
PPP Working Group J. Carlson
Internet Draft IronBridge Networks
expires in six months S. Cheshire
 M. Baker
 Stanford University
 November 1997

PPP Consistent Overhead Byte Stuffing (COBS)
<draft-ietf-pppext-cobs-00.txt>

Status of this Memo

 This document is the product of the Point-to-Point Protocol
 Extensions Working Group of the Internet Engineering Task Force
 (IETF). Comments should be submitted to the ietf-ppp@merit.edu
 mailing list.

 Distribution of this memo is unlimited.

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months. Internet-Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet-
 Drafts as reference material or to cite them other than as a
 ``working draft'' or ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.nisc.sri.com, or
 munnari.oz.au.

Abstract

 The Point-to-Point Protocol (PPP) [1] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.

 PPP also defines an extensible Link Control Protocol, which allows
 the negotiation of optional frame encoding methods. This document
 defines the Consistent Overhead Byte Stuffing (COBS) negotiation and
 encapsulation procedure.

Carlson expires May 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-pppext-cobs-00.txt

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

Table of Contents

1. Introduction ... 2
1.1. Conventions .. 3
2. COBS Configuration Option Format 3
3. Encapsulation Method 5
3.1. Frame Transmission 6
3.2. Frame Reception .. 8
3.3. Zero-pair and zero-run encoding 9
3.4. Packet Preemption 10
3.5. Recovery on LCP Renegotiation 12
3.6. Handling of Corrupted Data 12
4. Source Code .. 13
4.1. Linear buffer encoding and decoding 13
4.2. PPP/COBS Encoding with mbufs 16
4.2.1. PPP Context Handling 16
4.2.2. PPP Frame Transmission 17
4.2.3. Frame Reception .. 23
5. Acknowledgments .. 26
6. References ... 26
7. Authors' Addresses 26

1. Introduction

 Standard PPP encapsulation on an asynchronous link uses an encapsula-
 tion procedure called AHDLC, and on a Synchronous Optical Network
 (SONET) or Synchronous Digital Heirarchy (SDH) link an encapsulation
 procedure called Octet Synchronous [2]. These procedures are easy to
 implement, require only a single character buffer and have good
 error-recovery characteristics, but they have a worst case expansion
 ratio of 100% where the user data consists of only hex 7D or 7E.

 This draft describes a new encapsulation method for PPP due to origi-
 nal work by Stuart Cheshire and Mary Baker at the Stanford University
 Computer Science Department [3]. This new method is slightly more
 complex than either of the two standard encodings and requires a 207
 character buffer, but it has the same error-recovery characteristics
 and has a worst-case expansion of less than 0.5%.

 This low bound on worst-case expansion has a number of benefits. For
 applications requiring Quality of Service (QoS) guarantees, it may be
 necessary to over-provision a line using PPP by a factor of two in
 order to deliver the requested bandwidth or to suffer possible queu-
 ing delays when data do expand. For applications where the underly-
 ing transport has message size limits, such as some radio protocols,
 conventional PPP byte stuffing requires that the PPP Maximum Receive
 Unit (MRU) and the associated network Maximum Transmission Units

Carlson expires May 1998 [Page 2]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 (MTUs) be reduced to half of the underlying hardware MTU. Even where
 these considerations are not important, COBS options can provide
 lower overhead than standard encoding methods, resulting in better
 performance.

 It should be noted that this concern over pathological data patterns
 which double in size is not entirely academic. Certain protocols,
 such as raw Pulse-Code Modulated (PCM) voice over User Datagram Pro-
 tocol (UDP), can be prone to sending an excessive density of 7E char-
 acters which will cause the standard encapsulations to double the
 amount of actual data sent. Ironically, these protocols are pre-
 cisely the ones that are likely to want guaranteed bandwidth ser-
 vices. COBS avoids those expansion cases entirely because its
 worst-case expansion in encoded data is less than 0.5%.

1.1. Conventions

 The following language conventions are used in the items of specifi-
 cation in this document:

 o MUST, SHALL, or MANDATORY -- This item is an absolute require-
 ment of the specification.

 o SHOULD or RECOMMEND -- This item should generally be followed
 for all but exceptional circumstances.

 o MAY or OPTIONAL -- This item is truly optional and may be fol-
 lowed or ignored according to the needs of the implementor.

2. COBS Configuration Option Format

 A summary of the COBS Configuration Option format for the Link Con-
 trol Protocol (LCP) is shown below. The fields are transmitted from
 left to right.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type | Length | Flags |
 +-+

 Type

 To Be Determined

Carlson expires May 1998 [Page 3]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 Length

 3

 Flags

 The flags are a single octet representing options which are passed
 from the receiver to the transmitter. The most significant six
 bits of this octet are reserved, and MUST be set to zero on
 transmit and ignored on reception.

 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Res | Res | Res | Res | Res | Res | PRE | ZXE |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 These flags are:

 ZXE If set to 1, then the receiver supports both zero pair
 elimination (ZPE) and zero run elimination (ZRE).

 PRE If set to 1, then the receiver supports packet preemp-
 tion, which allows the sender to interrupt a COBS packet
 in mid-stream to send a higher priority packet, and to
 then return to the lower priority data.

 This option is a boolean flag appearing at most once in a single
 Configure-Request message. If it is present in a Configure-Request
 message, then the sender wishes to receive data encoded using COBS
 once LCP reaches Open state. If it is absent from the request, then
 the sender does not wish to receive COBS data. If the option is
 included in a Configure-Reject, then the sender is unable to transmit
 using COBS and will continue to use the standard method for this link
 (either Octet Synchronous or AHDLC) when LCP reaches the Open state.

 The value of the Flags field is not negotiated because all COBS
 transmitters SHALL be capable of handling all possible flag combina-
 tions. Just as with MRU negotiation, where a receiver indicating
 that it is prepared to receive packets up to 2048 octets in length
 does not obligate its peer to actually send any packet with as many
 as 2048 octets, a receiver indicating that it is prepared to receive
 either of the optional COBS encodings does not obligate its peer to
 actually send any packet using those encodings. Consequently, the
 COBS option MUST NOT be included in a Configure-Nak message in reply
 to a Configure-Request containing this option, even if the peer does
 not implement some or all of the options that the receiver has indi-
 cated its willingness to receive.

Carlson expires May 1998 [Page 4]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 An implementation that requires the use of COBS for normal operation
 MAY, however, choose to send an "unsolicited" Configure-Nak with the
 COBS option if the peer fails to include the COBS option in its
 Configure-Request.

3. Encapsulation Method

 Like the standard encapsulations, COBS uses an octet of hex 7E to
 mark the bounds between frames. The value 7E does not appear in the
 frame data itself. Using the value 7E helps ensure compatibility
 with any existing software and hardware that may assume that the PPP
 frame boundary marker is always 7E. It also aids recovery in the
 case where errors occur and the transmitter and receiver are not in
 agreement about whether COBS encapsulation is in effect. Because the
 framing marker is the same regardless of whether COBS encapsulation
 is in effect, frame boundaries are still detected correctly, and this
 allows the error recovery described in section 3.5 to work very
 easily.

 COBS encapsulation is a simple reversible transformation that elim-
 inates all instances of hex 7E from the frame to be transmitted.
 This COBS encoding procedure is logically a two-step process,
 although in real implementations both steps are performed in a single
 loop for the sake of efficiency. The first step ("zero elimination")
 eliminates all occurrences of zeroes from the data, while guarantee-
 ing to add at most no more than 0.5% to the data size. This results
 in a data packet containing only byte values hex 01 to hex FF, and no
 zeroes. The second step ("7E substitution") replaces all occurrences
 of hex 7E with hex 00, thereby producing a packet that does contain
 zeroes but contains no instances of hex 7E.

 The zero elimination step encodes any data packet using a series of
 COBS code blocks. Each COBS code block begins with a single code
 byte, followed by zero or more data bytes. The code byte determines
 how many data bytes follow. The codes and their meanings are deter-
 mined such that all possible data packets can be encoded as a valid
 series of code blocks, and furthermore, even in the worst possible
 case, there exists no valid encoding that adds more than 0.5% over-
 head to the packet size. There is no pre-set limit to the length of
 packet that may be encoded. The value zero is never used as a code
 byte, nor does it ever appear as a data byte, which is why the output
 of COBS zero elimination never contains any instances of the value
 zero.

 The 7E substitution step allows a linear code range to be used for
 octet counts without concern for the potential end-of-frame marker in
 the middle of the code space.

Carlson expires May 1998 [Page 5]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 The PPP/COBS codes and their meanings are listed below:

 Code (n) Followed by: Meaning
 -------- ------------ -------
 00 Unused (framing character placeholder)
 01-CF n-1 data bytes The data bytes, plus implicit trailing zero
 D0 n-1 data bytes The data bytes, no implicit trailing zero
 D1 Unused (resume preempted packet)
 D2 Unused (reserved for future use)
 D3-DF nothing a run of (n-D0) zeroes
 E0-FE n-E0 data bytes The data bytes, plus two trailing zeroes
 FF Unused (PPP error)

 Code byte hex 00 is never used, in order to provide the required
 "zero elimination" property.

 Code byte hex D1 is never used (although value D1 may appear as a
 data byte). If a COBS receiver observes that the first byte after a
 framing marker is value D1, then it means that this new "packet" of
 PPP data resumes transmission of a previously preempted packet (see

section 3.4).

 Code byte hex D2 is never used (although value D2 may appear as a
 data byte). Code byte hex D2 is reserved for future use.

 Code byte hex FF is never used (although value FF may appear as a
 data byte). If a COBS receiver observes that the first byte after a
 framing marker is value FF, then this indicates that an error has
 occurred (see section 3.5).

 When negotiated, COBS goes into effect when LCP reaches the Open
 state. When COBS is in effect, subsequent frames, including LCP mes-
 sages such as Protocol-Reject, must be sent using COBS. If LCP
 leaves the Open state, then COBS must be disabled. If LCP is renego-
 tiated or if the peer is restarted, then COBS may be disabled
 silently; this is detected by the procedure in section 3.5.

 An implementation SHOULD disable COBS transmission before sending an
 LCP Terminate-Request message.

3.1. Frame Transmission

 As with AHDLC and Octet Synchronous encoding, a 7E is used to mark
 the frame boundary. This value is guaranteed never to occur within
 COBS encoded data.

 The COBS zero elimination procedure effectively searches the packet

Carlson expires May 1998 [Page 6]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 for the first occurrence of value zero. To simplify the encoding
 procedure, all packets are treated as though they end with a trailing
 zero at the very end, after the standard CRC. This "phantom" octet
 of hex 00 is automatically discarded after decoding at the receiving
 end to correctly reconstruct the original packet data.

 The number of octets up to and including the first zero determines
 the code to be output. If this number is 207 or fewer, then this
 number is output as the code byte, followed by the actual non-zero
 bytes themselves. The zero is skipped and not output; the receiver
 will automatically add the zero back in as part of the decoding pro-
 cess. If there are 207 or more non-zero bytes, then code hex D0 is
 output, followed by the first 207 non-zero bytes. This process is
 repeated until all of the bytes of the packet (including the phantom
 trailing zero at the end) have been encoded.

 As an optional optimization, if the receiver has indicated its desire
 to receive zero-pair and zero-run codes in its COBS Configuration
 Option, then the transmitter MAY elect to encode zero pairs and zero
 runs more efficiently. If a pair of 00 octets are found in the input
 data after 0 to 30 non-zero octets, then the count of non-zero octets
 plus E0 is output, followed by the non-zero octets, and both 00
 octets in the input data are skipped. If a run of three to fifteen
 00 octets are found in the input data, then the count of these 00
 octets plus D0 is output and the 00 octets in the input data are
 skipped. See section 3.3 below for more details.

 If the receiver has indicated that it supports packet preemption and
 the sender is also configured to support it, then it is possible to
 preempt the state of the current COBS packet within two bytes and
 send another. If preemption is required for a high-priority packet,
 then the output state is checked. If the output is idle (no COBS
 output is in progress) then the packet is sent normally. If the out-
 put is busy (at least one data octet has been output for a packet in
 progress), then an error is forced to interrupt the current packet
 and the current packet being transmitted is saved but the COBS encod-
 ing state is discarded, and the high-priority packet is then sent
 using COBS encoding. When the high-priority packet is complete and
 the terminating 7E has been sent, the sender MAY resume the saved
 packet by issuing a D1 code after the terminating 7E, and then res-
 tarting COBS encoding. If a subsequent high-priority packet requires
 transmission instead, then it MAY be sent immediately. See section

3.4 below for more details.

 Note that both of these options are proper supersets of the basic
 encoding, so a transmitter that does not support an option which the
 receiver does support will always send data that the receiver can
 correctly decode. Likewise, if the receiver does not support a given

Carlson expires May 1998 [Page 7]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 option, the transmitter MUST disable its use of this encoding. This
 arrangement allows the LCP negotiation for COBS to be quite simple.

 The COBS count code FF is never used. Since a COBS count always fol-
 lows a 7E, this means that a COBS encoder will never generate 7E FF.
 This sequence is instead used to disable COBS in the event that LCP
 is renegotiated; see section 3.5.

3.2. Frame Reception

 The frame boundaries are located by a 7E as with AHDLC and Octet Syn-
 chronous encodings. A frame boundary in the input stream terminates
 the decoding process. If the boundary occurs at the end of a COBS
 code block then the packet is deemed complete and the final trailing
 ("phantom") zero is removed before the packet is passed to the higher
 layer for processing. If the boundary occurs within a COBS code
 block then this is an error or, if the receiver supports it, a poten-
 tial packet preemption. See section 3.4 below for more details on
 packet preemption.

 If the first octet of the frame is hex FF, then recovery is attempted
 as in section 3.5. Otherwise, the stream of octets within a within a
 frame is transformed by converting all instances of 00 to 7E. If the
 first octet of the frame is hex D1, then this "packet" resumes
 transmission of a previously preempted packet. See section 3.4 below
 for more details on packet preemption. Otherwise, the COBS decoder
 decodes the encoded byte stream as described below:

 The COBS decoder reads the first byte (the code byte).

 If the octet is D0, then 207 octets of data are copied from the input
 stream to the frame, and no 00 octets are appended.

 Otherwise, if the most significant four bits are 1101, and ZPE/ZRE is
 implemented in the receiver, then the least significant four bits are
 used as a count of 00 octets to append to the frame data. If ZPE/ZRE
 is not implemented in the receiver, then this is an error.

 Otherwise, if the most significant three bits are 111, and ZPE/ZRE is
 implemented in the receiver, then this encodes a run followed by a
 pair of zeroes. The least significant five bits are used as a count
 of octets to read from the input data stream. These octets are
 copied to the frame being decoded, and then two 00 octets are
 appended to the frame data. If ZPE/ZRE is not implemented in the
 receiver, then this is an error.

 Otherwise, the value of the octet is a counter. Count-1 octets of

Carlson expires May 1998 [Page 8]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 the input stream are copied to the frame and a single 00 octet is
 appended.

 The decoding process then continues by reading the next code byte
 from the input and repeating the decoding process described above
 until all bytes of the input have been consumed.

3.3. Zero-pair and zero-run encoding

 The goal of COBS encoding is to provide a standard that is suitable
 for use on both the highest speed links and the lowest speed links.

 One dilemma that faces designers of higher level protocols today is
 that for efficiency at very high speeds it is beneficial to align
 fields to 64-bit or even 128-bit boundaries. The IPv6 header format
 is an example of this trend. Unfortunately this can often mean
 inserting padding zeroes between fields to ensure proper alignment,
 thereby wasting precious bandwidth when these packets are sent over
 low speed links. Another common practice is for protocol designers
 to define fields that are reserved for future expansion, accompanied
 by the familiar phrase "MUST be set to zero on transmission and
 ignored on reception." These extra unnecessary zeroes in packets also
 waste bandwidth.

 The purpose of COBS's zero-pair and zero-run encoding is to remove
 this protocol designers' dilemma. COBS's zero-pair and zero-run
 encoding can "compress out" block of zeroes from packet data, thereby
 making the cost of these extra zeroes negligible. This allows proto-
 col designers to design one single format for their protocol, without
 being forced to choose between either favoring high speed or favoring
 low speed links.

 Particularly for string fields, it can be convenient to have a fixed
 size field that is considerably longer than the typical string length
 it holds, in order to keep a simple fixed-format packet structure
 while at the same time not unduly limiting the length of string that
 may be used in that field. As long as the unused bytes are zero-
 filled, zero-pair and zero-run encoding will "compress out" those
 unused bytes, making their cost negligible.

 Zero-pair and zero-run encoding are not intended to compete with more
 sophisticated (and more computationally costly) compression algo-
 rithms such as Lempel-Ziv [4] or Huffman [5] encoding. On the very
 slowest links, these compression algorithms may still be appropriate.
 The highest compression ratios are achieved by algorithms such as Van
 Jacobson's TCP header compression which take advantage of interdepen-
 dencies between packets. However, this means that a single packet

Carlson expires May 1998 [Page 9]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 loss on the link can cause multiple packets to be unrecoverable,
 which may not be appropriate for technologies such as wireless links
 where packet loss rates are already relatively high.

 One aspect of zero-run compression is that on reception this
 compressed data has to be expanded back to its original size. On the
 very highest speed links, where the link data rate is comparable to
 the memory system bandwidth, this potential 15:1 expansion at the
 receiver may be unacceptable. For this reason, the receiver may
 request in its COBS Configuration Option that the sender *not* gen-
 erate zero-pair (hex E0-FE) or zero-run (hex D3-DF) COBS codes. If
 the receiver does not indicate its desire to receive zero-pair and
 zero-run codes in its COBS Configuration Option, the transmitter MUST
 not generate these codes.

 The reverse situation -- of a COBS transmitter that does not imple-
 ment zero-pair and zero-run encoding -- needs no negotiation. Even
 if the receiver indicates its willingness to receive zero-pair and
 zero-run codes of a transmitter that does not implement them, the
 transmitter's output, while not containing those codes, will still be
 a perfectly legal encoding of the packets. It may be a sub-optimal
 encoding, but it is still a legal encoding that the receiver will
 decode correctly.

3.4. Packet Preemption

 On low speed links there can be conflicting goals. To provide effi-
 ciency, it is desirable to allow packets to be as large as possible.
 However, if a small high-priority packet arrives just as a large
 low-priority packet begins transmission, the high-priority packet is
 delayed until transmission of the large low-priority packet is com-
 plete, which favors making the maximum packet size relatively small.
 Packet preemption solves this dilemma by allowing the link to suspend
 transmission of a low-priority packet immediately whenever a high-
 priority packet needs to be sent, and then resume transmission of the
 low-priority packet afterwards.

 COBS packet preemption allows us to do this with at most two bytes of
 additional overhead compared to sending the packets in the normal
 sequential manner.

 If the receiver has indicated in its COBS Configuration Option that
 it supports packet preemption, then the transmitter can preempt a
 low-priority packet at any time simply by forcing an error and then
 beginning transmission of the high-priority packet. After the high-
 priority packet(s) has (have) been sent, the sender resumes transmis-
 sion of the preempted packet by transmitting a code hex D1 (resume

Carlson expires May 1998 [Page 10]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 preempted packet) and then resuming COBS encoded transmission from
 the first untransmitted byte of the preempted packet.

 During packet transmission, the transmitter is either in a state in
 which it is transmitting data within a COBS block or it has just sent
 the last octet of a COBS block and is preparing to send the code byte
 to start a new COBS block. To force an error for packet preemption,
 a 7E code must be sent within the data portion of a COBS block.
 Therefore, if the transmitter is preparing to send a new counter when
 preemption is necessary, it should either calculate and send that
 counter first, or it should send a dummy counter of 02. In any case,
 the 7E that follows will signal the preemption. The receiver will
 detect an incomplete COBS code block as an error.

 A receiver that supports packet preemption must maintain two packet
 receive buffers. The two buffers are equal in status, but at any
 point in time one buffer is the "active buffer" and the other is the
 "inactive buffer". If an error occurs in the course of COBS decod-
 ing, then the receiver treats it as a possible indication of packet
 preemption. The receiver remembers the number of decoded bytes that
 have been written into the active buffer, and the other buffer now
 becomes the active buffer. The receiver then proceeds to receive
 packets as normal into this buffer. When the receiver observes a
 packet that begins with the byte value hex D1, it recognizes this as
 an indication to resume a previously preempted packet. The active
 and inactive buffers are again swapped, but now instead of beginning
 writing to the start of the buffer, the receiver proceeds to append
 bytes after any data that is already there. In the unlikely event
 that the inactive buffer contains no bytes of data, this is not con-
 sidered an error. A previous packet may have been preempted before
 even a single byte of data was decoded, in which case having zero
 bytes of data already in the buffer when the packet resumes is in
 fact correct.

 The following example shows a large packet preempted by two small
 ones. The large packet contains the hex values "01 02 03 04 05 06
 07" and the two small packets contain the values "11 12 13" and "21
 22 23" respectively. If the large packet is preempted after three
 bytes, the correct encoding of this data is:

 7E 08 01 02 03 7E 04 11 12 13 7E 04 21 22 23 7E D1 05 04 05 06 07 7E

 The byte-stream begins with the framing marker 7E. The encoder then
 indicates that it plans to send seven non-zero bytes (COBS code hex
 08). It then sends the first three of those non-zero bytes (01 02
 03) before a pair of high-priority packets arrive. The sender then
 interrupts the transmission of the low-priority packet with another
 framing marker 7E, and sends the two high-priority packets. The

Carlson expires May 1998 [Page 11]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 receiver holds the three bytes of the partially received packet in
 the inactive buffer while it is receiving the high-priority packets.
 When the high-priority packets are complete, the sender sends a code
 hex D1 to indicate that it is resuming transmission of the preempted
 packet. The encoder indicates that it plans to send four non-zero
 bytes (COBS code hex 05) and sends the remaining four bytes of the
 low-priority packet.

 Since packet preemption is most useful on low-speed links, high-speed
 COBS implementations may elect not to implement packet preemption.
 If the receiver does not indicate that is supports packet preemption
 in its COBS Configuration Option, the transmitter MUST NOT preempt
 packets.

 The reverse situation -- of a COBS transmitter that does not imple-
 ment packet preemption -- needs no negotiation. Even if the receiver
 indicates its willingness to allow packet preemption, the
 transmitter's output, while not containing any packet preemption,
 will still be a perfectly legal steam of encoded packets.

3.5. Recovery on LCP Renegotiation

 Since all implementations are required to send LCP frames with the
 standard address and control fields, regardless of prior negotiation,
 all LCP frames must begin with the hex sequence FF 03 C0 21 before
 any byte-stuffing occurs.

 The first octet of COBS data is always a counter value. Because of
 the encoding methods chosen, this counter is never sent as FF. This
 is to allow for recovery in case LCP is renegotiated or synchroniza-
 tion is lost with the peer. Since LCP frames must begin with FF, any
 frame seen when COBS is in use which begins with hex FF must
 represent the start of an LCP frame without COBS enabled. The
 receiver should disable COBS and revert back to Octet Synchronous or
 AHDLC decoding as appropriate.

 COBS speaking implementations using AHDLC MUST NOT default to escap-
 ing FF when sending LCP frames unless COBS is explicitly disabled
 since that would compromise this recovery mechanism.

3.6. Handling of Corrupted Data

 If data are lost or corrupted during transmission, it is desirable
 that the errors affect a minimum number of packets. For COBS, the
 error characteristics are similar to AHDLC and Octet Synchronous
 encodings.

Carlson expires May 1998 [Page 12]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 If one of the code byte octets is lost or corrupted, then the block
 will be miscounted. This is likely to ultimately result in the
 inclusion of the trailing 7E within the data portion of an erroneous
 COBS block. The receiver will detect this as either an error (if it
 does not support preemption) or as a preempted message. In the
 latter case, the falsely preempted message will be discarded when the
 next true preemption occurs. If the 7E still falls on a natural
 boundary between COBS blocks, then COBS will not detect the error,
 but the standard Frame Check Sequence (FCS) will be used to detect
 the corruption.

 If one of the data octets is corrupted, then the FCS will be used to
 detect the corruption. As above, lost data octets will result in a
 trailing 7E being included within the data portion of a message and
 result in the loss of that one packet.

 If the preemption-resume signal (D1) is lost, then the resumed data
 stream will be treated as an independent frame and will be discarded
 with an FCS error.

 If data are corrupted such as to deliver 7E FF to a COBS receiver,
 that receiver should restart LCP renegotiation due to the apparent
 loss of state and should then restart COBS. For COBS encoding to be
 viable on a given link, the probability of this type of corruption
 must be acceptably low.

 As with AHDLC and Octet-Synchronous, the loss of a 7E marker between
 frames will result in the loss of those two frames.

4. Source Code

 Two implementations are given for reference. The first implementa-
 tion is a basic version which encodes and decodes linear blocks and
 includes ZPE/ZRE. It is able to handle multiple blocks within one
 coding unit by use of multiple sequential invocations.

 The second is designed for a system using BSD-like mbufs for the PPP
 stack and using a very simple FIFO buffer interface for data transmit
 and receive. It includes standard 16-bit FCS generation and checking
 and implements both the ZPE/ZRE option and the packet preemption
 option.

4.1. Linear buffer encoding and decoding

 typedef unsigned char u_char; /* 8 bit quantity */

Carlson expires May 1998 [Page 13]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 typedef enum
 {
 Unused = 0x00, /* Unused (framing character placeholder) */
 DiffZero = 0x01, /* Range 0x01 - 0xCE: */
 DiffZeroMax = 0xCF, /* n-1 explicit characters plus a zero */
 Diff = 0xD0, /* 207 explicit characters, no added zero */
 Resume = 0xD1, /* Unused (resume preempted packet) */
 Reserved = 0xD2, /* Unused (reserved for future use) */
 RunZero = 0xD3, /* Range 0xD3 - 0xDF: */
 RunZeroMax = 0xDF, /* 3-15 zeroes */
 Diff2Zero = 0xE0, /* Range 0xE0 - 0xFE: */
 Diff2ZeroMax = 0xFE, /* 0-30 explicit characters plus 2 zeroes */
 Error = 0xFF /* Unused (PPP LCP renegotiation) */
 } StuffingCode;

 /* These macros examine just the top 3/4 bits of the code byte */
 #define isDiff2Zero(X) (((X) & 0xE0) == (Diff2Zero & 0xE0))
 #define isRunZero(X) (((X) & 0xF0) == (RunZero & 0xF0))

 /* Convert from single-zero code to corresponding double-zero code */
 #define ConvertZP (Diff2Zero - DiffZero)

 /* Allow generation of zero pair and zero run code blocks? */
 int ZPZR = 1;

 /* Highest single-zero code with a corresponding double-zero code */
 #define MaxConvertible (ZPZR ? Diff2ZeroMax - ConvertZP : 0)

 /* Convert to/from 0x7E-free data for sending over PPP link */
 static u_char Tx(u_char x) { return(x == 0x7E ? 0 : x); }
 static u_char Rx(u_char x) { return(x == 0 ? 0x7E : x); }

 /*
 * StuffData stuffs "length" bytes of data from the buffer "ptr",
 * writing the output to "dst", and returning as the result the
 * address of the next free byte in the output buffer.
 * The size of the output buffer must be large enough to accommodate
 * the encoded data, which in the worst case may expand by almost
 * 0.5%. The exact amount of safety margin required can be
 * calculated using (length+1)/206, rounded *up* to the next whole
 * number of bytes. E.g. for a 1K packet, the output buffer needs to
 * be 1K + 5 bytes to be certain of accommodating worst-case packets.
 */

 #define FinishBlock(X) \
 (*code_ptr = Tx(X), code_ptr = dst++, code = DiffZero)

 static u_char *StuffData(const u_char *ptr, unsigned int length,

Carlson expires May 1998 [Page 14]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 u_char *dst, u_char **code_ptr_ptr)
 {
 const u_char *end = ptr + length;
 u_char *code_ptr = *code_ptr_ptr;
 u_char code = DiffZero;

 /* Recover state from last call, if applicable */
 if (code_ptr) code = Rx(*code_ptr);
 else code_ptr = dst++;

 while (ptr < end)
 {
 u_char c = *ptr++; /* Read the next character */
 if (c == 0) /* If it's a zero, do one of these operations */
 {
 if (isRunZero(code) && code < RunZeroMax) code++;
 else if (code == Diff2Zero) code = RunZero;
 else if (code <= MaxConvertible) code += ConvertZP;
 else FinishBlock(code);
 }
 else /* else, non-zero; do one of these operations */
 {
 if (isDiff2Zero(code)) FinishBlock(code - ConvertZP);
 else if (code == RunZero) FinishBlock(Diff2Zero);
 else if (isRunZero(code)) FinishBlock(code-1);
 *dst++ = Tx(c);
 if (++code == Diff) FinishBlock(code);
 }
 }
 *code_ptr_ptr = code_ptr;
 FinishBlock(code);
 return(dst-1);
 }

 /*
 * UnStuffData decodes "srclength" bytes of data from the buffer
 * "ptr", writing the output to "dst". If the decoded data does not
 * fit within "dstlength" bytes or any other error occurs, then
 * UnStuffData returns NULL.
 */
 static u_char *UnStuffData(const u_char *ptr, unsigned int srclength,
 u_char *dst, unsigned int dstlength)
 {
 const u_char *end = ptr + srclength;
 const u_char *limit = dst + dstlength;
 while (ptr < end)
 {
 int z, c = Rx(*ptr++);

Carlson expires May 1998 [Page 15]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 if (c == Error || c == Resume || c == Reserved) return(NULL);
 else if (c == Diff) { z = 0; c--; }
 else if (isRunZero(c)) { z = c & 0xF; c = 0; }
 else if (isDiff2Zero(c)) { z = 2; c &= 0x1F; }
 else { z = 1; c--; }

 while (--c >= 0 && dst < limit) *dst++ = Rx(*ptr++);
 while (--z >= 0 && dst < limit) *dst++ = 0;
 }
 if (dst < limit) return(dst-1);
 else return(NULL);
 }

 /* Example showing use of chained StuffData calls */
 unsigned int StuffExample(const u_char *head, unsigned int hlength,
 const u_char *data, unsigned int dlength,
 u_char *dst)
 {
 u_char *ptr = dst;
 u_char *stuffstate = NULL;

 /* First stuff the packet header into the buffer */
 ptr = StuffData(head, hlength, ptr, &stuffstate);

 /* Then append the packet body to the stuffed header */
 ptr = StuffData(data, dlength, ptr, &stuffstate);

 /* Then return the total length of data generated */
 return(ptr-dst);
 }

4.2. PPP/COBS Encoding with mbufs

4.2.1. PPP Context Handling

 struct cobs_context {
 /* Transmit encoding state */
 struct txcontext {
 struct mbuf *bufs,*nextp;
 short count,zskip,lcount;
 } tx[2];
 int txpri,txendofframe,txintr;
 int txallowpri,txallowzxe;

 /* Receive decoding state */
 struct mbuf *mhead,*mtail;

Carlson expires May 1998 [Page 16]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 struct mbuf *savedpkt;
 int rxcount,rxlcount,zadd;
 u_short rxfcs;
 u_short savedfcs;
 u_char rxlchar;
 };

 /*
 * Simple context initialization. User is responsible for setting
 * cb.txallowpri and cb.txallowzxe based on the outcome of PPP
 * negotiation.
 */
 void
 init_cobs_context(struct cobs_context *cb)
 {
 bzero(cb,sizeof(*cb));
 cb->rxfcs = 0xFFFF;
 }

4.2.2. PPP Frame Transmission

 /*
 * This is called once for each transmit-FIFO-empty interrupt. It
 * takes a pointer to the transmit FIFO buffer and the available
 * room in that buffer, and returns the number of bytes inserted.
 * Priority is supported even if the peer doesn't support COBS
 * priority interruption. If txallowpri is cleared, then priority
 * packets are sent out on packet boundaries rather than as
 * interrupts.
 */
 int
 ppp_cobs_xmit(struct cobs_context *cb, u_char *buffer, int buflen)
 {
 u_char *dp,chr,*obuf;
 int len,count;
 struct mbuf *mb,*mb2;
 struct txcontext *tx;

 if (buflen <= 0 || buffer == NULL || cb == NULL)
 return 0;

 /*
 * If there's a high priority packet waiting and we're in the
 * middle of sending a low priority one, then send the escape
 * flag and switch.
 */
 obuf = buffer;

Carlson expires May 1998 [Page 17]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 if (!cb->txendofframe && cb->tx[1].nextp != NULL &&
 cb->txpri == 0) {
 if (cb->tx[0].bufs == NULL)
 cb->txpri = 1;
 else if (buflen >= 2 && cb->txallowpri) {
 cb->txpri = 1;
 if (cb->tx[0].count == 0) {
 *buffer++ = 0x02;
 buflen--;
 }
 *buffer++ = 0x7E;
 buflen--;
 cb->tx[0].count = cb->tx[0].zskip = cb->tx[0].lcount = 0;
 cb->txintr = 1;
 cb->tx[1].lcount = -1;
 }
 }

 tx = cb->tx + cb->txpri;
 if ((mb = tx->bufs) == NULL) {
 if ((mb = tx->nextp) != NULL) {
 tx->nextp = mb->m_act;
 mb->m_act = NULL;
 }
 }
 count = tx->count;
 while (buflen > 0) {
 if (cb->txendofframe) {
 switch (cb->txendofframe) {
 case 1:
 /*
 * If the zero removal falls right on the end of
 * the packet, then we need to add a dummy code to
 * insert a 00 byte which will be deleted by the
 * receiver.
 */
 *buffer++ = 0x01;
 buflen--;
 cb->txendofframe = 2;
 break;
 case 2:
 /* Packet done; send frame mark */
 *buffer++ = 0x7E;
 count = 0;
 buflen--;
 cb->txendofframe = 0;
 tx->lcount = -1;
 break;

Carlson expires May 1998 [Page 18]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 }
 continue;
 }
 if (count == 0) {
 if (mb == NULL) {
 tx->bufs = mb;
 tx->count = count;
 if (cb->txpri == 1 && cb->tx[0].bufs != NULL) {
 cb->txpri = 0;
 tx = cb->tx;
 mb = tx->bufs;
 } else {
 if (cb->tx[0].nextp == NULL &&
 cb->tx[1].nextp == NULL)
 break;
 cb->txpri = (cb->tx[1].nextp != NULL);
 tx = cb->tx + cb->txpri;
 tx->bufs = mb = tx->nextp;
 tx->nextp = mb->m_act;
 mb->m_act = NULL;
 }
 count = tx->count;
 if (cb->txpri == 0 && cb->txintr) {
 cb->txintr = 0;
 buffer++ = 0xD1; / Resume packet */
 buflen--;
 }
 continue;
 }

 /* Do look-ahead for encoding modes */
 dp = mtod(mb,u_char *);
 if (*dp == 0 && cb->txallowzxe) {
 mb2 = mb;
 len = mb->m_len;
 while (mb2 != NULL && count < 15)
 if (*dp++ == 0) {
 count++;
 if (--len <= 0) {
 do {
 mb2 = mb2->m_next;
 if (mb2 == NULL)
 break;
 dp = mtod(mb2,u_char *);
 len = mb2->m_len;
 } while (len <= 0);
 }
 } else

Carlson expires May 1998 [Page 19]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 break;
 if (mb2 == NULL)
 count++; /* Include phantom zero byte here */
 }
 if (count >= 3) {
 tx->zskip = count;
 chr = 0xD0 + count;
 count = 0;
 } else {
 dp = mtod(mb,u_char *);
 len = mb->m_len;
 mb2 = mb;
 count = 0;
 while (mb2 != NULL && count < 207)
 if (*dp++ != 0) {
 count++;
 if (--len <= 0) {
 do {
 mb2 = mb2->m_next;
 if (mb2 == NULL)
 break;
 dp = mtod(mb2,u_char *);
 len = mb2->m_len;
 } while (len <= 0);
 }
 } else
 break;
 if (count == 207)
 chr = 0xD0;
 else {
 chr = count+1;
 tx->zskip = 1;
 if (count <= 30 && cb->txallowzxe &&
 mb2 != NULL) {
 if (len <= 1)
 do {
 mb2 = mb2->m_next;
 if (mb2 == NULL)
 break;
 dp = mtod(mb2,u_char *);
 len = mb2->m_len;
 } while (len <= 0);
 if (mb2 == NULL || *dp == 0) {
 chr = count + 0xE0;
 tx->zskip = 2;
 }
 }
 }

Carlson expires May 1998 [Page 20]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 }
 tx->lcount = chr;
 } else {
 if (mb->m_len == 0) {
 mb = m_free(mb);
 continue;
 }
 chr = *mtod(mb,u_char *);
 mb->m_len--;
 mb->m_off++;
 count--;
 }
 if (chr == 0x7E)
 chr = 0;
 *buffer++ = chr;
 buflen--;
 if (count == 0) {
 count = tx->zskip;
 while (mb != NULL && count > 0) {
 len = mb->m_len;
 if (len > count) {
 mb->m_len -= count;
 mb->m_off += count;
 count = 0;
 break;
 }
 count -= len;
 mb = m_free(mb);
 }
 tx->zskip = 0;
 while (mb != NULL && mb->m_len == 0)
 mb = m_free(mb);
 if (mb == NULL)
 if (count == 0 && tx->lcount != 0xD0)
 cb->txendofframe = 1;
 else
 cb->txendofframe = 2;
 count = 0;
 }
 }
 tx->bufs = mb;
 tx->count = count;
 return buffer-obuf;
 }

 /*
 * This is called once for each out-bound packet. The arguments are
 * the COBS state structure, the pointer to the out-bound mbuf chain,

Carlson expires May 1998 [Page 21]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 * and the priority level of the packet (0 or 1 for low or high).
 */
 void
 ppp_cobs_enqueue(struct cobs_context *cb, struct mbuf *mb, int pri)
 {
 u_short fcs;
 u_char *dp;
 int len;
 struct mbuf *mb2;
 struct txcontext *tx;

 /*
 * It turns out to be horribly complicated to support both the
 * scan-ahead functions and the CRC calculation at the same time
 * since the last byte of the CRC (or even both bytes) may be 00.
 * Thus, it is necessary in this implementation to do the CRC
 * first and the COBS encoding second in two separate steps. If
 * the COBS output were fed into a simple linear output buffer
 * big enough to hold the largest packet, then this could be
 * greatly simplified.
 */
 if (cb == NULL || mb == NULL)
 return;
 fcs = 0xFFFF;
 for (mb2 = mb; mb2 != NULL; mb2 = mb2->m_next) {
 dp = mtod(mb2,u_char *);
 for (len = mb2->m_len; len > 0; len--)
 fcs = (fcs >> 8) ^ fcstab[(fcs ^ *dp++) & 0xff];
 }
 mb2 = dtom(dp);
 if (mb2->m_len+mb2->m_off > MMAXOFF-2) {
 mb2->m_next = m_get(M_DONTWAIT,MT_PPPTX);
 mb2 = mb2->m_next;
 dp = mtod(mb2,u_char *);
 }
 fcs = ~fcs;
 dp[0] = fcs&0xFF;
 dp[1] = fcs>>8;
 mb2->m_len += 2;

 tx = cb->tx + pri;
 if (tx->nextp == NULL)
 tx->nextp = mb;
 else {
 for (mb2 = tx->nextp; mb2->m_act != NULL; mb2 = mb2->m_act)
 ;
 mb2->m_act = mb;
 }

Carlson expires May 1998 [Page 22]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 }

4.2.3. Frame Reception

 /*
 * This is called once for each FIFO-full-or-stale interrupt. It
 * takes a pointer to the COBS state structure, the FIFO buffer
 * pointer, and the length of the data in the FIFO. It in turn
 * calls send_up_packet(struct mbuf *) if a packet has been received,
 * or ppp_recv_error(void) if an error occurs, or disable_cobs(void)
 * if the peer is apparently restarting LCP negotiation.
 */
 void
 ppp_cobs_rcv(struct cobs_context *cb, u_char *buffer, int len)
 {
 u_char *dp = NULL,chr,rxlchar;
 struct mbuf *mb,*mb2;
 int mlen = 0,count;
 u_short fcs;

 if ((mb = cb->mtail) != NULL) {
 mlen = mb->m_len;
 dp = mtod(mb,u_char *) + mlen;
 }
 fcs = cb->rxfcs;
 count = cb->rxcount;
 rxlchar = chr = cb->rxlchar;
 while (len > 0) {
 len--;
 chr = *buffer++;
 if (chr == 0x7E) {
 rxlchar = chr;
 if (count > 0) {
 if (mb != NULL)
 mb->m_len = mlen;
 m_freem(cb->savedpkt);
 cb->savedfcs = fcs;
 cb->savedpkt = cb->mhead;
 cb->zadd = 0;
 mb = cb->mhead = NULL;
 }
 while (cb->zadd > 1) {
 if (mb == NULL || mlen >= MLEN) {
 mb2 = m_get(M_DONTWAIT,MT_PPPRX);
 if (mb2 == NULL)
 goto ppp_input_error;
 if (mb != NULL) {

Carlson expires May 1998 [Page 23]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 mb->m_len = mlen;
 mb->m_next = mb2;
 } else
 cb->mhead = mb2;
 mb = mb2;
 cb->mtail = mb;
 dp = mtod(mb,u_char *);
 mlen = 0;
 }
 *dp++ = 0;
 fcs = (fcs >> 8) ^ fcstab[fcs & 0xff];
 mlen++;
 cb->zadd--;
 }
 if (mb == NULL)
 m_freem(cb->mhead);
 else if (count > 0 || fcs != 0xF0B8) {
 ppp_input_error:
 if (cb->mhead->m_next != NULL || mlen > 4)
 ppp_recv_error();
 m_freem(cb->mhead);
 } else {
 mb->m_len = mlen;
 m_adj(cb->mhead,-2); /* Strip the CRC */
 send_up_packet(cb->mhead);
 }
 cb->mtail = cb->mhead = mb = NULL;
 count = cb->rxcount = cb->rxlcount = cb->zadd = 0;
 fcs = cb->rxfcs = 0xFFFF;
 continue;
 }
 if (chr == 0xD1 && rxlchar == 0x7E) { /* Resume code */
 m_freem(cb->mhead);
 mb = cb->mhead = cb->savedpkt;
 if (mb != NULL) {
 while (mb->m_next != NULL)
 mb = mb->m_next;
 cb->mtail = mb;
 mlen = mb->m_len;
 dp = mtod(mb,u_char *) + mlen;
 } else {
 dp = NULL;
 mlen = 0;
 }
 fcs = cb->savedfcs;
 cb->savedpkt = NULL;
 rxlchar = chr;
 continue;

Carlson expires May 1998 [Page 24]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 }
 rxlchar = chr;
 if (chr == 0)
 chr = 0x7E;
 for (;;) {
 if (mb == NULL || mlen >= MLEN) {
 mb2 = m_get(M_DONTWAIT,MT_PPPRX);
 if (mb2 == NULL)
 goto ppp_input_error;
 if (mb != NULL) {
 mb->m_len = mlen;
 mb->m_next = mb2;
 } else
 cb->mhead = mb2;
 mb = mb2;
 cb->mtail = mb;
 dp = mtod(mb,u_char *);
 mlen = 0;
 }
 if (count > 0) {
 *dp++ = chr;
 fcs = (fcs >> 8) ^ fcstab[(fcs ^ chr) & 0xff];
 mlen++;
 count--;
 break;
 }
 if (cb->zadd == 0) {
 /* This can happen only if the peer starts renegotiating LCP */
 if (chr == 0xFF) {
 disable_cobs();
 m_freem(cb->mhead);
 m_freem(cb->savedpkt);
 cb->mhead = cb->mtail = cb->savedpkt = NULL;
 return;
 }
 switch (chr & 0xF0) {
 case 0xD0:
 cb->zadd = chr - 0xD0;
 count = 0;
 break;
 case 0xE0:
 case 0xF0:
 count = chr - 0xE0;
 cb->zadd = 2;
 break;
 default:
 cb->zadd = (chr == 0xD0) ? 0 : 1;
 count = chr-1;

Carlson expires May 1998 [Page 25]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 }
 cb->rxlcount = count;
 break;
 }
 cb->zadd--;
 *dp++ = 0;
 fcs = (fcs >> 8) ^ fcstab[fcs & 0xff];
 mlen++;
 }
 }
 if (mb != NULL)
 mb->m_len = mlen;
 cb->rxfcs = fcs;
 cb->mtail = mb;
 cb->rxcount = count;
 cb->rxlchar = rxlchar;
 }

5. Acknowledgments

 This encapsulation method was first described in Stuart Cheshire's
 Ph.D. Thesis at Stanford University.

6. References

 [1] W. Simpson, "The Point-to-Point Protocol (PPP)", RFC 1661,
 07/21/1994

 [2] W. Simpson, "PPP in HDLC-like Framing", RFC 1662, 07/1994

 [3] S. Cheshire and M. Baker, "Consistent Overhead Byte Stuffing,"
 ACM SIGCOMM - Cannes, France, September 1997.

 [4] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data
 Compression," IEEE Transactions on Information Theory, May 1977.

 [5] D. A. Huffman, "A Method for the Construction of Minimum-
 Redundancy Codes," Proceedings of the IRE, Vol.40, No.9, September
 1952, pp.1098-1101.

7. Authors' Addresses

 James Carlson
 IronBridge Networks
 5 Corporate Drive

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662

Carlson expires May 1998 [Page 26]

INTERNET DRAFT Consistent Overhead Byte Stuffing November 1997

 Andover MA 01810-2448

 Phone: +1 978 691 4644
 Fax: +1 978 691 6300
 Email: carlson@wing.net

 Stuart Cheshire
 Stanford University
 Stanford CA 94305

 Phone: +1 650 723 9427
 Email: cheshire@cs.stanford.edu

 Mary Baker
 Stanford University
 Stanford CA 94305

 Phone: +1 650 725 3711
 Email: mgbaker@cs.stanford.edu

Carlson expires May 1998 [Page 27]

