as
 well. Arbitrarily complex Boolean expressions are modeled by the class
 CompoundPolicyCondition (described in section 4.7.1).

 For example, the expression "If SourcePort == 80" can be modeled by a
 simple condition. In this example, 'SourcePort' is a variable, '==' is
 the relational operator denoting the equality relationship (which is
 generalized by PCIMe to a "match" relationship), and '80' is an integer
 value. The complete interpretation of a simple condition depends on the
 binding of the variable. Section 4.8.5 describes variables and their
 binding rules.

 The SimplePolicyCondition class refines the basic structure of the
 PolicyCondition class defined in PCIM by using the pair <variable> and
 <value> to form the condition. Note that the operator between the
 variable and the value is always implied in PCIMe: it is not a part of
 the formal notation.

 The variable specifies the attribute of an object that should be matched
 when evaluating the condition. For example, for a QoS derivation, this
 object could represent the flow that is being conditioned. A set of
 predefined variables that cover network attributes that are commonly used
 for filtering is introduced here in PCIMe to encourage interoperability.

 This list covers layer 3 IP attributes such as IP network addresses,
 protocols and ports, as well as a set of layer 2 attributes (e.g., MAC
 addresses).

Moore, et al. Expires: Feb 2001 + 6 months [Page 25]

Internet Draft PCIM Extensions February 2001

 The PCIMe defines a single operator, "match", as explained in section
4.8.3.

 The bound variable is matched against a value to produce the Boolean
 result. For example, in the condition "If the source IP address of the
 flow belongs to the 10.1.x.x subnet", a source IP address variable is
 matched against a 10.1.x.x subnet value. The operator specifies the type
 of relation between the variable and the value evaluated in the
 condition.

4.8.2. Using Simple Policy Conditions

 Simple conditions can be used in policy rules directly, or as building
 blocks for creating compound policy conditions.

 Simple condition composition MUST enforce the following data-type
 conformance rule: The ValueTypes property of the variable must be
 compatible with the type of the value class used. The simplest (and
 friendliest, from a user point-of-view) is to equate the type of the
 value class with the name of the class. By ensuring that the ValueTypes
 property of the variable matches the name of the value class used, we
 know that the variable and value instance values are compatible with each
 other.

 Composing a simple condition requires that an instance of the class
 SimplePolicyCondition be created, and that instances of the variable and
 value classes that it uses also exist. Note that the variable and/or
 value instances may already exist as reusable objects in an appropriate
 ReusablePolicyContainer.

 Two aggregations are used in order to create the pair <variable>,
 <value>. The aggregation PolicyVariableInSimplePolicyCondition relates a
 SimplePolicyCondition to a single variable instance. Similarly, the
 aggregation PolicyValueInSimplePolicyCondition relates a
 SimplePolicyCondition to a single value instance. Both aggregations are
 defined in this document.

 Figure 5 depicts a SimplePolicyCondition with its associated variable and
 value.

Moore, et al. Expires: Feb 2001 + 6 months [Page 26]

Internet Draft PCIM Extensions February 2001

 +-----------------------+
 | SimplePolicyCondition |
 +-----------------------+
 * @
 * @
 +------------------+ * @ +---------------+
 | (PolicyVariable) |*** @@@| (PolicyValue) |
 +------------------+ +---------------+
 # #
 # ooo #
 # #
 +---------------+ +---------------+
 | (PolicyValue) | ooo | (PolicyValue) |
 +---------------+ +---------------+

 Aggregation Legend:
 **** PolicyVariableInSimplePolicyCondition
 @@@@ PolicyValueInSimplePolicyCondition
 #### PolicyValueConstraintInVariable

 Figure 5. SimplePolicyCondition

 Note: The class names in parenthesis denote subclasses. The named
 classes in the figure are abstract and cannot, therefore, be
 instantiated.

4.8.3. The Simple Condition Operator

 A simple condition models an elementary Boolean expression conditional
 clause of the form "If variable MATCHes value". However, the formal
 notation of the SimplePolicyCondition, together with its associations,
 models only a pair, {variable, value}. The "If" term and the "MATCH"
 operator are not directly modeled -- they are implied.

 The implied MATCH operator carries an overloaded semantics. For example,
 in the simple condition "If DestinationPort MATCH '80'" the
 interpretation of the MATCH operator is equality (the 'equal' operator).
 Clearly, a different interpretation is needed in the following cases:

 o "If DestinationPort MATCH {'80', '8080'}" -- operator is 'IS SET
 MEMBER'

 o "If DestinationPort MATCH {'1 to 255'}" -- operator is 'IN INTEGER
 RANGE'

 o "If SourceIPAddress MATCH 'MyCompany.com'" -- operator is 'IP
 ADDRESS AS RESOLVED BY DNS'

 The examples above illustrate the implicit, context dependant nature of

 the interpretation of the MATCH operator. The interpretation depends on
 the actual variable and value instances in the simple condition. PCIMe
 does not contain text to explicitly detail the possible interpretations

Moore, et al. Expires: Feb 2001 + 6 months [Page 27]

Internet Draft PCIM Extensions February 2001

 of MATCH operations. The interpretation is always derived from the value
 instance associated with the simple condition. Text accompanying the
 value class definition SHOULD be used as a guideline for interpreting the
 semantics of the MATCH relationship.

 The PolicyValueConstraintInVariable association specifies additional
 constraints on the possible values that can be matched with a variable
 within a simple condition. Using this association a source or
 destination port can be constrained to be matched against integer values
 in the range 0-65535. A source or destination IP address can be
 constrained to be matched against a specified list of IPv4 address
 values, etc. In order to check whether a value X can be used with a
 variable A constrained by value Y, the following conformance test should
 be made. If all events for which the SimplePolicyCondition (A match X)
 evaluates to TRUE also evaluate to TRUE for the SimplePolicyCondition (A
 match Y), than X conforms to the constraint Y. If multiple values Y1,
 Y2, ..., Yn constrain a variable, then the conformance test involves
 checking against the condition (A match Y1) OR (A match Y2) OR ... OR (A
 match Yn).

4.8.4. SimplePolicyActions

 The SimplePolicyAction class models the elementary set operation. "SET
 <variable> TO <value>". The set operator MUST overwrite an old value of
 the variable.

 For example, the action "set DSCP to EF" can be modeled by a simple
 action. In this example, 'DSCP' is an implicit variable referring to the
 IP packet header DSCP field. 'EF' is an integer or bit string value (6
 bits). The complete interpretation of a simple action depends on the
 binding of the variable. Section [4.8.4] describes variables and their
 binding rules for conditions.

 The SimplePolicyAction class refines the basic structure of the
 PolicyAction class defined in PCIM, by specifying the contents of the
 action using the <variable> <value> pair to form the action. The
 variable specifies the attribute of an object that has passed the
 condition by evaluating to true. This means the binding of the variable
 is delayed until the condition evaluates to true for one or more objects.
 The value of the object's attribute is set to <value>.

 SimplePolicyActions can be used in policy rules directly, or as building
 blocks for creating CompoundPolicyActions.

 SimplePolicyAction execution MUST enforce the following data type
 conformance and translation rule: The ValueTypes property of the variable
 must be compatible with the type of the value class used. The following
 table shows the compatibility and transformation rules. 'ND' means the

 transformation is not defined.

Moore, et al. Expires: Feb 2001 + 6 months [Page 28]

Internet Draft PCIM Extensions February 2001

 +--+
 |variable | value type |
 |type | |
 +--+
 | |String |Integer|BitString| IPv4Addr | IPv6Addr |MACAddr|
 +--+
 | String | X |to text| [0|1] | A.B.C.D | dotted | X:X.. |
 +--+
 | Integer |"atoi" | X |BinaryVal| 32bit int| ND | ND |
 +--+
 | BitString|convert|convert| X | ND | ND | ND |
 +--+
 | IPv4Addr |convert|convert| ND | X | ND | ND
 +--+
 | IPv6Addr |convert| ND | ND | v4 format| X | ND |
 +--+
 | MACAddr | ND | ND | ND | ND | ND | X |
 +--+

 Composing a simple action requires that an instance of the class
 SimplePolicyAction be created, and that instances of the variable and
 value classes that it uses also exist. Note that the variable and/or
 value instances may already exist as reusable objects in an appropriate
 ReusablePolicyContainer.

 Two aggregations are used in order to create the pair <variable> <value>.
 The aggregation PolicyVariableInSimplePolicyAction relates a
 SimplePolicyAction to a single variable instance. Similarly, the
 aggregation PolicyValueInSimplePolicyAction relates a SimplePolicyAction
 to a single value instance. Both aggregations are defined in this
 document.

 Figure 6 depicts a SimplePolicyAction with its associated variable and
 value.

Moore, et al. Expires: Feb 2001 + 6 months [Page 29]

Internet Draft PCIM Extensions February 2001

 +-----------------------+
 | SimplePolicyAction |
 | |
 +-----------------------+
 * @
 * @
 +------------------+ * @ +---------------+
 | (PolicyVariable) |*** @@@| (PolicyValue) |
 +------------------+ +---------------+
 # #
 # ooo #
 # #
 +---------------+ +---------------+
 | (PolicyValue) | ooo | (PolicyValue) |
 +---------------+ +---------------+

 Aggregation Legend:
 **** PolicyVariableInSimplePolicyAction
 @@@@ PolicyValueInSimplePolicyAction
 #### PolicyValueConstraintInVariable

 Figure 6. SimplePolicyAction

4.8.5. Policy Variables

 A variable generically represents information that changes (or "varies"),
 and that is set or evaluated by software. In policy, conditions and
 actions can abstract information as "policy variables" to be evaluated in
 logical expressions, or set by actions.

 PCIMe defines two types of PolicyVariables, a PolicyImplicitVariable and
 a PolicyExplicitVariable. The semantic difference between these classes
 is based on modeling context. Explicit variables are bound to exact
 model constructs, while implicit variables are defined and evaluated
 outside of a model, in a more subjective context. For example, one can
 imagine a PolicyCondition testing for a CIM ManagedSystemElement's Status
 property set to "Error." The Status property is an explicitly defined
 PolicyVariable (i.e., it is defined in the context of the CIM Schema and
 evaluated in the context of a specific instance). On the other hand,
 network packets are not explicitly modeled or instantiated, since there
 is no perceived value (at this time) in managing at the packet level.
 Therefore, a PolicyCondition can make no explicit reference to a model
 construct that represents a network packet's source address. In this
 case, an implicit PolicyVariable is defined to allow evaluation of a
 packet's source address.

4.8.6. Explicitly Bound Policy Variables

 Explicitly bound policy variables indicate the class and property names
 of the model construct to be evaluated or set. The CIM Schema defines
 and constrains "appropriate" values for the variable (i.e., model

Moore, et al. Expires: Feb 2001 + 6 months [Page 30]

Internet Draft PCIM Extensions February 2001

 property) using data types and other information such as class/property
 qualifiers.

 A PolicyExplicitVariable is "explicit" because its model semantics are
 exactly defined. It is NOT explicit due to an exact binding to a
 particular object. If PolicyExplicitVariable is only tied to instances
 (either via association or by a object identification property in the
 class itself), then we are forcing element-specific rules. On the other
 hand, if we only specify the object's model context (class and property
 name), but leave the binding to the policy framework (for example, using
 policy roles), then greater flexibility results for either general or
 element-specific rules.

 For example, an element-specific rule is obtained by a condition
 (variable/operator/value triplet) that defines, for example, CIM
 LogicalDevice DeviceID="12345". Alternately, if a PolicyRule's
 PolicyRoles is "edge device" and your condition (variable/operator/value
 triplet) is Status="Error", then a general rule results for all edge
 devices in error.

 Refer to Section 5.10 for the formal definition of the class
 PolicyExplicitVariable.

4.8.7. Implicitly Bound Policy Variables

 Implicitly bound policy variables define the data type and semantics of a
 variable. This determines how the variable is bound to a value in a
 condition clause. Further instructions are provided for specifying data
 type and/or value constraints for implicitly bound variables.

 Implicitly bound variables can be interpreted by different sub-models to
 mean different things, depending on the particular context in which they
 are used. For example, an implicitly bound variable named "SourceIP" may
 be interpreted by a QoS policy information model to denote the source
 address field in the IP header of a packet if a device is configured to
 select certain packets for particular treatment. The same variable may
 be bound to the sender address delivered by a RSVP PATH message for a
 decision by a policy server. It is incumbent upon the particular domain-
 specific information model to provide full and unambiguous interpretation
 details (binding rules, type and value constraints) for the implicitly
 bound variables it uses.

 PCIMe introduces an abstract class, PolicyImplicitVariable, to model
 implicitly bound variables. This class is derived from the abstract
 class PolicyVariable also defined in PCIMe. Each of the implicitly bound
 variables introduced by PCIMe (and those that are introduced by domain-
 specific sub-models) MUST be derived from the PolicyImplicitVariable
 class. The rationale for using this mechanism for modeling is explained

 below in Section 4.8.9.

 A domain-specific policy information model that extends PCIMe may define
 additional implicitly bound variables either by deriving them directly

Moore, et al. Expires: Feb 2001 + 6 months [Page 31]

Internet Draft PCIM Extensions February 2001

 from the class PolicyImplicitVariable, or by further refining an existing
 variable class such as SourcePort. When refining a class such as
 SourcePort, existing binding rules, type or value constraints may be
 narrowed.

4.8.8. Structure and Usage of Pre-Defined Variables

 A class derived from PolicyImplicitVariable to model a particular
 implicitly bound variable SHOULD be constructed so that its name depicts
 the meaning of the variable. For example, a class defined to model the
 source port of a TCP/UDP flow SHOULD be named 'SourcePort'.

 PCIMe defines one association and one general-purpose mechanism that
 together characterize each of the implicitly bound variables that it
 introduces:

 1. The PolicyValueConstraintInVariable association defines the set of
 value classes that could be matched to this variable.

 2. The list of constraints on the values that the PolicyVariable can
 hold (i.e., values that the variable must match) are defined by
 the appropriate properties of an associated PolicyValue class.

 In the example presented above, a PolicyImplicitVariable represents the
 SourcePort of incoming traffic. The ValueTypes property of an instance
 of this class will hold the class name PolicyIntegerValue. This by
 itself constrains the data type of the SourcePort instance to be an
 integer. However, we can further constrain the particular values that
 the SourcePort variable can hold by entering valid ranges in the
 IntegerList property of the PolicyIntegerValue instance (0 - 65535 in
 this document).

 The combination of the VariableName and the
 PolicyValueConstraintInVariable association provide a consistent and
 extensible set of metadata that define the semantics of variables that
 are used to form policy conditions. Since the
 PolicyValueConstraintInVariable association points to another class, any
 of the properties in the PolicyValue class can be used to constrain
 values that the PolicyImplicitVariable can hold. For example:

 o The ValueTypes property can be used to ensure that only proper
 classes are used in the expression. For example, the SourcePort
 variable will not be allowed to ever be of type
 PolicyIPv4AddrValue, since source ports have different semantics
 than IP addresses and may not be matched. However, integer value
 types are allowed as the property ValueTypes holds the string
 "PolicyIntegerValue", which is the class name for integer values.

 o The PolicyValueConstraintInVariable association also ensures that

 variable-specific semantics are enforced (e.g., the SourcePort
 variable may include a constraint association to a value object
 defining a specific integer range that should be matched).

Moore, et al. Expires: Feb 2001 + 6 months [Page 32]

Internet Draft PCIM Extensions February 2001

4.8.9. Rationale for Modeling Implicit Variables as Classes

 An implicitly bound variable can be modeled in one of several ways,
 including a single class with an enumerator for each individual implicitly
 bound variable and an abstract class extended for each individual variable.
 The reasons for using a class inheritance mechanism for specifying
 individual implicitly bound variables are these:

 1. It is easy to extend. A domain-specific information model can
 easily extend the PolicyImplicitVariable class or its subclasses
 to define domain-specific and context-specific variables. For
 example, a domain-specific QoS policy information model may
 introduce an implicitly bound variable class to model applications
 by deriving a qosApplicationVariable class from the
 PolicyImplicitVariable abstract class.

 2. Introduction of a single structural class for implicitly bound
 variables would have to include an enumerator property that
 contains all possible individual implicitly bound variables. This
 means that a domain-specific information model wishing to
 introduce an implicitly bound variable must extend the enumerator
 itself. This results in multiple definitions of the same class,
 differing in the values available in the enumerator class. One
 definition, in this document, would include the common implicitly
 bound variables' names, while a second definition, in the domain-
 specific information model document, may include additional values
 ('qosApplicationVariable' in the example above). It wouldnÆt even
 be obvious to the application developer that multiple class
 definitions existed. It would be harder still for the application
 developer to actually find the correct class to use.

 3. In addition, an enumerator-based definition would require each
 additional value to be registered with IANA to ascertain adherence
 to standards. This would make the process cumbersome.

 4. A possible argument against the inheritance mechanism would cite
 the fact that this approach results in an explosion of class
 definitions compared to an enumerator class, which only introduces
 a single class. While, by itself, this is not a strike against
 the approach, it may be argued that data models implemented, which
 are mapped to this information model, may be more difficult to
 optimize for applications. This argument is rejected on the
 grounds that application optimization is of lesser value for an
 information model than clarity and ease of extension. In
 addition, it is hard to claim that the inheritance model places an
 absolute burden on the optimization. For example, a data model
 may still use enumeration to denote instances of pre-defined

 variables and claim PCIMe compliance, as long as the data moel can
 be mapped correctly to the definitions specified in this document.
 Furthermore, the very nature of implicitly bound variables is to
 be interpreted in context. This means that unless an additional
 variable is required by a sub-model (in which case both approaches

Moore, et al. Expires: Feb 2001 + 6 months [Page 33]

Internet Draft PCIM Extensions February 2001

 result in some overhead), there's an upper limit on the class
 explosion. After all, once properly documented, no need exists
 for a sub-model to add a class definition. The implementation
 needs only to cite and use the PCIMe variable, but impose the
 documented context-dependent semantics.

4.8.10. Policy Values

 The abstract class PolicyValue is used for modeling values and constants
 used in policy conditions. Different value types are derived from this
 class, to represent the various attributes required. Extensions of the
 abstract class PolicyValue, defined in this document, provide a list of
 values for representing basic network attributes. Values can be used to
 represent constants as named values. Named values can be kept in a
 reusable policy container to be reused by multiple conditions. Examples
 of constants include well-known ports, well-known protocols, server
 addresses, and other similar concepts.

 The PolicyValue subclasses define three basic types of values: scalars,
 ranges and sets. For example, a well-known port number could be defined
 using the PolicyIntegerValue class, defining a single value (80 for
 HTTP), a range (80-88), or a set (80, 82, 8080) of ports, respectively.
 For details, please see the class definition for each value type in

Section 5.12 of this document.

 PCIMe defines the following subclasses of the abstract class PolicyValue:

 Classes for general use:

 - PolicyStringValue,
 - PolicyIntegerValue,
 - PolicyBitStringValue
 - PolicyBooleanValue.

 Classes for layer 3 Network values:

 - PolicyIPv4AddrValue,
 - PolicyIPv6AddrValue.

 Classes for layer 2 Network values:

 - PolicyMACAddrValue.

 For details, please see the class definition section of each class in
Section 5.14 of this document.

4.9. Packet Filtering

 In addition to filling in the holes in the overall Policy infrastructure,

 PCIMe proposes a single mechanism for expressing packet filters in policy
 conditions. This is being done in response to concerns that even though
 the initial "wave" of submodels derived from PCIM were all filtering on

Moore, et al. Expires: Feb 2001 + 6 months [Page 34]

Internet Draft PCIM Extensions February 2001

 IP packets, each was doing it in a slightly different way. PCIMe
 proposes a common way to express IP packet filters. The following figure
 illustrates how packet-filtering conditions are expressed in PCIMe.

 +---------------------------------+
 | CompoundFilterCondition |
 | - IsMirrored boolean |
 | - ConditionListType (DNF|CNF) |
 +---------------------------------+
 + + +
 + + +
 + + +
 SimplePC SimplePC SimplePC
 * @ * @ * @
 * @ * @ * @
 * @ * @ * @
 FlowDirection "In" SrcIP <addr1> DstIP <addr2>

 Aggregation Legend:
 ++++ PolicyConditionInPolicyCondition
 **** PolicyVariableInSimplePolicyCondition
 @@@@ PolicyValueInSimplePolicyCondition

 Figure 7. Packet Filtering in Policy Conditions

 In Figure 7, each SimplePolicyCondition represents a single field to be
 filtered on: Source IP address, Destination IP address, Source port, etc.
 An additional SimplePolicyCondition indicates the direction that a packet
 is traveling on an interface: inbound or outbound. Because of the
 FlowDirection condition, care must be taken in aggregating a set of
 SimplePolicyConditions into a CompoundFilterCondition. Otherwise, the
 resulting CompoundPolicyCondition may match all inbound packets, or all
 outbound packets, when this is probably not what was intended.

 Individual SimplePolicyConditions may be negated when they are aggregated
 by a CompoundFilterCondition.

 CompoundFilterCondition is a subclass of CompoundPolicyCondition. It
 introduces one additional property, the Boolean property IsMirrored. The
 purpose of this property is to allow a single CompoundFilterCondition to
 match packets traveling in both directions on a higher-level connection
 such as a TCP session. When this property is TRUE, additional packets
 match a filter, beyond those that would ordinarily match it. An example
 will illustrate how this property works.

 Suppose we have a CompoundFilterCondition that aggregates the following
 three filters, which are ANDed together:

 o FlowDirection = "In"

 o Source IP = 9.1.1.1
 o Source Port = 80

Moore, et al. Expires: Feb 2001 + 6 months [Page 35]

Internet Draft PCIM Extensions February 2001

 Regardless of whether IsMirrored is TRUE or FALSE, inbound packets will
 match this CompoundFilterCondition if their Source IP address = 9.1.1.1
 and their Source port = 80. If IsMirrored is TRUE, however, an outbound
 packet will also match the CompoundFilterCondition if its Destination IP
 address = 9.1.1.1 and its Destination port = 80.

 IsMirrored "flips" the following Source/Destination packet header fields:

 o FlowDirection "In" / FlowDirection "Out"
 o Source IP address / Destination IP address
 o Source port / Destination port
 o Source MAC address / Destination MAC address
 o Source [layer-2] SAP / Destination [layer-2] SAP.

5. Class Definitions

 The following definitions supplement those in PCIM itself. PCIM
 definitions that are not DEPRECATED here are still current parts of the
 overall Policy Core Information Model.

5.1. The Abstract Class "PolicySet"

 PolicySet is an abstract class that may group policies into a structured
 set of policies.

 NAME PolicySet
 DESCRIPTION An abstract class that represents a set of policies
 that form a coherent set. The set of contained
 policies has a common decision strategy and a common
 set of policy roles. Subclasses include PolicyGroup
 and PolicyRule.
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES PolicyDecisionStrategy
 PolicyRoles

 The PolicyDecisionStrategy property specifies the evaluation method for
 policy groups and rules contained within the policy set.

 NAME PolicyDecisionStrategy
 DESCRIPTION The evaluation method used for policies contained in
 the PolicySet. FirstMatching enforces the actions of
 the first rule that evaluates to TRUE; AllMatching
 enforces the actions of all rules that evaluate to
 TRUE.
 SYNTAX uint16
 VALUES 1 [FirstMatching], 2 [AllMatching]
 DEFAULT VALUE 1 [FirstMatching]

 The definition of PolicyRoles is unchanged from PCIM. It is, however,
 moved from the class Policy up to the superclass PolicySet.

Moore, et al. Expires: Feb 2001 + 6 months [Page 36]

Internet Draft PCIM Extensions February 2001

5.2. Updates to PCIM's Class "PolicyGroup"

 The PolicyGroup class is modified to be derived from PolicySet.

 NAME PolicyGroup
 DESCRIPTION A container for a set of related PolicyRules and
 PolicyGroups.
 DERIVED FROM PolicySet
 ABSTRACT FALSE
 PROPERTIES (none)

5.3. Updates to PCIM's Class "PolicyRule"

 The PolicyRule class is modified to be derived from PolicySet, and to
 deprecate the use of Priority in the rule. PolicyRoles is now inherited
 from the parent class PolicySet. Finally, a new property
 ExecutionStrategy is introduced, paralleling the property of the same
 name in the class CompoundPolicyAction.

 NAME PolicyRule
 DESCRIPTION The central class for representing the "If Condition
 then Action" semantics associated with a policy rule.
 DERIVED FROM PolicySet
 ABSTRACT FALSE
 PROPERTIES Enabled
 ConditionListType
 RuleUsage
 Priority DEPRECATED FOR PolicySetComponent.Priority
 Mandatory
 SequencedActions
 ExecutionStrategy

 The property ExecutionStrategy defines the execution strategy to be used
 upon the sequenced actions aggregated by this PolicyRule. (An equivalent
 ExecutionStrategy property is also defined for the CompoundPolicyAction
 class, to provide the same indication for the sequenced actions
 aggregated by a CompoundPolicyAction.) This draft defines four execution
 strategies:

 Mandatory Do all û execute ALL actions that are part of the modeled
 set. If one or more of the actions cannot be
 executed, none of the actions should be executed.
 Do until success û execute actions according to predefined order, until
 successful execution of a single action.
 Do All - execute ALL actions which are part of the modeled
 set, according to their predefined order. Continue
 doing this, even if one or more of the actions
 fails.

 Do until Failure - execute actions according to predefined order, until
 the first failure in execution of a single sub-
 action.

Moore, et al. Expires: Feb 2001 + 6 months [Page 37]

Internet Draft PCIM Extensions February 2001

 The property definition is as follows:

 NAME ExecutionStrategy
 DESCRIPTION An enumeration indicating how to interpret the action
 ordering for the actions aggregated by this
 PolicyRule.
 SYNTAX uint16 (ENUM, {1=Mandatory Do All, 2=Do Until Success,
 3=Do All, 4=Do Until Failure})
 DEFAULT VALUE Do All (3)

5.4. The Class "SimplePolicyCondition"

 A simple policy condition is composed of an ordered triplet:

 <Variable> MATCH <Value>

 No formal modeling of the MATCH operator is provided. The 'match'
 relationship is implied. Such simple conditions are evaluated by
 answering the question:

 Does <variable> match <value>?

 The 'match' relationship is to be interpreted by analyzing the variable
 and value instances associated with the simple condition.

 Simple conditions are building blocks for more complex Boolean
 Conditions, modeled by the CompoundPolicyCondition class.

 The SimplePolicyCondition class is derived from the PolicyCondition class
 defined in PCIM.

 A variable and a value must be associated with a simple condition to make
 it a meaningful condition, using, respectively, the aggregations
 PolicyVariableInSimplePolicyCondition and
 PolicyValueInSimplePolicyCondition.

 The class definition is as follows:

 NAME SimplePolicyCondition
 DERIVED FROM PolicyCondition
 ABSTRACT False
 PROPERTIES (none)

5.5. The Class "CompoundPolicyCondition"

 This class represents a compound policy condition, formed by aggregation
 of simpler policy conditions.

 NAME CompoundPolicyCondition

 DESCRIPTION A subclass of PolicyCondition that introduces the
 ConditionListType property, used for assigning DNF /
 CNF semantics to subordinate policy conditions.
 DERIVED FROM PolicyCondition

Moore, et al. Expires: Feb 2001 + 6 months [Page 38]

Internet Draft PCIM Extensions February 2001

 ABSTRACT FALSE
 PROPERTIES ConditionListType

 The ConditionListType property is used to specify whether the list of
 policy conditions associated with this compound policy condition is in
 disjunctive normal form (DNF) or conjunctive normal form (CNF). If this
 property is not present, the list type defaults to DNF. The property
 definition is as follows:

 NAME ConditionListType
 DESCRIPTION Indicates whether the list of policy conditions
 associated with this policy rule is in disjunctive
 normal form (DNF) or conjunctive normal form (CNF).
 SYNTAX uint16
 VALUES DNF(1), CNF(2)
 DEFAULT VALUE DNF(1)

5.6. The Class "CompoundFilterCondition"

 This subclass of CompoundPolicyCondition introduces one additional
 property, the boolean IsMirrored. This property turns on or off the
 "flipping" of corresponding source and destination fields in a filter
 specification.

 NAME CompoundFilterCondition
 DESCRIPTION A subclass of CompoundPolicyCondition that introduces
 the IsMirrored property.
 DERIVED FROM CompoundPolicyCondition
 ABSTRACT FALSE
 PROPERTIES IsMirrored

 The IsMirrored property indicates whether packets that "mirror" a
 compound filter condition should be treated as matching the filter. The
 property definition is as follows:

 NAME IsMirrored
 DESCRIPTION Indicates whether packets that mirror the specified
 filter are to be treated as matching the filter.
 SYNTAX boolean
 DEFAULT VALUE FALSE

5.7. The Class "SimplePolicyAction"

 The SimplePolicyAction class models the elementary set operation. "SET
 <variable> TO <value>". The set operator MUST overwrite an old value of
 the variable.

 Two aggregations are used in order to create the pair <variable> <value>.

 The aggregation PolicyVariableInSimplePolicyAction relates a
 SimplePolicyAction to a single variable instance. Similarly, the
 aggregation PolicyValueInSimplePolicyAction relates a SimplePolicyAction

Moore, et al. Expires: Feb 2001 + 6 months [Page 39]

Internet Draft PCIM Extensions February 2001

 to a single value instance. Both aggregations are defined in this
 document.

 NAME SimplePolicyAction
 DESCRIPTION A subclass of PolicyAction that introduces the notion
 of "SET variable TO value".
 DERIVED FROM PolicyAction
 ABSTRACT FALSE
 PROPERTIES (none)

5.8. The Class "CompoundPolicyAction"

 The CompoundPolicyAction class is used to represent an expression
 consisting of an ordered sequence of action terms. Each action term is
 represented as a subclass of the PolicyAction class, defined in [PCIM].
 Compound actions are constructed by associating dependent action terms
 together using the PolicyActionInPolicyAction aggregation.

 The class definition is as follows:

 NAME CompoundPolicyAction
 DESCRIPTION A class for representing sequenced action terms. Each
 action term is defined to be a subclass of the
 PolicyAction class.
 DERIVED FROM PolicyAction
 ABSTRACT FALSE
 PROPERTIES SequencedActions
 ExecutionStrategy

 This is a concrete class, and is therefore directly instantiable.

 The Property SequencedActions is identical to the SequencedActions
 property defined in PCIM for the class PolicyRule.

 The property ExecutionStrategy defines the execution strategy to be used
 upon the sequenced actions associated with this compound action. (An
 equivalent ExecutionStrategy property is also defined for the PolicyRule
 class, to provide the same indication for the sequenced actions
 associated with a PolicyRule.) This draft defines four execution
 strategies:

 Mandatory Do all û execute ALL actions that are part of the modeled
 set. If one or more of the sub-actions cannot be
 executed, none of the actions should be executed.
 Do until success û execute actions according to predefined order, until
 successful execution of a single sub-action.
 Do All - execute ALL actions which are part of the modeled
 set, according to their predefined order. Continue
 doing this, even if one or more of the sub-actions

 fails.

Moore, et al. Expires: Feb 2001 + 6 months [Page 40]

Internet Draft PCIM Extensions February 2001

 Do until Failure - execute actions according to predefined order, until
 the first failure in execution of a single sub-
 action.

 The property definition is as follows:

 NAME ExecutionStrategy
 DESCRIPTION An enumeration indicating how to interpret the action
 ordering for the actions aggregated by this
 CompoundPolicyAction.
 SYNTAX uint16 (ENUM, {1=Mandatory Do All, 2=Do Until Success,
 3=Do All, 4=Do Until Failure})
 DEFAULT VALUE Do All (3)

5.9. The Abstract Class "PolicyVariable"

 Variables are used for building individual conditions. The variable
 specifies the property of a flow or an event that should be matched when
 evaluating the condition. However, not every combination of a variable
 and a value creates a meaningful condition. For example, a source IP
 address variable can not be matched against a value that specifies a port
 number. A given variable selects the set of matchable value types.

 A variable can have constraints that limit the set of values within a
 particular value type that can be matched against it in a condition. For
 example, a source-port variable limits the set of values to represent
 integers to the range of 0-65535. Integers outside this range cannot be
 matched to the source-port variable, even though they are of the correct
 data type. Constraints for a given variable are indicated through the
 PolicyValueConstraintInVariable association.

 The PolicyVariable is an abstract class. Implicit and explicit context
 variable classes are defined as sub classes of the PolicyVariable class.
 A set of implicit variables is defined in this document as well.

 The class definition is as follows:

 NAME PolicyVariable
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES (none)

5.10. The Class "PolicyExplicitVariable"

 Explicitly defined policy variables are evaluated within the context of
 the CIM Schema and its modeling constructs. The PolicyExplicitVariable
 class indicates the exact model property to be evaluated or manipulated.

 The class definition is as follows:

 NAME PolicyExplicitVariable
 DERIVED FROM PolicyVariable

Moore, et al. Expires: Feb 2001 + 6 months [Page 41]

Internet Draft PCIM Extensions February 2001

 ABSTRACT False
 PROPERTIES ModelClass, ModelProperty

5.10.1. The Single-Valued Property "ModelClass"

 This property is a string specifying the class name whose property is
 evaluated or set as a PolicyVariable. The property is defined as
 follows:

 NAME ModelClass
 SYNTAX String

5.10.2. The Single-Valued Property ModelProperty

 This property is a string specifying the property name, within the
 ModelClass, which is evaluated or set as a PolicyVariable. The property
 is defined as follows:

 NAME ModelProperty
 SYNTAX String

5.11. The Abstract Class "PolicyImplicitVariable"

 Implicitly defined policy variables are evaluated outside of the context
 of the CIM Schema and its modeling constructs. Subclasses specify the
 data type and semantics of the PolicyVariables.

 Interpretation and evaluation of a PolicyImplicitVariable can vary,
 depending on the particular context in which it is used. For example, a
 "SourceIP" address may denote the source address field of an IP packet
 header, or the sender address delivered by an RSVP PATH message.

 The class definition is as follows:

 NAME PolicyImplicitVariable
 DERIVED FROM PolicyVariable
 ABSTRACT True
 PROPERTIES ValueTypes[]

5.11.1. The Multi-Valued Property "ValueTypes"

 This property is a set of strings specifying an unordered list of
 possible value/data types that can be used in simple conditions and
 actions, with this variable. The value types are specified by their
 class names (subclasses of PolicyValue such as PolicyStringValue). The
 list of class names enables an application to search on a specific name,
 as well as to ensure that the data type of the variable is of the correct
 type.

 The list of default ValueTypes for each subclass of
 PolicyImplicitVariable is specified within that variable's definition.

Moore, et al. Expires: Feb 2001 + 6 months [Page 42]

Internet Draft PCIM Extensions February 2001

 The property is defined as follows:

 NAME ValueTypes
 SYNTAX String

5.12. Subclasses of "PolicyImplicitVariable" Specified in PCIMe

 The following subclasses of PolicyImplicitVariable are defined in PCIMe.

5.12.1. The Class "PolicySourceIPVariable"

 NAME PolicySourceIPVariable
 DESCRIPTION The source IP address.

 ALLOWED VALUE TYPES:
 - PolicyIPv4AddrValue
 - PolicyIPv6AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.2. The Class "PolicyDestinationIPVariable"

 NAME PolicyDestinationIPVariable
 DESCRIPTION The destination IP address.

 ALLOWED VALUE TYPES:
 - PolicyIPv4AddrValue
 - PolicyIPv6AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.3. The Class "PolicySourcePortVariable"

 NAME PolicySourcePortVariable
 DESCRIPTION Ports are defined as the abstraction that transport
 protocols use to distinguish among multiple
 destinations within a given host computer. For TCP
 and UDP flows, the PolicySourcePortVariable is
 logically bound to the source port field.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable

 ABSTRACT FALSE
 PROPERTIES (none)

Moore, et al. Expires: Feb 2001 + 6 months [Page 43]

Internet Draft PCIM Extensions February 2001

5.12.4. The Class "PolicyDestinationPortVariable"

 NAME PolicyDestinationPortVariable
 DESCRIPTION Ports are defined as the abstraction that transport
 protocols use to distinguish among multiple
 destinations within a given host computer. For TCP
 and UDP flows, the PolicyDestinationPortVariable is
 logically bound to the destination port field.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.5. The Class "PolicyIPProtocolVariable"

 NAME PolicyIPProtocolVariable
 DESCRIPTION The IP protocol number.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.6. The Class "PolicyIPVersionVariable"

 NAME PolicyIPVersionVariable
 DESCRIPTION The IP version number. The well-known values are 4
 and 6.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.7. The Class "PolicyIPToSVariable"

 NAME PolicyIPToSVariable
 DESCRIPTION The IP TOS octet.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

Moore, et al. Expires: Feb 2001 + 6 months [Page 44]

Internet Draft PCIM Extensions February 2001

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.8. The Class "PolicyDSCPVariable"

 NAME PolicyDSCPVariable
 DESCRIPTION The 6 bit Differentiated Service Code Point.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.9. The Class "PolicySourceMACVariable"

 NAME PolicySourceMACVariable
 DESCRIPTION The source MAC address.

 ALLOWED VALUE TYPES:
 - PolicyMACAddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.10. The Class "PolicyDestinationMACVariable"

 NAME PolicyDestinationMACVariable
 DESCRIPTION The destination MAC address.

 ALLOWED VALUE TYPES:
 - PolicyMACAddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.11. The Class "PolicyVLANVariable"

 NAME PolicyVLANVariable
 DESCRIPTION The virtual Bridged Local Area Network Identifier, a
 12-bit field as defined in the IEEE 802.1q standard.

 ALLOWED VALUE TYPES:

 - PolicyIntegerValue
 - PolicyBitStringValue

Moore, et al. Expires: Feb 2001 + 6 months [Page 45]

Internet Draft PCIM Extensions February 2001

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.12. The Class "PolicyCoSVariable"

 NAME PolicyCoSVariable
 DESCRIPTION Class of Service, a 3-bit field, used in the layer 2
 header to select the forwarding treatment. Bound to
 the IEEE 802.1q user-priority field.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.13. The Class "PolicyEthertypeVariable"

 NAME PolicyEthertypeVariable
 DESCRIPTION The Ethertype protocol number of Ethernet frames.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.14. The Class "PolicySourceSAPVariable"

 NAME PolicySourceSAPVariable
 DESCRIPTION The Source SAP number.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.15. The Class "PolicyDestinationSAPVariable"

 NAME PolicyDestinationSAPVariable
 DESCRIPTION The Destination SAP number.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue

Moore, et al. Expires: Feb 2001 + 6 months [Page 46]

Internet Draft PCIM Extensions February 2001

 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.16. The Class "PolicySNAPVariable"

 NAME PolicySNAPVariable
 DESCRIPTION The protocol number over a SNAP SAP encapsulation.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue
 - PolicyBitStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

5.12.17. The Class "PolicyFlowDirectionVariable"

 NAME PolicyFlowDirectionVariable
 DESCRIPTION The direction of a flow relative to a network element.
 Direction may be "IN" and/or "OUT".

 ALLOWED VALUE TYPES:
 - PolicyStringValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

 To match on both inbound and outbound flows, the associated
 PolicyStringValue object has two entries in its StringList property: "IN"
 and "OUT".

5.13. The Abstract Class "PolicyValue"

 This is an abstract class that serves as the base class for all
 subclasses that are used to define value objects in the PCIMe. It is
 used for defining values and constants used in policy conditions. The
 class definition is as follows:

 NAME PolicyValue
 DERIVED FROM Policy
 ABSTRACT True
 PROPERTIES (none)

Moore, et al. Expires: Feb 2001 + 6 months [Page 47]

Internet Draft PCIM Extensions February 2001

5.14. Subclasses of "PolicyValue" Specified in PCIMe

 The following subsections contain the PolicyValue subclasses defined in
 PCIMe. Additional subclasses may be defined in models derived from
 PCIMe.

5.14.1. The Class "PolicyIPv4AddrValue"

 This class is used to provide a list of IPv4Addresses, hostnames and
 address range values to be matched against in a policy condition. The
 class definition is as follows:

 NAME PolicyIPv4AddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES IPv4AddrList[]

 The IPv4AddrList property provides an unordered list of strings, each
 specifying a single IPv4 address, a hostname, or a range of IPv4
 addresses, according to the ABNF definition [8] of an IPv4 address, as
 specified below:

 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 IPv4prefix = IPv4address "/" 1*2DIGIT
 IPv4range = IPv4address"-"IPv4address
 IPv4maskedaddress = IPv4address","IPv4address
 Hostname (as defined in [9])

 In the above definition, each string entry is either:

 1. A single Ipv4address in dot notation, as defined above. Example:
 121.1.1.2

 2. An IPv4prefix address range, as defined above, specified by an
 address and a prefix length, separated by "/". Example:
 2.3.128.0/15

 3. An IPv4range address range defined above, specified by a starting
 address in dot notation and an ending address in dot notation,
 separated by "-". The range includes all addresses between the
 range's starting and ending addresses, including these two
 addresses. Example: 1.1.22.1-1.1.22.5

 4. An IPv4maskedaddress address range, as defined above, specified by
 an address and mask. The address and mask are represented in dot
 notation, separated by a comma ",". The masked address appears
 before the comma, and the mask appears after the comma. Example:
 2.3.128.0,255.255.248.0.

 5. A single Hostname. The Hostname format follows the guidelines and
 restrictions specified in [9]. Example: www.bigcompany.com.

Moore, et al. Expires: Feb 2001 + 6 months [Page 48]

Internet Draft PCIM Extensions February 2001

 The property definition is as follows:

 NAME IPv4AddrList
 SYNTAX String
 FORMAT IPv4address | IPv4prefix | IPv4range |
 IPv4maskedaddress | hostname

5.14.2. The Class "PolicyIPv6AddrValue

 This class is used to define a list of IPv6 addresses, hostnames, and
 address range values. The class definition is as follows:

 NAME PolicyIPv6AddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES IPv6AddrList[]

 The property IPv6AddrList provides an unordered list of strings, each
 specifying an IPv6 address, a hostname, or a range of IPv6 addresses.
 IPv6 address format definition uses the standard address format defined
 in [10]. The ABNF definition [8] as specified in [10] is:

 IPv6address = hexpart [":" IPv4address]
 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 IPv6prefix = hexpart "/" 1*2DIGIT
 hexpart = hexseq | hexseq "::" [hexseq] | "::" [hexseq]
 hexseq = hex4 *(":" hex4)
 hex4 = 1*4HEXDIG
 IPv6range = IPv6address"-"IPv6address
 IPv6maskedaddress = IPv6address","IPv6address
 Hostname (as defines in [NAMES])

 Each string entry is either:

 1. A single IPv6address as defined above.

 2. A single Hostname. Hostname format follows guidelines and
 restrictions specified in [9].

 3. An IPv6range address range, specified by a starting address in dot
 notation and an ending address in dot notation, separated by "-".
 The range includes all addresses between the range's starting and
 ending addresses, including these two addresses.

 4. An IPv4maskedaddress address range defined above specified by an
 address and mask. The address and mask are represented in dot
 notation separated by a comma ",".

 5. A single IPv6prefix as defined above.

Moore, et al. Expires: Feb 2001 + 6 months [Page 49]

Internet Draft PCIM Extensions February 2001

5.14.3. The Class "PolicyMACAddrValue"

 This class is used to define a list of MAC addresses and MAC address
 range values. The class definition is as follows:

 NAME PolicyMACAddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES MACAddrList[]

 The property MACAddrList provides an unordered list of strings, each
 specifying a MAC address or a range of MAC addresses. The 802 MAC
 address canonical format is used. The ABNF definition [8] is:

 MACaddress = 1*4HEXDIG ":" 1*4HEXDIG ":" 1*4HEXDIG
 MACmaskedaddress = MACaddress","MACaddress

 Each string entry is either:

 1. A single MAC address. Example: 0000:00A5:0000

 2. A MACmaskedaddress address range defined specified by an address
 and mask. The mask specifies the relevant bits in the address.
 Example: 0000:00A5:0000,FFFF:FFFF:0000 defines a range of MAC
 addresses in which the first four octets are equal to 0000:00A5.

 The property definition is as follows:

 NAME MACAddrList
 SYNTAX String
 FORMAT MACaddress | MACmaskedaddress

5.14.4. The Class "PolicyStringValue"

 This class is used to represent a single string value, or a set of string
 values. Each value can have wildcards. The class definition is as
 follows:

 NAME PolicyStringValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES StringList[]

 The property StringList provides an unordered list of strings, each
 representing a single string with wildcards. The asterisk character "*"
 is used as a wildcard, and represents an arbitrary substring replacement.
 For example, the value "abc*def" matches the string "abcxyzdef", and the

 value "abc*def*" matches the string "abcxxxdefyyyzzz". The syntax
 definition is identical to the substring assertion syntax defined in
 [11]. If the asterisk character is required as part of the string value
 itself, it MUST be quoted as described in section 4.3 of [11].

Moore, et al. Expires: Feb 2001 + 6 months [Page 50]

Internet Draft PCIM Extensions February 2001

 The property definition is as follows:

 NAME StringList
 SYNTAX String

5.14.5. The Class "PolicyBitStringValue"

 This class is used to represent a single bit string value, or a set of
 bit string values. The class definition is as follows:

 NAME PolicyBitStringValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES BitStringList[]

 The property BitStringList provides an unordered list of strings, each
 representing a single bit string or a set of bit strings. The number of
 bits specified SHOULD equal the number of bits of the expected variable.
 For example, for a one-octet variable, 8 bits should be specified. If
 the variable does not have a fixed length, the bit string should be
 matched against the variable's most significant bit string. The formal
 definition of a bit string is:

 binary-digit = "0" / "1"
 bitString = 1*binary-digit
 maskedBitString = bitString","bitString

 Each string entry is either:

 1. A single bit string. Example: 00111010

 2. A range of bit strings specified using a bit string and a bit
 mask. The bit string and mask fields have the same number of bits
 specified. The mask bit string specifies the significant bits in
 the bit string value. For example, 110110, 100110 and 110111
 would match the maskedBitString 100110,101110 but 100100 would
 not.

 The property definition is as follows:

 NAME BitStringList
 SYNTAX String
 FORMAT bitString | maskedBitString

5.14.6. The Class "PolicyIntegerValue"

 This class provides a list of integer and integer range values. Integers
 of arbitrary sizes can be represented. The class definition is as

 follows:

 NAME PolicyIntegerValue
 DERIVED FROM PolicyValue

Moore, et al. Expires: Feb 2001 + 6 months [Page 51]

Internet Draft PCIM Extensions February 2001

 ABSTRACT False
 PROPERTIES IntegerList[]

 The property IntegerList provides an unordered list of integers and
 integer range values, represented as strings. The format of this
 property takes one of the following forms:

 1. An integer value.

 2. A range of integers. The range is specified by a starting integer
 and an ending integer, separated by '-'. The starting integer
 MUST be less than or equal to the ending integer. The range
 includes all integers between the starting and ending integers,
 including these two integers. Care must be taken in reading
 integer ranges involving negative integers, since the unary minus
 and the range indicator are the same character '-'.

 To represent a range of integers that is not bounded, the reserved words
 -INFINITY and/or INFINITY can be used in place of the starting and ending
 integers.

 The ABNF definition [8] is:

 integer = [-]1*DIGIT | "INFINITY" | "-INFINITY"
 integerrange = integer"-"integer

 Using ranges, the operators greater-than, greater-than-or-equal-to, less-
 than, and less-than-or-equal-to can be expressed. For example, "X is-
 greater-than 5" (where X is an integer) can be translated to "X matches
 6-INFINITY". This enables the match condition semantics of the operator
 for the SimplePolicyCondition class to be kept simple (i.e., just the
 value "match").

 The property definition is as follows:

 NAME IntegerList
 SYNTAX String
 FORMAT integer | integerrange

5.14.7. The Class "PolicyBooleanValue"

 This class is used to represent a Boolean (TRUE/FALSE) value. The class
 definition is as follows:

 NAME PolicyBooleanValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES BooleanValue

 The property definition is as follows:

 NAME BooleanValue

Moore, et al. Expires: Feb 2001 + 6 months [Page 52]

Internet Draft PCIM Extensions February 2001

 SYNTAX boolean

5.15. The Class "PolicyRoleCollection"

 This class represents a collection of managed elements that share a
 common role. The PolicyRoleCollection always exists in the context of a
 system, specified using the PolicyRoleCollectionInSystem association.
 The value of the PolicyRole property in this class specifies the role,
 and can be matched with the value(s) in the PolicyRoles array in
 PolicyRules and PolicyGroups. ManagedElements that share the role
 defined in this collection are aggregated into the collection via the
 association ElementInPolicyRoleCollection.

 NAME PolicyRoleCollection
 DESCRIPTION A subclass of the CIM Collection class used to group
 together managed elements that share a role.
 DERIVED FROM Collection
 ABSTRACT FALSE
 PROPERTIES PolicyRole

5.15.1. The Single-Valued Property "PolicyRole"

 This property represents the role associated with a PolicyRoleCollection.
 The property definition is as follows:

 NAME PolicyRole
 DESCRIPTION A string representing the role associated with a
 PolicyRoleCollection.
 SYNTAX string

5.16. The Class "ReusablePolicyContainer"

 The new class ReusablePolicyContainer is defined as follows:

 NAME ReusablePolicyContainer
 DESCRIPTION A class representing an administratively defined
 container for reusable policy-related information.
 This class does not introduce any additional
 properties beyond those in its superclass AdminDomain.
 It does, however, participate in a number of unique
 associations.
 DERIVED FROM AdminDomain
 ABSTRACT FALSE
 PROPERTIES (none)

5.17. Deprecation of PCIM's Class "PolicyRepository"

 The class definition of PolicyRepository (from PCIM) is updated as

 follows, with an indication that the class has been deprecated. Note
 that when an element of the model is deprecated, its replacement element
 is identified explicitly.

Moore, et al. Expires: Feb 2001 + 6 months [Page 53]

Internet Draft PCIM Extensions February 2001

 NAME PolicyRepository
 DEPRECATED FOR ReusablePolicyContainer
 DESCRIPTION A class representing an administratively defined
 container for reusable policy-related information.
 This class does not introduce any additional
 properties beyond those in its superclass AdminDomain.
 It does, however, participate in a number of unique
 associations.
 DERIVED FROM AdminDomain
 ABSTRACT FALSE
 PROPERTIES (none)

6. Association and Aggregation Definitions

 The following definitions supplement those in PCIM itself. PCIM
 definitions that are not DEPRECATED here are still current parts of the
 overall Policy Core Information Model.

6.1. The Abstract Aggregation "PolicySetComponent"

 PolicySetComponent is a new abstract aggregation class that collects
 instances of PolicySet subclasses (PolicyGroups and PolicyRules) into
 coherent sets of policies.

 NAME PolicySetComponent
 DESCRIPTION An abstract class representing the components of a
 policy set that have the same decision strategy, and
 are prioritized within the set.
 DERIVED FROM PolicyComponent
 ABSTRACT TRUE
 PROPERTIES GroupComponent[ref PolicySet[0..n]]
 PartComponent[ref PolicySet[0..n]]
 Priority

 The definition of the Priority property is unchanged from its previous
 definition in [PCIM].

 NAME Priority
 DESCRIPTION A non-negative integer for prioritizing this PolicySet
 component relative to other components of the same
 PolicySet. A larger value indicates a higher
 priority.
 SYNTAX uint16
 DEFAULT VALUE 0

6.2. Update to PCIM's Aggregation "PolicyGroupInPolicyGroup"

 The PolicyGroupInPolicyGroup aggregation class is modified to be derived
 from PolicySetComponent.

Moore, et al. Expires: Feb 2001 + 6 months [Page 54]

Internet Draft PCIM Extensions February 2001

 NAME PolicyGroupInPolicyGroup
 DESCRIPTION A class representing the aggregation of PolicyGroups
 by a higher-level PolicyGroup.
 DERIVED FROM PolicySetComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyGroup[0..n]]

6.3. Update to PCIM's Aggregation "PolicyRuleInPolicyGroup"

 The PolicyRuleInPolicyGroup aggregation class is modified to be derived
 from PolicySetComponent.

 NAME PolicyRuleInPolicyGroup
 DESCRIPTION A class representing the aggregation of PolicyRules by
 a PolicyGroup.
 DERIVED FROM PolicySetComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyRule[0..n]]

6.4. The Aggregation "PolicyGroupInPolicyRule"

 A policy rule may aggregate one or more policy groups, via the
 PolicyGroupInPolicyRule aggregation. Grouping of policy groups and their
 subclasses into a policy rule is for administrative convenience,
 scalability and manageability, as it enables more complex policies to be
 constructed from multiple simpler policies.

 Policy rules do not have to contain policy groups. In addition, a policy
 group may also be used by itself, without belonging to a policy rule, and
 policy rules may be individually aggregated by other policy rules by the
 PolicyRuleInPolicyRule aggregation. Note that it is assumed that this
 aggregation is used to form directed acyclic graphs and NOT ring
 structures.

 The class definition for this aggregation is as follows:

 NAME PolicyGroupInPolicyRule
 DERIVED FROM PolicySetComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]
 PartComponent[ref PolicyGroup[0..n]]

 The reference property "GroupComponent" is inherited from
 PolicySetComponent, and overridden to become an object reference to a
 PolicyRule that contains one or more PolicyGroups. Note that for any
 single instance of the aggregation class PolicyGroupInPolicyRule, this
 property (like all reference properties) is single-valued. The [0..n]

 cardinality indicates that there may be 0, 1 or more than one PolicyRules
 that contain any given PolicyGroup.

Moore, et al. Expires: Feb 2001 + 6 months [Page 55]

Internet Draft PCIM Extensions February 2001

 The reference property "PartComponent" is inherited from
 PolicySetComponent, and overridden to become an object reference to a
 PolicyGroup contained by one or more PolicyRules. Note that for any
 single instance of the aggregation class PolicyGroupInPolicyRule, this
 property (like all reference properties) is single-valued. The [0..n]
 cardinality indicates that a given PolicyRule may contain 0, 1, or more
 than one PolicyGroup.

6.5. The Aggregation "PolicyRuleInPolicyRule"

 A policy rule may aggregate one or more policy rules, via the
 PolicyRuleInPolicyRule aggregation. The ability to nest policy rules and
 form sub-rules is important for manageability and scalability, as it
 enables complex policy rules to be constructed from multiple simpler
 policy rules.

 A policy rule does not have to contain sub-rules. A policy rule may
 contain a group of sub-rules using the PolicyGroupInPolicyRule
 aggregation. Note that it is assumed that this aggregation is used to
 form directed a-cyclic graphs and NOT ring structures.

 The class definition for this aggregation is as follows:

 NAME PolicyRuleInPolicyRule
 DERIVED FROM PolicySetComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]
 PartComponent[ref PolicyRule[0..n]]

 The reference property "GroupComponent" is inherited from
 PolicySetComponent, and overridden to become an object reference to a
 PolicyRule that contains one or more PolicyRules. Each contained
 PolicyRule can be conceptualized as a sub-rule of the containing
 PolicyRule. This nesting can be done to any desired level. However, the
 deeper the nesting, the more complex the results of the decisions taken
 by the nested rules.

 Note that for any single instance of the aggregation class
 PolicyRuleInPolicyRule, this property is single-valued. The [0..n]
 cardinality indicates that there may be 0, 1 or more than one
 PolicyRules that contain any given PolicyRule.

 The reference property "PartComponent" is inherited from
 PolicySetComponent, and overridden to become an object reference to a
 PolicyRule contained by a PolicyRule. Note that for any single instance
 of the aggregation class PolicyRuleInPolicyRule, this property is single-
 valued. The [0..n] cardinality indicates that a given PolicyRule may
 contain 0, 1, or more than one other PolicyRules.

6.6. The Abstract Aggregation "CompoundedPolicyCondition"

 NAME CompoundedPolicyCondition

Moore, et al. Expires: Feb 2001 + 6 months [Page 56]

Internet Draft PCIM Extensions February 2001

 DESCRIPTION A class representing the aggregation of
 PolicyConditions by an aggregating instance.
 DERIVED FROM PolicyComponent
 ABSTRACT TRUE
 PROPERTIES PartComponent[ref PolicyCondition[0..n]]
 GroupNumber
 ConditionNegated

6.7. Update to PCIM's Aggregation "PolicyConditionInPolicyRule"

 The PCIM aggregation "PolicyConditionInPolicyRule" is updated, to make it
 a subclass of the new abstract aggregation CompoundedPolicyCondition.
 The properties GroupNumber and ConditionNegated are now inherited, rather
 than specified explicitly as they were in PCIM.

 NAME PolicyConditionInPolicyRule
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by a PolicyRule.
 DERIVED FROM CompoundedPolicyCondition
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]

6.8. The Aggregation "PolicyConditionInPolicyCondition"

 A second subclass of CompoundedPolicyCondition is defined, representing
 the compounding of policy conditions into a higher-level policy
 condition.

 NAME PolicyConditionInPolicyCondition
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by another PolicyCondition.
 DERIVED FROM CompoundedPolicyCondition
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyCondition[0..n]]

6.9. The Abstract Aggregation "CompoundedPolicyAction"

 NAME CompoundedPolicyAction
 DESCRIPTION A class representing the aggregation of PolicyActions
 by an aggregating instance.
 DERIVED FROM PolicyComponent
 ABSTRACT TRUE
 PROPERTIES PartComponent[ref PolicyAction[0..n]]
 ActionOrder

6.10. Update to PCIM's Aggregation "PolicyActionInPolicyRule"

 The PCIM aggregation "PolicyActionInPolicyRule" is updated, to make it a
 subclass of the new abstract aggregation CompoundedPolicyAction. The

Moore, et al. Expires: Feb 2001 + 6 months [Page 57]

Internet Draft PCIM Extensions February 2001

 property ActionOrder is now inherited, rather than specified explicitly
 as it was in PCIM.

 NAME PolicyActionInPolicyRule
 DESCRIPTION A class representing the aggregation of PolicyActions
 by a PolicyRule.
 DERIVED FROM CompoundedPolicyAction
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]

6.11. The Aggregation "PolicyActionInPolicyAction"

 A second subclass of CompoundedPolicyAction is defined, representing the
 compounding of policy actions into a higher-level policy action.

 NAME PolicyActionInPolicyAction
 DESCRIPTION A class representing the aggregation of PolicyActions
 by another PolicyAction.
 DERIVED FROM CompoundedPolicyAction
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyAction[0..n]]

6.12. The Aggregation "PolicyVariableInSimplePolicyCondition"

 A simple policy condition is represented as an ordered triplet {variable,
 operator, value}. This aggregation provides the linkage between a
 SimplePolicyCondition instance and a single PolicyVariable. The
 aggregation PolicyValueInSimplePolicyCondition links the
 SimplePolicyCondition to a single PolicyValue. The Operator property of
 SimplePolicyCondition represents the third element of the triplet, the
 operator.

 The class definition for this aggregation is as follows:

 NAME PolicyVariableInSimplePolicyCondition
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyCondition[0..n]]
 PartComponent[ref PolicyVariable[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyCondition that contains exactly one PolicyVariable. Note
 that for any single instance of the aggregation class
 PolicyVariableInSimplePolicyCondition, this property is single-valued.
 The [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyCondition objects that contain any given policy variable
 object.

 The reference property "PartComponent" is inherited from PolicyComponent,
 and overridden to become an object reference to a PolicyVariable that is

Moore, et al. Expires: Feb 2001 + 6 months [Page 58]

Internet Draft PCIM Extensions February 2001

 defined within the scope of a SimplePolicyCondition. Note that for any
 single instance of the association class
 PolicyVariableInSimplePolicyCondition, this property (like all reference
 properties) is single-valued. The [1..1] cardinality indicates that a
 SimplePolicyCondition must have exactly one policy variable defined
 within its scope in order to be meaningful.

6.13. The Aggregation "PolicyValueInSimplePolicyCondition"

 A simple policy condition is represented as an ordered triplet {variable,
 operator, value}. This aggregation provides the linkage between a
 SimplePolicyCondition instance and a single PolicyValue. The aggregation
 PolicyVariableInSimplePolicyCondition links the SimplePolicyCondition to
 a single PolicyVariable. The Operator property of SimplePolicyCondition
 represents the third element of the triplet, the operator.

 The class definition for this aggregation is as follows:

 NAME PolicyValueInSimplePolicyCondition
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyCondition[0..n]]
 PartComponent[ref PolicyValue[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyCondition that contains exactly one PolicyValue. Note that
 for any single instance of the aggregation class
 PolicyValueInSimplePolicyCondition, this property is single-valued. The
 [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyCondition objects that contain any given policy value object.

 The reference property "PartComponent" is inherited from PolicyComponent,
 and overridden to become an object reference to a PolicyValue that is
 defined within the scope of a SimplePolicyCondition. Note that for any
 single instance of the association class
 PolicyValueInSimplePolicyCondition, this property (like all reference
 properties) is single-valued. The [1..1] cardinality indicates that a
 SimplePolicyCondition must have exactly one policy value defined within
 its scope in order to be meaningful.

6.14. The Aggregation "PolicyVariableInSimplePolicyAction"

 A simple policy action is represented as a pair {variable, value}. This
 aggregation provides the linkage between a SimplePolicyAction instance
 and a single PolicyVariable. The aggregation
 PolicyValueInSimplePolicyAction links the SimplePolicyAction to a single
 PolicyValue.

 The class definition for this aggregation is as follows:

Moore, et al. Expires: Feb 2001 + 6 months [Page 59]

Internet Draft PCIM Extensions February 2001

 NAME PolicyVariableInSimplePolicyAction
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyAction[0..n]]
 PartComponent[ref PolicyVariable[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyAction that contains exactly one PolicyVariable. Note that
 for any single instance of the aggregation class
 PolicyVariableInSimplePolicyAction, this property is single-valued. The
 [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyAction objects that contain any given policy variable object.

 The reference property "PartComponent" is inherited from PolicyComponent,
 and overridden to become an object reference to a PolicyVariable that is
 defined within the scope of a SimplePolicyAction. Note that for any
 single instance of the association class
 PolicyVariableInSimplePolicyAction, this property (like all reference
 properties) is single-valued. The [1..1] cardinality indicates that a
 SimplePolicyAction must have exactly one policy variable defined within
 its scope in order to be meaningful.

6.15. The Aggregation "PolicyValueInSimplePolicyAction"

 A simple policy action is represented as a pair {variable, value}. This
 aggregation provides the linkage between a SimplePolicyAction instance
 and a single PolicyValue. The aggregation
 PolicyVariableInSimplePolicyAction links the SimplePolicyAction to a
 single PolicyVariable.

 The class definition for this aggregation is as follows:

 NAME PolicyValueInSimplePolicyAction
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyAction[0..n]]
 PartComponent[ref PolicyValue[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyAction that contains exactly one PolicyValue. Note that for
 any single instance of the aggregation class
 PolicyValueInSimplePolicyAction, this property is single-valued. The
 [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyAction objects that contain any given policy value object.

 The reference property "PartComponent" is inherited from PolicyComponent,

 and overridden to become an object reference to a PolicyValue that is
 defined within the scope of a SimplePolicyAction. Note that for any
 single instance of the association class PolicyValueInSimplePolicyAction,

Moore, et al. Expires: Feb 2001 + 6 months [Page 60]

Internet Draft PCIM Extensions February 2001

 this property (like all reference properties) is single-valued. The
 [1..1] cardinality indicates that a SimplePolicyAction must have exactly
 one policy value defined within its scope in order to be meaningful.

6.16. The Association "ReusablePolicy"

 The association ReusablePolicy makes it possible to include any subclass
 of the abstract class "Policy" in a ReusablePolicyContainer.

 NAME ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 policy element in a ReusablePolicyContainer. Reusable
 elements may be PolicyGroups, PolicyRules,
 PolicyConditions, PolicyActions, PolicyVariables,
 PolicyValues, or instances of any other subclasses of
 the abstract class Policy.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref ReusablePolicyContainer[0..1]]

6.17. Deprecate PCIM's "PolicyConditionInPolicyRepository"

 NAME PolicyConditionInPolicyRepository
 DEPRECATED FOR ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyCondition in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyCondition[0..n]]

6.18. Deprecate PCIM's "PolicyActionInPolicyRepository"

 NAME PolicyActionInPolicyRepository
 DEPRECATED FOR ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyAction in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyAction[0..n]]

6.19. The Association PolicyValueConstraintInVariable

 This association links a PolicyValue object to a PolicyVariable object,
 modeling specific value constraints. Using this association, a variable
 (instance) may be constrained to be bound-to/assigned only a set of
 allowed values. For example, modeling an enumerated source port

 variable, one creates an instance of the PolicySourcePortVariable class
 and associates it with the set of values (integers) representing the

Moore, et al. Expires: Feb 2001 + 6 months [Page 61]

Internet Draft PCIM Extensions February 2001

 allowed enumeration, using appropriate number of instances of the
 PolicyValueConstraintInVariable association.

 Note that a single variable instance may be constrained by any number of
 values and a single value may be used to constrain any number of
 variables. These relationships are manifested by the n-to-m cardinality
 of the association.

 The class definition for the association is as follows:

 NAME PolicyValueConstraintInVariable
 DESCRIPTION A class representing the association of a constraints
 object to a variable object.
 DERIVED FROM Dependency
 ABSTRACT FALSE
 PROPERTIES Antecedent [ref PolicyVariable[0..n]]
 Dependent [ref PolicyValue [0..n]]

 The reference property Antecedent is inherited from Dependency. Its type
 and cardinality are overridden to provide the semantics of a variable
 optionally having value constraints. The [0..n] cardinality indicates
 that any number of variables may be constrained by a given value.

 The reference property "Dependent" is inherited from Dependency, and
 overridden to become an object reference to a PolicyValue that is used to
 constrain the values that a particular PolicyVariable can have. The
 [0..n] cardinality indicates that a given policy variable may have 0, 1
 or more than one PolicyValues defined to model the constraints on the
 values that the policy variable can take.

6.20. The Aggregation "PolicyContainerInPolicyContainer"

 The aggregation PolicyContainerInPolicyContainer provides for nesting of
 one ReusablePolicyContainer inside another one.

 NAME PolicyContainerInPolicyContainer
 DESCRIPTION A class representing the aggregation of
 ReusablePolicyContainers by a higher-level
 ReusablePolicyContainer.
 DERIVED FROM SystemComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref ReusablePolicyContainer [0..n]]
 PartComponent[ref ReusablePolicyContainer [0..n]]

6.21. Deprecate PCIM's "PolicyRepositoryInPolicyRepository"

 NAME PolicyRepositoryInPolicyRepository
 DEPRECATED FOR PolicyContainerInPolicyContainer

 DESCRIPTION A class representing the aggregation of
 PolicyRepositories by a higher-level PolicyRepository.
 DERIVED FROM SystemComponent
 ABSTRACT FALSE

Moore, et al. Expires: Feb 2001 + 6 months [Page 62]

Internet Draft PCIM Extensions February 2001

 PROPERTIES GroupComponent[ref PolicyRepository[0..n]]
 PartComponent[ref PolicyRepository[0..n]]

6.22. The Aggregation "ElementInPolicyRoleCollection"

 The following aggregation is used to associate ManagedElements with a
 PolicyRoleCollection object that represents a role played by these
 ManagedElements.

 NAME ElementInPolicyRoleCollection
 DESCRIPTION A class representing the inclusion of a ManagedElement
 in a collection, specified as having a given role.
 All the managed elements in the collection share the
 same role.
 DERIVED FROM MemberOfCollection
 ABSTRACT FALSE
 PROPERTIES Collection[ref PolicyRoleCollection [0..n]]
 Member[ref ManagedElement [0..n]]

6.22.1. The Weak Association "PolicyRoleCollectionInSystem"

 A PolicyRoleCollection is defined within the scope of a System. This
 association links a PolicyRoleCollection to the System in whose scope it
 is defined.

 When associating a PolicyRoleCollection with a System, this should be
 done consistently with the system that scopes the policy rules/groups
 that are applied to the resources in that collection. A
 PolicyRoleCollection is associated with the same system as the applicable
 PolicyRules and/or PolicyGroups, or to a System higher in the tree formed
 by the SystemComponent association.

 The class definition for the association is as follows:

 NAME PolicyRoleCollectionInSystem
 DESCRIPTION A class representing the fact that a
 PolicyRoleCollection is defined within the scope of a
 System.
 DERIVED FROM Dependency
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent[ref PolicyRoleCollection[weak]]

 The reference property Antecedent is inherited from Dependency, and
 overridden to restrict its cardinality to [1..1]. It serves as an object
 reference to a System that provides a scope for one or more
 PolicyRoleCollections. Since this is a weak association, the cardinality

 for this object reference is always 1, that is, a PolicyRoleCollection is
 always defined within the scope of exactly one System.

 The reference property Dependent is inherited from Dependency, and
 overridden to become an object reference to a PolicyRoleCollection

Moore, et al. Expires: Feb 2001 + 6 months [Page 63]

Internet Draft PCIM Extensions February 2001

 defined within the scope of a System. Note that for any single instance
 of the association class PolicyRoleCollectionInSystem, this property
 (like all Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given System may have 0, 1, or more than one
 PolicyRoleCollections defined within its scope.

7. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to pertain to
 the implementation or use of the technology described in this document or
 the extent to which any license under such rights might or might not be
 available; neither does it represent that it has made any effort to
 identify any such rights. Information on the IETF's procedures with
 respect to rights in standards-track and standards-related documentation
 can be found in BCP-11.

 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an attempt
 made to obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification can be
 obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary rights
 which may cover technology that may be required to practice this
 standard. Please address the information to the IETF Executive Director.

8. Acknowledgements

 The starting point for this document was PCIM itself [3], and the first
 three submodels derived from it [5], [6], [7]. The authors of these
 documents created the extensions to PCIM, and asked the questions about
 PCIM, that are reflected in PCIMe.

9. Security Considerations

 The Policy Core Information Model (PCIM) [3] describes the general
 security considerations related to the general core policy model. The
 extensions defined in this document do not introduce any additional
 considerations related to security.

10. References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

https://datatracker.ietf.org/doc/html/bcp11

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Hovey, R., and S. Bradner, "The Organizations Involved in the IETF
 Standards Process", BCP 11, RFC 2028, October 1996.

Moore, et al. Expires: Feb 2001 + 6 months [Page 64]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2028

Internet Draft PCIM Extensions February 2001

 [3] Strassner, J., and E. Ellesson, B. Moore, A. Westerinen, "Policy Core
 Information Model -- Version 1 Specification", RFC 3060, February
 2001.

 [4] Distributed Management Task Force, Inc., "DMTF Technologies: CIM
 Standards û CIM Schema: Version 2.5", available via links on the
 following DMTF web page: http://www.dmtf.org/spec/cim_schema_v25.html.

 [5] Snir, Y., and Y. Ramberg, J. Strassner, R. Cohen, "Policy Framework
 QoS Information Model", work in progress, draft-ietf-policy-qos-info-

model-02.txt, November 2000.

 [6] Jason, J., and L. Rafalow, E. Vyncke, "IPsec Configuration Policy
 Model", work in progress, draft-ietf-ipsp-config-policy-model-02.txt,
 March 2001.

 [7] Chadha, R., and M. Brunner, M. Yoshida, J. Quittek, G. Mykoniatis, A.
 Poylisher, R. Vaidyanathan, A. Kind, F. Reichmeyer, "Policy Framework
 MPLS Information Model for QoS and TE", work in progress, draft-

chadha-policy-mpls-te-01.txt, December 2000.

 [8] Crocker, D., and P. Overell, "Augmented BNF for Syntax Specifications:
 ABNF", RFC 2234, November 1997.

 [9] P. Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION",
RFC1035, November 1987.

 [10] R. Hinden, S. Deering, "IP Version 6 Addressing Architecture",
RFC2373, July 1998.

 [11] M. Wahl, A. Coulbeck, "Lightweight Directory Access Protocol (v3):
 Attribute Syntax Definitions", RFC 2252.

 [12] A. Westerinen, et al., "Policy Terminology", <draft-ietf-policy-
terminology-01.txt>, November 2000.

 [13] S. Waldbusser, and J. Saperia, T. Hongal, "Policy Based Management
 MIB", <draft-ietf-snmpconf-pm-04.txt>, November 2000.

11. Authors' Addresses

 Bob Moore
 IBM Corporation, BRQA/502
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709
 Phone: +1 919-254-4436
 Fax: +1 919-254-6243
 E-mail: remoore@us.ibm.com

https://datatracker.ietf.org/doc/html/rfc3060
http://www.dmtf.org/spec/cim_schema_v25.html
https://datatracker.ietf.org/doc/html/draft-ietf-policy-qos-info-model-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-qos-info-model-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsp-config-policy-model-02.txt
https://datatracker.ietf.org/doc/html/draft-chadha-policy-mpls-te-01.txt
https://datatracker.ietf.org/doc/html/draft-chadha-policy-mpls-te-01.txt
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2252
https://datatracker.ietf.org/doc/html/draft-ietf-policy-terminology-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-terminology-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-snmpconf-pm-04.txt

 Lee Rafalow
 IBM Corporation, BRQA/502

Moore, et al. Expires: Feb 2001 + 6 months [Page 65]

Internet Draft PCIM Extensions February 2001

 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709
 Phone: +1 919-254-4455
 Fax: +1 919-254-6243
 E-mail: rafalow@us.ibm.com

 Yoram Ramberg
 Cisco Systems
 4 Maskit Street
 Herzliya Pituach, Israel 46766
 Phone: +972-9-970-0081
 Fax: +972-9-970-0219
 E-mail: yramberg@cisco.com

 Yoram Snir
 Cisco Systems
 4 Maskit Street
 Herzliya Pituach, Israel 46766
 Phone: +972-9-970-0085
 Fax: +972-9-970-0366
 E-mail: ysnir@cisco.com

 John Strassner
 Cisco Systems
 Building 20
 725 Alder Drive
 Milpitas, CA 95035
 Phone: +1-408-527-1069
 Fax: +1-408-527-2477
 E-mail: johns@cisco.com

 Andrea Westerinen
 Cisco Systems
 Building 20
 725 Alder Drive
 Milpitas, CA 95035
 Phone: +1-408-853-8294
 Fax: +1-408-527-6351
 E-mail: andreaw@cisco.com

 Ritu Chadha
 Telcordia Technologies
 MCC 1J-218R
 445 South Street
 Morristown NJ 07960.
 Phone: +1-973-829-4869
 Fax: +1-973-829-5889
 E-mail: chadha@research.telcordia.com

 Marcus Brunner
 NEC Europe Ltd.
 C&C Research Laboratories

Moore, et al. Expires: Feb 2001 + 6 months [Page 66]

Internet Draft PCIM Extensions February 2001

 Adenauerplatz 6
 D-69115 Heidelberg, Germany
 Phone: +49 (0)6221 9051129
 Fax: +49 (0)6221 9051155
 E-mail: brunner@ccrle.nec.de

 Ron Cohen
 Ntear LLC
 Phone:
 Fax:
 E-mail: ronc@ntear.com

12. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it or
 assist in its implementation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are included
 on all such copies and derivative works. However, this document itself
 may not be modified in any way, such as by removing the copyright notice
 or references to the Internet Society or other Internet organizations,
 except as needed for the purpose of developing Internet standards in
 which case the procedures for copyrights defined in the Internet
 Standards process must be followed, or as required to translate it into
 languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
 FITNESS FOR A PARTICULAR PURPOSE.

13. Appendix A: Open Issues

 The PCIMe authors do not all agree with everything included in the -00
 draft of the document. Input is solicited from the working group as a
 whole on the following open issues:

 1. Unrestricted use of DNF/CNF for CompoundPolicyConditions.
 Alternative: for the conditions aggregated by a

 CompoundPolicyCondition, allow only ANDing, with negation of
 individual conditions. Note that this is sufficient to build

Moore, et al. Expires: Feb 2001 + 6 months [Page 67]

Internet Draft PCIM Extensions February 2001

 multi-field packet filters from single-field
 SimplePolicyConditions.

 2. For a PolicyVariable in a SimplePolicyCondition, restrict the set
 of possible values both via associated PolicyValue objects (tied
 in with the PolicyValueConstraintInVariable association) and via
 the ValueTypes property in the PolicyVariable class. Alternative:
 restrict values only via associated PolicyValue objects.

 3. Transactional semantics, including rollback, for the
 ExecutionStrategy property in PolicyRule and in
 CompoundPolicyAction. Alternative: have only 'Do until success'
 and 'Do all'.

 4. Stating that CompoundFilterConditions are the preferred way to do
 packet filtering in a PolicyCondition. Alternative: make
 CompoundFilterConditions and FilterEntries available to submodels,
 with no stated (or implied) preference.

 5. Prohibiting equal values for Priority within a PolicySet.
 Alternative: allow equal values, with resulting indeterminacy in
 PEP behavior.

 6. Modeling a SimplePolicyAction with just a related PolicyVariable
 and PolicyValue -- the "set" or "apply" operation is implicit.
 Alternative: include an Operation property in SimplePolicyAction,
 similar to the Operation property in SimplePolicyCondition.

 7. Representation of PolicyValues: should values like IPv4 addresses
 be represented only as strings (as in LDAP), or natively (e.g., an
 IPv4 address would be a four-octet field) with mappings to other
 representations such as strings?

 8. The nesting of rules and groups within rules introduces
 significant change and complexity in the model. This nesting
 introduces program state (procedural language) into the model
 (heretofore a declarative model) as well as implicit hierarchical
 contexts on which the rules operate. These require a much more
 sophisticated rule-evaluation engine than in the past.

 Alternative: Maintain the declarative model, by prohibiting
 program state in rule evaluation (i.e., no rules within rules).

 9. Need to specify a join algorithm for disjoint rule sets.

 10. Clarify PolicyImplicitVariables.

 11. Clarify PolicyExplicitVariables.

 Moore, et al. Expires: Feb 2001 + 6 months [Page 68]

