
PPSP A. Bakker
Internet-Draft R. Petrocco
Intended status: Informational Technische Universiteit Delft
Expires: December 22, 2012 June 20, 2012

Peer-to-Peer Streaming Peer Protocol (PPSPP)
draft-ietf-ppsp-peer-protocol-02

Abstract

 The Peer-to-Peer Streaming Peer Protocol (PPSPP) is a peer-to-peer
 based transport protocol for content dissemination. It can be used
 for streaming on-demand and live video content, as well as
 conventional downloading. In PPSPP, the clients consuming the
 content participate in the dissemination by forwarding the content to
 other clients via a mesh-like structure. It is a generic protocol
 which can run directly on top of UDP, TCP, or as a RTP profile.
 Features of PPSPP are short time-till-playback and extensibility.
 Hence, it can use different mechanisms to prevent freeriding, and
 work with different peer discovery schemes (centralized trackers or
 Distributed Hash Tables). Depending on the underlying transport
 protocol, PPSPP can also use different congestion control algorithms,
 such as LEDBAT, and offer transparent NAT traversal. Finally, PPSPP
 maintains only a small amount of state per peer and detects malicious
 modification of content. This documents describes PPSPP and how it
 satisfies the requirements for the IETF Peer-to-Peer Streaming
 Protocol (PPSP) Working Group's peer protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 22, 2012.

Copyright Notice

Bakker & Petrocco Expires December 22, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft PPSP Peer Protocol June 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Purpose . 5
1.2. Requirements Language 6
1.3. Terminology . 6

2. Overall Operation . 7
2.1. Joining a Swarm . 8
2.2. Exchanging Chunks . 8
2.3. Leaving a Swarm . 9

3. Messages . 9
3.1. HANDSHAKE . 9
3.2. HAVE . 10
3.3. ACK . 10
3.4. DATA . 10
3.5. INTEGRITY . 10
3.6. REQUEST . 11
3.7. CANCEL . 11
3.8. Peer Address Exchange and NAT Hole Punching 11
3.8.1. PEX_REQ and PEX_RES Messages 11
3.8.2. Hole Punching via PPSPP Messages 12

3.9. Keep Alive Signaling 12
3.10. Directory Lists . 13
3.11. Storage Independence 13

4. Chunk Addressing Schemes 13
4.1. Bin Numbers . 13
4.1.1. In HAVE Messages 14
4.1.2. In ACK Messages 15

4.2. Start-End Ranges . 15
4.2.1. Byte Ranges . 15
4.2.2. Chunk Ranges . 15
4.2.3. In Messages . 16

4.3. Other Addressing Schemes 16
5. Content Integrity Protection 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bakker & Petrocco Expires December 22, 2012 [Page 2]

Internet-Draft PPSP Peer Protocol June 2012

5.1. Merkle Hash Tree Scheme 16
5.2. Content Integrity Verification 17
5.3. The Atomic Datagram Principle 18
5.4. INTEGRITY Messages . 19
5.5. Overhead . 19

 6. Merkle Hash Trees and The Automatic Detection of Content
 Size . 20

6.1. Peak Hashes . 20
6.2. Procedure . 22

7. Live Streaming . 22
7.1. Content Authentication 23
7.1.1. Unified Merkle Tree 23

8. Protocol Options . 24
8.1. Version . 24
8.2. Swarm Identifier . 24
8.3. Content Integrity Protection Method 25
8.4. Merkle Tree Hash Function 25
8.5. Chunk Addressing . 25
8.6. Supported Messages . 26

9. Transport Protocols and Encapsulation 26
9.1. UDP . 26
9.1.1. Chunk Size . 26
9.1.2. Datagrams and Messages 26
9.1.3. Channels . 27
9.1.4. HANDSHAKE and VERSION 27
9.1.5. HAVE . 29
9.1.6. ACK . 29
9.1.7. INTEGRITY . 29
9.1.8. DATA . 29
9.1.9. KEEPALIVE . 29
9.1.10. Flow and Congestion Control 30

9.2. TCP . 30
9.3. RTP Profile for PPSP 30
9.3.1. Design . 31
9.3.1.1. Joining a Swarm 31
9.3.1.2. Joining a Swarm 31
9.3.1.3. Leaving a Swarm 32
9.3.1.4. Discussion . 32

9.3.2. PPSP Requirements 33
9.3.2.1. Basic Requirements 34
9.3.2.2. Peer Protocol Requirements 34

10. Extensibility . 36
10.1. 32 bit vs 64 bit . 36
10.2. IPv6 . 36
10.3. Congestion Control Algorithms 36
10.4. Chunk Picking Algorithms 37
10.5. Reciprocity Algorithms 37
10.6. Different crypto/hashing schemes 37

Bakker & Petrocco Expires December 22, 2012 [Page 3]

Internet-Draft PPSP Peer Protocol June 2012

11. Acknowledgements . 37
12. IANA Considerations . 38
13. Security Considerations 38
13.1. Security of the Handshake Procedure 38
13.1.1. Protection against attack 1 39
13.1.2. Protection against attack 2 39
13.1.3. Protection against attack 3 40

13.2. Secure Peer Address Exchange 40
13.2.1. Protection against the Amplification Attack 41
13.2.2. Example: Tracker as Certification Authority 41
13.2.3. Protection Against Eclipse Attacks 42

13.3. Support for Closed Swarms (PPSP.SEC.REQ-1) 42
13.4. Confidentiality of Streamed Content (PPSP.SEC.REQ-2+3) . . 43

 13.5. Limit Potential Damage and Resource Exhaustion by Bad
 or Broken Peers (PPSP.SEC.REQ-4+6) 43

13.5.1. HANDSHAKE . 43
13.5.2. HAVE . 43
13.5.3. ACK . 44
13.5.4. DATA . 44
13.5.5. INTEGRITY and SIGNED_INTEGRITY 44
13.5.6. REQUEST . 44
13.5.7. CANCEL . 45
13.5.8. PEX_RES . 45
13.5.9. Unsollicited Messages in General 45

13.6. Exclude Bad or Broken Peers (PPSP.SEC.REQ-5) 45
14. References . 45
14.1. Normative References 45
14.2. Informative References 46

Appendix A. Rationale . 49
A.1. Design Goals . 50
A.2. Not TCP . 51
A.3. Generic Acknowledgments 52

Appendix B. Revision History 53
 Authors' Addresses . 55

Bakker & Petrocco Expires December 22, 2012 [Page 4]

Internet-Draft PPSP Peer Protocol June 2012

1. Introduction

1.1. Purpose

 This document describes the Peer-to-Peer Streaming Peer Protocol
 (PPSPP), designed from the ground up for the task of disseminating
 the same content to a group of interested parties. PPSPP supports
 streaming on-demand and live video content, as well as conventional
 downloading, thus covering today's three major use cases for content
 distribution. To fulfill this task, clients consuming the content
 are put on equal footing with the servers initially providing the
 content to create a peer-to-peer system where everyone can provide
 data.

 PPSPP uses a simple method of naming content based on self-
 certification. In particular, content in PPSPP is identified by a
 single cryptographic hash that is the root hash in a Merkle hash tree
 calculated recursively from the content [MERKLE][ABMRKL]. This self-
 certifying hash tree allows every peer to directly detect when a
 malicious peer tries to distribute fake content. It also ensures
 only a small amount of information is needed to start a download
 (just the root hash and some peer addresses).

 PPSPP uses a novel method of addressing chunks of content called "bin
 numbers". Bin numbers allow the addressing of a binary interval of
 data using a single integer. This reduces the amount of state that
 needs to be recorded per peer and the space needed to denote
 intervals on the wire, making the protocol light-weight. In general,
 this numbering system allows PPSPP to work with simpler data
 structures, e.g. to use arrays instead of binary trees, thus reducing
 complexity.

 PPSPP is a generic protocol which can run directly on top of UDP,
 TCP, or as a layer below RTP, similar to SRTP [RFC3711]. As such,
 PPSPP defines a common set of messages that make up the protocol,
 which can have different representations on the wire depending on the
 lower-level protocol used. When the lower-level transport is UDP,
 PPSPP can also use different congestion control algorithms and
 facilitate NAT traversal.

 In addition, PPSPP is extensible in the mechanisms it uses to promote
 client contribution and prevent freeriding, that is, how to deal with
 peers that only download content but never upload to others.
 Furthermore, it can work with different peer discovery schemes, such
 as centralized trackers or fast Distributed Hash Tables [JIM11].

 This documents describes not only the PPSPP protocol but also how it
 satisfies the requirements for the IETF Peer-to-Peer Streaming

https://datatracker.ietf.org/doc/html/rfc3711

Bakker & Petrocco Expires December 22, 2012 [Page 5]

Internet-Draft PPSP Peer Protocol June 2012

 Protocol (PPSP) Working Group's peer protocol [PPSPCHART]
 [I-D.ietf-ppsp-reqs]. A reference implementation of PPSPP over UDP
 is available [SWIFTIMPL].

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Terminology

 message
 The basic unit of PPSPP communication. A message will have
 different representations on the wire depending on the transport
 protocol used. Messages are typically multiplexed into a
 datagram for transmission.

 datagram
 A sequence of messages that is offered as a unit to the
 underlying transport protocol (UDP, etc.). The datagram is
 PPSPP's Protocol Data Unit (PDU).

 content
 Either a live transmission, a pre-recorded multimedia asset, or a
 file.

 chunk
 The basic unit in which the content is divided. E.g. a block of
 N kilobyte.

 chunk ID
 Unique identifier for a chunk of content (e.g. an integer). Its
 type depends on the chunk addressing scheme used.

 chunk specification
 An expression that denotes one or more chunk IDs.

 chunk addressing scheme
 Scheme for identifying chunks and expressing the chunk
 availability map of a peer in a compact fashion.

 chunk availability map
 The set of chunks a peer has successfully downloaded and checked
 the integrity of.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bakker & Petrocco Expires December 22, 2012 [Page 6]

Internet-Draft PPSP Peer Protocol June 2012

 bin
 A number denoting a specific binary interval of the content
 (i.e., one or more consecutive chunks) in the bin numbers chunk
 addressing scheme (see Section 4).

 content integrity protection scheme
 Scheme for protecting the integrity of the content while it is
 being distributed via the peer-to-peer network. I.e. methods for
 receiving peers to detect whether a requested chunk has been
 maliciously modified by the sending peer.

 hash
 The result of applying a cryptographic hash function, more
 specifically a modification detection code (MDC) [HAC01], such as
 SHA1 [FIPS180-2], to a piece of data.

 root hash
 The root in a Merkle hash tree calculated recursively from the
 content (see Section 5.1).

 swarm
 A group of peers participating in the distribution of the same
 content.

 swarm ID
 Unique identifier for a swarm of peers, in PPSPP a sequence of
 bytes. When Merkle hash trees are used for content integrity
 protection, the identifier is the so-called root hash of the
 content (video-on-demand). For live streaming, the swarm ID is a
 public key.

 tracker
 An entity that records the addresses of peers participating in a
 swarm, usually for a set of swarms, and makes this membership
 information available to other peers on request.

 choking
 When a peer A is choking peer B it means that A is currently not
 willing to accept requests for content from B.

2. Overall Operation

 The basic unit of communication in PPSPP is the message. Multiple
 messages are multiplexed into a single datagram for transmission. A
 datagram (and hence the messages it contains) will have different
 representations on the wire depending on the transport protocol used
 (see Section 9).

Bakker & Petrocco Expires December 22, 2012 [Page 7]

Internet-Draft PPSP Peer Protocol June 2012

 The overall operation of PPSPP is illustrated in the following
 examples. The examples assume that the recommended method for
 content integrity protection (Merkle hash trees) is used, and a
 specific policy for which selecting chunks to download.

2.1. Joining a Swarm

 Consider a peer A that wants to download a certain content asset. To
 commence a PPSPP download, peer A must have the swarm ID of the
 content and a list of one or more tracker contact points (e.g. host+
 port). The list of trackers is optional in the presence of a
 decentralized tracking mechanism.

 Peer A now registers with the tracker following e.g. the PPSP tracker
 protocol [I-D.ietf-ppsp-reqs] and receives the IP address and port of
 peers already in the swarm, say B, C, and D. Peer A now sends a
 datagram containing a HANDSHAKE message to B, C, and D. This message
 conveys protocol options and may serve as an end-to-end check that
 the peers are actually in the correct swarm (in which case it
 contains the ID of the swarm).

 Peer B and C respond with datagrams containing a HANDSHAKE message
 and one or more HAVE messages. A HAVE message conveys (part of) the
 chunk availability of a peer and thus contains a chunk specification
 that denotes what chunks of the content peer B, resp. C have. Peer D
 sends a datagram with just a HANDSHAKE and omits HAVE messages as a
 way of choking A.

2.2. Exchanging Chunks

 In response to B and C, A sends new datagrams to B and C containing
 REQUEST messages. A REQUEST message indicates the chunks that a peer
 wants to download, and thus contains a chunk specification. The
 REQUEST messages to B and C refer to disjunct sets of chunks. B and
 C respond with datagrams containing INTEGRITY, HAVE and DATA
 messages. In the Merkle hash tree content protection scheme (see

Section 5.1), the INTEGRITY messages contain all cryptographic hashes
 that peer A needs to verify the integrity of the content chunk sent
 in the DATA message. Using these hashes peer A verifies that the
 chunks received from B and C are correct. It also updates the chunk
 availability of B and C using the information in the received HAVE
 messages.

 After processing, A sends a datagram containing HAVE messages for the
 chunks it just received to all its peers. In the datagram to B and C
 it includes an ACK message acknowledging the receipt of the chunks,
 and adds REQUEST messages for new chunks. ACK messages are not used
 when a reliable transport protocol is used. When e.g. C finds that

Bakker & Petrocco Expires December 22, 2012 [Page 8]

Internet-Draft PPSP Peer Protocol June 2012

 A obtained a chunk (from B) that C did not yet have, C's next
 datagram includes a REQUEST for that chunk.

 Peer D does not send HAVE messages to A when it downloads chunks from
 other peers, until D decides to unchoke peer A. In the case, it sends
 a datagram with HAVE messages to inform A of its current
 availability. If B or C decide to choke A they stop sending HAVE and
 DATA messages and A should then rerequest from other peers. They may
 continue to send REQUEST messages, or periodic KEEPALIVE messages
 such that A keeps sending them HAVE messages.

 Once peer A has received all content (video-on-demand use case) it
 stops sending messages to all other peers that have all content
 (a.k.a. seeders). Peer A MAY also contact the tracker or another
 source again to obtain more peer addresses.

2.3. Leaving a Swarm

 Depending on the transport protocol used, peers should either use
 explicit leave messages or implicitly leave a swarm by stopping to
 respond to messages. Peers that learn about the departure should
 remove these peers from the current peer list. The implicit-leave
 mechanism works for both graceful and ungraceful leaves (i.e., peer
 crashes or disconnects). When leaving gracefully, a peer should
 deregister from the tracker following the (PPSP) tracker protocol.

3. Messages

 In general, no error codes or responses are used in the protocol;
 absence of any response indicates an error. Invalid messages are
 discarded.

 For the sake of simplicity, one swarm of peers always deals with one
 content asset (e.g. file) only. Retrieval of large collections of
 files is done by retrieving a directory list file and then
 recursively retrieving files, which might also turn to be directory
 lists, as described in Section 3.10.

3.1. HANDSHAKE

 The initiating peer and the addressed peer MUST send a HANDSHAKE
 message in the first datagrams they exchange. The payload of the
 HANDSHAKE message is a sequence of protocol options. Example options
 are the content integrity protection scheme used and an option to
 specify the swarm identifier. The latter option MAY be used as an
 end-to-end check that the peers are actually in the correct swarm.
 Protocol options are specified in Section 8.

Bakker & Petrocco Expires December 22, 2012 [Page 9]

Internet-Draft PPSP Peer Protocol June 2012

 After the handshakes are exchanged, the initiator knows that the peer
 really responds. Hence, the second datagram the initiator sends MAY
 already contain some heavy payload. To minimize the number of
 initialization roundtrips, the first two datagrams exchanged MAY also
 contain some minor payload, e.g. HAVE messages to indicate the
 current progress of a peer or a REQUEST (see Section 3.6).

3.2. HAVE

 The HAVE message is used to convey which chunks a peer has available
 for download. The set of chunks it has available may be expressed
 using different chunk addressing and map compression schemes,
 described in Section 4. HAVE messages can be used both for sending a
 complete overview of a peer's chunk availability as well as for
 updates to that set.

 In particular, whenever a receiving peer has successfully checked the
 integrity of a chunk or interval of chunks it MUST send a HAVE
 message to all peers it wants to interact with in the near future.
 The latter confinement allows the HAVE message to be used as a method
 of choking. The HAVE message MUST contain the chunk specification of
 the received chunks. A receiving peer MUST not send a HAVE message
 to peers for which the handshake procedure is still incomplete, see

Section 13.1.

3.3. ACK

 When PPSPP is run over an unreliable transport protocol, an
 implementation MAY choose to use ACK messages to acknowledge received
 data. When a receiving peer has successfully checked the integrity
 of a chunk or interval of chunks C it MUST send a ACK message
 containing a chunk specification for C. To facilitate delay-based
 congestion control, an ACK message contains a timestamp (see e.g.
 [I-D.ietf-ledbat-congestion]).

3.4. DATA

 The DATA message is used to transfer chunks of content. The DATA
 message MUST contain the chunk ID of the chunk and chunk itself. A
 peer MAY send the DATA messages for multiple chunks in the same
 datagram.

3.5. INTEGRITY

 The INTEGRITY message carries information required by the receiver to
 verify the integrity of a chunk. Its payload depends on the content
 integrity protection scheme used. When the recommended method of
 Merkle hash trees is used, the datagram carrying the DATA message

Bakker & Petrocco Expires December 22, 2012 [Page 10]

Internet-Draft PPSP Peer Protocol June 2012

 MUST include the cryptographic hashes that are necessary for a
 receiver to check the integrity of the chunk in the form of INTEGRITY
 messages. What are the necessary hashes is explained in Section 5.3.

3.6. REQUEST

 While bulk download protocols normally do explicit requests for
 certain ranges of data (i.e., use a pull model, for example,
 BitTorrent [BITTORRENT]), live streaming protocols quite often use a
 request-less push model to save round trips. PPSPP supports both
 models of operation.

 A peer MAY send a REQUEST message that MUST contain the specification
 of the chunks it wants to download. A peer receiving a REQUEST
 message MAY send out requested pieces. When peer Q receives multiple
 REQUESTs from the same peer P peer Q SHOULD process the REQUESTs
 sequentially. Multiple REQUEST messages MAY be sent in one datagram,
 for example, when a peer wants to request several rare chunks at
 once.

 When live streaming, a peer receiving REQUESTs also may send some
 other chunks in case it runs out of requests or for some other
 reason. In that case the only purpose of REQUEST messages is to
 provide hints and coordinate peers to avoid unnecessary data
 retransmission.

3.7. CANCEL

 When downloading on demand or live streaming content, a peer MAY
 request urgent data from multiple peers to increase the probablity of
 it is delivered on time. In particular, when the specific chunk
 picking algorithm (see Section 10.4), detects that a request for
 urgent data might not be served on time, a request for the same data
 MAY be sent to a different peer. When a peer P decides to request
 urgent data from a peer Q, peer P SHOULD send a CANCEL message to all
 the peers to which the data has been previously requested The CANCEL
 message contains the specification of the chunks P no longer wants to
 request. In addition, when peer Q receives a HAVE message for the
 urgent data from peer P, peer Q MUST also cancel the previous
 REQUEST(s) from P. In other words, the HAVE message acts as an
 implicit CANCEL.

3.8. Peer Address Exchange and NAT Hole Punching

3.8.1. PEX_REQ and PEX_RES Messages

 Peer address exchange messages (or PEX messages for short) are common
 in many peer-to-peer protocols. By exchanging peer addresses in

Bakker & Petrocco Expires December 22, 2012 [Page 11]

Internet-Draft PPSP Peer Protocol June 2012

 gossip fashion, peers relieve central coordinating entities (the
 trackers) from unnecessary work. PPSPP optionally features two types
 of PEX messages: PEX_REQ and PEX_RES. A peer that wants to retrieve
 some peer addresses MUST send a PEX_REQ message. The receiving peer
 MAY respond with a PEX_RES message containing the (potentially
 signed) addresses of several peers. The addresses MUST be of peers
 it has exchanged messages with in the last 60 seconds to guarantee
 liveliness. Alternatively, the receiving peer MAY ignore PEX_REQ
 messages if uninterested in obtaining new peers or because of
 security considerations (rate limiting) or any other reason. The PEX
 messages can be used to construct a dedicated tracker peer.

 As peer-address exchange enables a number of attacks it should not be
 used outside a benign environment unless extra security measures are
 in place. These security measures, which involve exchanging
 addresses in cryptographically signed swarm-membership certificates,
 are described in Section 13.2.

3.8.2. Hole Punching via PPSPP Messages

 PPSPP can be used in combination with STUN [RFC5389]. In addition,
 the native PEX_* messages can be used to do simple NAT hole punching
 [SNP]. To implement this feature, the sending pattern of PEX
 messages is restricted. In particular, when peer A introduces peer B
 to peer C by sending a PEX_RES message to C, it SHOULD also send a
 message to B introducing C. These messages SHOULD be within 2 seconds
 from each other, but MAY not be, simultaneous, instead leaving a gap
 of twice the "typical" RTT, i.e. 300-600ms. As a result, the peers
 are supposed to initiate handshakes to each other thus forming a
 simple NAT hole punching pattern where the introducing peer
 effectively acts as a STUN server. Note that the PEX_RES message is
 sent without a prior PEX_REQ in this case.

3.9. Keep Alive Signaling

 A peer MUST send a "keep alive" message periodically to each peer it
 wants to interact with in the future, but has no other messages to
 send them at present. PPSPP does not define an explicit message type
 for "keep alive" messages. In the PPSP-over-UDP mapping they are
 implemented as simple datagrams consisting of a 4-byte channel number
 only, see Section 9.1.3 and Section 9.1.4. When PPSPP is used over
 TCP, each datagram is prefixed with 4 bytes containing its size, the
 common method of turning TCP's stream of bytes into a sequence of
 datagrams. In that case, a size of 0 is used as keep alive, as in
 BitTorrent [BITTORRENT].

https://datatracker.ietf.org/doc/html/rfc5389

Bakker & Petrocco Expires December 22, 2012 [Page 12]

Internet-Draft PPSP Peer Protocol June 2012

3.10. Directory Lists

 Directory list files MUST start with magic bytes ".\n..\n". The rest
 of the file is a newline-separated list of hashes and file names for
 the content of the directory. An example:

 .
 ..
 1234567890ABCDEF1234567890ABCDEF12345678 readme.txt
 01234567890ABCDEF1234567890ABCDEF1234567 big_file.dat

3.11. Storage Independence

 Note PPSPP does not prescribe how chunks are stored. This also
 allows users of PPSPP to map different files into a single swarm as
 in BitTorrent multi-file torrents [BITTORRENT], and more innovative
 storage solutions when variable-sized chunks are used.

4. Chunk Addressing Schemes

 PPSPP can use different methods of chunk addressing, that is, support
 different ways of identifying chunks and different ways of expressing
 the chunk availability map of a peer in a compact fashion.

 The recommended and mandatory-to-implement scheme of chunk addressing
 and map compression for PPSPP is to be determined.

4.1. Bin Numbers

 PPSPP employs a generic content addressing scheme based on binary
 intervals ("bins" in short). The smallest interval is a chunk (e.g.
 a N kilobyte block), the top interval is the complete 2**63 range. A
 novel addition to the classical scheme are "bin numbers", a scheme of
 numbering binary intervals which lays them out into a vector nicely.
 Consider an chunk interval of width W. To derive the bin numbers of
 the complete interval and the subintervals, a minimal balanced binary
 tree is built that is at least W chunks wide at the base. The leaves
 from left-to-right correspond to the chunks 0..W in the interval, and
 have bin number I*2 where I is the index of the chunk (counting
 beyond W-1 to balance the tree). The higher level nodes P in the
 tree have bin number

Bakker & Petrocco Expires December 22, 2012 [Page 13]

Internet-Draft PPSP Peer Protocol June 2012

 binP = (binL + binR) / 2

 where binL is the bin of node P's left-hand child and binR is the bin
 of node P's right-hand child. Given that each node in the tree
 represents a subinterval of the original interval, each such
 subinterval now is addressable by a bin number, a single integer.
 The bin number tree of an interval of width W=8 looks like this:

 7
 / \
 / \
 / \
 / \
 3 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12 14

 C0 C1 C2 C3 C4 C5 C6 C7

 The bin number tree of an interval of width W=8

 Figure 1

 So bin 7 represents the complete interval, bin 3 represents the
 interval of chunk 0..3, bin 1 represents the interval of chunks 0 and
 1, and bin 2 represents chunk C1. The special numbers 0xFFFFFFFF
 (32-bit) or 0xFFFFFFFFFFFFFFFF (64-bit) stands for an empty interval,
 and 0x7FFF...FFF stands for "everything".

 When bin numbering is used, the ID of a chunk is its corresponding
 (leaf) bin number in the tree and the chunk specification in HAVE and
 ACK messages is equal to a single bin number, as follows.

4.1.1. In HAVE Messages

 When a receiving peer has successfully checked the integrity of a
 chunk or interval of chunks it MUST send a HAVE message to all peers
 it wants to interact with. The latter allows the HAVE message to be
 used as a method of choking. The HAVE message MUST contain the bin
 number of the biggest complete interval of all chunks the receiver
 has received and checked so far that fully includes the interval of
 chunks just received. So the bin number MUST denote at least the
 interval received, but the receiver is supposed to aggregate and

Bakker & Petrocco Expires December 22, 2012 [Page 14]

Internet-Draft PPSP Peer Protocol June 2012

 acknowledge bigger bins, when possible.

 As a result, every single chunk is acknowledged a logarithmic number
 of times. That provides some necessary redundancy of acknowledgments
 and sufficiently compensates for unreliable transport protocols.

 To record which chunks a peer has in the state that an implementation
 keeps for each peer, an implementation MAY use the "binmap" data
 structure, which is a hybrid of a bitmap and a binary tree, discussed
 in detail in [BINMAP].

4.1.2. In ACK Messages

 When PPSPP is run over an unreliable transport protocol, an
 implementation MAY choose to use ACK messages to acknowledge received
 data. When a receiving peer has successfully checked the integrity
 of a chunk or interval of chunks C it MUST send a ACK message
 containing the bin number of its biggest, complete, interval covering
 C to the sending peer (see HAVE).

4.2. Start-End Ranges

 A chunk specification consists of a list of (start specification,end
 specification) pairs. A list MUST contain at least one pair. Each
 pair identifies a range of chunks. The start and end specifications
 can use one of multiple addressing schemes. Two schemes are
 currently defined.

4.2.1. Byte Ranges

 The start and end specification are byte offsets in the content.
 Whether or not byte ranges are translatable to bin numbers depends on
 whether chunks are fixed size or not.

4.2.2. Chunk Ranges

 The start and end specification are chunk IDs.

 Chunk ranges are directly translatable to bins. Assuming ranges are
 intervals of a list of chunks numbered 0...N, for a given bin number
 "bin":

 startrange = (bin & (bin + 1))/2

 endrange = ((bin | (bin + 1)) - 1)/2

Bakker & Petrocco Expires December 22, 2012 [Page 15]

Internet-Draft PPSP Peer Protocol June 2012

4.2.3. In Messages

 The same rules for sending ACK and HAVE messages as in bin numbering
 apply in this content addressing scheme. In particular, the receiver
 is supposed to acknowledge the largest possible super interval that
 contains the interval of chunks just received.

4.3. Other Addressing Schemes

 Note: when introducing other addressing schemes, e.g. BitTorrent
 BITFIELD messages one must keep in mind that the initial datagrams
 must not be too larger when the source of the peer's address is not
 trusted, to prevent DoS attacks via PPSPP. E.g. when the address
 comes from a PEX_ADD message.

5. Content Integrity Protection

 PPSPP can use different methods for protecting the integrity of the
 content while it is being distributed via the peer-to-peer network.
 More specifically, PPSPP can use different methods for receiving
 peers to detect whether a requested chunk has been maliciously
 modified by the sending peer. The recommended method for bad content
 detection is the Merkle Hash Tree scheme described below, which is
 mandatory-to-implement. Another applicable content integrity
 protection method is providing clients with the hashes of the
 content's chunks before the download commences by means of metadata
 files, as with BitTorrent's .torrent files [BITTORRENT].

 The Merkle hash tree scheme can use different chunk addressing
 schemes. All it requires is the ability to address a range of
 chunks. In the following description abstract node IDs are used to
 identify nodes in the tree. On the wire these are translated to the
 corresponding range of chunks in the chosen chunk addressing scheme.
 When bin numbering is used, node IDs correspond directly to bin
 numbers in the INTEGRITY message, see below.

5.1. Merkle Hash Tree Scheme

 PPSPP uses a method of naming content based on self-certification.
 In particular, content in PPSPP is identified by a single
 cryptographic hash that is the root hash in a Merkle hash tree
 calculated recursively from the content [ABMRKL]. This self-
 certifying hash tree allows every peer to directly detect when a
 malicious peer tries to distribute fake content. It also ensures
 only a small the amount of information is needed to start a download
 (the root hash and some peer addresses). For live streaming public
 keys and dynamic trees are used, see below.

Bakker & Petrocco Expires December 22, 2012 [Page 16]

Internet-Draft PPSP Peer Protocol June 2012

 The Merkle hash tree of a content asset that is divided into N chunks
 is constructed as follows. Note the construction does not assume
 chunks of content to be fixed size. Given a cryptographic hash
 function, more specifically a modification detection code (MDC)
 [HAC01] , such as SHA1, the hashes of all the chunks of the content
 are calculated. Next, a binary tree of sufficient height is created.
 Sufficient height means that the lowest level in the tree has enough
 nodes to hold all chunk hashes in the set, as with bin numbering.
 The figure below shows the tree for a content asset consisting of 7
 chunks. As before with the content addressing scheme, the leaves of
 the tree correspond to a chunk and in this case are assigned the hash
 of that chunk, starting at the left-most leaf. As the base of the
 tree may be wider than the number of chunks, any remaining leaves in
 the tree are assigned a empty hash value of all zeros. Finally, the
 hash values of the higher levels in the tree are calculated, by
 concatenating the hash values of the two children (again left to
 right) and computing the hash of that aggregate. This process ends
 in a hash value for the root node, which is called the "root hash".
 Note the root hash only depends on the content and any modification
 of the content will result in a different root hash.

 7 = root hash
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13* = uncle hash
 / \ / \ / \ / \
 0 2 4 6 8 10* 12 14

 C0 C1 C2 C3 C4 C5 C6 E
 =chunk index ^^ = empty hash

 The Merkle hash tree of an interval of width W=8

 Figure 2

5.2. Content Integrity Verification

 Assuming a peer receives the root hash of the content it wants to
 download from a trusted source, it can can check the integrity of any
 chunk of that content it receives as follows. It first calculates

Bakker & Petrocco Expires December 22, 2012 [Page 17]

Internet-Draft PPSP Peer Protocol June 2012

 the hash of the chunk it received, for example chunk C4 in the
 previous figure. Along with this chunk it MUST receive the hashes
 required to check the integrity of that chunk. In principle, these
 are the hash of the chunk's sibling (C5) and that of its "uncles". A
 chunk's uncles are the sibling Y of its parent X, and the uncle of
 that Y, recursively until the root is reached. For chunk C4 its
 uncles are nodes 13 and 3, marked with * in the figure. Using this
 information the peer recalculates the root hash of the tree, and
 compares it to the root hash it received from the trusted source. If
 they match the chunk of content has been positively verified to be
 the requested part of the content. Otherwise, the sending peer
 either sent the wrong content or the wrong sibling or uncle hashes.
 For simplicity, the set of sibling and uncles hashes is collectively
 referred to as the "uncle hashes".

 In the case of live streaming the tree of chunks grows dynamically
 and content is identified with a public key instead of a root hash,
 as the root hash is undefined or, more precisely, transient, as long
 as new data is generated by the live source. Live streaming is
 described in more detail below, but content verification works the
 same for both live and predefined content.

5.3. The Atomic Datagram Principle

 As explained above, a datagram consists of a sequence of messages.
 Ideally, every datagram sent must be independent of other datagrams,
 so each datagram SHOULD be processed separately and a loss of one
 datagram MUST NOT disrupt the flow. Thus, as a datagram carries zero
 or more messages, neither messages nor message interdependencies
 should span over multiple datagrams.

 This principle implies that as any chunk is verified using its uncle
 hashes the necessary hashes MUST be put into the same datagram as the
 chunk's data (Section 5.3). As a general rule, if some additional
 data is still missing to process a message within a datagram, the
 message SHOULD be dropped.

 The hashes necessary to verify a chunk are in principle its sibling's
 hash and all its uncle hashes, but the set of hashes to sent can be
 optimized. Before sending a packet of data to the receiver, the
 sender inspects the receiver's previous acknowledgments (HAVE or ACK)
 to derive which hashes the receiver already has for sure. Suppose,
 the receiver had acknowledged chunks C0 and C1 (first two chunks of
 the file), then it must already have uncle hashes 5, 11 and so on.
 That is because those hashes are necessary to check C0 and C1 against
 the root hash. Then, hashes 3, 7 and so on must be also known as
 they are calculated in the process of checking the uncle hash chain.
 Hence, to send chunk C7, the sender needs to include just the hashes

Bakker & Petrocco Expires December 22, 2012 [Page 18]

Internet-Draft PPSP Peer Protocol June 2012

 for nodes 14 and 9, which let the data be checked against hash 11
 which is already known to the receiver.

 The sender MAY optimistically skip hashes which were sent out in
 previous, still unacknowledged datagrams. It is an optimization
 trade-off between redundant hash transmission and possibility of
 collateral data loss in the case some necessary hashes were lost in
 the network so some delivered data cannot be verified and thus has to
 be dropped. In either case, the receiver builds the Merkle tree on-
 demand, incrementally, starting from the root hash, and uses it for
 data validation.

 In short, the sender MUST put into the datagram the missing hashes
 necessary for the receiver to verify the chunk.

5.4. INTEGRITY Messages

 Concretely, a peer that wants to send a chunk of content creates a
 datagram that MUST consist of one or more INTEGRITY messages and a
 DATA message. The datagram MUST contain a INTEGRITY message for each
 hash the receiver misses for integrity checking. A INTEGRITY message
 for a hash MUST contain the chunk specification corresponding to the
 node ID of the hash and the hash data itself. The chunk
 specification corresponding to a node ID is defined as the range of
 chunks formed by the leaves of the subtree rooted at the node. For
 example, node 3 denotes chunks 0,2,4,6. The DATA message MUST
 contain the chunk ID of the chunk and chunk itself. A peer MAY send
 the required messages for multiple chunks in the same datagram.

5.5. Overhead

 The overhead of using Merkle hash trees is limited. The size of the
 hash tree expressed as the total number of nodes depends on the
 number of chunks the content is divided (and hence the size of
 chunks) following this formula:

 nnodes = math.pow(2,math.log(nchunks,2)+1)

 In principle, the hash values of all these nodes will have to be sent
 to a peer once for it to verify all chunks. Hence the maximum on-
 the-wire overhead is hashsize * nnodes. However, the actual number
 of hashes transmitted can be optimized as described in Section 5.3.
 To see a peer can verify all chunks whilst receiving not all hashes,
 consider the example tree in Section 5.1.

 In case of a simple progressive download, of chunks 0,2,4,6, etc. the
 sending peer will send the following hashes:

Bakker & Petrocco Expires December 22, 2012 [Page 19]

Internet-Draft PPSP Peer Protocol June 2012

 +-------+---+
 | Chunk | Node IDs of hashes sent |
 +-------+---+
 | 0 | 2,5,11 |
 | 2 | - (receiver already knows all) |
 | 4 | 6 |
 | 6 | - |
 | 8 | 10,13 (hash 3 can be calculated from 0,2,5) |
 | 10 | - |
 | 12 | 14 |
 | 14 | - |
 | Total | # hashes 7 |
 +-------+---+

 Table 1: Overhead for the example tree

 So the number of hashes sent in total (7) is less than the total
 number of hashes in the tree (16), as a peer does not need to send
 hashes that are calculated and verified as part of earlier chunks.

6. Merkle Hash Trees and The Automatic Detection of Content Size

 In PPSPP, the root hash of a static content asset, such as a video
 file, along with some peer addresses is sufficient to start a
 download. In addition, PPSPP can reliably and automatically derive
 the size of such content from information received from the network
 when fixed sized chunks are used. As a result, it is not necessary
 to include the size of the content asset as the metadata of the
 content, in addition to the root hash. Implementations of PPSPP MAY
 use this automatic detection feature. Note this feature is the only
 feature of PPSPP that requires that a fixed-sized chunk is used.

6.1. Peak Hashes

 The ability for a newcomer peer to detect the size of the content
 depends heavily on the concept of peak hashes. Peak hashes, in
 general, enable two cornerstone features of PPSPP: reliable file size
 detection and download/live streaming unification (see Section 7).
 The concept of peak hashes depends on the concepts of filled and
 incomplete nodes. Recall that when constructing the binary trees for
 content verification and addressing the base of the tree may have
 more leaves than the number of chunks in the content. In the Merkle
 hash tree these leaves were assigned empty all-zero hashes to be able
 to calculate the higher level hashes. A filled node is now defined
 as a node that corresponds to an interval of leaves that consists
 only of hashes of content chunks, not empty hashes. Reversely, an
 incomplete (not filled) node corresponds to an interval that contains

Bakker & Petrocco Expires December 22, 2012 [Page 20]

Internet-Draft PPSP Peer Protocol June 2012

 also empty hashes, typically an interval that extends past the end of
 the file. In the following figure nodes 7, 11, 13 and 14 are
 incomplete the rest is filled.

 Formally, a peak hash is the hash of a filled node in the Merkle
 tree, whose sibling is an incomplete node. Practically, suppose a
 file is 7162 bytes long and a chunk is 1 kilobyte. That file fits
 into 7 chunks, the tail chunk being 1018 bytes long. The Merkle tree
 for that file looks as follows. Following the definition the peak
 hashes of this file are in nodes 3, 9 and 12, denoted with a *. E
 denotes an empty hash.

 7
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9* 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12* 14

 C0 C1 C2 C3 C4 C5 C6 E
 = 1018 bytes

 Peak hashes in a Merkle hash tree.

 Figure 3

 Peak hashes can be explained by the binary representation of the
 number of chunks the file occupies. The binary representation for 7
 is 111. Every "1" in binary representation of the file's packet
 length corresponds to a peak hash. For this particular file there
 are indeed three peaks, nodes 3, 9, 12. The number of peak hashes
 for a file is therefore also at most logarithmic with its size.

 A peer knowing which nodes contain the peak hashes for the file can
 therefore calculate the number of chunks it consists of, and thus get
 an estimate of the file size (given all chunks but the last are fixed
 size). Which nodes are the peaks can be securely communicated from
 one (untrusted) peer A to another B by letting A send the peak hashes
 and their node IDs to B. It can be shown that the root hash that B
 obtained from a trusted source is sufficient to verify that these are
 indeed the right peak hashes, as follows.

Bakker & Petrocco Expires December 22, 2012 [Page 21]

Internet-Draft PPSP Peer Protocol June 2012

 Lemma: Peak hashes can be checked against the root hash.

 Proof: (a) Any peak hash is always the left sibling. Otherwise, be
 it the right sibling, its left neighbor/sibling must also be a filled
 node, because of the way chunks are laid out in the leaves,
 contradiction. (b) For the rightmost peak hash, its right sibling is
 zero. (c) For any peak hash, its right sibling might be calculated
 using peak hashes to the left and zeros for empty nodes. (d) Once the
 right sibling of the leftmost peak hash is calculated, its parent
 might be calculated. (e) Once that parent is calculated, we might
 trivially get to the root hash by concatenating the hash with zeros
 and hashing it repeatedly.

 Informally, the Lemma might be expressed as follows: peak hashes
 cover all data, so the remaining hashes are either trivial (zeros) or
 might be calculated from peak hashes and zero hashes.

 Finally, once peer B has obtained the number of chunks in the content
 it can determine the exact file size as follows. Given that all
 chunks except the last are fixed size B just needs to know the size
 of the last chunk. Knowing the number of chunks B can calculate the
 node ID of the last chunk and download it. As always B verifies the
 integrity of this chunk against the trusted root hash. As there is
 only one chunk of data that leads to a successful verification the
 size of this chunk must be correct. B can then determine the exact
 file size as

 (number of chunks -1) * fixed chunk size + size of last chunk

6.2. Procedure

 A PPSPP implementation that wants to use automatic size detection
 MUST operate as follows. When a peer B sends a DATA message for the
 first time to a peer A, B MUST include all the peak hashes for the
 content in the same datagram, unless A has already signaled earlier
 in the exchange that it knows the peak hashes by having acknowledged
 any chunk. The receiver A MUST check the peak hashes against the
 root hash to determine the approximate content size. To obtain the
 definite content size peer A MUST download the last chunk of the
 content from any peer that offers it.

7. Live Streaming

 The set of messages defined above can be used for live streaming as
 well. In a pull-based model, a live streaming injector can announce
 the chunks it generates via HAVE messages, and peers can retrieve
 them via REQUEST messages. Areas that need special attention are

Bakker & Petrocco Expires December 22, 2012 [Page 22]

Internet-Draft PPSP Peer Protocol June 2012

 content authentication and chunk addressing (to achieve an infinite
 stream of chunks).

7.1. Content Authentication

 For live streaming, PPSPP supports two methods for a peer to
 authenticate the content it receives from another peer, called "Sign
 All" and "Unified Merkle Tree".

 In the "Sign All" method, the live injector signs each chunk of
 content using a private key and peers that receive the chunk check
 the signature using the corresponding public key obtained from a
 trusted source. In particular, in PPSP, the swarm ID of the live
 stream is that public key. The signatures are sent along with the
 chunk using a new SIGNED_INTEGRITY message.

 In the "Unified Merkle Tree" method, PPSPP combines the Merkle hash
 tree scheme for static content with signatures to unify the video-on-
 demand and live streaming case. The use of Merkle hash trees can
 also reduce the number of signing and verification operations per
 second, that is, provide signature amortization following the
 approach described in [SIGMCAST].

7.1.1. Unified Merkle Tree

 In this method, the chunks of content are used as the basis for a
 Merkle hash tree as before. However, because chunks are continuously
 generated this tree is not static, but dynamic. As a result, the
 tree does not have a root hash, or more precisely has a transient
 root hash. A public key therefore serves as swarm ID of the content.
 It is used to sign the new peak hashes (see Section 6.1) that are
 created as the tree grows.

 Live/download unification is achieved by sending the signed peak
 hashes on-demand, ahead of the actual data. As before, the sender
 might use acknowledgment's to derive which content range the receiver
 has peak hashes for and to prepend the data hashes with the necessary
 (signed) peak hashes. Except for the fact that the set of peak
 hashes changes with time, other parts of the algorithm work as
 described above.

 As with static content assets in the previous section, in live
 streaming content length is not known on advance, but derived
 on-the-go from the peak hashes. Suppose, our 7 KB stream extended to
 another kilobyte. Thus, now hash 7 becomes the only peak hash,
 eating hashes 3, 9 and 12. So, the source sends out a
 SIGNED_INTEGRITY message with signed hash 7 to announce the fact.

Bakker & Petrocco Expires December 22, 2012 [Page 23]

Internet-Draft PPSP Peer Protocol June 2012

 The number of cryptographic operations will be limited. For example,
 consider a 25 frame/second video transmitted over UDP. When each
 frame is transmitted in its own chunk, only 25 signature verification
 operations per second are required at the receiver for bitrates up to
 ~12.8 megabit/second. For higher bitrates multiple UDP packets per
 frame are needed.

 To avoid an increase in signing and verification operations signature
 amortization via Merkle Tree Chaining can be used [SIGMCAST]. In
 that case, the live injector creates a number of chunks, which are
 organized in a small Merkle hash tree and only the root of the
 (sub)tree is signed. This amortization will increase latency as a
 receiving peer has to wait for the signature before delivering the
 chunks to the higher layers responsible for playback [POLLIVE],
 unless some (optimistic) optimisations are made.

8. Protocol Options

 The HANDSHAKE message in PPSPP can contain the following protocol
 options (cf. [RFC2132] (DHCP options)). Each element in a protocol
 option is 8 bits wide, unless stated otherwise.

8.1. Version

 A peer MUST include the version of the PPSPP protocol it supports.

 +------+---------+
 | Code | Version |
 +------+---------+
 | 0 | v |
 +------+---------+

8.2. Swarm Identifier

 To enable end-to-end checking of any peer discovery process a peer
 MAY include a swarm identifier option.

 +------+--------+------------------+
 | Code | Length | Swarm Identifier |
 +------+--------+------------------+
 | 1 | n | n1,n2,... |
 +------+--------+------------------+

 Each PPSPP peer knows the IDs of the swarms it joins so this
 information can be immediately verified upon receipt.

https://datatracker.ietf.org/doc/html/rfc2132

Bakker & Petrocco Expires December 22, 2012 [Page 24]

Internet-Draft PPSP Peer Protocol June 2012

8.3. Content Integrity Protection Method

 +------+--------+
 | Code | Method |
 +------+--------+
 | 2 | m |
 +------+--------+

 Currently one value is defined for the method, 0 = Merkle Hash Trees
 (see Section 5.1).

 The veracity of this information will come out when the receiver
 successfully verifies the first chunk from any peer.

8.4. Merkle Tree Hash Function

 When the content integrity protection method is Merkle Hash Trees
 this option MUST also be defined.

 +------+-----------+
 | Code | Hash Func |
 +------+-----------+
 | 3 | h |
 +------+-----------+

 Currently one value is defined for the hash function, 0 = SHA1
 [FIPS180-2].

 The veracity of this information will come out when the receiver
 successfully verifies the first chunk from any peer.

8.5. Chunk Addressing

 +------+--------+
 | Code | Scheme |
 +------+--------+
 | 4 | a |
 +------+--------+

 Currently three values are defined for the chunk addressing scheme,
 0=bins, 1=byte ranges, and 2=chunk ranges.

 The veracity of this information will come out when the receiver
 parses the first message containing a chunk specification from any
 peer.

Bakker & Petrocco Expires December 22, 2012 [Page 25]

Internet-Draft PPSP Peer Protocol June 2012

8.6. Supported Messages

 Peers may support just a subset of the PPSPP messages. For example,
 peers running over TCP may not accept ACK messages, or peers used
 with a centralized tracking infrastructure may not accept PEX
 messages. For these reasons, peers who support only a proper subset
 of the PPSPP messages MUST signal which subset they support by means
 of this protocol option. The value of this option is a 256-bit
 bitmap where each bit represents a message type. The bitmap may be
 truncated to the last non-zero byte.

 +------+--------+----------------+
 | Code | Length | Message Bitmap |
 +------+--------+----------------+
 | 5 | n | n1,n2,... |
 +------+--------+----------------+

9. Transport Protocols and Encapsulation

9.1. UDP

 The following description assumes the use of bin numbers as chunk
 addressing scheme and Merkle hash trees as content integrity
 protection. Furthermore it has not yet been updated following the
 redesign of the HANDSHAKE message.

9.1.1. Chunk Size

 Currently, PPSPP-over-UDP is the preferred deployment option.
 Effectively, UDP allows the use of IP with minimal overhead and it
 also allows userspace implementations. The default is to use chunks
 of 1 kilobyte such that a datagram fits in an Ethernet-sized IP
 packet. The bin numbering allows to use PPSPP over Jumbo frames/
 datagrams. Both DATA and HAVE/ACK messages may use e.g. 8 kilobyte
 packets instead of the standard 1 KiB. The Merkle tree hashing
 scheme stays the same. Using PPSPP with 512 or 256-byte packets is
 theoretically possible with 64-bit byte-precise bin numbers, but IP
 fragmentation might be a better method to achieve the same result.

9.1.2. Datagrams and Messages

 When using UDP, the abstract datagram described above corresponds
 directly to a UDP datagram. Each message within a datagram has a
 fixed length, which depends on the type of the message. The first
 byte of a message denotes its type. The currently defined types are:

Bakker & Petrocco Expires December 22, 2012 [Page 26]

Internet-Draft PPSP Peer Protocol June 2012

 o HANDSHAKE = 0x00

 o DATA = 0x01

 o ACK = 0x02

 o HAVE = 0x03

 o INTEGRITY = 0x04

 o PEX_RES = 0x05

 o PEX_REQ = 0x06

 o SIGNED_INTEGRITY = 0x07

 o REQUEST = 0x08

 o CANCEL = 0x09

 o MSGTYPE_RCVD = 0x0a

 Furthermore, integers are serialized in the network (big-endian) byte
 order. So consider the example of an ACK message (Section 3.3). It
 has message type of 0x02 and a payload of a bin number, a four-byte
 integer (say, 1); hence, its on the wire representation for UDP can
 be written in hex as: "02 00000001". This hex-like two character-
 per-byte notation is used to represent message formats in the rest of
 this section.

9.1.3. Channels

 As it is increasingly complex for peers to enable UDP communication
 between each other due to NATs and firewalls, PPSPP-over-UDP uses a
 multiplexing scheme, called "channels", to allow multiple swarms to
 use the same UDP port. Channels loosely correspond to TCP
 connections and each channel belongs to a single swarm. When
 channels are used, each datagram starts with four bytes corresponding
 to the receiving channel number.

9.1.4. HANDSHAKE and VERSION

 A channel is established with a handshake. To start a handshake, the
 initiating peer needs to know:

 1. the IP address of a peer

Bakker & Petrocco Expires December 22, 2012 [Page 27]

Internet-Draft PPSP Peer Protocol June 2012

 2. peer's UDP port and

 3. the root hash of the content (see Section 5.1).

 To do the handshake the initiating peer sends a datagram that MUST
 start with an all 0-zeros channel number followed by a VERSION
 message, then a INTEGRITY message whose payload is the root hash, and
 a HANDSHAKE message, whose only payload is a locally unused channel
 number.

 On the wire the datagram will look something like this:

 00000000 10 01 04 7FFFFFFF 1234123412341234123412341234123412341234
 00 00000011

 (to unknown channel, handshake from channel 0x11 speaking protocol
 version 0x01, initiating a transfer of a file with a root hash
 123...1234)

 The receiving peer MUST respond with a datagram that starts with the
 channel number from the sender's HANDSHAKE message, followed by a
 VERSION message, then a HANDSHAKE message, whose only payload is a
 locally unused channel number, followed by any other messages it
 wants to send.

 Peer's response datagram on the wire:

 00000011 10 01 00 00000022 03 00000003

 (peer to the initiator: use channel number 0x22 for this transfer and
 proto version 0x01; I also have first 4 chunks of the file, see

Section 3.2).

 At this point, the initiator knows that the peer really responds; for
 that purpose channel ids MUST be random enough to prevent easy
 guessing. So, the third datagram of a handshake MAY already contain
 some heavy payload. To minimize the number of initialization
 roundtrips, the first two datagrams MAY also contain some minor
 payload, e.g. a couple of HAVE messages roughly indicating the
 current progress of a peer or a REQUEST (see Section 3.6). When
 receiving the third datagram, both peers have the proof they really
 talk to each other; three-way handshake is complete.

 A peer MAY explicit close a channel by sending a HANDSHAKE message
 that MUST contain an all 0-zeros channel number.

 On the wire:

Bakker & Petrocco Expires December 22, 2012 [Page 28]

Internet-Draft PPSP Peer Protocol June 2012

 00 00000000

9.1.5. HAVE

 A HAVE message (type 0x03) states that the sending peer has the
 complete specified bin and successfully checked its integrity:

 03 00000003

 (got/checked first four kilobytes of a file/stream)

9.1.6. ACK

 An ACK message (type 0x02) acknowledges data that was received from
 its addressee; to facilitate delay-based congestion control, an ACK
 message contains a timestamp, in particular, a 64-bit microsecond
 time.

 02 00000002 12345678

 (got the second kilobyte of the file from you; my microsecond timer
 was showing 0x12345678 at that moment)

9.1.7. INTEGRITY

 A INTEGRITY message (type 0x04) consists of a four-byte bin number
 and the cryptographic hash (e.g. a 20-byte SHA1 hash)

 04 7FFFFFFF 1234123412341234123412341234123412341234

9.1.8. DATA

 A DATA message (type 0x01) consists of a four-byte bin number and the
 actual chunk. In case a datagram contains a DATA message, a sender
 MUST always put the data message in the tail of the datagram. For
 example:

 01 00000000 48656c6c6f20776f726c6421

 (This message accommodates an entire file: "Hello world!")

9.1.9. KEEPALIVE

 Keepalives do not have a message type on UDP. They are just simple
 datagrams consisting of a 4-byte channel id only.

 On the wire:

Bakker & Petrocco Expires December 22, 2012 [Page 29]

Internet-Draft PPSP Peer Protocol June 2012

 00000022

9.1.10. Flow and Congestion Control

 Explicit flow control is not necessary in PPSPP-over-UDP. In the
 case of video-on-demand the receiver will request data explicitly
 from peers and is therefore in control of how much data is coming
 towards it. In the case of live streaming, where a push-model may be
 used, the amount of data incoming is limited to the bitrate, which
 the receiver must be able to process otherwise it cannot play the
 stream. Should, for any reason, the receiver get saturated with data
 that situation is perfectly detected by the congestion control.
 PPSPP-over-UDP can support different congestion control algorithms,
 in particular, it supports the new IETF Low Extra Delay Background
 Transport (LEDBAT) congestion control algorithm that ensures that
 peer-to-peer traffic yields to regular best-effort traffic
 [I-D.ietf-ledbat-congestion].

9.2. TCP

 When run over TCP, PPSPP becomes functionally equivalent to
 BitTorrent. Namely, most PPSPP messages have corresponding
 BitTorrent messages and vice versa, except for BitTorrent's explicit
 interest declarations and choking/unchoking, which serve the classic
 implementation of the tit-for-tat algorithm [TIT4TAT]. However, TCP
 is not well suited for multiparty communication, as argued in App.

Appendix A.

9.3. RTP Profile for PPSP

 In this section we sketch how PPSPP can be integrated into RTP
 [RFC3550] to form the Peer-to-Peer Streaming Protocol (PPSP)
 [I-D.ietf-ppsp-reqs] running over UDP. The PPSP charter requires
 existing media transfer protocols be used [PPSPCHART]. Hence, the
 general idea is to define PPSPP as a profile of RTP, in the same way
 as the Secure Real-time Transport Protocol (SRTP) [RFC3711]. SRTP,
 and therefore PPSPP is considered ``a "bump in the stack"
 implementation which resides between the RTP application and the
 transport layer. [PPSPP] intercepts RTP packets and then forwards an
 equivalent [PPSPP] packet on the sending side, and intercepts [PPSPP]
 packets and passes an equivalent RTP packet up the stack on the
 receiving side.'' [RFC3711].

 In particular, to encode a PPSPP datagram in an RTP packet all the
 non-DATA messages of PPSPP such as REQUEST and HAVE are postfixed to
 the RTP packet using the UDP encoding and the content of DATA
 messages is sent in the payload field. Implementations MAY omit the
 RTP header for packets without payload. This construction allows the

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711

Bakker & Petrocco Expires December 22, 2012 [Page 30]

Internet-Draft PPSP Peer Protocol June 2012

 streaming application to use of all RTP's current features, and with
 a modification to the Merkle tree hashing scheme (see below) meets
 PPSPP's atomic datagram principle. The latter means that a receiving
 peer can autonomously verify the RTP packet as being correct content,
 thus preventing the spread of corrupt data (see requirement PPSP.SEC-
 REQ-4).

 The use of ACK messages for reliability is left as a choice of the
 application using PPSP.

9.3.1. Design

9.3.1.1. Joining a Swarm

 To commence a PPSP download a peer A must have the swarm ID of the
 stream and a list of one or more tracker contact points (e.g. host+
 port). The list of trackers is optional in the presence of a
 decentralized tracking mechanism. The swarm ID consists of the PPSPP
 root hash of the content, which is divided into chunks (see
 Discussion).

 Peer A now registers with the PPSP tracker following the tracker
 protocol [I-D.ietf-ppsp-reqs] and receives the IP address and RTP
 port of peers already in the swarm, say B, C, and D. Peer A now sends
 an RTP packet containing a HANDSHAKE without channel information to
 B, C, and D. This serves as an end-to-end check that the peers are
 actually in the correct swarm. Optionally A could include a REQUEST
 message in some RTP packets if it wants to start receiving content
 immediately. B and C respond with a HANDSHAKE and HAVE messages. D
 sends just a HANDSHAKE and omits HAVE messages as a way of choking A.

9.3.1.2. Joining a Swarm

 In response to B and C, A sends new RTP packets to B and C with
 REQUESTs for disjunct sets of chunks. B and C respond with the
 requested chunks in the payload and HAVE messages, updating their
 chunk availability. Upon receipt, A sends HAVE for the chunks
 received and new REQUEST messages to B and C. When e.g. C finds that
 A obtained a chunk (from B) that C did not yet have, C's response
 includes a REQUEST for that chunk.

 D does not send HAVE messages, instead if D decides to unchoke peer
 A, it sends an RTP packet with HAVE messages to inform A of its
 current availability. If B or C decide to choke A they stop sending
 HAVE and DATA messages and A should then rerequest from other peers.
 They may continue to send REQUEST messages, or exponentially slowing
 KEEPALIVE messages such that A keeps sending them HAVE messages.

Bakker & Petrocco Expires December 22, 2012 [Page 31]

Internet-Draft PPSP Peer Protocol June 2012

 Once A has received all content (video-on-demand use case) it stops
 sending messages to all other peers that have all content (a.k.a.
 seeders).

9.3.1.3. Leaving a Swarm

 Peers can implicitly leave a swarm by stopping to respond to
 messages. Sending peers should remove these peers from the current
 peer list. This mechanism works for both graceful and ungraceful
 leaves (i.e., peer crashes or disconnects). When leaving gracefully,
 a peer should deregister from the tracker following the PPSP tracker
 protocol.

 More explicit graceful leaves could be implemented using RTCP. In
 particular, a peer could send a RTCP BYE on the RTCP port that is
 derivable from a peer's RTP port for all peers in its current peer
 list. However, to prevent malicious peers from sending BYEs a form
 of peer authentication is required (e.g. using public keys as peer
 IDs [PERMIDS].)

9.3.1.4. Discussion

 Using PPSPP as an RTP profile requires a change to the content
 integrity protection scheme (see Section 5.1). The fields in the RTP
 header, such as the timestamp and PT fields, must be protected by the
 Merkle tree hashing scheme to prevent malicious alterations.
 Therefore, the Merkle tree is no longer constructed from pure content
 chunks, but from the complete RTP packet for a chunk as it would be
 transmitted (minus the non-DATA PPSPP messages). In other words, the
 hash of the leaves in the tree is the hash over the Authenticated
 Portion of the RTP packet as defined by SRTP, illustrated in the
 following figure (extended from [RFC3711]). There is no need for the
 RTP packets to be fixed size, as the hashing scheme can deal with
 variable-sized leaves.

https://datatracker.ietf.org/doc/html/rfc3711

Bakker & Petrocco Expires December 22, 2012 [Page 32]

Internet-Draft PPSP Peer Protocol June 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+<+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-+ |
 | timestamp | |
 +-+ |
 | synchronization source (SSRC) identifier | |
 +=+ |
 | contributing source (CSRC) identifiers | |
 | | |
 +-+ |
 | RTP extension (OPTIONAL) | |
 +-+ |
 | payload ... | |
 | +-------------------------------+ |
 | | RTP padding | RTP pad count | |
 +-+<+
 ~ PPSPP non-DATA messages (REQUIRED) ~ |
 +-+ |
 | length of PPSPP messages (REQUIRED) | |
 +-+ |
 |
 Authenticated Portion ---+

 The format of an RTP-PPSPP packet.

 Figure 4

 As a downside, with variable-sized payloads the automatic content
 size detection of Section 6 no longer works, so content length MUST
 be explicit in the metadata. In addition, storage on disk is more
 complex with out-of-order, variable-sized packets. On the upside,
 carrying RTP over PPSPP allow decryption-less caching.

 As with UDP, another matter is how much data is carried inside each
 packet. An important PPSPP-specific factor here is the resulting
 number of hash calculations per second needed to verify chunks.
 Experiments should be conducted to ensure they are not excessive for,
 e.g., mobile hardware.

 At present, Peer IDs are not required in this design.

9.3.2. PPSP Requirements

Bakker & Petrocco Expires December 22, 2012 [Page 33]

Internet-Draft PPSP Peer Protocol June 2012

9.3.2.1. Basic Requirements

 o PPSP.REQ-1: The PPSPP PEX message can also be used as the basis
 for a tracker protocol, to be discussed elsewhere.

 o PPSP.REQ-2: This draft preserves the properties of RTP.

 o PPSP.REQ-3: This draft does not place requirements on peer IDs,
 IP+port is sufficient.

 o PPSP.REQ-4: The content is identified by its root hash (video-on-
 demand) or a public key (live streaming).

 o PPSP.REQ-5: The content is partitioned by the streaming
 application.

 o PPSP.REQ-6: Each chunk is identified by a bin number (and its
 cryptographic hash.)

 o PPSP.REQ-7: The protocol is carried over UDP because RTP is.

 o PPSP.REQ-8: The protocol has been designed to allow meaningful
 data transfer between peers as soon as possible and to avoid
 unnecessary round-trips. It supports small and variable chunk
 sizes, and its content integrity protection enables wide scale
 caching.

9.3.2.2. Peer Protocol Requirements

 o PPSP.PP.REQ-1: A GET_HAVE would have to be added to request which
 chunks are available from a peer, if the proposed push-based HAVE
 mechanism is not sufficient.

 o PPSP.PP.REQ-2: A set of HAVE messages satisfies this.

 o PPSP.PP.REQ-3: The PEX_REQ message satisfies this. Care should be
 taken with peer address exchange in general, as the use of such
 hearsay is a risk for the protocol as it may be exploited by
 malicious peers (as a DDoS attack mechanism). A secure tracking /
 peer sampling protocol like [PUPPETCAST] may be needed to make
 peer-address exchange safe.

 o PPSP.PP.REQ-4: HAVE messages convey current availability via a
 push model.

 o PPSP.PP.REQ-5: Bin numbering enables a compact representation of
 chunk availability.

Bakker & Petrocco Expires December 22, 2012 [Page 34]

Internet-Draft PPSP Peer Protocol June 2012

 o PPSP.PP.REQ-6: A new PPSP specific Peer Report message would have
 to be added to RTCP.

 o PPSP.PP.REQ-7: Transmission and chunk requests are integrated in
 this protocol.

9.3.2.2.1. Security Requirements

 o PPSP.SEC.REQ-1: An access control mechanism like Closed Swarms
 [CLOSED] would have to be added.

 o PPSP.SEC.REQ-2: As RTP is carried verbatim over PPSPP, RTP
 encryption can be used. Note that just encrypting the RTP part
 will allow for caching servers that are part of the swarm but do
 not need access to the decryption keys. They just need access to
 the PPSPP cryptographic hashes in the postfix to verify the
 packet's integrity.

 o PPSP.SEC.REQ-3: RTP encryption or IPsec [RFC4301] can be used, if
 the PPSPP messages must also be encrypted.

 o PPSP.SEC.REQ-4: The Merkle tree hashing scheme prevents the
 indirect spread of corrupt content, as peers will only forward
 chunks to others if their integrity check out. Another protection
 mechanism is to not depend on hearsay (i.e., do not forward other
 peers' availability information), or to only use it when the
 information spread is self-certified by its subjects. Other
 attacks, such as a malicious peer claiming it has content but not
 replying, are still possible. Or wasting CPU and bandwidth at a
 receiving peer by sending packets where the DATA doesn't match the
 hashes from the INTEGRITY messages.

 o PPSP.SEC.REQ-5: The Merkle tree hashing scheme allows a receiving
 peer to detect a malicious or faulty sender, which it can
 subsequently ignore. Spreading this knowledge to other peers such
 that they know about this bad behavior is hearsay.

 o PPSP.SEC.REQ-6: A risk in peer-to-peer streaming systems is that
 malicious peers launch an Eclipse attack [ECLIPSE] on the initial
 injectors of the content (in particular in live streaming). The
 attack tries to let the injector upload to just malicious peers
 which then do not forward the content to others, thus stopping the
 distribution. An Eclipse attack could also be launched on an
 individual peer. Letting these injectors only use trusted
 trackers that provide true random samples of the population or
 using a secure peer sampling service [PUPPETCAST] can help negate
 such an attack.

https://datatracker.ietf.org/doc/html/rfc4301

Bakker & Petrocco Expires December 22, 2012 [Page 35]

Internet-Draft PPSP Peer Protocol June 2012

 o PPSP.SEC.REQ-7: PPSPP supports decentralized tracking via PEX or
 additional mechanisms such as DHTs [SECDHTS], but self-
 certification of addresses is needed. Self-certification means
 For example, that each peer has a public/private key pair
 [PERMIDS] and creates self-certified address changes that include
 the swarm ID and a timestamp, which are then exchanged among peers
 or stored in DHTs. See also discussion of PPSP.PP.REQ-3 above.
 Content distribution can continue as long as there are peers that
 have it available.

 o PPSP.SEC.REQ-8: The verification of data via hashes obtained from
 a trusted source is well-established in the BitTorrent protocol
 [BITTORRENT]. The proposed Merkle tree scheme is a secure
 extension of this idea. Self-certification and not using hearsay
 are other lessons learned from existing distributed systems.

 o PPSP.SEC.REQ-9: PPSPP has built-in content integrity protection
 via self-certified naming of content, see SEC.REQ-5 and

Section 5.1.

10. Extensibility

10.1. 32 bit vs 64 bit

 While in principle the protocol supports bigger (>1TB) files, all the
 mentioned counters are 32-bit. It is an optimization, as using 64-
 bit numbers on-wire may cost ~2% practical overhead. The 64-bit
 version of every message has typeid of 64+t, e.g. typeid 68 for 64-
 bit hash message:

 44 000000000000000E 01234567890ABCDEF1234567890ABCDEF1234567

10.2. IPv6

 IPv6 versions of PEX messages use the same 64+t shift as just
 mentioned.

10.3. Congestion Control Algorithms

 Congestion control algorithm is left to the implementation and may
 even vary from peer to peer. Congestion control is entirely
 implemented by the sending peer, the receiver only provides clues,
 such as hints, acknowledgments and timestamps. In general, it is
 expected that servers would use TCP-like congestion control schemes
 such as classic AIMD or CUBIC [CUBIC]. End-user peers are expected
 to use weaker-than-TCP (least than best effort) congestion control,
 such as [I-D.ietf-ledbat-congestion] to minimize seeding counter-

Bakker & Petrocco Expires December 22, 2012 [Page 36]

Internet-Draft PPSP Peer Protocol June 2012

 incentives.

10.4. Chunk Picking Algorithms

 Chunk (or piece) picking entirely depends on the receiving peer. The
 sender peer is made aware of preferred chunks by the means of REQUEST
 messages. In some scenarios it may be beneficial to allow the sender
 to ignore those hints and send unrequested data.

 The chunk picking algorithm is external to the PPSPP protocol and
 will generally be a pluggable policy that uses the mechanisms
 provided by PPSPP. The algorithm will handle the choices made by the
 user consuming the content, such as seeking, switching audio tracks
 or subtitles.

10.5. Reciprocity Algorithms

 Reciprocity algorithms are the sole responsibility of the sender
 peer. Reciprocal intentions of the sender are not manifested by
 separate messages (as BitTorrent's CHOKE/UNCHOKE), as it does not
 guarantee anything anyway (the "snubbing" syndrome).

10.6. Different crypto/hashing schemes

 Once a flavor of PPSPP will need to use a different crypto scheme
 (e.g., SHA-256), a message should be allocated for that. As the root
 hash is supplied in the handshake message, the crypto scheme in use
 will be known from the very beginning. As the root hash is the
 content's identifier, different schemes of crypto cannot be mixed in
 the same swarm; different swarms may distribute the same content
 using different crypto.

11. Acknowledgements

 Arno Bakker and Victor Grishchenko are partially supported by the
 P2P-Next project (http://www.p2p-next.org/), a research project
 supported by the European Community under its 7th Framework Programme
 (grant agreement no. 216217). The views and conclusions contained
 herein are those of the authors and should not be interpreted as
 necessarily representing the official policies or endorsements,
 either expressed or implied, of the P2P-Next project or the European
 Commission.

 The PPSPP protocol was designed by Victor Grishchenko at Technische
 Universiteit Delft. The authors would like to thank the following
 people for their contributions to this draft: the members of the IETF
 PPSP working group, and Mihai Capota, Raul Jimenez, Flutra Osmani,

http://www.p2p-next.org/

Bakker & Petrocco Expires December 22, 2012 [Page 37]

Internet-Draft PPSP Peer Protocol June 2012

 Johan Pouwelse, and Raynor Vliegendhart.

12. IANA Considerations

 To be determined.

13. Security Considerations

 As any other network protocol, the PPSPP faces a common set of
 security challenges. An implementation must consider the possibility
 of buffer overruns, DoS attacks and manipulation (i.e. reflection
 attacks). Any guarantee of privacy seems unlikely, as the user is
 exposing its IP address to the peers. A probable exception is the
 case of the user being hidden behind a public NAT or proxy.

13.1. Security of the Handshake Procedure

 Borrowing from the analysis in [RFC5971], the PPSP peer protocol may
 be attacked with 3 types of denial-of-service attacks:

 1. DOS amplification attack: attackers try to use a PPSPP peer to
 generate more traffic to a victim.

 2. DOS flood attack: attackers try to deny service to other peers by
 allocating lots of state at a PPSPP peer.

 3. Disrupt service to an individual peer: attackers send bogus e.g.
 REQUEST and HAVE messages appearing to come from victim peer A to
 the peers B1..Bn serving that peer. This causes A to receive
 chunks it did not request or to not receive the chunks it
 requested.

 The basic scheme to protect against these attacks is the use of a
 secure handshake procedure. In the UDP encapsulation the handshake
 procedure is secured by the use of randomly chosen channel IDs as
 follows. The channel IDs must be generated following the
 requirements in [RFC4960](Sec. 5.1.3).

 When UDP is used, all datagrams carrying PPSPP messages are prefixed
 with a 4-byte channel ID. These channel IDs are random numbers,
 established during the handshake phase as follows. Peer A initiates
 an exchange with peer B by sending a datagram containing a HANDSHAKE
 message prefixed with the channel ID consisting of all 0s. Peer A's
 HANDSHAKE contains a randomly chosen channel ID, chanA:

 A->B: chan0 + HANDSHAKE(chanA) + ...

https://datatracker.ietf.org/doc/html/rfc5971
https://datatracker.ietf.org/doc/html/rfc4960

Bakker & Petrocco Expires December 22, 2012 [Page 38]

Internet-Draft PPSP Peer Protocol June 2012

 When peer B receives this datagram, it creates some state for peer A,
 that at least contains the channel ID chanA. Next, peer B sends a
 response to A, consisting of a datagram containing a HANDSHAKE
 message prefixed with the chanA channel ID. Peer B's HANDSHAKE
 contains a randomly chosen channel ID, chanB.

 B->A: chanA + HANDSHAKE(chanB) + ...

 Peer A now knows that peer B really responds, as it echoed chanA. So
 the next datagram that A sends may already contain heavy payload,
 i.e., a chunk. This next datagram to B will be prefixed with the
 chanB channel ID. When B receives this datagram, both peers have the
 proof they are really talking to each other, the three-way handshake
 is complete. In other words, the randomly chosen channel IDs act as
 tags (cf. [RFC4960](Sec. 5.1)).

 A->B: chanB + HAVE + DATA + ...

13.1.1. Protection against attack 1

 In short, PPSPP does a so-called return routability check before
 heavy payload is sent. This means that attack 1 is fended off: PPSPP
 does not send back much more data than it received, unless it knows
 it is talking to a live peer. Attackers now need to intercept the
 message from B to A to get B to send heavy payload, and ensure that
 that heavy payload goes to the victim, something assumed too hard to
 be a practical attack.

 Note the rule is that no heavy payload may be sent until the third
 datagram. This has implications for PPSPP implementations that use
 chunk addressing schemes that are verbose. If a PPSPP implementation
 uses large bitmaps to convey chunk availability these may not be sent
 by peer B in the second datagram.

13.1.2. Protection against attack 2

 On receiving the first datagram peer B will record some state about
 peer A. At present this state consists of the chanA channel ID, and
 the results of processing the other messages in the first datagram.
 In particular, if A included some HAVE messages, B may add a chunk
 availability map to A's state. In addition, B may request some
 chunks from A in the second datagram, and B will maintain state about
 these outgoing requests.

 So presently, PPSPP is somewhat vulnerable to attack 2. An attacker
 could send many datagrams with HANDSHAKEs and HAVEs and thus allocate
 state at the PPSPP peer. Therefore peer A MUST respond immediately
 to the second datagram, if it is still interested in peer B.

https://datatracker.ietf.org/doc/html/rfc4960

Bakker & Petrocco Expires December 22, 2012 [Page 39]

Internet-Draft PPSP Peer Protocol June 2012

 The reason for using this slightly vulnerable three-way handshake
 instead of the safer handshake procedure of SCTP [RFC4960](Sec. 5.1)
 is quicker response time for the user. In the SCTP procedure, peer A
 and B cannot request chunks until datagrams 3 and 4 respectively, as
 opposed to 2 and 1 in the proposed procedure. This means that the
 user has to wait shorter in PPSPP between starting the video stream
 and seeing the first images.

13.1.3. Protection against attack 3

 In general, channel IDs serve to authenticate a peer. Hence, to
 attack, a malicious peer T would need to be able to eavesdrop on
 conversations between victim A and a benign peer B to obtain the
 channel ID B assigned to A, chanB. Furthermore, attacker T would
 need to be able to spoof e.g. REQUEST and HAVE messages from A to
 cause B to send heavy DATA messages to A, or prevent B from sending
 them, respectively.

 The capability to eavesdrop is not common, so the protection afforded
 by channel IDs will be sufficient in most cases. If not, point-to-
 point encryption of traffic should be used, see below.

13.2. Secure Peer Address Exchange

 As described in Section 3.8, a peer A can send a Peer-Exchange
 message PEX_RES to a peer B, which contains the IP address and port
 of other peers that are supposedly also in the current swarm. The
 strength of this mechanism is that it allows decentralized tracking:
 after an initial bootstrap no central tracker is needed anymore. The
 vulnerability of this mechanism (and DHTs) is that malicious peers
 can use it for an Amplification attack.

 In particular, a malicious peer T could send a PEX_RES to well-
 behaved peer A containing a list of address B1,B2,...,BN and on
 receipt, peer A could send a HANDSHAKE to all these peers. So in the
 worst case, a single datagram results in N datagrams. The actual
 damage depends on A's behaviour. E.g. when A already has sufficient
 connections it may not connect to the offered ones at all, but if it
 is a fresh peer it may connect to all directly.

 In addition, PEX can be used in Eclipse attacks [ECLIPSE] where
 malicious peers try to isolate a particular peer such that it only
 interacts with malicious peers. Let us distinguish two specific
 attacks:

 E1. Malicious peers try to eclipse the single injector in live
 streaming.

https://datatracker.ietf.org/doc/html/rfc4960

Bakker & Petrocco Expires December 22, 2012 [Page 40]

Internet-Draft PPSP Peer Protocol June 2012

 E2. Malicious peers try to eclipse a specific consumer peer.

 Attack E1 has the most impact on the system as it would disrupt all
 peers.

13.2.1. Protection against the Amplification Attack

 If peer addresses are relatively stable, strong protection against
 the attack can be provided by using public key cryptography and
 certification. In particular, a PEX message will carry swarm-
 membership certificates rather than IP address and port. A
 membership certificate for peer B states that peer B at address
 (ipB,portB) is part of swarm S at time T and is cryptographically
 signed. The receiver A can check the cert for a valid signature, the
 right swarm and liveliness and only then consider contacting B. These
 swarm-membership certificates correspond to signed node descriptors
 in secure decentralized peer sampling services [SPS].

 Several designs are possible for the security environment for these
 membership certificates. That is, there are different designs
 possible for who signs the membership certificates and how public
 keys are distributed. As an example, we describe a design where the
 PPSP tracker acts as certification authority.

13.2.2. Example: Tracker as Certification Authority

 A peer A wanting to join swarm S sends a certificate request message
 to a tracker X for that swarm. Upon receipt, the tracker creates a
 membership certificate from the request with swarm ID S, a timestamp
 T and the external IP and port it received the message from, signed
 with the tracker's private key. This certificate is returned to A.

 Peer A then includes this certificate when it sends a PEX_RES to peer
 B. Receiver B verifies it against the tracker public key. This
 tracker public key should be part of the swarm's metadata, which B
 received from a trusted source. Subsequently, peer B can send the
 member certificate of A to other peers in PEX_RES messages.

 Peer A can send the certification request when it first contacts the
 tracker, or at a later time. Furthermore, the responses the tracker
 sends could contain membership certificates instead of plain
 addresses, such that they can be gossiped securely as well.

 We assume the tracker is protected against attacks and does a return
 routability check. The latter ensures that malicious peers cannot
 obtain a certificate for a random host, just for hosts where they can
 eavesdrop on incoming traffic.

Bakker & Petrocco Expires December 22, 2012 [Page 41]

Internet-Draft PPSP Peer Protocol June 2012

 The load generated on the tracker depends on churn and the lifetime
 of a certificate. Certificates can be fairly long lived, given that
 the main goal of the membership certs is to prevent that malicious
 peer T can cause good peer A to contact *random* hosts. The
 freshness of the timestamp just adds extra protection in addition to
 achieving that goal. It protects against malicious hosts causing a
 good peer A to contact hosts that previously participated in the
 swarm.

 The membership certificate mechanism itself can be used for a kind of
 amplification attack against good peers. Malicious peer T can cause
 peer A to spend some CPU to verify the signatures on the membership
 certificates that T sends. To counter this, A SHOULD check a few of
 the certs sent and discard the rest if they are defective.

 The same membership certificates described above can be registered in
 a Distributed Hash Table that has been secured against the well-known
 DHT specific attacks [SECDHTS].

13.2.3. Protection Against Eclipse Attacks

 Before we can discuss Eclipse attacks we first need to establish the
 security properties of the central tracker. A tracker is vulnerable
 to Amplification attacks too. A malicious peer T could register a
 victim B with the tracker, and many peers joining the swarm will
 contact B. Trackers can also be used in Eclipse attacks. If many
 malicious peers register themselves at the tracker, the percentage of
 bad peers in the returned address list may become high. Leaving the
 protection of the tracker to the PPSP tracker protocol specification,
 we assume for the following discussion that it returns a true random
 sample of the actual swarm membership (achieved via Sybil attack
 protection). This means that if 50% of the peers is bad, you'll
 still get 50% good addresses from the tracker.

 Attack E1 on PEX can be fended off by letting live injectors disable
 PEX. Or at least, let live injectors ensure that part of their
 connections are to peers whose addresses came from the trusted
 tracker.

 The same measures defend against attack E2 on PEX. They can also be
 employed dynamically. When the current set of peers B that peer A is
 connected to doesn't provide good quality of service, A can contact
 the tracker to find new candidates.

13.3. Support for Closed Swarms (PPSP.SEC.REQ-1)

 The Closed Swarms [CLOSED] and Enhanced Closed Swarms [ECS]
 mechanisms provide swarm-level access control. The basic idea is

Bakker & Petrocco Expires December 22, 2012 [Page 42]

Internet-Draft PPSP Peer Protocol June 2012

 that a peer cannot download from another peer unless it shows a
 Proof-of-Access. Enhanced Closed Swarms improve on the original
 Closed Swarms by adding on-the-wire encryption against man-in-the-
 middle attacks and more flexible access control rules.

 The exact mapping of ECS to PPSPP is work in progress.

13.4. Confidentiality of Streamed Content (PPSP.SEC.REQ-2+3)

 No extra mechanism is needed to support confidentiality in PPSPP. A
 content publisher wishing confidentiality should just distribute
 content in cyphertext / DRM-ed format. In that case it is assumed a
 higher layer handles key management out-of-band. Alternatively, pure
 point-to-point encryption of content and traffic can be provided by
 the proposed Closed Swarms access control mechanism, or by DTLS
 [RFC6347] or IPsec [RFC4301].

13.5. Limit Potential Damage and Resource Exhaustion by Bad or Broken
 Peers (PPSP.SEC.REQ-4+6)

 In this section an analysis is given of the potential damage a
 malicious peer can do with each message in the protocol, and how it
 is prevented by the protocol (implementation).

13.5.1. HANDSHAKE

 o Secured against DoS amplification attacks as described in
Section 13.1.

 o Threat HS.1: An Eclipse attack where peers T1..TN fill all
 connection slots of A by initiating the connection to A.

 Solution: Peer A must not let other peers fill all its available
 connection slots, i.e., A must initiate connections itself too, to
 prevent isolation.

13.5.2. HAVE

 o Threat HAVE.1: Malicious peer T can claim to have content which it
 hasn't. Subsequently T won't respond to requests.

 Solution: peer A will consider T to be a slow peer and not ask it
 again.

 o Threat HAVE.2: Malicious peer T can claim not to have content.
 Hence it won't contribute.

 Solution: Peer and chunk selection algorithms external to the

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4301

Bakker & Petrocco Expires December 22, 2012 [Page 43]

Internet-Draft PPSP Peer Protocol June 2012

 protocol will implement fairness and provide sharing incentives.

13.5.3. ACK

 o Threat ACK.1: peer T acknowledges wrong chunks.

 Solution: peer A will detect inconsistencies with the data it sent
 to T.

 o Threat ACK.2: peer T modifies timestamp in ACK to peer A used for
 time-based congestion control.

 Solution: In theory, by decreasing the timestamp peer T could fake
 there is no congestion when in fact there is, causing A to send
 more data than it should. [I-D.ietf-ledbat-congestion] does not
 list this as a security consideration. Possibly this attack can
 be detected by the large resulting asymmetry between round-trip
 time and measured one-way delay.

13.5.4. DATA

 o Threat DATA.1: peer T sending bogus chunks.

 Solution: The content integrity protection schemes defend against
 this.

 o Threat DATA.2: peer T sends peer A unrequested chunks.

 To protect against this threat we need network-level DoS
 prevention.

13.5.5. INTEGRITY and SIGNED_INTEGRITY

 o Threat INTEGRITY.1: An amplification attack where peer T sends
 bogus INTEGRITY or SIGNED_INTEGRITY messages, causing peer A to
 checks hashes or signatures, thus spending CPU unnecessarily.

 Solution: If the hashes/signatures don't check out A will stop
 asking T because of the atomic datagram principle and the content
 integrity protection. Subsequent unsolicited traffic from T will
 be ignored.

13.5.6. REQUEST

 o Threat REQUEST.1: peer T could request lots from A, leaving A
 without resources for others.

 Solution: A limit is imposed on the upload capacity a single peer

Bakker & Petrocco Expires December 22, 2012 [Page 44]

Internet-Draft PPSP Peer Protocol June 2012

 can consume, for example, by using an upload bandwidth scheduler
 that takes into account the need of multiple peers. A natural
 upper limit of this upload quotum is the bitrate of the content,
 taking into account that this may be variable.

13.5.7. CANCEL

 o Threat CANCEL.1: peer T sends CANCEL messages for content it never
 requested to peer A.

 Solution: peer A will detect the inconsistency of the messages and
 ignore them. Note that CANCEL messages may be received
 unexpectedly when a transport is used where REQUEST messages may
 be lost or reordered with respect to the subsequent CANCELs.

13.5.8. PEX_RES

 o Secured against amplification and Eclipse attacks as described in
Section 13.2.

13.5.9. Unsollicited Messages in General

 o Threat: peer T could send a spoofed PEX_REQ or REQUEST from peer B
 to peer A, causing A to send a PEX_RES/DATA to B.

 Solution: the message from peer T won't be accepted unless T does
 a handshake first, in which case the reply goes to T, not victim
 B.

13.6. Exclude Bad or Broken Peers (PPSP.SEC.REQ-5)

 A receiving peer can detect malicious or faulty senders as just
 described, which it can then subsequently ignore. However, excluding
 such a bad peer from the system completely is complex. Random
 monitoring by trusted peers that would blacklist bad peers as
 described in [DETMAL] is one option. This mechanism does require
 extra capacity to run such trusted peers, which must be
 indistinguishable from regular peers, and requires a solution for the
 timely distribution of this blacklist to peers in a scalable manner.

14. References

14.1. Normative References

 [FIPS180-2]
 Federal Information Processing Standards, "Secure Hash
 Standard", Publication 180-2, Aug 2002.

Bakker & Petrocco Expires December 22, 2012 [Page 45]

Internet-Draft PPSP Peer Protocol June 2012

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

14.2. Informative References

 [ABMRKL] Bakker, A., "Merkle hash torrent extension", BitTorrent
 Enhancement Proposal 30, Mar 2009,
 <http://bittorrent.org/beps/bep_0030.html>.

 [BINMAP] Grishchenko, V. and J. Pouwelse, "Binmaps: hybridizing
 bitmaps and binary trees", Technical Report PDS-2011-005,
 Parallel and Distributed Systems Group, Fac. of
 Electrical Engineering, Mathematics, and Computer
 Science, Delft University of Technology, The Netherlands,
 Apr 2009.

 [BITTORRENT]
 Cohen, B., "The BitTorrent Protocol Specification",
 BitTorrent Enhancement Proposal 3, Feb 2008,
 <http://bittorrent.org/beps/bep_0003.html>.

 [CLOSED] Borch, N., Mitchell, K., Arntzen, I., and D. Gabrijelcic,
 "Access Control to BitTorrent Swarms Using Closed Swarms",
 ACM workshop on Advanced Video Streaming Techniques for
 Peer-to-Peer Networks and Social Networking (AVSTP2P '10),
 Florence, Italy, Oct 2010,
 <http://doi.acm.org/10.1145/1877891.1877898>.

 [CUBIC] Rhee, Injong. and Lisong. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", International Workshop on
 Protocols for Fast Long-Distance Networks (PFLDnet'05),
 Lyon, France, Feb 2005.

 [DETMAL] Shetty, S., Galdames, P., Tavanapong, W., and Ying. Cai,
 "Detecting Malicious Peers in Overlay Multicast
 Streaming", IEEE Conference on Local Computer
 Networks (LCN'06). Tampa, FL, USA, Nov 2006.

 [ECLIPSE] Sit, E. and R. Morris, "Security Considerations for Peer-
 to-Peer Distributed Hash Tables", IPTPS '01: Revised
 Papers from the First International Workshop on Peer-to-
 Peer Systems pp. 261-269, Springer-Verlag, 2002.

 [ECS] Jovanovikj, V., Gabrijelcic, D., and T. Klobucar, "Access
 Control in BitTorrent P2P Networks Using the Enhanced

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4960
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0003.html
http://doi.acm.org/10.1145/1877891.1877898

Bakker & Petrocco Expires December 22, 2012 [Page 46]

Internet-Draft PPSP Peer Protocol June 2012

 Closed Swarms Protocol", International Conference on
 Emerging Security Information, Systems and
 Technologies (SECURWARE 2011), pp. 97-102, Nice, France,
 Aug 2011.

 [HAC01] Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", CRC Press, (Fifth Printing,
 August 2001), Oct 1996.

 [HTTP1MLN]
 Jones, R., "A Million-user Comet Application with
 Mochiweb, Part 3", Nov 2008, <http://www.metabrew.com/

article/
a-million-user-comet-application-with-mochiweb-part-3>.

 [I-D.ietf-ledbat-congestion]
 Hazel, G., Iyengar, J., Kuehlewind, M., and S. Shalunov,
 "Low Extra Delay Background Transport (LEDBAT)",

draft-ietf-ledbat-congestion-09 (work in progress),
 October 2011.

 [I-D.ietf-ppsp-reqs]
 Williams, C., Xiao, L., Zong, N., Pascual, V., and Y.
 Zhang, "P2P Streaming Protocol (PPSP) Requirements",

draft-ietf-ppsp-reqs-05 (work in progress), October 2011.

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs",

draft-narten-iana-considerations-rfc2434bis-09 (work in
 progress), March 2008.

 [JIM11] Jimenez, R., Osmani, F., and B. Knutsson, "Sub-Second
 Lookups on a Large-Scale Kademlia-Based Overlay", IEEE
 International Conference on Peer-to-Peer
 Computing (P2P'11), Kyoto, Japan, Aug 2011.

 [LUCNAT] D'Acunto, L., Meulpolder, M., Rahman, R., Pouwelse, J.,
 and H. Sips, "Modeling and Analyzing the Effects of
 Firewalls and NATs in P2P Swarming Systems", International
 Workshop on Hot Topics in Peer-to-Peer
 Systems (HotP2P'10), Atlanta, USA, Apr 2010.

 [MERKLE] Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Ph.D. thesis Dept. of Electrical Engineering,
 Stanford University, CA, USA, pp 40-45, 1979.

 [MOLNAT] Mol, J., Pouwelse, J., Epema, D., and H. Sips, "Free-

http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3
https://datatracker.ietf.org/doc/html/draft-ietf-ledbat-congestion-09
https://datatracker.ietf.org/doc/html/draft-ietf-ppsp-reqs-05
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09

Bakker & Petrocco Expires December 22, 2012 [Page 47]

Internet-Draft PPSP Peer Protocol June 2012

 riding, Fairness, and Firewalls in P2P File-Sharing", IEEE
 International Conference on Peer-to-Peer Computing (P2P
 '08), Aachen, Germany, Sep 2008.

 [PERMIDS] Bakker, A. and others, "Next-Share Platform M8--
 Specification Part", P2P-Next project deliverable D4.0.1
 (revised), App. C., Jun 2009, <http://www.p2p-next.org/

download.php?id=E7750C654035D8C2E04D836243E6526E>.

 [POLLIVE] Dhungel, P., Hei, Xiaojun., Ross, K., and N. Saxena,
 "Pollution in P2P Live Video Streaming", International
 Journal of Computer Networks & Communications
 (IJCNC) Vol.1, No.2, Jul 2009.

 [PPSPCHART]
 Stiemerling, M. and others, "Peer to Peer Streaming
 Protocol (ppsp) Description of Working Group", 2006,
 <http://datatracker.ietf.org/wg/ppsp/charter/>.

 [PUPPETCAST]
 Bakker, A. and M. van Steen, "PuppetCast: A Secure Peer
 Sampling Protocol", European Conference on Computer
 Network Defense (EC2ND'08), pp. 3-10, Dublin, Ireland,
 Dec 2008.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, October 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

http://www.p2p-next.org/download.php?id=E7750C654035D8C2E04D836243E6526E
http://www.p2p-next.org/download.php?id=E7750C654035D8C2E04D836243E6526E
http://datatracker.ietf.org/wg/ppsp/charter/
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5971
https://datatracker.ietf.org/doc/html/rfc6347

Bakker & Petrocco Expires December 22, 2012 [Page 48]

Internet-Draft PPSP Peer Protocol June 2012

 [SECDHTS] Urdaneta, G., Pierre, G., and M. van Steen, "A Survey of
 DHT Security Techniques", ACM Computing Surveys vol.
 43(2), Jun 2011.

 [SIGMCAST]
 Wong, C. and S. Lam, "Digital Signatures for Flows and
 Multicasts", IEEE/ACM Transactions on Networking 7(4), pp.
 502-513, 1999.

 [SNP] Ford, B., Srisuresh, P., and D. Kegel, "Peer-to-Peer
 Communication Across Network Address Translators",
 Feb 2005, <http://www.brynosaurus.com/pub/net/p2pnat/>.

 [SPS] Jesi, G., Montresor, A., and M. van Steen, "Secure Peer
 Sampling", Computer Networks vol. 54(12), pp. 2086-2098,
 Elsevier, Aug 2010.

 [SWIFTIMPL]
 Grishchenko, V., Paananen, J., Pronchenkov, A., Bakker,
 A., and R. Petrocco, "Swift reference implementation",
 2012, <https://github.com/triblerteam/libswift/>.

 [TIT4TAT] Cohen, B., "Incentives Build Robustness in BitTorrent",
 1st Workshop on Economics of Peer-to-Peer
 Systems, Berkeley, CA, USA, Jun 2003.

Appendix A. Rationale

 Historically, the Internet was based on end-to-end unicast and,
 considering the failure of multicast, was addressed by different
 technologies, which ultimately boiled down to maintaining and
 coordinating distributed replicas. On one hand, downloading from a
 nearby well-provisioned replica is somewhat faster and/or cheaper; on
 the other hand, it requires to coordinate multiple parties (the data
 source, mirrors/CDN sites/peers, consumers). As the Internet
 progresses to richer and richer content, the overhead of peer/replica
 coordination becomes dwarfed by the mass of the download itself.
 Thus, the niche for multiparty transfers expands. Still, current,
 relevant technologies are tightly coupled to a single use case or
 even infrastructure of a particular corporation. The mission of our
 project is to create a generic content-centric multiparty transport
 protocol to allow seamless, effortless data dissemination on the Net.

http://www.brynosaurus.com/pub/net/p2pnat/
https://github.com/triblerteam/libswift/

Bakker & Petrocco Expires December 22, 2012 [Page 49]

Internet-Draft PPSP Peer Protocol June 2012

 +------+--------------+---------------------+--------------+
 | type | mirror-based | peer-assisted | peer-to-peer |
 +------+--------------+---------------------+--------------+
 | data | SunSITE | CacheLogic VelociX | BitTorrent |
 | VoD | YouTube | Azureus(+seedboxes) | SwarmPlayer |
 | live | Akamai Str. | Octoshape, Joost | PPlive |
 +------+--------------+---------------------+--------------+

 Table 2: Use cases.

 The protocol must be designed for maximum genericity, thus focusing
 on the very core of the mission, contain no magic constants and no
 hardwired policies. Effectively, it is a set of messages allowing to
 securely retrieve data from whatever source available, in parallel.
 Ideally, the protocol must be able to run over IP as an independent
 transport protocol. Practically, it must run over UDP and TCP.

A.1. Design Goals

 The technical focus of the PPSPP protocol is to find the simplest
 solution involving the minimum set of primitives, still being
 sufficient to implement all the targeted usecases (see Table 1),
 suitable for use in general-purpose software and hardware (i.e. a web
 browser or a set-top box). The five design goals for the protocol
 are:

 1. Embeddable kernel-ready protocol.

 2. Embrace real-time streaming, in- and out-of-order download.

 3. Have short warm-up times.

 4. Traverse NATs transparently.

 5. Be extensible, allow for multitude of implementation over diverse
 mediums, allow for drop-in pluggability.

 The objectives are referenced as (1)-(5).

 The goal of embedding (1) means that the protocol must be ready to
 function as a regular transport protocol inside a set-top box, mobile
 device, a browser and/or in the kernel space. Thus, the protocol
 must have light footprint, preferably less than TCP, in spite of the
 necessity to support numerous ongoing connections as well as to
 constantly probe the network for new possibilities. The practical
 overhead for TCP is estimated at 10KB per connection [HTTP1MLN]. We
 aim at <1KB per peer connected. Also, the amount of code necessary
 to make a basic implementation must be limited to 10KLoC of C.

Bakker & Petrocco Expires December 22, 2012 [Page 50]

Internet-Draft PPSP Peer Protocol June 2012

 Otherwise, besides the resource considerations, maintaining and
 auditing the code might become prohibitively expensive.

 The support for all three basic usecases of real-time streaming, in-
 order download and out-of-order download (2) is necessary for the
 manifested goal of THE multiparty transport protocol as no single
 usecase dominates over the others.

 The objective of short warm-up times (3) is the matter of end-user
 experience; the playback must start as soon as possible. Thus any
 unnecessary initialization roundtrips and warm-up cycles must be
 eliminated from the transport layer.

 Transparent NAT traversal (4) is absolutely necessary as at least 60%
 of today's users are hidden behind NATs. NATs severely affect
 connection patterns in P2P networks thus impacting performance and
 fairness [MOLNAT] [LUCNAT].

 The protocol must define a common message set (5) to be used by
 implementations; it must not hardwire any magic constants, algorithms
 or schemes beyond that. For example, an implementation is free to
 use its own congestion control, connection rotation or reciprocity
 algorithms. Still, the protocol must enable such algorithms by
 supplying sufficient information. For example, trackerless peer
 discovery needs peer exchange messages, scavenger congestion control
 may need timestamped acknowledgments, etc.

A.2. Not TCP

 To large extent, PPSPP's design is defined by the cornerstone
 decision to get rid of TCP and not to reinvent any TCP-like
 transports on top of UDP or otherwise. The requirements (1), (4),
 (5) make TCP a bad choice due to its high per-connection footprint,
 complex and less reliable NAT traversal and fixed predefined
 congestion control algorithms. Besides that, an important
 consideration is that no block of TCP functionality turns out to be
 useful for the general case of swarming downloads. Namely,

 o in-order delivery is less useful as peer-to-peer protocols often
 employ out-of-order delivery themselves and in either case out-of-
 order data can still be stored;

 o reliable delivery/retransmissions are not useful because the same
 data might be requested from different sources; as in-order
 delivery is not required, packet losses might be patched up
 lazily, without stopping the flow of data;

Bakker & Petrocco Expires December 22, 2012 [Page 51]

Internet-Draft PPSP Peer Protocol June 2012

 o flow control is not necessary as the receiver is much less likely
 to be saturated with the data and even if so, that situation is
 perfectly detected by the congestion control;

 o TCP congestion control is less useful as custom congestion control
 is often needed [I-D.ietf-ledbat-congestion].

 In general, TCP is built and optimized for a different usecase than
 we have with swarming downloads. The abstraction of a "data pipe"
 orderly delivering some stream of bytes from one peer to another
 turned out to be irrelevant. In even more general terms, TCP
 supports the abstraction of pairwise _conversations_, while we need a
 content-centric protocol built around the abstraction of a cloud of
 participants disseminating the same _data_ in any way and order that
 is convenient to them.

 Thus, the choice is to design a protocol that runs on top of
 unreliable datagrams. Instead of reimplementing TCP, we create a
 datagram-based protocol, completely dropping the sequential data
 stream abstraction. Removing unnecessary features of TCP makes it
 easier both to implement the protocol and to verify it; numerous TCP
 vulnerabilities were caused by complexity of the protocol's state
 machine. Still, we reserve the possibility to run PPSPP on top of
 TCP or HTTP.

 Pursuing the maxim of making things as simple as possible but not
 simpler, we fit the protocol into the constraints of the transport
 layer by dropping all the transmission's technical metadata except
 for the content's root hash (compare that to metadata files used in
 BitTorrent). Elimination of technical metadata is achieved through
 the use of Merkle hash trees [MERKLE] [ABMRKL], exclusively single-
 file transfers and other techniques. As a result, a transfer is
 identified and bootstrapped by its root hash only.

 To avoid the usual layering of positive/negative acknowledgment
 mechanisms we introduce a scale-invariant acknowledgment system (see

Appendix A.3). The system allows for aggregation and variable level
 of detail in requesting, announcing and acknowledging data, serves
 in-order and out-of-order retrieval with equal ease. Besides the
 protocol's footprint, we also aim at lowering the size of a minimal
 useful interaction. Once a single datagram is received, it must be
 checked for data integrity, and then either dropped or accepted,
 consumed and relayed.

A.3. Generic Acknowledgments

 Generic acknowledgments came out of the need to simplify the data
 addressing/requesting/acknowledging mechanics, which tends to become

Bakker & Petrocco Expires December 22, 2012 [Page 52]

Internet-Draft PPSP Peer Protocol June 2012

 overly complex and multilayered with the conventional approach. Take
 the BitTorrent+TCP tandem for example:

 o The basic data unit is a byte of content in a file.

 o BitTorrent's highest-level unit is a "torrent", physically a byte
 range resulting from concatenation of content files.

 o A torrent is divided into "pieces", typically about a thousand of
 them. Pieces are used to communicate progress to other peers.
 Pieces are also basic data integrity units, as the torrent's
 metadata includes a SHA1 hash for every piece.

 o The actual data transfers are requested and made in 16KByte units,
 named "blocks" or chunks.

 o Still, one layer lower, TCP also operates with bytes and byte
 offsets which are totally different from the torrent's bytes and
 offsets, as TCP considers cumulative byte offsets for all content
 sent by a connection, be it data, metadata or commands.

 o Finally, another layer lower, IP transfers independent datagrams
 (typically around 1.5 kilobyte), which TCP then reassembles into
 continuous streams.

 Obviously, such addressing schemes need lots of mappings; from piece
 number and block to file(s) and offset(s) to TCP sequence numbers to
 the actual packets and the other way around. Lots of complexity is
 introduced by mismatch of bounds: packet bounds are different from
 file, block or hash/piece bounds. The picture is typical for a
 codebase which was historically layered.

 To simplify this aspect, we employ a generic content addressing
 scheme based on binary intervals, or "bins" for short.

Appendix B. Revision History

 -00 2011-12-19 Initial version.

 -01 2012-01-30 Minor text revision:

 * Changed heading to "A. Bakker"

 * Changed title to *Peer* Protocol, and abbreviation PPSPP.

 * Replaced swift with PPSPP.

Bakker & Petrocco Expires December 22, 2012 [Page 53]

Internet-Draft PPSP Peer Protocol June 2012

 * Removed Sec. 6.4. "HTTP (as PPSP)".

 * Renamed Sec. 8.4. to "Chunk Picking Algorithms".

 * Resolved Ticket #3: Removed sentence about random set of
 peers.

 * Resolved Ticket #6: Added clarification to "Chunk Picking
 Algorithms" section.

 * Resolved Ticket #11: Added Sec. 3.12 on Storage Independence

 * Resolved Ticket #14: Added clarification to "Automatic Size
 Detection" section.

 * Resolved Ticket #15: Operation section now states it shows
 example behaviour for a specific set of policies and schemes.

 * Resolved Ticket #30: Explained why multiple REQUESTs in one
 datagram.

 * Resolved Ticket #31: Renamed PEX_ADD message to PEX_RES.

 * Resolved Ticket #32: Renamed Sec 3.8. to "Keep Alive
 Signaling", and updated explanation.

 * Resolved Ticket #33: Explained NAT hole punching via only
 PPSPP messages.

 * Resolved Ticket #34: Added section about limited overhead of
 the Merkle hash tree scheme.

 -02 2012-04-17 Major revision

 * Allow different chunk addressing and content integrity
 protection schemes (ticket #13):

 * Added chunk ID, chunk specification, chunk addressing scheme,
 etc. to terminology.

 * Created new Sections 4 and 5 discussing chunk addressing and
 content integrity protection schemes, respectively and moved
 relevant sections on bin numbering and Merkle hash trees
 there.

 * Renamed Section 4 to "Merkle Hash Trees and The Automatic
 Detection of Content Size".

Bakker & Petrocco Expires December 22, 2012 [Page 54]

Internet-Draft PPSP Peer Protocol June 2012

 * Reformulated automatic size detection in terms of nodes, not
 bins.

 * Extended HANDSHAKE message to carry protocol options and
 created Section 8 on Protocol options. VERSION and
 MSGTYPE_RCVD messages replaced with protocol options.

 * Renamed HASH message to INTEGRITY.

 * Renamed HINT to REQUEST.

 * Added description of chunk addressing via (start,end) ranges.

 * Resolved Ticket #26: Extended "Security Considerations" with
 section on the handshake procedure.

 * Resolved Ticket #17: Defined recently as "in last 60 seconds"
 in PEX.

 * Resolved Ticket #20: Extended "Security Considerations" with
 design to make Peer Address Exchange more secure.

 * Resolved Ticket #38+39 / PPSP.SEC.REQ-2+3: Extended "Security
 Considerations" with a section on confidentiality of content.

 * Resolved Ticket #40+42 / PPSP.SEC.REQ-4+6: Extended "Security
 Considerations" with a per-message analysis of threats and
 how PPSPP is protected from them.

 * Progressed Ticket #41 / PPSP.SEC.REQ-5: Extended "Security
 Considerations" with a section on possible ways of excluding
 bad or broken peers from the system.

 * Moved Rationale to Appendix.

 * Resolved Ticket #43: Updated Live Streaming section to
 include "Sign All" content authentication, and reference to
 [SIGMCAST] following discussion with Fabio Picconi.

 * Resolved Ticket #12: Added a CANCEL message to cancel
 REQUESTs for the same data that were sent to multiple peers
 at the same time in time-critical situations.

Bakker & Petrocco Expires December 22, 2012 [Page 55]

Internet-Draft PPSP Peer Protocol June 2012

Authors' Addresses

 Arno Bakker
 Technische Universiteit Delft
 Mekelweg 4
 Delft, 2628CD
 The Netherlands

 Phone:
 Email: arno@cs.vu.nl

 Riccardo Petrocco
 Technische Universiteit Delft
 Mekelweg 4
 Delft, 2628CD
 The Netherlands

 Phone:
 Email: r.petrocco@gmail.com

Bakker & Petrocco Expires December 22, 2012 [Page 56]

