
PPPEXT Working Group Paul Funk
Internet-Draft Funk Software, Inc.
Category: Standards Track Simon Blake-Wilson
<draft-ietf-pppext-eap-ttls-05.txt> Basic Commerce &
 Industries, Inc.
 July 2004

EAP Tunneled TLS Authentication Protocol
(EAP-TTLS)

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The Internet Society (2001-2004). All Rights Reserved.

Abstract

 EAP-TTLS is an EAP protocol that extends EAP-TLS. In EAP-TLS, a TLS
 handshake is used to mutually authenticate a client and server. EAP-
 TTLS extends this authentication negotiation by using the secure
 connection established by the TLS handshake to exchange additional
 information between client and server. In EAP-TTLS, the TLS
 handshake may be mutual; or it may be one-way, in which only the
 server is authenticated to the client. The secure connection
 established by the handshake may then be used to allow the server to
 authenticate the client using existing, widely-deployed
 authentication infrastructures such as RADIUS. The authentication of

https://datatracker.ietf.org/doc/html/draft-ietf-pppext-eap-ttls-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft April 2004

 the client may itself be EAP, or it may be another authentication
 protocol such as PAP, CHAP, MS-CHAP or MS-CHAP-V2.

 Thus, EAP-TTLS allows legacy password-based authentication protocols
 to be used against existing authentication databases, while
 protecting the security of these legacy protocols against
 eavesdropping, man-in-the-middle and other cryptographic attacks.

 EAP-TTLS also allows client and server to establish keying material
 for use in the data connection between the client and access point.
 The keying material is established implicitly between client and
 server based on the TLS handshake.

 This document describes two versions of EAP-TTLS - version 0 and
 version 1. Most of the document concerns EAP-TTLS v0, a form of the
 protocol that has been implemented by multiple vendors. Section 11
 defines EAP-TTLS v1, an enhanced version of the protocol that
 utilizes the TLS extensions mechanism to allow authentications to
 occur within, rather than after, the TLS handshake. The TLS
 extension that is defined is believed to useful in its own right,
 and may be used in other contexts in addition to EAP-TTLS v1.

Table of Contents

1. Introduction..3
2. Motivation..4
3. Terminology...6
4. Architectural Model...8
4.1 Carrier Protocols...9
4.2 Security Relationships.......................................10
4.3 Messaging..10
4.4 Resulting Security...11
5. Protocol Layering Model..11
6. EAP-TTLS version 0 Overview......................................12
6.1 Phase 1: Handshake...13
6.2 Phase 2: Tunnel..14
6.3 Piggybacking...14
6.4 Session Resumption...15
6.4.1 TTLS Server Guidelines for Session Resumption............16
7. Generating Keying Material.......................................16
8. EAP-TTLS Encoding..17
8.1 EAP-TTLS Start Packet..17
8.2 EAP-TTLS Packets with No Data................................18
9. Encapsulation of AVPs within the TLS Record Layer................18
9.1 AVP Format...19
9.2 AVP Sequences..20
9.3 Guidelines for Maximum Compatibility with AAA Servers........20
10. Tunneled Authentication..20

10.1 Implicit challenge...21
10.2 Tunneled Authentication Protocols............................21
10.2.1 EAP ..22

Paul Funk expires January 2005 [Page 2]

Internet-Draft April 2004

10.2.2 CHAP ...23
10.2.3 MS-CHAP..23
10.2.4 MS-CHAP-V2...24
10.2.5 PAP ..25
10.3 Performing Multiple Authentications..........................26
11. EAP-TTLS Version 1...27
11.1 EAP-TTLS v1 Introduction.....................................27
11.2 Intentions Beyond EAP-TTLS...................................28
11.3 The InnerApplication Extension to TLS........................28
11.3.1 TLS/IA Overview..29
11.3.2 Message Exchange...31
11.3.3 Master Key Permutation...................................31
11.3.4 Session Resumption.......................................33
11.3.5 Error Termination..33
11.3.6 Application Session Key Material.........................33
11.3.7 Computing Verification Data..............................34
11.3.8 Attribute-Value Pairs (AVPs).............................36
11.3.9 TLS/IA Messages..36
11.3.10 The InnerApplication Extension...........................37
11.3.11 The PhaseFinished Handshake Message......................37
11.3.12 The ApplicationPayload Handshake Message.................37
11.3.13 The InnerApplicationFailure Alert........................38
11.4 Binding of TLS/IA to EAP-TTLS v1.............................38
11.4.1 Flags Octet..38
11.4.2 Version Negotiation......................................39
11.4.3 Acknowledgement Packets..................................39
11.4.4 Generating Keying Material...............................40
12. Discussion of Certificates and PKI...............................40
13. Message Sequences..42
13.1 Successful authentication via tunneled CHAP..................42
13.2 Successful authentication via tunneled EAP/MD5-Challenge.....44
13.3 Successful session resumption................................46
14. Security Considerations..47
15. Changes since previous drafts....................................49
16. References...50
17. Authors' Addresses...51
18. Full Copyright Statement...51

1. Introduction

 Extensible Authentication Protocol (EAP) [2] defines a standard
 message exchange that allows a server to authenticate a client based
 on an authentication protocol agreed upon by both parties. EAP may
 be extended with additional authentication protocols by registering
 such protocols with IANA or by defining vendor specific protocols.

 Transport Layer Security (TLS) [3] is an authentication protocol

 that provides for client authentication of a server or mutual
 authentication of client and server, as well as secure ciphersuite
 negotiation and key exchange between the parties. TLS has been

Paul Funk expires January 2005 [Page 3]

Internet-Draft April 2004

 defined as an authentication protocol for use within EAP (EAP-TLS)
 [1].

 Other authentication protocols are also widely deployed. These are
 typically password-based protocols, and there is a large installed
 base of support for these protocols in the form of credential
 databases that may be accessed by RADIUS, Diameter or other AAA
 servers. These include non-EAP protocols such as PAP, CHAP, MS-CHAP
 and MS-CHAP-V2, as well as EAP protocols such as MD5-Challenge.

 EAP-TTLS is an EAP protocol that extends EAP-TLS. In EAP-TLS, a TLS
 handshake is used to mutually authenticate a client and server. EAP-
 TTLS extends this authentication negotiation by using the secure
 connection established by the TLS handshake to exchange additional
 information between client and server. In EAP-TTLS, the TLS
 handshake may be mutual; or it may be one-way, in which only the
 server is authenticated to the client. The secure connection
 established by the handshake may then be used to allow the server to
 authenticate the client using existing, widely-deployed
 authentication infrastructures such as RADIUS. The authentication of
 the client may itself be EAP, or it may be another authentication
 protocol such as PAP, CHAP, MS-CHAP or MS-CHAP-V2.

 Thus, EAP-TTLS allows legacy password-based authentication protocols
 to be used against existing authentication databases, while
 protecting the security of these legacy protocols against
 eavesdropping, man-in-the-middle and other cryptographic attacks.

 EAP-TTLS also allows client and server to establish keying material
 for use in the data connection between the client and access point.
 The keying material is established implicitly between client and
 server based on the TLS handshake.

 In EAP-TTLS, client and server communicate using attribute-value
 pairs encrypted within TLS. This generality allows arbitrary
 functions beyond authentication and key exchange to be added to the
 EAP negotiation, in a manner compatible with the AAA infrastructure.

2. Motivation

 Most password-based protocols in use today rely on a hash of the
 password with a random challenge. Thus, the server issues a
 challenge, the client hashes that challenge with the password and
 forwards a response to the server, and the server validates that
 response against the user's password retrieved from its database.
 This general approach describes CHAP, MS-CHAP, MS-CHAP-V2, EAP/MD5-
 Challenge and EAP/One-Time Password.

 An issue with such an approach is that an eavesdropper that observes

 both challenge and response may be able to mount a dictionary
 attack, in which random passwords are tested against the known

Paul Funk expires January 2005 [Page 4]

Internet-Draft April 2004

 challenge to attempt to find one which results in the known
 response. Because passwords typically have low entropy, such attacks
 can in practice easily discover many passwords.

 While this vulnerability has long been understood, it has not been
 of great concern in environments where eavesdropping attacks are
 unlikely in practice. For example, users with wired or dial-up
 connections to their service providers have not been concerned that
 such connections may be monitored. Users have also been willing to
 entrust their passwords to their service providers, or at least to
 allow their service providers to view challenges and hashed
 responses which are then forwarded to their home authentication
 servers using, for example, proxy RADIUS, without fear that the
 service provider will mount dictionary attacks on the observed
 credentials. Because a user typically has a relationship with a
 single service provider, such trust is entirely manageable.

 With the advent of wireless connectivity, however, the situation
 changes dramatically:

 - Wireless connections are considerably more susceptible to
 eavesdropping and man-in-the-middle attacks. These attacks may
 enable dictionary attacks against low-entropy passwords. In
 addition, they may enable channel hijacking, in which an attacker
 gains fraudulent access by seizing control of the communications
 channel after authentication is complete.

 - Existing authentication protocols often begin by exchanging the
 clientÆs username in the clear. In the context of eavesdropping
 on the wireless channel, this can compromise the clientÆs
 anonymity and locational privacy.

 - Often in wireless networks, the access point does not reside in
 the administrative domain of the service provider with which the
 user has a relationship. For example, the access point may reside
 in an airport, coffee shop, or hotel in order to provide public
 access via 802.11. Even if password authentications are protected
 in the wireless leg, they may still be susceptible to
 eavesdropping within the untrusted wired network of the access
 point.

 - In the traditional wired world, the user typically intentionally
 connects with a particular service provider by dialing an
 associated phone number; that service provider may be required to
 route an authentication to the user's home domain. In a wireless
 network, however, the user does not get to choose an access
 domain, and must connect with whichever access point is nearby;
 providing for the routing of the authentication from an arbitrary

 access point to the user's home domain may pose a challenge.

Paul Funk expires January 2005 [Page 5]

Internet-Draft April 2004

 Thus, the authentication requirements for a wireless environment
 that EAP-TTLS attempts to address can be summarized as follows:

 - Legacy password protocols must be supported, to allow easy
 deployment against existing authentication databases.

 - Password-based information must not be observable in the
 communications channel between the client node and a trusted
 service provider, to protect the user against dictionary attacks.

 - The user's identity must not be observable in the communications
 channel between the client node and a trusted service provider,
 to protect the user's locational privacy against surveillance,
 undesired acquisition of marketing information, and the like.

 - The authentication process must result in the distribution of
 shared keying information to the client and access point to
 permit encryption and validation of the wireless data connection
 subsequent to authentication, to secure it against eavesdroppers
 and prevent channel hijacking.

 - The authentication mechanism must support roaming among small
 access domains with which the user has no relationship and which
 will have limited capabilities for routing authentication
 requests.

3. Terminology

 AAA

 Authentication, Authorization and Accounting - functions that are
 generally required to control access to a network and support
 billing and auditing.

 AAA protocol

 A network protocol used to communicate with AAA servers; examples
 include RADIUS and Diameter.

 AAA server

 A server which performs one or more AAA functions: authenticating
 a user prior to granting network service, providing authorization
 (policy) information governing the type of network service the
 user is to be granted, and accumulating accounting information
 about actual usage.

 AAA/H

 A AAA server in the user's home domain, where authentication and
 authorization for that user are administered.

Paul Funk expires January 2005 [Page 6]

Internet-Draft April 2004

 access point

 A network device providing users with a point of entry into the
 network, and which may enforce access control and policy based on
 information returned by a AAA server. For the purposes of this
 document, "access point" and "NAS" are architecturally
 equivalent. "Access point" is used throughout because it is
 suggestive of devices used for wireless access; "NAS" is used
 when more traditional forms of access, such as dial-up, are
 discussed.

 access domain

 The domain, including access points and other devices, that
 provides users with an initial point of entry into the network;
 for example, a wireless hot spot.

 client

 A host or device that connects to a network through an access
 point.

 domain

 A network and associated devices that are under the
 administrative control of an entity such as a service provider or
 the user's home organization.

 link layer protocol

 A protocol used to carry data between hosts that are connected
 within a single network segment; examples include PPP and
 Ethernet.

 NAI

 A Network Access Identifier [7], normally consisting of the name
 of the user and, optionally, the user's home realm.

 NAS

 A network device providing users with a point of entry into the
 network, and which may enforce access control and policy based on
 information returned by a AAA server. For the purposes of this
 document, "access point" and "NAS" are architecturally
 equivalent. "Access point" is used throughout because it is
 suggestive of devices used for wireless access; "NAS" is used
 when more traditional forms of access, such as dial-up, are
 discussed.

 proxy

Paul Funk expires January 2005 [Page 7]

Internet-Draft April 2004

 A server that is able to route AAA transactions to the
 appropriate AAA server, possibly in another domain, typically
 based on the realm portion of an NAI.

 realm

 The optional part of an NAI indicating the domain to which a AAA
 transaction is to be routed, normally the user's home domain.

 service provider

 An organization with which a user has a business relationship,
 that provides network or other services. The service provider may
 provide the access equipment with which the user connects, may
 perform authentication or other AAA functions, may proxy AAA
 transactions to the user's home domain, etc.

 TTLS server

 A AAA server which implements EAP-TTLS. This server may also be
 capable of performing user authentication, or it may proxy the
 user authentication to a AAA/H.

 user

 The person operating the client device. Though the line is often
 blurred, "user" is intended to refer to the human being who is
 possessed of an identity (username), password or other
 authenticating information, and "client" is intended to refer to
 the device which makes use of this information to negotiate
 network access. There may also be clients with no human
 operators; in this case the term "user" is a convenient
 abstraction.

4. Architectural Model

 The network architectural model for EAP-TTLS usage and the type of
 security it provides is shown below.

 +----------+ +----------+ +----------+ +----------+
 | | | | | | | |
 | client |<---->| access |<---->| TTLS AAA |<---->| AAA/H |
 | | | point | | server | | server |
 | | | | | | | |
 +----------+ +----------+ +----------+ +----------+

 <---- secure password authentication tunnel --->

 <---- secure data tunnel ---->

Paul Funk expires January 2005 [Page 8]

Internet-Draft April 2004

 The entities depicted above are logical entities and may or may not
 correspond to separate network components. For example, the TTLS
 server and AAA/H server might be a single entity; the access point
 and TTLS server might be a single entity; or, indeed, the functions
 of the access point, TTLS server and AAA/H server might be combined
 into a single physical device. The above diagram illustrates the
 division of labor among entities in a general manner and shows how a
 distributed system might be constructed; however, actual systems
 might be realized more simply.

 Note also that one or more AAA proxy servers might be deployed
 between access point and TTLS server, or between TTLS server and
 AAA/H server. Such proxies typically perform aggregation or are
 required for realm-based message routing. However, such servers play
 no direct role in EAP-TTLS and are therefore not shown.

4.1 Carrier Protocols

 The entities shown above communicate with each other using carrier
 protocols capable of encapsulating EAP. The client and access point
 communicate using a link layer carrier protocol such as PPP or
 EAPOL. The access point, TTLS server and AAA/H server communicate
 using a AAA carrier protocol such as RADIUS or Diameter.

 EAP, and therefore EAP-TTLS, must be initiated via the link layer
 protocol. In PPP or EAPOL, for example, EAP is initiated when the
 access point sends an EAP-Request/Identity packet to the client.

 The keying material used to encrypt and authenticate the data
 connection between the client and access point is developed
 implicitly between the client and TTLS server as a result of EAP-
 TTLS negotiation. This keying material must be communicated to the
 access point by the TTLS server using the AAA carrier protocol.

 The client and access point must also agree on an
 encryption/validation algorithm to be used based on the keying
 material. In some systems, both these devices may be preconfigured
 with this information, and distribution of the keying material alone
 is sufficient. Or, the link layer protocol may provide a mechanism
 for client and access point to negotiate an algorithm.

 In the most general case, however, it may be necessary for both
 client and access point to communicate their algorithm preferences
 to the TTLS server, and for the TTLS server to select one and
 communicate its choice to both parties. This information would be
 transported between access point and TTLS server via the AAA
 protocol, and between client and TTLS server via EAP-TTLS in
 encrypted form.

Paul Funk expires January 2005 [Page 9]

Internet-Draft April 2004

4.2 Security Relationships

 The client and access point have no pre-existing security
 relationship.

 The access point, TTLS server and AAA/H server are each assumed to
 have a pre-existing security association with the adjacent entity
 with which it communicates. With RADIUS, for example, this is
 achieved using shared secrets. It is essential for such security
 relationships to permit secure key distribution.

 The client and AAA/H server have a security relationship based on
 the user's credentials such as a password.

 The client and TTLS server may have a one-way security relationship
 based on the TTLS server's possession of a private key guaranteed by
 a CA certificate which the user trusts, or may have a mutual
 security relationship based on certificates for both parties.

4.3 Messaging

 The client and access point initiate an EAP conversation to
 negotiate the client's access to the network. Typically, the access
 point issues an EAP-Request/Identity to the client, which responds
 with an EAP-Response/Identity. Note that the client does not include
 the user's actual identity in this EAP-Response/Identity packet; the
 user's identity will not be transmitted until an encrypted channel
 has been established.

 The access point now acts as a passthrough device, allowing the TTLS
 server to negotiate EAP-TTLS with the client directly.

 During the first phase of the negotiation, the TLS handshake
 protocol is used to authenticate the TTLS server to the client and,
 optionally, to authenticate the client to the TTLS server, based on
 public/private key certificates. As a result of the handshake,
 client and TTLS server now have shared keying material and an agreed
 upon TLS record layer cipher suite with which to secure subsequent
 EAP-TTLS communication.

 During the second phase of negotiation, client and TTLS server use
 the secure TLS record layer channel established by the TLS handshake
 as a tunnel to exchange information encapsulated in attribute-value
 pairs, to perform additional functions such as client authentication
 and key distribution for the subsequent data connection.

 If a tunneled client authentication is performed, the TTLS server
 de-tunnels and forwards the authentication information to the AAA/H.
 If the AAA/H performs a challenge, the TTLS server tunnels the

 challenge information to the client. The AAA/H server may be a
 legacy device and needs to know nothing about EAP-TTLS; it only

Paul Funk expires January 2005 [Page 10]

Internet-Draft April 2004

 needs to be able to authenticate the client based on commonly used
 authentication protocols.

 Keying material for the subsequent data connection between client
 and access point may be generated based on secret information
 developed during the TLS handshake between client and TTLS server.
 At the conclusion of a successful authentication, the TTLS server
 may transmit this keying material to the access point, encrypted
 based on the existing security associations between those devices
 (e.g., RADIUS).

 The client and access point now share keying material which they can
 use to encrypt data traffic between them.

4.4 Resulting Security

 As the diagram above indicates, EAP-TTLS allows user identity and
 password information to be securely transmitted between client and
 TTLS server, and performs key distribution to allow network data
 subsequent to authentication to be securely transmitted between
 client and access point.

5. Protocol Layering Model

 EAP-TTLS packets are encapsulated within EAP, and EAP in turn
 requires a carrier protocol to transport it. EAP-TTLS packets
 themselves encapsulate TLS, which is then used to encapsulate user
 authentication information. Thus, EAP-TTLS messaging can be
 described using a layered model, where each layer is encapsulated by
 the layer beneath it. The following diagram clarifies the
 relationship between protocols:

 +--+
 | User Authentication Protocol (PAP, CHAP, MS-CHAP, etc.)|
 +--+
 | TLS |
 +--+
 | EAP-TTLS |
 +--+
 | EAP |
 +--+
 | Carrier Protocol (PPP, EAPOL, RADIUS, Diameter, etc.) |
 +--+

 When the user authentication protocol is itself EAP, the layering is
 as follows:

Paul Funk expires January 2005 [Page 11]

Internet-Draft April 2004

 +--+
 | User EAP Authentication Protocol (MD-Challenge, etc.) |
 +--+
 | EAP |
 +--+
 | TLS |
 +--+
 | EAP-TTLS |
 +--+
 | EAP |
 +--+
 | Carrier Protocol (PPP, EAPOL, RADIUS, Diameter, etc.) |
 +--+

 Methods for encapsulating EAP within carrier protocols are already
 defined. For example, PPP [5] or EAPOL [4] may be used to transport
 EAP between client and access point; RADIUS [6] or Diameter [8] are
 used to transport EAP between access point and TTLS server.

6. EAP-TTLS version 0 Overview

 [Authors' note: This section as well as sections 7, 8, 9 and 10,
 describe version 0 of the EAP-TTLS protocol. Section 11 describes
 version 1 of EAP-TTLS. Much of the material describing version 0
 also applies to version 1; the version 1 documentation will refer to
 the version 0 material as required. The intention is to provide a
 separate draft for each of the two versions in the near future.]

 A EAP-TTLS negotiation comprises two phases: the TLS handshake phase
 and the TLS tunnel phase.

 During phase 1, TLS is used to authenticate the TTLS server to the
 client and, optionally, the client to the TTLS server. Phase 1
 results in the activation of a cipher suite, allowing phase 2 to
 proceed securely using the TLS record layer. (Note that the type and
 degree of security in phase 2 depends on the cipher suite negotiated
 during phase 1; if the null cipher suite is negotiated, there will
 be no security!)

 During phase 2, the TLS record layer is used to tunnel information
 between client and TTLS server to perform any of a number of
 functions. These might include user authentication, negotiation of
 data communication security capabilities, key distribution,
 communication of accounting information, etc.. Information between
 client and TTLS server is exchanged via attribute-value pairs (AVPs)
 compatible with RADIUS and Diameter; thus, any type of function that
 can be implemented via such AVPs may easily be performed.

 EAP-TTLS specifies how user authentication may be performed during
 phase 2. The user authentication may itself be EAP, or it may be a
 legacy protocol such as PAP, CHAP, MS-CHAP or MS-CHAP-V2. Phase 2

Paul Funk expires January 2005 [Page 12]

Internet-Draft April 2004

 user authentication may not always be necessary, since the user may
 already have been authenticated via the mutual authentication option
 of the TLS handshake protocol.

 EAP-TTLS is also intended for use in key distribution, and specifies
 how keying material for the data connection between client and
 access point is generated. The keying material is developed
 implicitly between client and TTLS server based on the results of
 the TLS handshake; the TTLS server will communicate the keying
 material to the access point over the carrier protocol However,
 EAP-TTLS does not specify particular key distribution AVPs and their
 use, since the needs of various systems will be different. Instead,
 a general model for key distribution is suggested. Organizations may
 define their own AVPs for this use, possibly using vendor-specific
 AVPs, either in conformance with the suggested model or otherwise.

6.1 Phase 1: Handshake

 In phase 1, the TLS handshake protocol is used to authenticate the
 TTLS server to the client and, optionally, to authenticate the
 client to the TTLS server.

 Phase 1 is initiated when the client sends an EAP-Response/Identity
 packet to the TTLS server. This packet specifically should not
 include the name of the user; however, it may include the name of
 the realm of a trusted provider to which EAP-TTLS packets should be
 forwarded; for example, "@myisp.com".

 The TTLS server responds to the EAP-Response/Identity packet with a
 EAP-TTLS/Start packet, which is an EAP-Request with Type = EAP-TTLS,
 the S (Start) bit set, and no data. This indicates to the client
 that it should begin TLS handshake by sending a ClientHello message.

 EAP packets continue to be exchanged between client and TTLS server
 to complete the TLS handshake, as described in [1]. Phase 1 is
 completed when the client and TTLS server exchange ChangeCipherSpec
 and Finished messages. At this point, additional information may be
 securely tunneled.

 As part of the TLS handshake protocol, the TTLS server will send its
 certificate along with a chain of certificates leading to the
 certificate of a trusted CA. The client will need to be configured
 with the certificate of the trusted CA in order to perform the
 authentication.

 If certificate-based authentication of the client is desired, the
 client must have been issued a certificate and must have the private
 key associated with that certificate

Paul Funk expires January 2005 [Page 13]

Internet-Draft April 2004

6.2 Phase 2: Tunnel

 In phase 2, the TLS Record Layer is used to securely tunnel
 information between client and TTLS server. This information is
 encapsulated in sequences of attribute-value pairs (AVPS), whose use
 and format are described in later sections.

 Any type of information may be exchanged during phase 2, according
 to the requirements of the system. (It is expected that applications
 utilizing EAP-TTLS will specify what information must be exchanged
 and therefore which AVPs must be supported.)

 The client begins the phase 2 exchange by encoding information in a
 sequence of AVPs, passing this sequence to the TLS record layer for
 encryption, and sending the resulting data to the TTLS server.

 The TTLS server recovers the AVPs in clear text from the TLS record
 layer. If the AVP sequence includes authentication information, it
 forwards this information to the AAA/H server using the AAA carrier
 protocol. Note that the EAP-TTLS and AAA/H servers may be one and
 the same, in which case it simply processes the information locally.

 The TTLS server may respond with its own sequence of AVPs. The TTLS
 server passes the AVP sequence to the TLS record layer for
 encryption and sends the resulting data to the client. For example,
 the TTLS server may send key distribution information, or it may
 forward an authentication challenge received from the AAA/H.

 This process continues until the TTLS server has enough information
 to issue either an EAP-Success or EAP-Failure. Thus, if the AAA/H
 rejects the client based on forwarded authentication information,
 the TTLS server would issue an EAP-Failure. If the AAA/H accepts the
 client, the TTLS server would issue an EAP-Success.

 The TTLS server distributes data connection keying information and
 other authorization information to the access point in the same AAA
 carrier protocol message that carries the EAP-Success.

6.3 Piggybacking

 While it is convenient to describe EAP-TTLS messaging in terms of
 two phases, it is sometimes required that a single EAP-TTLS packet
 to contain both phase 1 and phase 2 TLS messages.

 Such "piggybacking" occurs when the party that completes the
 handshake also has AVPs to send. For example, when negotiating a
 resumed TLS session, the TTLS server sends its ChangeCipherSpec and
 Finished messages first, then the client sends its own
 ChangeCipherSpec and Finished messages to conclude the handshake. If

 the client has authentication or other AVPs to send to the TTLS
 server, it must tunnel those AVPs within the same EAP-TTLS packet

Paul Funk expires January 2005 [Page 14]

Internet-Draft April 2004

 immediately following its Finished message. If the client fails to
 do this, the TTLS server will incorrectly assume that the client has
 no AVPs to send, and the outcome of the negotiation could be
 affected.

6.4 Session Resumption

 When a client and TTLS server that have previously negotiated a EAP-
 TTLS session begin a new EAP-TTLS negotiation, the client and TTLS
 server may agree to resume the previous session. This significantly
 reduces the time required to establish the new session. This could
 occur when the client connects to a new access point, or when an
 access point requires reauthentication of a connected client.

 Session resumption is accomplished using the standard TLS mechanism.
 The client signals its desire to resume a session by including the
 session ID of the session it wishes to resume in the ClientHello
 message; the TTLS server signals its willingness to resume that
 session by echoing that session ID in its ServerHello message.

 If the TTLS server elects not to resume the session, it simply does
 not echo the session ID and a new session will be negotiated. This
 could occur if the TTLS server is configured not to resume sessions,
 if it has not retained the requested session's state, or if the
 session is considered stale. A TTLS server may consider the session
 stale based on its own configuration, or based on session-limiting
 information received from the AAA/H (e.g., the RADIUS Session-
 Timeout attribute).

 Tunneled authentication is specifically not performed for resumed
 sessions; the presumption is that the knowledge of the master secret
 as evidenced by the ability to resume the session is authentication
 enough. This allows session resumption to occur without any
 messaging between the TTLS server and the AAA/H. If periodic
 reauthentication to the AAA/H is desired, the AAA/H must indicate
 this to the TTLS server when the original session is established,
 for example, using the RADIUS Session-Timeout attribute.

 The client must, however, send other required AVPs, in particular
 key distribution AVPs, that are not associated with tunneled
 authentication in its first EAP-TTLS packet to the server that is
 capable of containing phase 2 TLS messages. The TTLS server does not
 retain client AVPs or key distribution preferences as part of
 session state, and the client is expected to resend those AVPs in
 each negotiation.

 Thus phase 2 of a resumed session proceeds just as would a new
 session, minus tunneled authentication AVPs. For example, the client

 would send its key distribution preferences, and the TTLS server
 would respond with its key distribution selection.

Paul Funk expires January 2005 [Page 15]

Internet-Draft April 2004

 While the TTLS server does not retain client AVPs from session to
 session, it must retain authorization information returned by the
 AAA/H for use in resumed sessions. A resumed session must operate
 under the same authorizations as the original session, and the TTLS
 server must be prepared to send the appropriate information back to
 the access point. Authorization information might include the
 maximum time for the session, the maximum allowed bandwidth, packet
 filter information and the like. The TTLS server is responsible for
 modifying time values, such as Session-Timeout, appropriately for
 each resumed session.

 A TTLS server must not permit a session to be resumed if that
 session did not result in a successful authentication of the user
 during phase 2. The consequence of incorrectly implementing this
 aspect of session resumption would be catastrophic; any attacker
 could easily gain network access by first initiating a session that
 succeeds in the TLS handshake but fails during phase 2
 authentication, and then resuming that session.

 [Implementation note: Toolkits that implement TLS often cache
 resumable TLS sessions automatically. Implementers must take care to
 override such automatic behavior, and prevent sessions from being
 cached for possible resumption until the user has been positively
 authenticated during phase 2.]

6.4.1 TTLS Server Guidelines for Session Resumption

 When a domain comprises multiple TTLS servers, a client's attempt to
 resume a session may fail because each EAP-TTLS negotiation may be
 routed to a different TTLS server.

 One strategy to ensure that subsequent EAP-TTLS negotiations are
 routed to the original TTLS server is for each TTLS server to encode
 its own identifying information, for example, IP address, in the
 session IDs that it generates. This would allow any TTLS server
 receiving a session resumption request to forward the request to the
 TTLS server that established the original session.

7. Generating Keying Material

 When record layer security is instantiated at the end of a TLS
 handshake, a pseudo-random function (PRF) is used to expand the
 negotiated master secret, server random value and client random
 value into a sequence of octets that is used as keying material for
 the record layer. The length of this sequence depends on the
 negotiated cipher suite, and contains the following components:

Paul Funk expires January 2005 [Page 16]

Internet-Draft April 2004

 client_write_MAC_secret
 server_write_MAC_secret
 client_write_key
 server_write_key
 client_write_IV (optional)
 server_write_IV (optional)

 The ASCII-encoded constant string "key expansion" is used as input
 to the pseudo-random function to generate this sequence.

 EAP-TTLS leverages this technique to create keying material for use
 in the data connection between client and access point. Exactly the
 same PRF is used to generate as much keying material as required,
 with the constant string set to "ttls keying material", as follows:

 EAP-TTLS_keying_material = PRF(SecurityParameters.master_secret,
 "ttls keying material",
 SecurityParameters.client_random +
 SecurityParameters.server_random);

 The master secret, client random and server random used to generate
 the data connection keying material must be those established during
 the TLS handshake. Both client and TTLS server generate this keying
 material, and they are guaranteed to be the same if the handshake
 succeeded. The TTLS server distributes this keying material to the
 access point via the AAA carrier protocol.

 [Note that the order of client_random and server_random for EAP-TTLS
 is reversed from that of the TLS protocol [3]. This ordering follows
 the key derivation method of EAP-TLS [1]. Altering the order of
 randoms avoids namespace collisions between constant strings defined
 for EAP-TTLS and those defined for the TLS protocol.]

8. EAP-TTLS Encoding

 EAP-TTLS is a protocol within EAP. Its assigned EAP number is 21.

 Except as described in the subsections below, EAP-TTLS's encoding of
 TLS messages within EAP is identical to EAP-TLS's encoding of TLS
 messages within EAP. See [1] for details.

8.1 EAP-TTLS Start Packet

 The EAP-TTLS Start packet (with S-bit set) may, in a future
 specification, be allowed to contain data (the EAP-TLS Start packet
 does not).

 Thus, the data contents of an EAP-TTLS Start packet are reserved for
 future standardization; in the meantime, servers must not include

 any data in an EAP-TTLS Start packet, and clients must ignore such
 data but must not reject a Start packet that contains data.

Paul Funk expires January 2005 [Page 17]

Internet-Draft April 2004

8.2 EAP-TTLS Packets with No Data

 One point of clarification has to do with an EAP-TTLS packet (other
 than a Start packet) that contains no data.

 EAP-TLS defines the use of such a packet as a fragment ACK. When
 either party must fragment an EAP-TLS packet, the other party
 responds with a fragment ACK to allow the original party to send the
 next fragment.

 EAP-TTLS uses the fragment ACK in the same way. There are also other
 instances where a EAP-TTLS packet with no data might be sent:

 - When the final EAP packet of the EAP-TTLS negotiation is sent by
 the TTLS server, the client must respond with a EAP-TTLS packet
 with no data, to allow the TTLS server to issue its final EAP-
 Success or EAP-Failure packet.

 - It is possible for a EAP-TTLS packet with no data to be sent in
 the middle of a negotiation. Such a packet is simply interpreted
 as packet with no AVPs. For example, during session resumption,
 the client sends its Finished message first, then the TTLS server
 replies with its Finished message. The TTLS server cannot
 piggyback key distribution AVPs within the Record Layer in the
 same EAP-TTLS packet containing its Finished message, because it
 must wait for the client to indicate its key distribution
 preferences. But it is possible that the client has no
 preferences, and thus has no AVPs to send. The client simply
 sends a EAP-TTLS packet with no data, to allow the server to
 continue the negotiation by sending its key distribution
 selection.

9. Encapsulation of AVPs within the TLS Record Layer

 Subsequent to the TLS handshake, information is tunneled between
 client and TTLS server through the use of attribute-value pairs
 (AVPs) encrypted within the TLS record layer.

 The AVP format chosen for EAP-TTLS is compatible with the Diameter
 AVP format. This does not at all represent a requirement that
 Diameter be supported by any of the devices or servers participating
 in a EAP-TTLS negotiation. Use of this format is merely a
 convenience. Diameter is a superset of RADIUS and includes the
 RADIUS attribute namespace by definition, though it does not limit
 the size of an AVP as does RADIUS; RADIUS, in turn, is a widely
 deployed AAA protocol and attribute definitions exist for all
 commonly used password authentication protocols, including EAP.

 Thus, Diameter is not considered normative except as specified in

 this document. Specifically, the AVP Codes used in EAP-TTLS are
 semantically equivalent to those defined for Diameter, and, by

Paul Funk expires January 2005 [Page 18]

Internet-Draft April 2004

 extension, RADIUS. Also, the representation of the Data field of an
 AVP in EAP-TTLS is identical to that of Diameter.

 Use of the RADIUS/Diameter namespace allows a TTLS server to easily
 translate between AVPs it uses to communicate to clients and the
 protocol requirements of AAA servers that are widely deployed. Plus,
 it provides a well-understood mechanism to allow vendors to extend
 that namespace for their particular requirements.

9.1 AVP Format

 The format of an AVP is shown below. All items are in network, or
 big-endian, order; that is, they have most significant octet first.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AVP Code |
 +-+
 |V M r r r r r r| AVP Length |
 +-+
 | Vendor-ID (opt) |
 +-+
 | Data ...
 +-+-+-+-+-+-+-+-+

 AVP Code

 The AVP Code is four octets and, combined with the Vendor-ID
 field if present, identifies the attribute uniquely. The first
 256 AVP numbers represent attributes defined in RADIUS. AVP
 numbers 256 and above are defined in Diameter.

 AVP Flags

 The AVP Flags field is one octet, and provides the receiver with
 information necessary to interpret the AVP.

 The 'V' (Vendor-Specific) bit indicates whether the optional
 Vendor-ID field is present. When set to 1, the Vendor-ID field is
 present and the AVP Code is interpreted according to the
 namespace defined by the vendor indicated in the Vendor-ID field.

 The 'M' (Mandatory) bit indicates whether support of the AVP is
 required. If this bit is set to 0, this indicates that the AVP
 may be safely ignored if the receiving party does not understand
 or support it. If set to 1, this indicates that the receiving
 party must fail the negotiation if it does not understand the
 AVP; for a TTLS server, this would imply returning EAP-Failure,

 for a client, this would imply abandoning the negotiation.

Paul Funk expires January 2005 [Page 19]

Internet-Draft April 2004

 The 'r' (reserved) bits are unused and must be set to 0.

 AVP Length

 The AVP Length field is three octets, and indicates the length of
 this AVP including the AVP Code, AVP Length, AVP Flags, Vendor-ID
 (if present) and Data.

 Vendor-ID

 The Vendor-ID field is present if the 'V' bit is set in the AVP
 Flags field. It is four octets, and contains the vendor's IANA-
 assigned "SMI Network Management Private Enterprise Codes" [9]
 value. Vendors defining their own AVPs must maintain a consistent
 namespace for use of those AVPs within RADIUS, Diameter and EAP-
 TTLS.

 A Vendor-ID value of zero is equivalent to absence of the Vendor-
 ID field altogether.

9.2 AVP Sequences

 Data encapsulated within the TLS Record Layer must consist entirely
 of a sequence of zero or more AVPs. Each AVP must begin on a 4-octet
 boundary relative to the first AVP in the sequence. If an AVP is not
 a multiple of 4 octets, it must be padded with 0s to the next 4-
 octet boundary.

 Note that the AVP Length does not include the padding.

9.3 Guidelines for Maximum Compatibility with AAA Servers

 For maximum compatibility, the following guidelines for AVP usage
 are suggested:

 - Non-vendor-specific AVPs should be selected from the set of
 attributes defined for RADIUS; that is, attributes with codes
 less than 256. This provides compatibility with both RADIUS and
 Diameter.

 - Vendor-specific AVPs should be defined in terms of RADIUS.
 Vendor-specific RADIUS attributes translate to Diameter (and,
 hence, to EAP-TTLS) automatically; the reverse is not true.
 RADIUS vendor-specific attributes use RADIUS attribute 26 and
 include vendor ID, vendor-specific attribute code and length; see
 [6] for details.

10. Tunneled Authentication

 EAP-TTLS permits user authentication information to be tunneled
 within the TLS record layer between client and TTLS server,

Paul Funk expires January 2005 [Page 20]

Internet-Draft April 2004

 guaranteeing the security of the authentication information against
 active and passive attack between the client and TTLS server. The
 TTLS server decrypts and forwards this information to the AAA/H over
 the AAA carrier protocol.

 Any type of password or other authentication may be tunneled. Also,
 multiple tunneled authentications may be performed. Normally,
 tunneled authentication is used when the client has not been issued
 a certificate and the TLS handshake provides only one-way
 authentication of the TTLS server to the client; however, in certain
 cases it may be desired to perform certificate authentication of the
 client during the TLS handshake as well as tunneled user
 authentication afterwards.

10.1 Implicit challenge

 Certain authentication protocols that use a challenge/response
 mechanism rely on challenge material that is not generated by the
 authentication server, and therefore require special handling.

 In CHAP, MS-CHAP and MS-CHAP-V2, for example, the NAS issues a
 challenge to the client, the client then hashes the challenge with
 the password and forwards the response to the NAS. The NAS then
 forwards both challenge and response to a AAA server. But because
 the AAA server did not itself generate the challenge, such protocols
 are susceptible to replay attack.

 If the client were able to create both challenge and response,
 anyone able to observe a CHAP or MS-CHAP exchange could pose as that
 user, even using EAP-TTLS.

 To make these protocols secure under EAP-TTLS, it is necessary to
 provide a mechanism to produce a challenge that the client cannot
 control or predict. This is accomplished using the same technique
 described above for generating data connection keying material.

 When a challenge-based authentication mechanism is used, both client
 and TTLS server use the pseudo-random function to generate as many
 octets as are required for the challenge, using the constant string
 "ttls challenge", based on the master secret and random values
 established during the handshake:

 EAP-TTLS_challenge = PRF(SecurityParameters.master_secret,
 "ttls challenge",
 SecurityParameters.client_random +
 SecurityParameters.server_random);

10.2 Tunneled Authentication Protocols

 This section describes the methods for tunneling specific
 authentication protocols within EAP-TTLS.

Paul Funk expires January 2005 [Page 21]

Internet-Draft April 2004

 For the purpose of explication, it is assumed that the TTLS server
 and AAA/H use RADIUS as a AAA carrier protocol between them.
 However, this is not a requirement, and any AAA protocol capable of
 carrying the required information may be used.

10.2.1 EAP

 When EAP is the tunneled authentication protocol, each tunneled EAP
 packet between the client and TTLS server is encapsulated in an EAP-
 Message AVP, prior to tunneling via the TLS record layer.

 The client's first tunneled EAP packet within phase 2 will contain
 the EAP-Response/Identity. The client places the actual username in
 this packet; the privacy of the user's identity is now guaranteed by
 the TLS encryption. This username must be a Network Access
 Identifier (NAI) [7]; that is, it must be in the following format:

 username@realm

 The @realm portion is optional, and is used to allow the TTLS server
 to forward the EAP packet to the appropriate AAA/H.

 Note that the client has two opportunities to specify realms. The
 first, in the initial EAP-Response/Identity packet, indicates the
 realm of the TTLS server. The second, in the tunneled
 authentication, indicates the realm of the client's home network.
 Thus, the access point need only know how to route to the realm of
 the TTLS server; the TTLS server is assumed to know how to route to
 the client's home realm. This serial routing architecture is
 anticipated to be useful in roaming environments, allowing access
 points or AAA proxies behind access points to be configured only
 with a small number of realms.

 Upon receipt of the tunneled EAP-Response/Identity, the TTLS server
 forwards it to the AAA/H in a RADIUS Access-Request.

 The AAA/H may immediately respond with an Access-Reject, in which
 case the TTLS server completes the negotiation by sending an EAP-
 Failure to the access point. This could occur if the AAA/H does not
 recognize the user's identity, or if it does not support EAP.

 If the AAA/H does recognize the user's identity and does support
 EAP, it responds with an Access-Challenge containing an EAP-Request,
 with the Type and Type-Data fields set according to the EAP protocol
 with which the AAA/H wishes to authenticate the client; for example
 MD-Challenge, OTP or Generic Token Card.

 The EAP authentication between client and AAA/H proceeds normally,
 as described in [2], with the TTLS server acting as a passthrough

 device. Each EAP-Request sent by the AAA/H in an Access-Challenge is
 tunneled by the TTLS server to the client, and each EAP-Response

Paul Funk expires January 2005 [Page 22]

Internet-Draft April 2004

 tunneled by the client is decrypted and forwarded by the TTLS server
 to the AAA/H in an Access-Request.

 This process continues until the AAA/H issues an Access-Accept or
 Access-Reject, at which point the TTLS server completes the
 negotiation by sending an EAP-Success or EAP-Failure to the access
 point using the AAA carrier protocol.

10.2.2 CHAP

 The CHAP algorithm is described in [5]; RADIUS attribute formats are
 described in [6].

 Both client and TTLS server generate 17 octets of challenge
 material, using the constant string "ttls challenge" as described
 above. These octets are used as follows:

 CHAP-Challenge [16 octets]
 CHAP Identifier [1 octet]

 The client tunnels User-Name, CHAP-Challenge and CHAP-Password AVPs
 to the TTLS server. The CHAP-Challenge value is taken from the
 challenge material. The CHAP-Password consists of CHAP Identifier,
 taken from the challenge material; and CHAP response, computed
 according to the CHAP algorithm.

 Upon receipt of these AVPs from the client, the TTLS server must
 verify that the value of the CHAP-Challenge AVP and the value of the
 CHAP Identifier in the CHAP-Password AVP are equal to the values
 generated as challenge material. If either item does not match
 exactly, the TTLS server must reject the client. Otherwise, it
 forwards the AVPs to the AAA/H in an Access-Request.

 The AAA/H will respond with an Access-Accept or Access-Reject. The
 TTLS server will then issue an EAP-Success or EAP-Failure to the
 access point.

10.2.3 MS-CHAP

 The MS-CHAP algorithm is described in [10]; RADIUS attribute formats
 are described in [12].

 Both client and TTLS server generate 9 octets of challenge material,
 using the constant string "ttls challenge" as described above. These
 octets are used as follows:

 MS-CHAP-Challenge [8 octets]
 Ident [1 octet]

 The client tunnels User-Name, MS-CHAP-Challenge and MS-CHAP-Response
 AVPs to the TTLS server. The MS-CHAP-Challenge value is taken from

Paul Funk expires January 2005 [Page 23]

Internet-Draft April 2004

 the challenge material. The MS-CHAP-Response consists of Ident,
 taken from the challenge material; Flags, set according the client
 preferences; and LM-Response and NT-Response, computed according to
 the MS-CHAP algorithm.

 Upon receipt of these AVPs from the client, the TTLS server must
 verify that the value of the MS-CHAP-Challenge AVP and the value of
 the Ident in the client's MS-CHAP-Response AVP are equal to the
 values generated as challenge material. If either item does not
 match exactly, the TTLS server must reject the client. Otherwise, it
 forwards the AVPs to the AAA/H in an Access-Request.

 The AAA/H will respond with an Access-Accept or Access-Reject. The
 TTLS server will then issue an EAP-Success or EAP-Failure to the
 access point.

10.2.4 MS-CHAP-V2

 The MS-CHAP-V2 algorithm is described in [11]; RADIUS attribute
 formats are described in [12].

 Both client and TTLS server generate 17 octets of challenge
 material, using the constant string "ttls challenge" as described
 above. These octets are used as follows:

 MS-CHAP-Challenge [16 octets]
 Ident [1 octet]

 The client tunnels User-Name, MS-CHAP-Challenge and MS-CHAP2-
 Response AVPs to the TTLS server. The MS-CHAP-Challenge value is
 taken from the challenge material. The MS-CHAP2-Response consists of
 Ident, taken from the challenge material; Flags, set to 0; Peer-
 Challenge, set to a random value; and Response, computed according
 to the MS-CHAP-V2 algorithm.

 Upon receipt of these AVPs from the client, the TTLS server must
 verify that the value of the MS-CHAP-Challenge AVP and the value of
 the Ident in the client's MS-CHAP2-Response AVP are equal to the
 values generated as challenge material. If either item does not
 match exactly, the TTLS server must reject the client. Otherwise, it
 forwards the AVPs to the AAA/H in an Access-Request.

 If the authentication is successful, the AAA/H will respond with an
 Access-Accept containing the MS-CHAP2-Success attribute. This
 attribute contains a 42-octet string that authenticates the AAA/H to
 the client based on the Peer-Challenge. The TTLS server tunnels this
 AVP to the client. Note that the authentication is not yet complete;
 the client must still accept the authentication response of the
 AAA/H.

Paul Funk expires January 2005 [Page 24]

Internet-Draft April 2004

 Upon receipt of the MS-CHAP2-Success AVP, the client is able to
 authenticate the AAA/H. If the authentication succeeds, the client
 sends an EAP-TTLS packet to the TTLS server containing no data. Upon
 receipt of the empty EAP-TTLS packet from the client, the TTLS
 server now issues an EAP-Success.

 If the authentication fails, the AAA/H will respond with an Access-
 Challenge containing the MS-CHAP2-Error attribute. This attribute
 contains a new Ident and a string with addition information such as
 error reason and whether a retry is allowed. If the error reason is
 an expired password and a retry is allowed, the client may proceed
 to change the user's password. If the error reason is not an expired
 password or if the client does not wish to change the user's
 password, it simply abandons the EAP-TTLS negotiation.

 If the client does wish to change the password, it tunnels MS-CHAP-
 NT-Enc-PW, MS-CHAP2-CPW, and MS-CHAP-Challenge AVPs to the TTLS
 server. The MS-CHAP2-CPW AVP is derived from from the new Ident and
 Challenge received in the MS-CHAP2-Error AVP. The MS-CHAP-Challenge
 AVP simply echoes the new Challenge.

 Upon receipt of these AVPs from the client, the TTLS server must
 verify that the value of the MS-CHAP-Challenge AVP and the value of
 the Ident in the client's MS-CHAP2-CPW AVP match the values it sent
 in the MS-CHAP2-Error AVP. If either item does not match exactly,
 the TTLS server must reject the client. Otherwise, it forwards the
 AVPs to the AAA/H in an Access-Request.

 If the authentication is successful, the AAA/H will respond with an
 Access-Accept containing the MS-CHAP2-Success attribute. At this
 point, the negotiation proceeds as described above; the TTLS server
 tunnels the MS-CHAP2-Success to the client, the client authenticates
 the AAA/H based on this AVP, it either abandons the negotation on
 failure or sends an EAP-TTLS packet to the TTLS server containing no
 data, the TTLS server issues an EAP-Success.

 Note that additional AVPs associated with MS-CHAP-V2 may be sent by
 the AAA/H; for example, MS-CHAP-Domain. The TTLS server must tunnel
 such authentication-related attributes along with the MS-CHAP2-
 Success.

10.2.5 PAP

 The client tunnels User-Name and User-Password AVPs to the TTLS
 server.

 Normally, in RADIUS, User-Password is padded with nulls to a
 multiple of 16 octets, then encrypted using a shared secret and
 other packet information.

Paul Funk expires January 2005 [Page 25]

Internet-Draft April 2004

 An EAP-TTLS client, however, does not RADIUS-encrypt the password
 since no such RADIUS variables are available; this is not a security
 weakness since the password will be encrypted via TLS anyway. The
 client should, however, null-pad the password to a multiple of 16
 octets, to obfuscate its length.

 Upon receipt of these AVPs from the client, the TTLS server forwards
 them to the AAA/H in a RADIUS Access-Request. (Note that in the
 Access-Request, the TTLS server must encrypt the User-Password
 attribute using the shared secret between the TTLS server and
 AAA/H.)

 The AAA/H may immediately respond with an Access-Accept or Access-
 Reject. The TTLS server then completes the negotiation by sending an
 EAP-Success or EAP-Failure to the access point using the AAA carrier
 protocol.

 The AAA/H may also respond with an Access-Challenge. The TTLS server
 then tunnels the AVPs from the AAA/H's challenge to the client. Upon
 receipt of these AVPs, the client tunnels User-Name and User-
 Password again, with User-Password containing new information in
 response to the challenge. This process continues until the AAA/H
 issues an Access-Accept or Access-Reject.

 At least one of the AVPs tunneled to the client upon challenge must
 be Reply-Message. Normally this is sent by the AAA/H as part of the
 challenge. However, if the AAA/H has not sent a Reply-Message, the
 TTLS server must issue one, with null value. This allows the client
 to determine that a challenge response is required.

 Note that if the AAA/H includes a Reply-Message as part of an
 Access-Accept or Access-Reject, the TTLS server does not tunnel this
 AVP to the client. Rather, this AVP and all other AVPs sent by the
 AAA/H as part of Access-Accept or Access-Reject are sent to the
 access point via the AAA carrier protocol.

10.3 Performing Multiple Authentications

 In some cases, it is desirable to perform multiple user
 authentications. For example, a AAA/H may want first to authenticate
 the user by password, then by token card.

 The AAA/H may perform any number of additional user authentications
 using EAP, simply by issuing a EAP-Request with a new protocol type
 once the previous authentication succeeded but prior to issuing an
 EAP-Success or accepting the user via the AAA carrier protocol.

 For example, an AAA/H wishing to perform MD5-Challenge followed by
 Generic Token Card would first issue an EAP-Request/MD5-Challenge

 and receive a response. If the response is satisfactory, it would

Paul Funk expires January 2005 [Page 26]

Internet-Draft April 2004

 then issue EAP-Request/Generic Token Card and receive a response. If
 that response were also satisfactory, it would issue EAP-Success.

11. EAP-TTLS Version 1

 Version 1 of EAP-TTLS improves upon the original version 0 protocol
 in several ways.

 - Session keys developed from inner authentications are mixed with
 the master secret developed during the initial TLS handshake.
 This eliminates the Man-in-the-Middle (MitM) attack against
 tunneled protocols for inner authentications that generate
 session keys. See [15] and [16] for information about this
 attack.

 - A secure final exchange of the result of inner authentication is
 exchanged between client and server to conclude the EAP-TTLS
 exchange. This precludes any possibility of truncation attack
 that could occur when the client relies solely on an unprotected
 EAP-Success message to determine that the server has completed
 its authentication.

 - Inner authentication occurs within the TLS handshake, rather than
 after it. Thus, the TLS handshake itself includes both a standard
 TLS authentication as well as tunneled inner authentication(s)
 using EAP or legacy protocols, as well as any other tunneled
 communications required between client and server.

11.1 EAP-TTLS v1 Introduction

 Version 1 of EAP-TTLS utilizes the TLS extensions mechanism to
 extend the TLS handshake to include exchange of inner AVPs prior to
 completion of the TLS handshake by exchange of Finished messages.

 The TLS protocol provides a handshake phase and a data phase. EAP-
 TTLS v0, as well as other proposed tunneled EAP types such as EAP-
 PEAP and EAP-FAST, share a common strategy of utilizing the
 handshake phase to establish a tunnel and the data phase to perform
 protected authentication.

 In EAP-TTLS v1, the AVP exchange is folded into the TLS handshake
 itself; in other words, the inner authentication precedes the
 conclusion of the TLS handshake, rather following it.

 An advantage of this arrangement is a certain amount of
 cryptographic integration of inner authentication with standard TLS
 mechanisms. For example, mixing of inner session keys to thwart MitM
 attacks is easily performed in such a way that both the
 authentication result and the final session key is conditioned upon

 these inner session keys.

Paul Funk expires January 2005 [Page 27]

Internet-Draft April 2004

 The definition of EAP-TTLS v1 proceeds by first defining the
 InnerApplication extension to TLS, and then by defining the binding
 of the extended TLS to EAP via EAP-TTLS v1, which in effect serves
 as a carrier protocol.

11.2 Intentions Beyond EAP-TTLS

 The use of TLS for EAP is a relative newcomer. TLS has long used for
 many other purposes, most notably for protecting HTTP traffic.
 However, TLS used in these contexts has no mechanism for
 authentication beyond the certificate mechanisms that have been
 defined. Any additional authentication, say in HTTP, must use
 relatively primitive mechanisms defined in the HTTP protocol. It
 would be very useful for the TLS protocol to provide more general
 authentication mechanisms for subsequent authentication, for example
 EAP.

 The InnerApplication extension allows TLS to provide inner
 authentication during the handshake, rather than after it. The EAP-
 TTLS version 1 protocol is in fact just a binding of this extended
 TLS to EAP; that it, EAP-TTLS is a carrier protocol for the extended
 TLS. TLS with the InnerApplication extension can just as easily be
 bound to TCP, to enable its use in HTTP.

 The applicability of TLS with the InnerApplication extension
 includes setting up HTTP connections (including SSL VPN
 connections), establishing IPsec connections as an alternative to
 IKE, obtaining credentials for single sign-on, providing for client
 integrity verification, etc. The inner AVP mechanism offers both
 legacy and EAP authentication capabilities, natural compatibility
 with RADIUS and Diameter servers, and the flexibility to allow
 arbitrary client-server exchanges for various purposes.

 The authors' intention is to separately propose the TLS
 InnerApplication extension as an enhancement to TLS, and then define
 EAP-TTLS version 1 as a carrier protocol, or binding, of that
 extended TLS to EAP. For reasons of timing, the TLS InnerApplication
 extension is defined in this draft for now.

11.3 The InnerApplication Extension to TLS

 The InnerApplication extension to TLS follows the guidelines of RFC
3546. The client proposes use of this extension by including an

 InnerApplication message in its ClientHello handshake message, and
 the server confirms its use by including an InnerApplication message
 in its ServerHello handshake message.

 In this document, the term "TLS/IA" shall refer to TLS with the
 InnerApplication extension.

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3546

 Two new handshake messages are defined for use in TLS/IA:

Paul Funk expires January 2005 [Page 28]

Internet-Draft April 2004

 - The PhaseFinished message. This message is similar to the
 standard TLS Finished message; it allows the TLS/IA handshake to
 operate in phases, with message and key confirmation occurring at
 the end of each phase.

 - The ApplicationPayload message. This message is used to carry AVP
 (Attribute-Value Pair) sequences within the TLS/IA handshake, in
 support of client-server applications such as authentication.

 A new alert code is also defined for use in TLS/IA:

 - The InnerApplicationFailure alert. This error alert allows either
 party to terminate the handshake due to a failure in an
 application implemented via AVP sequences carried in
 ApplicationPayload messages.

11.3.1 TLS/IA Overview

 In TLS/IA, the handshake is divided into phases.

 The first phase is called the "initial phase", and consists of a
 standard TLS handshake with PhaseFinished substituted for Finished
 as the concluding message.

 There are one or more subsequent phases, called "application
 phases". The last application phase is called the "final phase"; any
 application phase prior to the final phase is called an
 "intermediate phase".

 Each application phase consists of ApplicationPayload messages
 exchanged by client and server to implement applications such as
 authentication, plus concluding messages for cryptographic
 confirmation.

 Thus, the entire handshake consists of a initial phase, zero or more
 intermediate phases, and a final phase. Intermediate phases are only
 necessary if interim confirmation of key material generated during
 an application phase is desired.

 In each application phase, the client sends the first
 ApplicationPayload message. ApplicationPayload messages are then
 traded one at a time between client and server, until the server
 concludes the phase by sending a ChangeCipherSpec and PhaseFinished
 sequence to conclude an intermediate phase, or a ChangeCipherSpec
 and Finished sequence to conclude the final phase. The client then
 responds with its own ChangeCipherSpec and PhaseFinished sequence,
 or ChangeCipherSpec and Finished sequence.

 The server determines which type of concluding message is used,

 either PhaseFinished or Finished, and the client MUST echo the same
 type of concluding message. Each PhaseFinished or Finished message

Paul Funk expires January 2005 [Page 29]

Internet-Draft April 2004

 provides cryptographic confirmation of the integrity of all
 handshake messages and keys generated from the start of the
 handshake through the current phase.

 Each ApplicationPayload message contains opaque data interpreted as
 an AVP (Attribute-Value Pair) sequence. Each AVP in the sequence
 contains a typed data element. The exchanged AVPs allow client and
 server to implement "applications" within a secure tunnel. An
 application may be any procedure that someone may usefully define. A
 typical application might be authentication; for example, the server
 may authenticate the client based on password credentials using EAP.
 Other possible applications include distribution of keys, validating
 client integrity, setting up IPsec parameters, setting up SSL VPNs,
 and so on.

 In TLS/IA, the TLS master secret undergoes multiple permutations
 until a final master secret is computed at the end of the entire
 handshake. Each phase of the handshake results in a new master
 secret; the master secret for each phase is confirmed by the
 PhaseFinished or Finished message exchange that concludes that
 phase.

 The initial master secret is computed during the initial phase of
 the handshake, using the usual TLS algorithm, namely, that a
 premaster secret is established and the TLS PRF function is used to
 compute the initial master secret. This initial master secret is
 confirmed via the first exchange of ChangeCipherSpec and
 PhaseFinished messages.

 Each subsequent master secret for an application phase is computed
 using a PRF based on the current master secret, then mixing into the
 result any session key material generated during authentications
 during that phase. Each party computes a new master secret prior to
 the conclusion of each application phase, and uses that new master
 secret is to compute fresh keying material (that is, a TLS
 "key_block", consisting of client and server MAC secrets, write keys
 and IVs). The new master secret and keying material become part of
 the pending read and write connection states. Following standard TLS
 procedures, these connection states become current states upon
 sending or receiving ChangeCipherSpec, and are confirmed via the
 PhaseFinished or Finished message.

 The final master secret, computed during the final handshake phase
 and confirmed by an exchange of ChangeCipherSpec and Finished
 messages, becomes the actual TLS master secret that defines the
 session. This final master secret is the surviving master secret,
 and each prior master secrets SHOULD be discarded when a new
 connection state is instantiated. The final master secret is used

 for session resumption, as well as for any session key derivation
 that protocols defined over TLS may require.

Paul Funk expires January 2005 [Page 30]

Internet-Draft April 2004

11.3.2 Message Exchange

 Each intermediate handshake phase consists of ApplicationPayload
 messages sent alternately by client and server, and a concluding
 exchange of {ChangeCipherSpec, PhaseFinished} messages. The first
 ApplicationPayload message in the each intermediate phase is sent by
 the client; the first {ChangeCipherSpec, PhaseFinished} message
 sequence is sent by the server. Thus the client begins the exchange
 with an ApplicationPayload message and the server determines when to
 conclude it by sending {ChangeCipherSpec, PhaseFinished}. When it
 receives the server's {ChangeCipherSpec, PhaseFinished} messages,
 the client sends its own {ChangeCipherSpec, PhaseFinished} messages.
 The client then sends an ApplicationPayload message to begin the
 next handshake phase.

 The final handshake proceeds in the same manner as the intermediate
 handshake, except that the Finished message is used rather than the
 PhaseFinished message, and the client does not send an
 ApplicationPayload message for the next phase because there is no
 next phase.

 At the start of each application handshake phase, the server MUST
 wait for the client's opening ApplicationPayload message before it
 sends its own ApplicationPayload message to the client. The client
 MAY NOT initiate conclusion of an application handshake phase by
 sending the first {ChangeCipherSpec, PhaseFinished} or
 {ChangeCipherSpec, Finished message} sequence; it MUST allow the
 server to initiate the conclusion of the phase.

11.3.3 Master Key Permutation

 Each permutation of the master secret from one phase to the next
 begins with the calculation of a preliminary 48 octet vector based
 on the current master secret:

 preliminary_vector = PRF(master_secret,
 "InnerApplication preliminary vector",
 server_random + client_random) [0..48];

 Session key material generated by applications during the current
 application phase are mixed into the preliminary vector by
 arithmetically adding each session key to the preliminary vector to
 compute the new master secret. The preliminary vector is treated as
 a 48-octet integer in big-endian order; that is, the first octet is
 of the highest significance. Each session key is also treated as a
 big-endian integer of whatever size it happens to be. Arithmetic
 carry past the most significant octet is discarded; that is, the
 addition is performed modulo 2 ^ 384.

Paul Funk expires January 2005 [Page 31]

Internet-Draft April 2004

 Thus, the logical procedure for computing the next master secret
 (which may also be a convenient implementation procedure) is as
 follows:

 1 At the start of each application handshake phase, use the current
 master secret to compute the preliminary vector for the next
 master secret.

 2 Each time session key material is generated from an
 authentication or other exchange, arithmetically add that session
 key material to the preliminary vector.

 3 At the conclusion of the application handshake phase, copy the
 current contents of the preliminary vector (which now includes
 addition of all session key material) into the new master secret,
 prior to computing verify_data.

 The purpose of using a PRF to compute a preliminary vector is to
 ensure that, even in the absence of session keys, the master secret
 is cryptographically distinct in each phase of the handshake.

 The purpose of adding session keys into the preliminary vector is to
 ensure that the same client entity that negotiated the original
 master secret also negotiated the inner authentication(s). In the
 absence of such mixing of keys generated from the standard TLS
 handshake with keys generated from inner authentication, it is
 possible for a hostile agent to mount a man-in-the-middle attack,
 acting as server to an unsuspecting client to induce it to perform
 an authentication with it, which it can then pass through the TLS
 tunnel to allow it to pose as that client.

 An application phase may include no authentications that produce a
 session key, may include one such authentication, or may include
 several. Arithmetic addition was chosen as the mixing method because
 it is commutative, that is, it does not depend on the order of
 operations. This allows multiple authentications to proceed
 concurrently if desired, without having to synchronize the order of
 master secret updates between client and server.

 Addition was chosen rather than XOR in order to avoid what is
 probably a highly unlikely problem; namely, that two separate
 authentications produce the same session key, which, if XORed, would
 mutually cancel. This might occur, for example, if two instances of
 an authentication method were to be applied against different forms
 of a user identity that turn out in a some cases to devolve to the
 same identity.

 Finally, it was decided that a more complex mixing mechanism for
 session key material, such as hashing, besides not being

 commutative, would not provide any additional security, due to the

Paul Funk expires January 2005 [Page 32]

Internet-Draft April 2004

 effectively random character of the preliminary vector and the
 powerful PRF function which is applied to create derivative keys.

11.3.4 Session Resumption

 A TLS/IA handshake may be resumed using standard mechanisms defined
 in RFC 2246. In TLS/IA, session resumption is simply an alternative
 form of the initial handshake phase, after which subsequent
 application phases proceed.

 When the initial handshake phase is resumed, client and server may
 not deem it necessary to perform the same type of AVP exchange that
 they might after a full handshake. In fact, the resumption itself
 might provide all the security needed and no AVPs need be exchanged
 at all.

 If the client determines that it has no need for AVP negotiation, it
 sends an ApplicationPayload message with no data as its first
 application phase message. If the server concurs, it may conclude
 the handshake with ChangeCipherSpec and Finished immediately upon
 receiving the empty ApplicationPayload message.

 Alternatively, either party may initiate AVP exchange if inner
 applications must execute upon session resumption. For example,
 authentication exchanges might be omitted but key distribution for
 some purpose might still occur.

 [Author's note: A future draft may provide a mechanism to avoid the
 extra round trip incurred when neither party has a requirement to
 send AVPs after session resumption.]

11.3.5 Error Termination

 The TLS/IA handshake may be terminated by either party sending a
 fatal alert, following standard TLS procedures.

11.3.6 Application Session Key Material

 Many authentication mechanisms generate session keying material as a
 by-product of authentication. Such keying material is normally
 intended for use in a subsequent data connection for encryption and
 validation. For example, EAP-TLS, MS-CHAP-V2 and its alter ego EAP-
 MS-CHAP-V2 each generate keying material.

 When encapsulated within TLS/IA, such keying material MUST NOT be
 used to set up data connections; the TLS/IA master secret is a
 better basis for this use.

 However, such keying material generated during an application phase

https://datatracker.ietf.org/doc/html/rfc2246

 MUST be used to permute the TLS/IA master secret between on phase
 and the next. The purpose of this is to preclude man-in-the-middle

Paul Funk expires January 2005 [Page 33]

Internet-Draft April 2004

 attacks, in which an unsuspecting client is induced to perform an
 authentication outside a tunnel with an attacker posing as a server;
 the attacker can then introduce the authentication protocol into a
 tunnel such as provided by TLS/IA, fooling an authentic server into
 believing that the attacker is the authentic user.

 By mixing keying material generating during application phase
 authentication into the master secret, such attacks are thwarted,
 since only a single client identity could both authenticate
 successfully and have derived the session keying material.

 Note that the keying material generated during authentication must
 be cryptographically related to the authentication and not derivable
 from data exchanged during authentication in order for the keying
 material to be useful in thwarting such attacks.

 The RECOMMENDED amount of keying material to mix into the master
 secret is 32 octets. Up to 48 octets MAY be used.

 Each authentication protocol may define how the keying material it
 generates is mapped to an octet sequence of some length for the
 purpose of TLS/IA mixing. However, for protocols which do not
 specify this (including the multitude of protocols that pre-date
 TLS/IA) the following rules are defined. The first rule that applies
 SHALL be the method for determining keying material:

 - If the authentication protocol maps its keying material to the
 RADIUS attributes MS-MPPE-Receive-Key and MS-MPPE-Send-Key, then
 the keying material for those attributes are concatenated (with
 MS-MPPE-Receive-Key first), the concatenated sequence is
 truncated to 32 octets if longer, and the result is used as
 keying material. (Note that this rule applies to MS-CHAP-V2 and
 EAP-MS-CHAP-V2.)

 - If the authentication protocol uses a pseudo-random function to
 generate keying material, that function is used to generate 32
 octets for use as keying material.

11.3.7 Computing Verification Data

 In standard TLS, the "verify_data" vector of the Finished message is
 computed as follows:

 PRF(master_secret, finished_label, MD5(handshake_messages) +
 SHA-1(handshake_messages)) [0..11];

 This allows both parties to confirm the master secret as well as the
 integrity of all handshake messages that have been exchanged.

Paul Funk expires January 2005 [Page 34]

Internet-Draft April 2004

 In TLS/IA, verify_data for the initial handshake phase is computed
 in exactly the same manner, though verify_data is encapsulated in a
 PhaseFinished, rather than Finished, message.

 In the subsequent application phases, a slight variation to this
 formula is used. For each hash, the handshake messages of the
 current phase are appended to the hash of the handshake messages of
 the previous phase. Thus, for each application phase, the MD5 hash
 input to the PRF is a hash of the MD5 hash computed for the previous
 phase concatenated with the handshake messages of the current phase;
 the SHA-1 hash is computed in the same way, but using the SHA-1 hash
 computed for the previous phase.

 Also, the master secret used in the PRF computation in each
 application phase is the new master secret generated at the
 conclusion of that phase.

 For clarity, this is best expressed in formal notation.

 Let phases be numbered from 0, where phase 0 is the initial phase.

 Let:

 Secret[n] be the master secret determined at the conclusion of
 phase n.

 Messages[n] be the handshake messages in phase n.

 MD5[n] be the MD5 hash of handshake message material in phase n.

 SHA-1[n] be the SHA-1 hash of handshake message material in phase
 n.

 PRF[n] be the verify_data generated via PRF in phase n.

 Hash computations for phase 0 are as follows:

 MD5[0] = MD5(Messages[0])

 SHA-1[0] = SHA-1(Messages[0])

 PRF[0] = PRF(master_secret, finished_label, MD5[0] + SHA-1[0])
 [0..11]

 Hash computations for phase i, where i > 0 (i.e. application phases)
 are as follows:

 MD5[i] = MD5(MD5[i-1] + Messages[i])

 SHA-1[i] = SHA-1(SHA-1[i-1] + Messages[i])

Paul Funk expires January 2005 [Page 35]

Internet-Draft April 2004

 The PRF computation to generate verify_data for any phase i
 (including i = 0) is as follows:

 PRF[i] = PRF(Secret[i], finished_label, MD5[i] + SHA-1[i])
 [0..11]

 Note that for phase 0, the PRF computation is identical to the
 standard TLS computation. Variations to the algorithm occur only in
 application phases, in the use of new master secrets and the
 inclusion of hashes of previous handshake messages as input to the
 hashing algorithms.

 Note that the only handshake messages that appear in an application
 phase are InnerApplication messages and Finished or Phase Finished
 messages. During an application phase, the handshake messages input
 to the hashing algorithm by the server will include all
 InnerApplication messages exchanged during that phase; the handshake
 messages input to the hashing algorithm by the client will include
 all InnerApplication messages exchanged during that phase plus the
 server's PhaseFinished or Finished message.

11.3.8 Attribute-Value Pairs (AVPs)

 AVPs used in InnerApplication messages are exactly as defined in
Section 9 of this document; that is, they are Diameter-style AVPs

 and use the RADIUS-Diameter namespace.

 Rules for performing authentications using these AVPs are exactly as
 defined in Section 10 of this document. This includes rules for
 creating implicit challenges, and rules for use of inner EAP
 authentications as well as legacy protocols such as PAP, CHAP and
 MS-CHAP-V1/V2. Note that all implicit challenges are based on the
 then-current master secret.

11.3.9 TLS/IA Messages

 All specifications of TLS/IA messages follow the usage defined in
RFC 2246.

 TLS/IA defines a new TLS extension - "InnerApplication"; two new
 handshake messages - "PhaseFinished" and "ApplicationPayload"; and a
 new alert code - "InnerApplicationFailure".

 The InnerApplication extension type is 9347 (hex).

 In order to avoid potential type-assignment problems, the new
 handshake message types and alert code are dynamically defined
 within the InnerApplication extension message. Client and server
 independently specify the values they will send. Thus, the client

https://datatracker.ietf.org/doc/html/rfc2246

 assigns its own message type and alert code values for use in its
 own transmissions, and includes these values in its InnerApplication

Paul Funk expires January 2005 [Page 36]

Internet-Draft April 2004

 message within ClientHello. Similarly, the server assigns its own
 message type and alert code values for use in its own transmissions,
 and includes these values in its InnerApplication message within
 ServerHello. Each party must note the message type and alert code
 values assigned by the other party and interpret messages from the
 other party accordingly. Both client and server assign message types
 and alert code so as not to conflict with values that that it might
 otherwise send. There is no requirement that client and server
 assign identical values for these items.

11.3.10 The InnerApplication Extension

 Use of the InnerApplication extension follows RFC 3546. The client
 proposes use of this extension by including the InnerApplication
 extension in the client_hello_extension_list vector of the extended
 ClientHello. If the extension is included in the ClientHello, the
 server MAY accept the proposal by including the InnerApplication
 extension in the server_hello_extension_list of the extended
 ServerHello. If use of this extension is either not proposed by the
 client or not confirmed by the server, the variations to the TLS
 handshake described here MUST NOT be used.

 The "extension_data" field of the Extension structure for the
 InnerApplication extension SHALL contain "InnerApplication" where:

 struct {
 uint8 PhaseFinishedType;
 uint8 ApplicationPayloadType;
 uint8 InnerApplicationFailureAlertCode;
 } InnerApplication;

11.3.11 The PhaseFinished Handshake Message

 The PhaseFinished message concludes the initial handshake phase and
 each intermediate handshake phase. It MUST be immediately preceded
 by a ChangeCipherSpec message. It is defined as follows:

 struct {
 opaque verify_data[12];
 } PhaseFinished;

11.3.12 The ApplicationPayload Handshake Message

 The ApplicationPayload message carries an AVP sequence during an
 application handshake phase. It is defined as follows:

 struct {
 opaque avps[Handshake.length];
 } ApplicationPayload;

https://datatracker.ietf.org/doc/html/rfc3546

Paul Funk expires January 2005 [Page 37]

Internet-Draft April 2004

 where Handshake.length is the 24-bit length field in the
 encapsulating Handshake message.

 Note that the "avps" element has its length defined in square
 bracket rather than angle bracket notation, implying a fixed rather
 than variable length vector. This avoids the having the length of
 the AVP sequence specified redundantly both in the encapsulating
 Handshake message and as a length prefix in the avps element itself.

11.3.13 The InnerApplicationFailure Alert

 An InnerApplicationFailure error alert may be sent by either party
 during an application phase. This indicates that the sending party
 considers the negotiation to have failed due to an application
 carried in the AVP sequences, for example, a failed authentication.

 The AlertLevel for an InnerApplicationFailure alert MUST be set to
 "fatal".

 Note that other alerts are possible during an application phase; for
 example, decrypt_error. The InnerApplicationFailure alert relates
 specifically to the failure of an application implemented via AVP
 sequences; for example, failure of an EAP or other authentication
 method, or information passed within the AVP sequence that is found
 unsatisfactory.

11.4 Binding of TLS/IA to EAP-TTLS v1

 EAP-TTLS v1 encapsulates a TLS handshake with the InnerApplication
 extension (TLS/IA). EAP-TTLS v1 acts as a carrier protocol for
 TLS/IA, and uses cryptographic information developed during the
 TLS/IA exchange to create session keys for encrypting subsequent
 data transmission between client and access point.

 The format for encapsulated TLS/IA messages in EAP-TTLS v1 is
 identical to the formats described for EAP-TTLS v0 in Section 8,
 unless otherwise specified

11.4.1 Flags Octet

 Use of version 1 of EAP-TTLS is negotiated through a new 3-bit
 "Version" field in the Flags octet of the EAP-TTLS request/response
 header. The Flags octet is the first octet of each EAP-TTLS message,
 following immediately after the EAP type. The Version field uses
 bits of the Flags octet that were formerly reserved and required to
 be 0.

 The new bit field definitions for the Flags octet are as follows:

Paul Funk expires January 2005 [Page 38]

Internet-Draft April 2004

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | L M S R R | Version |
 +---+---+---+---+---+---+---+---+

 where:

 L = Length included

 M = More fragments

 S = Start

 R = Reserved

 Version = EAP-TTLS version number

 For EAP-TTLS v1, Version is set to 1; that is, the bit sequence 001.

 Interpretation of L, M and S are as in EAP-TTLS v0.

11.4.2 Version Negotiation

 The version of EAP-TTLS is negotiated in the first exchange between
 server and client. The server sets the highest version number of
 EAP-TTLS that it supports in the Version field of its Start message
 (in the case of EAP-TTLS v1, this is 1). In its first EAP message in
 response, the client sets the Version field to the highest version
 number that it supports that is no higher than the version number
 offered by the server. If the client version is not acceptable to
 the server, it sends an EAP-Failure to terminate the EAP session.
 Otherwise, the version sent by the client is the version of EAP-TTLS
 that MUST be used, and both server and client set the version field
 to that version number in all subsequent EAP messages.

11.4.3 Acknowledgement Packets

 An Acknowledgement packet is an EAP-TTLS v1 packet with no
 additional data beyond the Flags octet, and with the L, M and S bits
 of the Flags octet set to 0. (Note, however, that the Version field
 MUST still be set to the appropriate version number.)

 An Acknowledgement packet is sent for the following purposes:

 - Fragment acknowledgement

 - Error alert acknowledgement

 Note that in EAP-TTLS v0 there are other cases in which a packet

 with no data must be sent by the client for the simple reason that
 the client has no AVPs to send. This situation does not arise in

Paul Funk expires January 2005 [Page 39]

Internet-Draft April 2004

 EAP-TTLS v1. If no AVPs are to be sent, there will nevertheless be
 an ApplicationPayload message containing no data, which the client
 must send.

 - Fragment Acknowledgement

 Each EAP-TTLS v1 message contains a sequence of TLS/IA messages
 that represent a single leg of a half-duplex conversation. The
 EAP carrier protocol (e.g., PPP, EAPOL, RADIUS) may impose
 constraints on the length of of an EAP message. Therefore it may
 be necessary to fragment an EAP-TTLS v1 message across multiple
 EAP messages.

 Each fragment except for the last MUST have the M bit set, to
 indicate that more data is to follow; the final fragment MUST NOT
 have the M bit set. The party that receives a message with the M
 bit set MUST respond with an Acknowledgement packet.

 - Error Alert Acknowledgement

 Either party may at any time send a TLS error alert to fail the
 TLS/IA handshake.

 If the client sends an error alert to the server, no further EAP-
 TTLS messages are exchanged, and the server sends an EAP-Failure
 to terminate the conversation.

 If the server sends an error alert to the client, the client MUST
 respond with an Acknowledgement packet to allow the conversation
 to continue. Upon receipt of the Acknowledgement packet, the
 server sends an EAP-Failure to terminate the conversation.

11.4.4 Generating Keying Material

 EAP-TTLS v1 uses the same mechanism as EAP-TTLS v0 to generate
 keying material (session keys) for use in the data connection
 between client and access point.

 Note that it is the final master secret of the TLS/IA exchange that
 is used to generate keying material for use in the subsequent data
 connection.

12. Discussion of Certificates and PKI

 Public-key cryptography, certificates, and the associated PKI are
 used in EAP-TTLS to authenticate the EAP-TTLS server to the client,
 and optionally the client to the EAP-TTLS server. Previous
 experience with the deployment of PKI in applications has shown that
 its implementation requires care. This section provides a brief

 discussion of the issues implementers will face when deploying PKI
 for EAP-TTLS.

Paul Funk expires January 2005 [Page 40]

Internet-Draft April 2004

 The traditional use of TLS for securing e-commerce transactions over
 the Internet is perhaps the best-known deployment of PKI, and it
 serves to illustrate several of the issues relevant here. In the
 case of e-commerce:

 - The environment is many-to-many - many consumers do business with
 many merchants. Typically there is no relationship in advance
 between a consumer and a merchant.

 - Users are "notoriously bad" about following security guidelines.
 When presented with a dialogue saying "the name in the
 certificate is different from the name you requested", most users
 will simply continue with the transaction.

 - Support for revocation is limited. It is important to understand
 that the environments in which EAP-TTLS are likely to be deployed
 will typically be very different from e-commerce.

 In particular, many deployments will be comparable to deploying
 wireless LAN within an enterprise. In this case, the communications
 topology is essentially many-to-one or many-to-few - many employees
 talking to a few EAP-TTLS servers - and all clients are essentially
 governed by their employer rather than autonomous.

 This means:

 - It may be unnecessary to rely on a public CA. Instead the
 enterprise could choose to run its own CA (either insourced or
 outsourced).

 - The enterprise could choose to enforce stringent policies on
 certificate validation and processing - for example simply
 insisting connections are dropped if the correct name does not
 appear in the server certificate. Such policies could be enforced
 via extensions in the root certificate of the enterprise CA.

 However it also means:

 - EAP-TTLS servers may receive considerably less attention than the
 web servers of large e-commerce sites. As a result, compromise of
 EAP-TTLS servers may be more common, and therefore deployment and
 use of revocation solutions may be more relevant.

 One open question in the area of PKI on which the authors would like
 to promote discussion is the following:

 - Should EAP-TTLS enforce rules on name matching regarding the EAP-
 TTLS server? For example, EAP-TTLS could mandate that
 radius.xyz.realm or diameter.xyz.realm be used as the name in the

 EAP-TTLS server's certificate, and that the client must match
 this name with the realm it sent in the initial EAP-

Paul Funk expires January 2005 [Page 41]

Internet-Draft April 2004

 Response/Identity.

13. Message Sequences

 [Author's note: The message sequences in these sections apply to
 version 0 of the EAP-TTLS protocol. Messages sequences for version 1
 have not yet been completed.]

 This section presents EAP-TTLS message sequences for various
 negotiation scenarios. These examples do not attempt to exhaustively
 depict all possible scenarios.

 It is assumed that RADIUS is the AAA carrier protocol both between
 access point and TTLS server, and between TTLS server and AAA/H.

 EAP packets that are passed unmodified between client and TTLS
 server by the access point are indicated as "passthrough". AVPs that
 are securely tunneled within the TLS record layer are enclosed in
 curly braces ({}). Items that are optional are suffixed with
 question mark (?). Items that may appear multiple times are suffixed
 with plus sign (+).

13.1 Successful authentication via tunneled CHAP

 In this example, the client performs one-way TLS authentication of
 the TTLS server nad CHAP is used as a tunneled user authentication
 mechanism.

 client access point TTLS server AAA/H
 ------ ------------ ----------- -----

 EAP-Request/Identity
 <--------------------

 EAP-Response/Identity
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS-Start
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:

 ClientHello
 -------------------->

Paul Funk expires January 2005 [Page 42]

Internet-Draft April 2004

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 ServerHello
 Certificate
 ServerKeyExchange
 ServerHelloDone
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 ClientKeyExchange
 ChangeCipherSpec
 Finished
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 ChangeCipherSpec
 Finished
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 {User-Name}
 {CHAP-Challenge}
 {CHAP-Password}
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Request:
 User-Name
 CHAP-Challenge
 CHAP-Password
 -------------------->

Paul Funk expires January 2005 [Page 43]

Internet-Draft April 2004

 RADIUS Access-Accept
 <--------------------

 RADIUS Access-Accept:
 EAP-Success
 <--------------------

 EAP-Success passthrough
 <--------------------

13.2 Successful authentication via tunneled EAP/MD5-Challenge

 In this example, the client performs one-way TLS authentication of
 the TTLS server and EAP/MD5-Challenge is used as a tunneled user
 authentication mechanism.

 client access point TTLS server AAA/H
 ------ ------------ ----------- -----

 EAP-Request/Identity
 <--------------------

 EAP-Response/Identity
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS-Start
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 ClientHello
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 ServerHello
 Certificate
 ServerKeyExchange

 ServerHelloDone
 <--------------------

Paul Funk expires January 2005 [Page 44]

Internet-Draft April 2004

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 ClientKeyExchange
 ChangeCipherSpec
 Finished
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 ChangeCipherSpec
 Finished
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 {EAP-Response/Identity}
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Request:
 EAP-Response/Identity
 -------------------->

 RADIUS Access-Challenge
 EAP-Request/
 MD5-Challenge
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 {EAP-Request/MD5-Challenge}
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 {EAP-Response/MD5-Challenge}

 -------------------->

Paul Funk expires January 2005 [Page 45]

Internet-Draft April 2004

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge
 EAP-Response/
 MD5-Challenge
 -------------------->

 RADIUS Access-Accept
 <--------------------

 RADIUS Access-Accept:
 EAP-Success
 <--------------------

 EAP-Success passthrough
 <--------------------

13.3 Successful session resumption

 In this example, the client and server resume a previous TLS
 session. The ID of the session to be resumed is sent as part of the
 ClientHello, and the server agrees to resume this session by sending
 the same session ID as part of ServerHello.

 client access point TTLS server AAA/H
 ------ ------------ ----------- -----

 EAP-Request/Identity
 <--------------------

 EAP-Response/Identity
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS-Start
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 ClientHello
 -------------------->

Paul Funk expires January 2005 [Page 46]

Internet-Draft April 2004

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Challenge:
 EAP-Request/TTLS:
 ServerHello
 ChangeCipherSpec
 Finished
 <--------------------

 EAP-Request passthrough
 <--------------------

 EAP-Response/TTLS:
 ChangeCipherSpec
 Finished
 -------------------->

 RADIUS Access-Request:
 EAP-Response passthrough
 -------------------->

 RADIUS Access-Accept:
 EAP-Success
 <--------------------

 EAP-Success passthrough
 <--------------------

14. Security Considerations

 This draft is entirely about security and the security
 considerations associated with the mechanisms employed in this
 document should be considered by implementers.

 The following additional issues are relevant:

 - Anonymity and privacy. Unlike other EAP methods, EAP-TTLS does
 not communicate a username in the clear in the initial EAP-
 Response/Identity. This feature is designed to support anonymity
 and location privacy from attackers eavesdropping the network
 path between the client and the TTLS server. However implementers
 should be aware that other factors - both within EAP-TTLS and
 elsewhere - may compromise a user's identity. For example, if a
 user authenticates with a certificate during phase 1 of EAP-TTLS,
 the subject name in the certificate may reveal the user's
 identity. Outside of EAP-TTLS, the client's fixed MAC address, or
 in the case of wireless connections, the client's radio

 signature, may also reveal information. Additionally,
 implementers should be aware that a user's identity is not hidden

Paul Funk expires January 2005 [Page 47]

Internet-Draft April 2004

 from the EAP-TTLS server and may be included in the clear in AAA
 messages between the access point, the EAP-TTLS server, and the
 AAA/H server.

 - Trust in the EAP-TTLS server. EAP-TTLS is designed to allow the
 use of legacy authentication methods to be extended to mediums
 like wireless in which eavesdropping the link between the client
 and the access point is easy. However implementers should be
 aware of the possibility of attacks by rogue EAP-TTLS servers -
 for example in the event that the phase 2 authentication method
 within EAP-TTLS is susceptible to dictionary attacks. These
 threats can be mitigated through the use of authentication
 methods like one-time passwords which are not susceptible to
 dictionary attacks, or by ensuring that clients connect only to
 trusted EAP-TTLS servers.

 - EAP-TTLS server certificate compromise. The use of EAP-TTLS
 server certificates within EAP-TTLS makes EAP-TTLS susceptible to
 attack in the event that an EAP-TTLS server's certificate is
 compromised. EAP-TTLS servers should therefore take care to
 protect their private key. In addition, certificate revocation
 methods may be used to mitigate against the possibility of key
 compromise. [13] describes a way to integrate one such method -
 OCSP [14] - into the TLS handshake - use of this approach may be
 appropriate within EAP-TTLS.

 - Negotiation of link encryption. EAP-TTLS includes a method to
 negotiate data cipher suites. It also allows data cipher suites
 to be negotiated by other means - for example by having client
 and access point exchange their preferences using the link layer
 protocol. However the use of the EAP-TTLS negotiation is strongly
 recommended because it provides a secured negotiation. In
 contrast, simple unsecured preference exchange over the link
 layer is susceptible to a man-in-the-middle attack that forces
 the parties to use the weakest, rather than the strongest,
 mutually acceptable data cipher suite. The potential of this
 problem is well-illustrated by wireless LAN where for
 interoperability purposes many entities will have to continue to
 support WEP encryption for some time. In the event that the data
 link protocol already includes a negotiation exchange, it is
 recommended that the EAP-TTLS exchange still be used, with the
 link layer exchange simply confirming the data cipher suite
 selected using EAP-TTLS.

 - Listing of data cipher preferences. EAP-TTLS negotiates data
 cipher suites by having the EAP-TTLS server select the first
 cipher suite appearing on the client list that also appears on
 the access point list. In order to maximize security, it is

 therefore recommended that the client order its list according to
 security - most secure acceptable cipher suite first, least
 secure acceptable cipher suite last.

Paul Funk expires January 2005 [Page 48]

Internet-Draft April 2004

 - Forward secrecy. With forward secrecy, revelation of a secret
 does not compromise session keys previously negotiated based on
 that secret. Thus, when the TLS key exchange algorithm provides
 forward secrecy, if a TTLS server certificate's private key is
 eventually stolen or cracked, tunneled user password information
 will remain secure as long as that certificate is no longer in
 use. Diffie-Hellman key exchange is an example of an algorithm
 that provides forward secrecy. A forward secrecy algorithm should
 be considered if attacks against recorded authentication or data
 sessions are considered to pose a significant threat.

15. Changes since previous drafts

 Other than minor editorial changes, the following changes have been
 made to this draft:

 Since version 04:

 - An enhanced version of EAP-TTLS, called version 1, has been
 defined in section 11.

 Since version 03:

 - Removed section on keying information.

 Since version 02:

 - Added password change for MS-CHAP-V2.

 Since version 01:

 - In section 11, the TTLS server's response with data cipher suites
 has been made conditional on receiving data cipher suite
 preferences from both client and access point. Also, implicit
 acceptance of the client's preferred data cipher suite has been
 eliminated in favor of explicitly returning the data cipher suite
 selection.

 Since version 00:

 - A Table of Contents has been added.

 - In section 3, a definition of "access domain" has been added.

 - In section 6.4, the requirement has been added that TLS session
 resumption must not be allowed for any negotiation that succeeds
 in phase 1 TLS handshake but does not successfully complete phase
 2 authentication.

 - In sections 7 and 10.1, reversed the order of randoms used in
 PRF, to follow EAP-TLS practice and avoid namespace collisions

Paul Funk expires January 2005 [Page 49]

Internet-Draft April 2004

 with TLS.

 - In section 8, specified the assigned EAP-TTLS number.

 - Added section 8.1, reserving for future standardization the
 ability to add data to an EAP-TTLS Start packet.

16. References

 [1] Aboba, B., and D. Simon, "PPP EAP TLS Authentication
 Protocol", RFC 2716, October 1999.

 [2] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "PPP Extensible Authentication Protocol (EAP)", RFC

3784, June 2004.

 [3] Dierks, T., and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, November 1998.

 [4] Institute for Electrical and Electronics Engineers, "IEEE
 802.1X, Standard for Port Based Network Access Control", 2001.

 [5] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
 51, RFC 1661, July 1994.

 [6] Rigney, C., Rubens, A., Simpson, W., and S. Willens, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

 [7] Aboba, B., and M. Beadles, "The Network Access Identifier",
RFC 2486, January 1999.

 [8] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, July 2001.

 [9] Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1700,
 October 1994.

 [10] Zorn, G., and S. Cobb, "Microsoft PPP CHAP Extensions", RFC
2433, October 1998.

 [11] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC
2759, January 2000.

 [12] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC
2548, March 1999.

 [13] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and
 T. Wright, "Transport Layer Security (TLS) Extensions", RFC

https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc3784
https://datatracker.ietf.org/doc/html/rfc3784
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2486
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc2433
https://datatracker.ietf.org/doc/html/rfc2433
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc3546

3546, June 2003.

Paul Funk expires January 2005 [Page 50]

https://datatracker.ietf.org/doc/html/rfc3546

Internet-Draft April 2004

 [14] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "Internet X.509 Public Key Infrastructure: Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [15] Asokan, N., Niemi, V., and Nyberg, K., "Man-in-the-Middle in
 Tunneled Authentication",

http://www.saunalahti.fi/~asokan/research/mitm.html, Nokia
 Research Center, Finland, October 24 2002.

 [16] Puthenkulam, J., "The Compound Authentication Binding
 Problem", draft-puthenkulam-eap-binding-04.txt, October 2003.

17. Authors' Addresses

 Questions about this memo can be directed to:

 Paul Funk
 Funk Software, Inc.
 222 Third Street
 Cambridge, MA 02142
 USA

 Phone: +1 617 497-6339
 E-mail: paul@funk.com

 Simon Blake-Wilson
 Basic Commerce & Industries, Inc.
 304 Harper Drive, Suite 203
 Moorestown, NJ 08057

 Phone: +1 856 778-1660
 E-mail: sblakewilson@bcisse.com

18. Full Copyright Statement

 Copyright (C) The Internet Society (2001-2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be

https://datatracker.ietf.org/doc/html/rfc2560
http://www.saunalahti.fi/~asokan/research/mitm.html
https://datatracker.ietf.org/doc/html/draft-puthenkulam-eap-binding-04.txt

 followed, or as required to translate it into languages other than
 English.

Paul Funk expires January 2005 [Page 51]

Internet-Draft April 2004

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Paul Funk expires January 2005 [Page 52]

