
PPSP A. Bakker
Internet-Draft R. Petrocco
Intended status: Informational V. Grishchenko
Expires: June 9, 2013 Technische Universiteit Delft
 December 6, 2012

Peer-to-Peer Streaming Peer Protocol (PPSPP)
draft-ietf-ppsp-peer-protocol-04

Abstract

 The Peer-to-Peer Streaming Peer Protocol (PPSPP) is a transport
 protocol for disseminating the same content to a group of interested
 parties in a streaming fashion. PPSPP supports streaming of both
 pre-recorded (on-demand) and live audio/video content. It is based
 on the peer-to-peer paradigm, where clients consuming the content are
 put on equal footing with the servers initially providing the
 content, to create a system where everyone can potentially provide
 upload bandwidth. It has been designed to provide short time-till-
 playback for the end user, and to prevent disruption of the streams
 by malicious peers. PPSPP has also been designed to be flexible and
 extensible. It can use different mechanisms to optimize peer
 uploading, prevent freeriding, and work with different peer discovery
 schemes (centralized trackers or Distributed Hash Tables). It
 supports multiple methods for content integrity protection and chunk
 addressing. Designed as a generic protocol that can run on top of
 various transport protocols, it currently runs on top of UDP using
 LEDBAT for congestion control.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 9, 2013.

Copyright Notice

Bakker, et al. Expires June 9, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft PPSP Peer Protocol December 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Purpose . 5
1.2. Requirements Language 6
1.3. Terminology . 6

2. Overall Operation . 8
2.1. Joining a Swarm . 8
2.2. Exchanging Chunks . 9
2.3. Leaving a Swarm . 9

3. Messages . 10
3.1. HANDSHAKE . 10
3.2. HAVE . 10
3.3. DATA . 11
3.4. ACK . 11
3.5. INTEGRITY . 11
3.6. SIGNED_INTEGRITY . 11
3.7. REQUEST . 11
3.8. CANCEL . 12
3.9. CHOKE and UNCHOKE . 12
3.10. Peer Address Exchange and NAT Hole Punching 13
3.10.1. PEX_REQ and PEX_RES Messages 13
3.10.2. Hole Punching via PPSPP Messages 13

3.11. Keep Alive Signalling 13
3.12. Storage Independence 14

4. Chunk Addressing Schemes 14
4.1. Start-End Ranges . 14
4.1.1. Chunk Ranges . 14
4.1.2. Byte Ranges . 14

4.2. Bin Numbers . 14
4.3. In Messages . 16
4.3.1. In HAVE Messages 16
4.3.2. In ACK Messages 16

4.4. Compatibility . 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bakker, et al. Expires June 9, 2013 [Page 2]

Internet-Draft PPSP Peer Protocol December 2012

5. Content Integrity Protection 17
5.1. Merkle Hash Tree Scheme 18
5.2. Content Integrity Verification 19
5.3. The Atomic Datagram Principle 20
5.4. INTEGRITY Messages . 21
5.5. Discussion and Overhead 21
5.6. Automatic Detection of Content Size 22
5.6.1. Peak Hashes . 22
5.6.2. Procedure . 24

6. Live Streaming . 25
6.1. Content Authentication 25
6.1.1. Sign All . 25
6.1.2. Unified Merkle Tree 26

6.2. Forgetting Chunks . 29
7. Protocol Options . 29
7.1. End Option . 29
7.2. Version . 29
7.3. Minimum Version . 30
7.4. Swarm Identifier . 30
7.5. Content Integrity Protection Method 30
7.6. Merkle Tree Hash Function 31
7.7. Live Signature Algorithm 31
7.8. Chunk Addressing Method 32
7.9. Live Discard Window 32
7.10. Supported Messages . 33

8. UDP Encapsulation . 33
8.1. Chunk Size . 33
8.2. Datagrams and Messages 34
8.3. Channels . 35
8.4. HANDSHAKE . 35
8.5. HAVE . 36
8.6. DATA . 36
8.7. ACK . 37
8.8. INTEGRITY . 37
8.9. SIGNED_INTEGRITY . 37
8.10. REQUEST . 37
8.11. CANCEL . 37
8.12. CHOKE and UNCHOKE . 38
8.13. PEX_REQ, PEX_RESv4, PEX_RESv6 and PEX_REScert 38
8.14. KEEPALIVE . 38
8.15. Flow and Congestion Control 39

9. Extensibility . 39
9.1. Chunk Picking Algorithms 39
9.2. Reciprocity Algorithms 39

10. Acknowledgements . 39
11. IANA Considerations . 40
12. Security Considerations 40
12.1. Security of the Handshake Procedure 40

Bakker, et al. Expires June 9, 2013 [Page 3]

Internet-Draft PPSP Peer Protocol December 2012

12.1.1. Protection against attack 1 41
12.1.2. Protection against attack 2 42
12.1.3. Protection against attack 3 42

12.2. Secure Peer Address Exchange 42
12.2.1. Protection against the Amplification Attack 43
12.2.2. Example: Tracker as Certification Authority 43
12.2.3. Protection Against Eclipse Attacks 44

12.3. Support for Closed Swarms (PPSP.SEC.REQ-1) 45
12.4. Confidentiality of Streamed Content (PPSP.SEC.REQ-2+3) . . 45

 12.5. Limit Potential Damage and Resource Exhaustion by Bad
 or Broken Peers (PPSP.SEC.REQ-4+6) 45

12.5.1. HANDSHAKE . 45
12.5.2. HAVE . 46
12.5.3. DATA . 46
12.5.4. ACK . 46
12.5.5. INTEGRITY and SIGNED_INTEGRITY 47
12.5.6. REQUEST . 47
12.5.7. CANCEL . 47
12.5.8. CHOKE . 47
12.5.9. UNCHOKE . 48
12.5.10. PEX_RES . 48
12.5.11. Unsolicited Messages in General 48

12.6. Exclude Bad or Broken Peers (PPSP.SEC.REQ-5) 48
13. References . 48
13.1. Normative References 48
13.2. Informative References 50

Appendix A. Revision History 53
 Authors' Addresses . 57

Bakker, et al. Expires June 9, 2013 [Page 4]

Internet-Draft PPSP Peer Protocol December 2012

1. Introduction

1.1. Purpose

 This document describes the Peer-to-Peer Streaming Peer Protocol
 (PPSPP), designed for disseminating the same content to a group of
 interested parties in a streaming fashion. PPSPP supports streaming
 of both pre-recorded (on-demand) and live audio/video content. It is
 based on the peer-to-peer paradigm where clients consuming the
 content are put on equal footing with the servers initially providing
 the content, to create a system where everyone can potentially
 provide upload bandwidth.

 PPSPP has been designed to provide short time-till-playback for the
 end user, and to prevent disruption of the streams by malicious
 peers. Central in this design is a simple method of identifying
 content based on self-certification. In particular, content in PPSPP
 is identified by a single cryptographic hash that is the root hash in
 a Merkle hash tree calculated recursively from the content
 [MERKLE][ABMRKL]. This self-certifying hash tree allows every peer
 to directly detect when a malicious peer tries to distribute fake
 content. The tree can be used for both static and live content.
 Moreover, it ensures only a small amount of information is needed to
 start a download and to verify incoming chunks of content, thus
 ensuring short start-up times.

 PPSPP has also been designed to be extensible for different
 transports and use cases. Hence, PPSPP is a generic protocol which
 can run directly on top of UDP, TCP, or other protocols. As such,
 PPSPP defines a common set of messages that make up the protocol,
 which can have different representations on the wire depending on the
 lower-level protocol used. When the lower-level transport allows,
 PPSPP can also use different congestion control algorithms.

 At present, PPSPP is set to run on top of UDP using LEDBAT for
 congestion control [I-D.ietf-ledbat-congestion]. Using LEDBAT
 enables PPSPP to serve the content after playback (seeding) without
 disrupting the user who may have moved to different tasks that use
 its network connection. LEDBAT may be replaced with a different
 algorithm when the work of the IETF working group on RTP Media
 Congestion Avoidance Techniques (RMCAT) [RMCATCHART] matures.

 PPSPP is also flexible and extensible in the mechanisms it uses to
 promote client contribution and prevent freeriding, that is, how to
 deal with peers that only download content but never upload to
 others. It also allows different schemes for chunk addressing and
 content integrity protection, if the defaults are not fit for a
 particular use case. In addition, it can work with different peer

Bakker, et al. Expires June 9, 2013 [Page 5]

Internet-Draft PPSP Peer Protocol December 2012

 discovery schemes, such as centralized trackers or fast Distributed
 Hash Tables [JIM11]. Finally, in this default setup, PPSPP maintains
 only a small amount of state per peer. A reference implementation of
 PPSPP over UDP is available [SWIFTIMPL].

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Terminology

 message
 The basic unit of PPSPP communication. A message will have
 different representations on the wire depending on the transport
 protocol used. Messages are typically multiplexed into a
 datagram for transmission.

 datagram
 A sequence of messages that is offered as a unit to the
 underlying transport protocol (UDP, etc.). The datagram is
 PPSPP's Protocol Data Unit (PDU).

 content
 Either a live transmission, a pre-recorded multimedia asset, or a
 file.

 chunk
 The basic unit in which the content is divided. E.g. a block of
 N kilobyte.

 chunk ID
 Unique identifier for a chunk of content (e.g. an integer). Its
 type depends on the chunk addressing scheme used.

 chunk specification
 An expression that denotes one or more chunk IDs.

 chunk addressing scheme
 Scheme for identifying chunks and expressing the chunk
 availability map of a peer in a compact fashion.

 chunk availability map
 The set of chunks a peer has successfully downloaded and checked
 the integrity of.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bakker, et al. Expires June 9, 2013 [Page 6]

Internet-Draft PPSP Peer Protocol December 2012

 bin
 A number denoting a specific binary interval of the content
 (i.e., one or more consecutive chunks) in the bin numbers chunk
 addressing scheme (see Section 4).

 content integrity protection scheme
 Scheme for protecting the integrity of the content while it is
 being distributed via the peer-to-peer network. I.e. methods for
 receiving peers to detect whether a requested chunk has been
 maliciously modified by the sending peer.

 hash
 The result of applying a cryptographic hash function, more
 specifically a modification detection code (MDC) [HAC01], such as
 SHA-1 [FIPS180-3], to a piece of data.

 Merkle hash tree
 A tree of hashes whose base is formed by the hashes of the chunks
 of content, and its higher nodes are calculated by recursively
 computing the hash of the concatenation of the two child hashes
 (see Section 5.1).

 root hash
 The root in a Merkle hash tree calculated recursively from the
 content (see Section 5.1).

 swarm
 A group of peers participating in the distribution of the same
 content.

 swarm ID
 Unique identifier for a swarm of peers, in PPSPP a sequence of
 bytes. When Merkle hash trees are used for content integrity
 protection, the identifier is the so-called root hash of the
 content (video-on-demand). For live streaming, the swarm ID is a
 public key.

 tracker
 An entity that records the addresses of peers participating in a
 swarm, usually for a set of swarms, and makes this membership
 information available to other peers on request.

 choking
 When a peer A is choking peer B it means that A is currently not
 willing to accept requests for content from B.

Bakker, et al. Expires June 9, 2013 [Page 7]

Internet-Draft PPSP Peer Protocol December 2012

 seeding/leeching
 When a peer A is seeding it means that A has downloaded a static
 content asset completely and is now offering it for others to
 download. If peer A does not yet have all content or is not
 offering it for download, A is said to be leeching.

2. Overall Operation

 The basic unit of communication in PPSPP is the message. Multiple
 messages are multiplexed into a single datagram for transmission. A
 datagram (and hence the messages it contains) will have different
 representations on the wire depending on the transport protocol used
 (see Section 8).

 The overall operation of PPSPP is illustrated in the following
 examples. The examples assume that UDP is used for transport, the
 recommended method for content integrity protection (Merkle hash
 trees) is used, and that a specific policy is used for selecting
 which chunks to download.

2.1. Joining a Swarm

 Consider a peer A that wants to download a certain content asset. To
 commence a PPSPP download, peer A must have the swarm ID of the
 content and a list of one or more tracker contact points (e.g. host+
 port). The list of trackers is optional in the presence of a
 decentralized tracking mechanism.

 Peer A now registers with the tracker following e.g. the PPSP tracker
 protocol [I-D.ietf-ppsp-reqs] and receives the IP address and port of
 peers already in the swarm, say B, C, and D. Peer A now sends a
 datagram containing a HANDSHAKE message to B, C, and D. This message
 conveys protocol options and may serve as an end-to-end check that
 the peers are actually in the correct swarm (in which case it
 contains the ID of the swarm).

 Peer B and C respond with datagrams containing a HANDSHAKE message
 and one or more HAVE messages. A HAVE message conveys (part of) the
 chunk availability of a peer and thus contains a chunk specification
 that denotes what chunks of the content peer B, resp. C have. Peer D
 sends a datagram with a HANDSHAKE and HAVE messages, but also with a
 CHOKE message. The latter indicates that D is not willing to upload
 chunks to A at present.

Bakker, et al. Expires June 9, 2013 [Page 8]

Internet-Draft PPSP Peer Protocol December 2012

2.2. Exchanging Chunks

 In response to B and C, A sends new datagrams to B and C containing
 REQUEST messages. A REQUEST message indicates the chunks that a peer
 wants to download, and thus contains a chunk specification. The
 REQUEST messages to B and C refer to disjunct sets of chunks. B and
 C respond with datagrams containing HAVE, DATA and, in this example,
 INTEGRITY messages. In the Merkle hash tree content protection
 scheme (see Section 5.1), the INTEGRITY messages contain all
 cryptographic hashes that peer A needs to verify the integrity of the
 content chunk sent in the DATA message. Using these hashes peer A
 verifies that the chunks received from B and C are correct. It also
 updates the chunk availability of B and C using the information in
 the received HAVE messages.

 After processing, A sends a datagram containing HAVE messages for the
 chunks it just received to all its peers. In the datagram to B and C
 it includes an ACK message acknowledging the receipt of the chunks,
 and adds REQUEST messages for new chunks. ACK messages are not used
 when a reliable transport protocol is used. When e.g. C finds that
 A obtained a chunk (from B) that C did not yet have, C's next
 datagram includes a REQUEST for that chunk.

 Peer D also sends HAVE messages to A when it downloads chunks from
 other peers. When D is willing to accept REQUESTs from A, D sends a
 datagram with an UNCHOKE message to inform A. If B or C decide to
 choke A they sending a CHOKE message and A should then re-request
 from other peers. B and C may continue to send HAVE, REQUEST, or
 periodic KEEPALIVE messages such that A keeps sending them HAVE
 messages.

 Once peer A has received all content (video-on-demand use case) it
 stops sending messages to all other peers that have all content
 (a.k.a. seeders). Peer A MAY also contact the tracker or another
 source again to obtain more peer addresses.

2.3. Leaving a Swarm

 To leave a swarm in a graceful way, peer A sends a "close-channel"
 datagram to all its peers and deregisters from the tracker following
 the (PPSP) tracker protocol. Peers receiving the datagram should
 remove A from their current peer list. If A crashes ungracefully,
 peers should remove A from their peer list when they detect it no
 longer sends messages.

Bakker, et al. Expires June 9, 2013 [Page 9]

Internet-Draft PPSP Peer Protocol December 2012

3. Messages

 In general, no error codes or responses are used in the protocol;
 absence of any response indicates an error. Invalid messages are
 discarded, and further communication with the peer SHOULD be stopped.
 The rationale is that it is sufficient to classify peers as either
 good (i.e., responding with chunks) or bad and only use the good
 ones. This behavior allows a peer to deal with slow, crashed and
 (silent) malicious peers.

 For the sake of simplicity, one swarm of peers deals with one content
 asset (e.g. file) only. Retrieval of a collections of files can be
 done either by using multiple swarms or by using an external storage
 mapping from the linear byte space of a single swarm to different
 files, transparent to the protocol, as described in Section 3.12.

3.1. HANDSHAKE

 The initiating peer and the addressed peer MUST send a HANDSHAKE
 message as the first message in the first datagrams they exchange.
 The payload of the HANDSHAKE message is a sequence of protocol
 options. Example options are the content integrity protection scheme
 used and an option to specify the swarm identifier. The latter
 option MAY be used as an end-to-end check that the peers are actually
 in the correct swarm. Protocol options are specified in Section 7.

 After the handshakes are exchanged, the initiator knows that the peer
 really responds. Hence, the second datagram the initiator sends MAY
 already contain some heavy payload, e.g. DATA messages. To minimize
 the number of initialization round-trips, the first two datagrams
 exchanged MAY also contain some minor payload, e.g. HAVE messages to
 indicate the current progress of a peer or a REQUEST (see

Section 3.7).

3.2. HAVE

 The HAVE message is used to convey which chunks a peer has available
 for download. The set of chunks it has available may be expressed
 using different chunk addressing and availability map compression
 schemes, described in Section 4. HAVE messages can be used both for
 sending a complete overview of a peer's chunk availability as well as
 for updates to that set.

 In particular, whenever a receiving peer has successfully checked the
 integrity of a chunk or interval of chunks it MUST send a HAVE
 message to all peers it wants to interact with in the near future.
 The latter confinement allows the HAVE message to be used as a method
 of choking. The HAVE message MUST contain the chunk specification of

Bakker, et al. Expires June 9, 2013 [Page 10]

Internet-Draft PPSP Peer Protocol December 2012

 the received chunks. A receiving peer MUST NOT send a HAVE message
 to peers for which the handshake procedure is still incomplete, see

Section 12.1.

3.3. DATA

 The DATA message is used to transfer chunks of content. The DATA
 message MUST contain the chunk ID of the chunk and chunk itself. A
 peer MAY send the DATA messages for multiple chunks in the same
 datagram. The DATA message MAY contain additional information if
 needed by the specific congestion control mechanism used. At present
 PPSPP uses LEDBAT [I-D.ietf-ledbat-congestion] for congestion
 control, which requires the current system time to be sent along with
 the DATA message, so the current system time MUST be included.

3.4. ACK

 When PPSPP is run over an unreliable transport protocol, an
 implementation MAY choose to use ACK messages to acknowledge received
 data. When used, a receiving peer that has successfully checked the
 integrity of a chunk or interval of chunks C it MUST send an ACK
 message containing a chunk specification for C. As LEDBAT is used, an
 ACK message MUST contain the one-way delay, computed from the peer's
 current system time received in the DATA message. A peer MAY delay
 sending ACK messages as defined in the LEDBAT specification.

3.5. INTEGRITY

 The INTEGRITY message carries information required by the receiver to
 verify the integrity of a chunk. Its payload depends on the content
 integrity protection scheme used. When the recommended method of
 Merkle hash trees is used, the datagram carrying the DATA message
 MUST include the cryptographic hashes that are necessary for a
 receiver to check the integrity of the chunk in the form of INTEGRITY
 messages. What are the necessary hashes is explained in Section 5.3.

3.6. SIGNED_INTEGRITY

 The SIGNED_INTEGRITY message carries digitally signed information
 required by the receiver to verify the integrity of a chunk in live
 streaming. It logically contains a chunk specification and a digital
 signature. Its exact payload depends on the live content integrity
 protection scheme used, see Section 6.1.

3.7. REQUEST

 While bulk download protocols normally do explicit requests for
 certain ranges of data (i.e., use a pull model, for example,

Bakker, et al. Expires June 9, 2013 [Page 11]

Internet-Draft PPSP Peer Protocol December 2012

 BitTorrent [BITTORRENT]), live streaming protocols quite often use a
 request-less push model to save round trips. PPSPP supports both
 models of operation.

 A peer MAY send a REQUEST message that MUST contain the specification
 of the chunks it wants to download. A peer receiving a REQUEST
 message MAY send out the requested chunks. When peer Q receives
 multiple REQUESTs from the same peer P peer Q SHOULD process the
 REQUESTs sequentially. Multiple REQUEST messages MAY be sent in one
 datagram, for example, when a peer wants to request several rare
 chunks at once.

 When live streaming via a push model, a peer receiving REQUESTs also
 MAY send some other chunks in case it runs out of requests or for
 some other reason. In that case the only purpose of REQUEST messages
 is to provide hints and coordinate peers to avoid unnecessary data
 retransmission.

3.8. CANCEL

 When downloading on demand or live streaming content, a peer MAY
 request urgent data from multiple peers to increase the probability
 of it being delivered on time. In particular, when the specific
 chunk picking algorithm (see Section 9.1), detects that a request for
 urgent data might not be served on time, a request for the same data
 MAY be sent to a different peer. When a peer P decides to request
 urgent data from a peer Q, peer P SHOULD send a CANCEL message to all
 the peers to which the data has been previously requested. The
 CANCEL message contains the specification of the chunks P no longer
 wants to request. In addition, when peer Q receives a HAVE message
 for the urgent data from peer P, peer Q MUST also cancel the previous
 REQUEST(s) from P. In other words, the HAVE message acts as an
 implicit CANCEL.

3.9. CHOKE and UNCHOKE

 Peer A MAY send a CHOKE message to peer B to signal it will no longer
 be responding to REQUEST messages from B, for example, because A's
 upload capacity is exhausted. Peer A MAY send a subsequent UNCHOKE
 message to signal that it will respond to new REQUESTs from B again
 (A SHOULD discard old requests). When peer B receives a CHOKE
 message from A it MUST NOT send new REQUEST messages and SHOULD NOT
 expect answers to any outstanding ones. The CHOKE and UNCHOKE
 messages are informational as a peer is not required to respond to
 REQUESTs, see Section 3.7.

Bakker, et al. Expires June 9, 2013 [Page 12]

Internet-Draft PPSP Peer Protocol December 2012

3.10. Peer Address Exchange and NAT Hole Punching

3.10.1. PEX_REQ and PEX_RES Messages

 Peer address exchange messages (or PEX messages for short) are common
 in many peer-to-peer protocols. By exchanging peer addresses in
 gossip fashion, peers relieve central coordinating entities (the
 trackers) from unnecessary work. PPSPP optionally features two types
 of PEX messages: PEX_REQ and PEX_RES. A peer that wants to retrieve
 some peer addresses MUST send a PEX_REQ message. The receiving peer
 MAY respond with a PEX_RES message containing the (potentially
 signed) addresses of several peers. The addresses MUST be of peers
 it has exchanged messages with in the last 60 seconds to guarantee
 liveliness. Alternatively, the receiving peer MAY ignore PEX
 messages if uninterested in obtaining new peers or because of
 security considerations (rate limiting) or any other reason. The PEX
 messages can be used to construct a dedicated tracker peer.

 As peer-address exchange enables a number of attacks it should not be
 used outside a benign environment unless extra security measures are
 in place. These security measures, which involve exchanging
 addresses in cryptographically signed swarm-membership certificates,
 are described in Section 12.2.

3.10.2. Hole Punching via PPSPP Messages

 PPSPP can be used in combination with STUN [RFC5389]. In addition,
 the native PEX messages can be used to do simple NAT hole punching
 [SNP], as follows. When peer A introduces peer B to peer C by
 sending a PEX_RES message to C, it SHOULD also send a PEX_RES message
 to B introducing C. These messages SHOULD be within 2 seconds from
 each other, but MAY not be simultaneous, instead leaving a gap of
 twice the "typical" RTT, i.e. 300-600 ms. As a result, the peers are
 supposed to initiate handshakes to each other thus forming a simple
 NAT hole punching pattern where the introducing peer effectively acts
 as a STUN server. Note that the PEX_RES message is sent without a
 prior PEX_REQ in this case. Also note the PEX_RES from A to B is
 likely to arrive because recent communication between A and B is a
 prerequisite for A introducing B to C, see previous section.

3.11. Keep Alive Signalling

 A peer MUST send a "keep alive" message periodically to each peer it
 wants to interact with in the future, but has no other messages to
 send them at present. PPSPP does not define an explicit message type
 for "keep alive" messages. In the PPSP-over-UDP encapsulation they
 are implemented as simple datagrams consisting of a 4-byte channel
 number only, see Section 8.3 and Section 8.4.

https://datatracker.ietf.org/doc/html/rfc5389

Bakker, et al. Expires June 9, 2013 [Page 13]

Internet-Draft PPSP Peer Protocol December 2012

3.12. Storage Independence

 Note PPSPP does not prescribe how chunks are stored. This also
 allows users of PPSPP to map different files into a single swarm as
 in BitTorrent's multi-file torrents [BITTORRENT], and more innovative
 storage solutions when variable-sized chunks are used.

4. Chunk Addressing Schemes

 PPSPP can use different methods of chunk addressing, that is, support
 different ways of identifying chunks and different ways of expressing
 the chunk availability map of a peer in a compact fashion.

4.1. Start-End Ranges

 A chunk specification consists of a single (start specification,end
 specification) pair that identifies a range of chunks (end
 inclusive). The start and end specifications can use one of multiple
 addressing schemes. Two schemes are currently defined, chunk ranges
 and byte ranges.

4.1.1. Chunk Ranges

 The start and end specification are both chunk identifiers. A PPSPP
 peer MUST support this scheme.

4.1.2. Byte Ranges

 The start and end specification are byte offsets in the content. A
 PPSPP peer MAY support this scheme.

4.2. Bin Numbers

 PPSPP introduces a novel method of addressing chunks of content
 called "bin numbers" (or "bins" for short). Bin numbers allow the
 addressing of a binary interval of data using a single integer. This
 reduces the amount of state that needs to be recorded per peer and
 the space needed to denote intervals on the wire, making the protocol
 light-weight. In general, this numbering system allows PPSPP to work
 with simpler data structures, e.g. to use arrays instead of binary
 trees, thus reducing complexity. A PPSPP peer MAY support this
 scheme.

 In bin addressing, the smallest binary interval is a single chunk
 (e.g. a block of bytes which may be of variable size), the largest
 interval is a complete range of 2**63 chunks. In a novel addition to
 the classical scheme, these intervals are numbered in a way which

Bakker, et al. Expires June 9, 2013 [Page 14]

Internet-Draft PPSP Peer Protocol December 2012

 lays them out into a vector nicely, which is called bin numbering, as
 follows. Consider an chunk interval of width W. To derive the bin
 numbers of the complete interval and the subintervals, a minimal
 balanced binary tree is built that is at least W chunks wide at the
 base. The leaves from left-to-right correspond to the chunks 0..W-1
 in the interval, and have bin number I*2 where I is the index of the
 chunk (counting beyond W-1 to balance the tree). The bin number of
 higher level nodes P in the tree is calculated as follows:

 binP = (binL + binR) / 2

 where binL is the bin of node P's left-hand child and binR is the bin
 of node P's right-hand child. Given that each node in the tree
 represents a subinterval of the original interval, each such
 subinterval now is addressable by a bin number, a single integer.
 The bin number tree of an interval of width W=8 looks like this:

 7
 / \
 / \
 / \
 / \
 3 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12 14

 C0 C1 C2 C3 C4 C5 C6 C7

 The bin number tree of an interval of width W=8

 Figure 1

 So bin 7 represents the complete interval, bin 3 represents the
 interval of chunk 0..3, bin 1 represents the interval of chunks 0 and
 1, and bin 2 represents chunk C1. The special numbers 0xFFFFFFFF
 (32-bit) or 0xFFFFFFFFFFFFFFFF (64-bit) stands for an empty interval,
 and 0x7FFF...FFF stands for "everything".

 When bin numbering is used, the ID of a chunk is its corresponding
 (leaf) bin number in the tree and the chunk specification in HAVE and
 ACK messages is equal to a single bin number, as follows.

Bakker, et al. Expires June 9, 2013 [Page 15]

Internet-Draft PPSP Peer Protocol December 2012

4.3. In Messages

4.3.1. In HAVE Messages

 When a receiving peer has successfully checked the integrity of a
 chunk or interval of chunks it MUST send a HAVE message to all peers
 it wants to interact with. The latter allows the HAVE message to be
 used as a method of choking. The HAVE message MUST contain the chunk
 specification of the biggest complete interval of all chunks the
 receiver has received and checked so far that fully includes the
 interval of chunks just received. So the chunk specification MUST
 denote at least the interval received, but the receiver is supposed
 to aggregate and acknowledge bigger intervals, when possible.

 As a result, every single chunk is acknowledged a logarithmic number
 of times. That provides some necessary redundancy of acknowledgments
 and sufficiently compensates for unreliable transport protocols.

 Implementation note:

 To record which chunks a peer has in the state that an
 implementation keeps for each peer, an implementation MAY use the
 efficient "binmap" data structure, which is a hybrid of a bitmap
 and a binary tree, discussed in detail in [BINMAP].

4.3.2. In ACK Messages

 When PPSPP is run over an unreliable transport protocol, an
 implementation MAY choose to use ACK messages to acknowledge received
 data. When a receiving peer has successfully checked the integrity
 of a chunk or interval of chunks C it MUST send a ACK message
 containing the chunk specification of its biggest, complete, interval
 covering C to the sending peer (see HAVE).

4.4. Compatibility

 In principle, peers using range addressing and peers using bin
 numbering can interact, with some limitations. Alternatively, a peer
 A MAY refuse to interact with a peer B using a different addressing
 scheme. In that case, A MUST respond to B'S HANDSHAKE message by
 sending an explicit close (see Section 8.4). PPSPP presently
 supports only interaction between willing peers when fixed sized
 chunks are used, as follows:

 When a bin peer sends a message containing a chunk specification to a
 byte-range peer it MUST translate its internal bin numbers to byte
 ranges. When a byte range peer sends a message with a chunk
 specification message to a bin peer, it MUST round its internal byte

Bakker, et al. Expires June 9, 2013 [Page 16]

Internet-Draft PPSP Peer Protocol December 2012

 ranges to 1 or more bins. For the latter translation, the byte-range
 peer MUST know the fixed chunk size used (which it should receive
 along with the swarm identifier). When a range translates to
 multiple bins, the byte-range peer should send multiple e.g. HAVE
 messages. Note that the bin peer may not be able to request all
 content the byte-range peer has if it does not have an integral
 number of chunks.

 Aside: Translation from bytes to bins is possible for variable sized
 chunks only when the byte-range peer has extra information. In
 particular, it will need to know the individual sizes of the chunks
 from the start of the content till the byte range it wants to convey
 to the bin peer.

 A similar translation MUST be done for translating between bins and
 chunk ranges. Chunk ranges are directly translatable to bins.
 Assuming ranges are intervals of a list of chunks numbered 0...N, for
 a given bin number "bin" and bitwise operations AND and OR:

 startrange = (bin AND (bin + 1))/2

 endrange = ((bin OR (bin + 1)) - 1)/2

 The reverse translation may require a chunk range to be rounded to
 the largest binary interval it covers, or for a range be translated
 to a series of bin numbers that should be sent using multiple (e.g.
 HAVE) messages.

 Finally, byte-range peers can interact with chunk-range peers, by
 using the direct translation from chunks into bytes and by rounding
 byte ranges into chunk ranges. The latter requires the byte-range
 peer to know the fixed chunk size.

5. Content Integrity Protection

 PPSPP can use different methods for protecting the integrity of the
 content while it is being distributed via the peer-to-peer network.
 More specifically, PPSPP can use different methods for receiving
 peers to detect whether a requested chunk has been maliciously
 modified by the sending peer.

 This section describes the recommended method for bad content
 detection, the Merkle Hash Tree scheme, which SHOULD be implemented
 for protecting static content. It can also be efficiently used in
 protecting live streams, as explained below and in Section 6.1.

 The Merkle hash tree scheme can use different chunk addressing

Bakker, et al. Expires June 9, 2013 [Page 17]

Internet-Draft PPSP Peer Protocol December 2012

 schemes. All it requires is the ability to address a range of
 chunks. In the following description abstract node IDs are used to
 identify nodes in the tree. On the wire these are translated to the
 corresponding range of chunks in the chosen chunk addressing scheme.
 When bin numbering is used, node IDs correspond directly to bin
 numbers in the INTEGRITY message, see below.

5.1. Merkle Hash Tree Scheme

 PPSPP uses a method of naming content based on self-certification.
 In particular, content in PPSPP is identified by a single
 cryptographic hash that is the root hash in a Merkle hash tree
 calculated recursively from the content [ABMRKL]. This self-
 certifying hash tree allows every peer to directly detect when a
 malicious peer tries to distribute fake content. It also ensures
 only a small the amount of information is needed to start a download
 (the root hash and some peer addresses). For live streaming a
 dynamic tree and a public key are used, see below.

 The Merkle hash tree of a content asset that is divided into N chunks
 is constructed as follows. Note the construction does not assume
 chunks of content to be fixed size. Given a cryptographic hash
 function, more specifically a modification detection code (MDC)
 [HAC01] , such as SHA1, the hashes of all the chunks of the content
 are calculated. Next, a binary tree of sufficient height is created.
 Sufficient height means that the lowest level in the tree has enough
 nodes to hold all chunk hashes in the set, as with bin numbering.
 The figure below shows the tree for a content asset consisting of 7
 chunks. As before with the content addressing scheme, the leaves of
 the tree correspond to a chunk and in this case are assigned the hash
 of that chunk, starting at the left-most leaf. As the base of the
 tree may be wider than the number of chunks, any remaining leaves in
 the tree are assigned an empty hash value of all zeros. Finally, the
 hash values of the higher levels in the tree are calculated, by
 concatenating the hash values of the two children (again left to
 right) and computing the hash of that aggregate. If the two children
 are empty hashes, the parent is an empty all zeros hash as well (to
 save computation). This process ends in a hash value for the root
 node, which is called the "root hash". Note the root hash only
 depends on the content and any modification of the content will
 result in a different root hash.

Bakker, et al. Expires June 9, 2013 [Page 18]

Internet-Draft PPSP Peer Protocol December 2012

 7 = root hash
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13* = uncle hash
 / \ / \ / \ / \
 0 2 4 6 8 10* 12 14

 C0 C1 C2 C3 C4 C5 C6 E
 =chunk index ^^ = empty hash

 The Merkle hash tree of an interval of width W=8

 Figure 2

5.2. Content Integrity Verification

 Assuming a peer receives the root hash of the content it wants to
 download from a trusted source, it can check the integrity of any
 chunk of that content it receives as follows. It first calculates
 the hash of the chunk it received, for example chunk C4 in the
 previous figure. Along with this chunk it MUST receive the hashes
 required to check the integrity of that chunk. In principle, these
 are the hash of the chunk's sibling (C5) and that of its "uncles". A
 chunk's uncles are the sibling Y of its parent X, and the uncle of
 that Y, recursively until the root is reached. For chunk C4 its
 uncles are nodes 13 and 3, marked with * in the figure. Using this
 information the peer recalculates the root hash of the tree, and
 compares it to the root hash it received from the trusted source. If
 they match the chunk of content has been positively verified to be
 the requested part of the content. Otherwise, the sending peer
 either sent the wrong content or the wrong sibling or uncle hashes.
 For simplicity, the set of sibling and uncles hashes is collectively
 referred to as the "uncle hashes".

 In the case of live streaming the tree of chunks grows dynamically
 and the root hash is undefined or, more precisely, transient, as long
 as new data is generated by the live source. Section 6.1.2 defines a
 method for content integrity verification for live streams that works
 with such a dynamic tree. Although the tree is dynamic, content
 verification works the same for both live and predefined content,
 resulting in a unified method for both types of streaming.

Bakker, et al. Expires June 9, 2013 [Page 19]

Internet-Draft PPSP Peer Protocol December 2012

5.3. The Atomic Datagram Principle

 As explained above, a datagram consists of a sequence of messages.
 Ideally, every datagram sent must be independent of other datagrams,
 so each datagram SHOULD be processed separately and a loss of one
 datagram MUST NOT disrupt the flow. Thus, as a datagram carries zero
 or more messages, neither messages nor message interdependencies
 SHOULD span over multiple datagrams.

 This principle implies that as any chunk is verified using its uncle
 hashes the necessary hashes SHOULD be put into the same datagram as
 the chunk's data. If this is not possible because of a limitation on
 datagram size, the necessary hashes MUST be sent first in one or more
 datagrams. As a general rule, if some additional data is still
 missing to process a message within a datagram, the message SHOULD be
 dropped.

 The hashes necessary to verify a chunk are in principle its sibling's
 hash and all its uncle hashes, but the set of hashes to send can be
 optimized. Before sending a packet of data to the receiver, the
 sender inspects the receiver's previous acknowledgments (HAVE or ACK)
 to derive which hashes the receiver already has for sure. Suppose,
 the receiver had acknowledged chunks C0 and C1 (first two chunks of
 the file), then it must already have uncle hashes 5, 11 and so on.
 That is because those hashes are necessary to check C0 and C1 against
 the root hash. Then, hashes 3, 7 and so on must be also known as
 they are calculated in the process of checking the uncle hash chain.
 Hence, to send chunk C7, the sender needs to include just the hashes
 for nodes 14 and 9, which let the data be checked against hash 11
 which is already known to the receiver.

 The sender MAY optimistically skip hashes which were sent out in
 previous, still unacknowledged datagrams. It is an optimization
 trade-off between redundant hash transmission and possibility of
 collateral data loss in the case some necessary hashes were lost in
 the network so some delivered data cannot be verified and thus has to
 be dropped. In either case, the receiver builds the Merkle tree on-
 demand, incrementally, starting from the root hash, and uses it for
 data validation.

 In short, the sender MUST put into the datagram the missing hashes
 necessary for the receiver to verify the chunk. The receiver MUST
 remember all the hashes it needs to verify missing chunks that it
 still wants to download. Note that the latter implies that a
 hardware-limited receiver MAY forget some hashes if it does not plan
 to announce possession of these chunks to others (i.e., does not plan
 to send HAVE messages.)

Bakker, et al. Expires June 9, 2013 [Page 20]

Internet-Draft PPSP Peer Protocol December 2012

5.4. INTEGRITY Messages

 Concretely, a peer that wants to send a chunk of content creates a
 datagram that MUST consist of a list of INTEGRITY messages followed
 by a DATA message. If the INTEGRITY messages and DATA message cannot
 be put into a single datagram because of a limitation on datagram
 size, the INTEGRITY messages MUST be sent first in one or more
 datagrams. The list of INTEGRITY messages sent MUST contain a
 INTEGRITY message for each hash the receiver misses for integrity
 checking. A INTEGRITY message for a hash MUST contain the chunk
 specification corresponding to the node ID of the hash and the hash
 data itself. The chunk specification corresponding to a node ID is
 defined as the range of chunks formed by the leaves of the subtree
 rooted at the node. For example, node 3 in Figure 2 denotes chunks
 0,2,4,6, so the chunk specification should denote that interval. The
 list of INTEGRITY messages MUST be sorted in order of tree height of
 the nodes, descending. The DATA message MUST contain the chunk
 specification of the chunk and chunk itself. A peer MAY send the
 required messages for multiple chunks in the same datagram, depending
 on the encapsulation.

5.5. Discussion and Overhead

 The current method for protecting content integrity in BitTorrent
 [BITTORRENT] is not suited for streaming. It involves providing
 clients with the hashes of the content's chunks before the download
 commences by means of metadata files (called .torrent files in
 BitTorrent.) However, when chunks are small as in the current UDP
 encapsulation of PPSPP this implies having to download a large number
 of hashes before content download can begin. This, in turn,
 increases time-till-playback for end users, making this method
 unsuited for streaming.

 The overhead of using Merkle hash trees is limited. The size of the
 hash tree expressed as the total number of nodes depends on the
 number of chunks the content is divided (and hence the size of
 chunks) following this formula:

 nnodes = math.pow(2,math.log(nchunks,2)+1)

 In principle, the hash values of all these nodes will have to be sent
 to a peer once for it to verify all chunks. Hence the maximum on-
 the-wire overhead is hashsize * nnodes. However, the actual number
 of hashes transmitted can be optimized as described in Section 5.3.
 To see a peer can verify all chunks whilst receiving not all hashes,
 consider the example tree in Section 5.1.

 In case of a simple progressive download, of chunks 0,2,4,6, etc. the

Bakker, et al. Expires June 9, 2013 [Page 21]

Internet-Draft PPSP Peer Protocol December 2012

 sending peer will send the following hashes:

 +-------+---+
 | Chunk | Node IDs of hashes sent |
 +-------+---+
 | 0 | 2,5,11 |
 | 2 | - (receiver already knows all) |
 | 4 | 6 |
 | 6 | - |
 | 8 | 10,13 (hash 3 can be calculated from 0,2,5) |
 | 10 | - |
 | 12 | 14 |
 | 14 | - |
 | Total | # hashes 7 |
 +-------+---+

 Table 1: Overhead for the example tree

 So the number of hashes sent in total (7) is less than the total
 number of hashes in the tree (16), as a peer does not need to send
 hashes that are calculated and verified as part of earlier chunks.

5.6. Automatic Detection of Content Size

 In PPSPP, the root hash of a static content asset, such as a video
 file, along with some peer addresses is sufficient to start a
 download. In addition, PPSPP can reliably and automatically derive
 the size of such content from information received from the network
 when fixed sized chunks are used. As a result, it is not necessary
 to include the size of the content asset as the metadata of the
 content, in addition to the root hash. Implementations of PPSPP MAY
 use this automatic detection feature. Note this feature is the only
 feature of PPSPP that requires that a fixed-sized chunk is used.

5.6.1. Peak Hashes

 The ability for a newcomer peer to detect the size of the content
 depends heavily on the concept of peak hashes. Peak hashes, in
 general, enable two cornerstone features of PPSPP: reliable file size
 detection and download/live streaming unification (see Section 6).
 The concept of peak hashes depends on the concepts of filled and
 incomplete nodes. Recall that when constructing the binary trees for
 content verification and addressing the base of the tree may have
 more leaves than the number of chunks in the content. In the Merkle
 hash tree these leaves were assigned empty all-zero hashes to be able
 to calculate the higher level hashes. A filled node is now defined
 as a node that corresponds to an interval of leaves that consists
 only of hashes of content chunks, not empty hashes. Reversely, an

Bakker, et al. Expires June 9, 2013 [Page 22]

Internet-Draft PPSP Peer Protocol December 2012

 incomplete (not filled) node corresponds to an interval that contains
 also empty hashes, typically an interval that extends past the end of
 the file. In the following figure nodes 7, 11, 13 and 14 are
 incomplete the rest is filled.

 Formally, a peak hash is the hash of a filled node in the Merkle
 tree, whose sibling is an incomplete node. Practically, suppose a
 file is 7162 bytes long and a chunk is 1 kilobyte. That file fits
 into 7 chunks, the tail chunk being 1018 bytes long. The Merkle tree
 for that file is shown in Figure 3. Following the definition the
 peak hashes of this file are in nodes 3, 9 and 12, denoted with a *.
 E denotes an empty hash.

 7
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9* 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12* 14

 C0 C1 C2 C3 C4 C5 C6 E
 = 1018 bytes

 Peak hashes in a Merkle hash tree.

 Figure 3

 Peak hashes can be explained by the binary representation of the
 number of chunks the file occupies. The binary representation for 7
 is 111. Every "1" in binary representation of the file's packet
 length corresponds to a peak hash. For this particular file there
 are indeed three peaks, nodes 3, 9, 12. The number of peak hashes
 for a file is therefore also at most logarithmic with its size.

 A peer knowing which nodes contain the peak hashes for the file can
 therefore calculate the number of chunks it consists of, and thus get
 an estimate of the file size (given all chunks but the last are fixed
 size). Which nodes are the peaks can be securely communicated from
 one (untrusted) peer A to another B by letting A send the peak hashes
 and their node IDs to B. It can be shown that the root hash that B
 obtained from a trusted source is sufficient to verify that these are

Bakker, et al. Expires June 9, 2013 [Page 23]

Internet-Draft PPSP Peer Protocol December 2012

 indeed the right peak hashes, as follows.

 Lemma: Peak hashes can be checked against the root hash.

 Proof: (a) Any peak hash is always the left sibling. Otherwise, be
 it the right sibling, its left neighbor/sibling must also be a filled
 node, because of the way chunks are laid out in the leaves,
 contradiction. (b) For the rightmost peak hash, its right sibling is
 zero. (c) For any peak hash, its right sibling might be calculated
 using peak hashes to the left and zeros for empty nodes. (d) Once the
 right sibling of the leftmost peak hash is calculated, its parent
 might be calculated. (e) Once that parent is calculated, we might
 trivially get to the root hash by concatenating the hash with zeros
 and hashing it repeatedly.

 Informally, the Lemma might be expressed as follows: peak hashes
 cover all data, so the remaining hashes are either trivial (zeros) or
 might be calculated from peak hashes and zero hashes.

 Finally, once peer B has obtained the number of chunks in the content
 it can determine the exact file size as follows. Given that all
 chunks except the last are fixed size B just needs to know the size
 of the last chunk. Knowing the number of chunks B can calculate the
 node ID of the last chunk and download it. As always B verifies the
 integrity of this chunk against the trusted root hash. As there is
 only one chunk of data that leads to a successful verification the
 size of this chunk must be correct. B can then determine the exact
 file size as

 (number of chunks -1) * fixed chunk size + size of last chunk

5.6.2. Procedure

 A PPSPP implementation that wants to use automatic size detection
 MUST operate as follows. When a peer B sends a DATA message for the
 first time to a peer A, B MUST first send all the peak hashes for the
 content, unless A has already signalled earlier in the exchange that
 it knows the peak hashes by having acknowledged any chunk. If they
 are needed, the peak hashes MUST be sent as an extra list of uncle
 hashes for the chunk, before the list of actual uncle hashes of the
 chunk as described in Section 5.3. The receiver A MUST check the
 peak hashes against the root hash to determine the approximate
 content size. To obtain the definite content size peer A MUST
 download the last chunk of the content from any peer that offers it.

Bakker, et al. Expires June 9, 2013 [Page 24]

Internet-Draft PPSP Peer Protocol December 2012

6. Live Streaming

 The set of messages defined above can be used for live streaming as
 well. In a pull-based model, a live streaming injector can announce
 the chunks it generates via HAVE messages, and peers can retrieve
 them via REQUEST messages. Areas that need special attention are
 content authentication and chunk addressing (to achieve an infinite
 stream of chunks).

6.1. Content Authentication

 For live streaming, PPSPP supports two methods for a peer to
 authenticate the content it receives from another peer, called "Sign
 All" and "Unified Merkle Tree".

 In the "Sign All" method, the live injector signs each chunk of
 content using a private key and peers, upon receiving the chunk,
 check the signature using the corresponding public key obtained from
 a trusted source. In particular, in PPSP, the swarm ID of the live
 stream is that public key. The signature is sent along with the DATA
 message containing the relevant chunk using the SIGNED_INTEGRITY
 message.

 In the "Unified Merkle Tree" method, PPSPP combines the Merkle hash
 tree scheme for static content with signatures to unify the video-on-
 demand and live streaming case. The use of Merkle hash trees reduces
 the number of signing and verification operations per second, that
 is, provide signature amortization similar to the approach described
 in [SIGMCAST].

 In both methods the swarm ID consists of a public key encoded as in a
 DNSSEC DNSKEY resource record without BASE-64 encoding [RFC4034]. In
 particular, the swarm ID consists of a 1 byte Algorithm field that
 identifies the public key's cryptographic algorithm and determines
 the format of the Public Key field that follows.

6.1.1. Sign All

 Even with "Sign All", the number of cryptographic operations per
 second may be limited. For example, consider a 25 frame/second video
 transmitted over UDP. When each frame is transmitted in its own
 chunk, only 25 signature verification operations per second are
 required, for the receiving peer, for bitrates up to ~12.8 megabit/
 second over UDP. For higher bitrates multiple UDP packets per frame
 are needed.

https://datatracker.ietf.org/doc/html/rfc4034

Bakker, et al. Expires June 9, 2013 [Page 25]

Internet-Draft PPSP Peer Protocol December 2012

6.1.2. Unified Merkle Tree

 In this method, the chunks of content are used as the basis for a
 Merkle hash tree as for static content. However, because chunks are
 continuously generated, this tree is not static, but dynamic. As a
 result, the tree does not have a root hash, or more precisely has a
 transient root hash. A public key therefore serves as swarm ID of
 the content. It is used to digitally sign updates to the tree,
 allowing peers to expand it based on trusted information using the
 following procedure.

 The live injector creates a number of chunks N, a fixed power of 2
 (N>=2), which are added as new leaves to the existing hash tree,
 expanding the tree as required. As a result of this expansion, the
 tree will have gotten a set of new peak hashes (see Section 5.6.1).
 The injector now signs only the peak hashes in this set that are not
 in the old set of peak hashes. For N being a power of 2 there will
 just be one new peak hash (see below). This complementary signed
 peak is distributed to the peers. Receiving peers will verify the
 signature on the signed peak against the swarm ID, update their tree
 and request the new chunks.

 To illustrate this procedure, consider the injector has generated the
 tree shown in Figure 4 and it is connected to several peers that
 currently have the same tree and all chunks. In this tree the root
 node 3 is also the peak node for this tree. Now the injector
 generates N=2 new chunks. As a result the tree expands as shown in
 Figure 5. The two new pieces 8 and 10 extend the tree on the right
 side, and to accommodate them a new root is created, node 7. As this
 tree is wider at the base than the actual number of chunks, there are
 currently two empty leaves. The peak nodes in this tree are 3 and 9.

 3*
 / \
 / \
 / \
 1 5
 / \ / \
 0 2 4 6

 Current live tree

 Figure 4

Bakker, et al. Expires June 9, 2013 [Page 26]

Internet-Draft PPSP Peer Protocol December 2012

 7
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9* 13
 / \ / \ / \ / \
 0 2 4 6 8 10 E E

 Next current live tree

 Figure 5

 The injector now needs to inform its peers of the changed tree, in
 particular the addition of the new complementary peak hash 9. To
 this extent, it sends an INTEGRITY message with the hash of node 9, a
 SIGNED_INTEGRITY message with the signature of the hash of node 9 and
 a HAVE message for node 9. The receiving peers now expand their view
 of the tree. Next, the peers will request e.g. chunk 8 from the
 injector by sending a REQUEST message. The injector responds by
 sending the requester an INTEGRITY message with the hash of node 10,
 and a DATA message with chunk 8. This allows the peer to verify the
 chunk against peak hash 9 which is signed by the trusted injector.

 The injector MAY send HAVE messages for the chunks it creates
 immediately, and allow peers to retrieve them. This optimizes the
 use of the injector's bandwidth. Peers MUST NOT forward these chunks
 to others until they have received and checked the peak hash
 signature and the necessary hashes.

 This procedure generates just 1 new peak hash for every N blocks, so
 it requires just one signature on each iteration, making it N times
 cheaper than "Sign All". To see why just 1 new peak hash is
 generated each iteration let's return to the definition of a peak
 hash in a tree, from Section 5.6.1. A peak hash is the hash of a
 filled node in the Merkle tree, whose sibling is an incomplete node.
 Now consider the above procedure where N chunks (with N a power of 2)
 are added to a tree at each iteration. In the first iteration, the
 tree consists of just N leaves, therefore the only peak is the root
 of the tree. In the second iteration, the tree consists of 2N chunks
 and the only peak is the root of that bigger tree (depicted in
 Figure 4 for N=2). In the third iteration, we have 3N chunks as
 leaves and a tree that is 4N wide (to span the 3N chunks) and hence

Bakker, et al. Expires June 9, 2013 [Page 27]

Internet-Draft PPSP Peer Protocol December 2012

 has N empty leaves (depicted in Figure 5 for N=2). This implies that
 the tree has 2 peaks, notably the peak from the previous iteration
 (node 3 in the figure) and the top of the subtree of the N chunks
 that were added last (node 9 in the figure). Although this iteration
 has two peaks, there is only one new peak as the expanded tree
 overlaps with the tree from the previous iteration. In the fourth
 iteration, we have a complete balanced tree again, and just a single
 new peak. It is now easy to see that this process in which previous
 peaks are either consumed into a single new peak, or peak sets
 overlap with just 1 new addition yields a single new peak per N
 chunks.

 From this we can conclude that the injector has to sign less hashes
 than in the "Sign All" method. A receiving peer therefore also has
 to verify less signatures. It does additionally need to check one or
 more hashes per chunk via the Merkle Tree scheme, but this requires
 less CPU than a signature verification for every chunk. This
 approach is similar to signature amortization via Merkle Tree
 Chaining [SIGMCAST]. The downside of this amortization of signature
 costs over several chunks is that latency will increase. A receiving
 peer now has to wait for the signature before delivering the chunks
 to the higher layers responsible for playback [POLLIVE], unless some
 (optimistic) optimisations are made. It MUST check the signature
 before forwarding the chunks to other peers.

 The number of chunks per signature N MUST be a fixed power of 2
 (N>=2). The procedure does not preclude using variable-sized chunks.
 Using a variable number N, however, is not allowed as this breaks the
 property of generating just 1 new peak per iteration.

 Unification of static content checking and live content checking is
 achieved by sending the signed peak hashes on-demand, ahead of the
 actual data. As before, the sender SHOULD use acknowledgments to
 derive which content range the receiver has peak hashes for, and to
 prepend the data hashes with the necessary (signed) peak hashes.
 Except for the fact that the set of peak hashes changes with time,
 other parts of the protocol work as described in Section 5.1.

 This method of integrity verification has an added benefit if the
 system includes some peers that saved the complete broadcast. The
 benefit is that as soon as the broadcast ends, the content is
 available as a video-on-demand download using the now stabilized tree
 and the final root hash as swarm identifier. Peers that have saved
 all chunks can now announce this root hash to the tracking
 infrastructure and instantly seed it.

Bakker, et al. Expires June 9, 2013 [Page 28]

Internet-Draft PPSP Peer Protocol December 2012

6.2. Forgetting Chunks

 As a live broadcast progresses a peer may want to discard the chunks
 that it already played out. Ideally, other peers should be aware of
 this fact such that they will not try to request these chunks from
 this peer. This could happen in scenarios where live streams may be
 paused by viewers, or viewers are allowed to start late in a live
 broadcast (e.g., start watching a broadcast at 20:35 whereas it began
 at 20:30).

 PPSPP provides a simple solution for peers to stay up-to-date with
 the chunk availability of a discarding peer. A discarding peer in a
 live stream MUST enable the Live Discard Window protocol option,
 specifying how many chunks/bytes it caches before the last chunk/byte
 it advertised as being available (see Section 7.9). Its peers SHOULD
 apply this number as a sliding window filter over the peer's chunk
 availability as conveyed via its HAVE messages.

7. Protocol Options

 The HANDSHAKE message in PPSPP can contain the following protocol
 options (cf. [RFC2132] (DHCP options)). Each element in a protocol
 option is 8 bits wide, unless stated otherwise.

7.1. End Option

 A peer MUST conclude the list of protocol options with the end
 option. Subsequent octets should be considered protocol messages.
 The code for the end option is 255, and its length is 1 octet.

 +------+
 | Code |
 +------+
 | 255 |
 +------+

7.2. Version

 A peer MUST include the maximum version of the PPSPP protocol it
 supports as the first protocol option in the list.

https://datatracker.ietf.org/doc/html/rfc2132

Bakker, et al. Expires June 9, 2013 [Page 29]

Internet-Draft PPSP Peer Protocol December 2012

 +------+-------------+
 | Code | Max Version |
 +------+-------------+
 | 0 | v |
 +------+-------------+

 Currently one value is defined, 1 = protocol as described in this
 document.

7.3. Minimum Version

 When a peer initiates the handshake it MUST include the minimum
 version of the PPSPP protocol it supports in the list of protocol
 options, following the Min/max versioning scheme defined in

[RFC6709], Section 4.1.

 +------+-------------+
 | Code | Min Version |
 +------+-------------+
 | 1 | v |
 +------+-------------+

 Currently one value is defined, 1 = protocol as described in this
 document.

7.4. Swarm Identifier

 To enable end-to-end checking of any peer discovery process a peer
 MAY include a swarm identifier option.

 +------+-------------+------------------+
 | Code | Length | Swarm Identifier |
 +------+-------------+------------------+
 | 2 | n (16 bits) | i1,i2,... |
 +------+-------------+------------------+

 Each PPSPP peer knows the IDs of the swarms it joins so this
 information can be immediately verified upon receipt. The length
 field is 2 octets to allow for large public keys as identifiers in
 live streaming.

7.5. Content Integrity Protection Method

 A peer MUST include the content integrity method used by a swarm,
 unless it uses the default, in which case it MAY include the method.

https://datatracker.ietf.org/doc/html/rfc6709#section-4.1

Bakker, et al. Expires June 9, 2013 [Page 30]

Internet-Draft PPSP Peer Protocol December 2012

 +------+--------+
 | Code | Method |
 +------+--------+
 | 3 | m |
 +------+--------+

 Currently three values are defined for the method, 0 = No integrity
 protection, 1 = Merkle Hash Trees (for static content, see

Section 5.1), 2 = Sign All, and 3 = Unified Merkle Tree (for live
 content, see Section 6.1).

 The veracity of this information will come out when the receiver
 successfully verifies the first chunk from any peer.

7.6. Merkle Tree Hash Function

 When the content integrity protection method is Merkle Hash Trees
 this option defining which hash function is used for the tree MUST
 also be defined.

 +------+-----------+
 | Code | Hash Func |
 +------+-----------+
 | 4 | h |
 +------+-----------+

 Currently the following values are defined for the hash function, 0 =
 SHA1, 1 = SHA-224, 2 = SHA-256, 3 = SHA-384, and 4 = SHA-512
 [FIPS180-3].

 The veracity of this information will come out when the receiver
 successfully verifies the first chunk from any peer.

7.7. Live Signature Algorithm

 When the content integrity protection method is "Sign All" or
 "Unified Merkle Tree" this option MUST also be defined.

 +------+---------+
 | Code | Sig Alg |
 +------+---------+
 | 5 | s |
 +------+---------+

 The value of this option is one of the Domain Name System Security
 (DNSSEC) Algorithm Numbers [IANADNSSECALGNUM]. If necessary, the key
 size that impacts signature length can be derived from the swarm
 identifier which is the signing public key in live streaming.

Bakker, et al. Expires June 9, 2013 [Page 31]

Internet-Draft PPSP Peer Protocol December 2012

 The veracity of this information will come out when the receiver
 successfully verifies the first chunk from any peer.

7.8. Chunk Addressing Method

 A peer MUST include the chunk addressing method it uses, unless it
 uses the default, in which case it MAY include the method.

 +------+--------+
 | Code | Scheme |
 +------+--------+
 | 6 | a |
 +------+--------+

 Currently six values are defined for the chunk addressing scheme,
 0=32-bit bins, 1=64-bit byte ranges, and 2=32-bit chunk ranges, 3=64-
 bit bins, 4=64-bit chunk ranges.

 The veracity of this information will come out when the receiver
 parses the first message containing a chunk specification from any
 peer.

7.9. Live Discard Window

 A peer in a live swarm MUST include the discard window it uses. The
 unit of the discard window depends on the chunk addressing method
 used. For bins and chunk ranges it is a number of chunks, for byte
 ranges it is a number of bytes. Its data type is the same as for a
 bin, or one value in a range specification. In other words, a 32-bit
 or 64-bit integer in big endian format. This option MUST therefore
 appear after the Chunk Addressing option, if present in the list of
 protocol options.

 +------+-------------------+
 | Code | Scheme |
 +------+-------------------+
 | 7 | w (32 or 64-bits) |
 +------+-------------------+

 A peer that does not, under normal circumstances, discard chunks MUST
 set this option to the special value 0xFFFFFFFF (32-bit) or
 0xFFFFFFFFFFFFFFFF (64-bit). For example, peers that record a
 complete broadcast to offer it directly as a static asset after the
 broadcast ends (see Section 6.1.2).

 The veracity of this information does not impact a receiving peer
 more than when a sender peer just does not respond to REQUEST
 messages.

Bakker, et al. Expires June 9, 2013 [Page 32]

Internet-Draft PPSP Peer Protocol December 2012

7.10. Supported Messages

 Peers may support just a subset of the PPSPP messages. For example,
 peers running over TCP may not accept ACK messages, or peers used
 with a centralized tracking infrastructure may not accept PEX
 messages. For these reasons, peers who support only a proper subset
 of the PPSPP messages MUST signal which subset they support by means
 of this protocol option. The value of this option is a 256-bit
 bitmap where each bit represents a message type. The bitmap may be
 truncated to the last non-zero byte.

 +------+--------+----------------+
 | Code | Length | Message Bitmap |
 +------+--------+----------------+
 | 8 | n | m1,m2,... |
 +------+--------+----------------+

8. UDP Encapsulation

 Currently, PPSPP-over-UDP is the preferred deployment option.
 Effectively, UDP allows the use of IP with minimal overhead and it
 also allows userspace implementations. LEDBAT is used for congestion
 control [I-D.ietf-ledbat-congestion]. Using LEDBAT enables PPSPP to
 serve the content after playback (seeding) without disrupting the
 user who may have moved to different tasks that use its network
 connection. LEDBAT may be replaced with a different algorithm when
 the work of the IETF working group on RTP Media Congestion Avoidance
 Techniques (RMCAT) [RMCATCHART] matures.

8.1. Chunk Size

 In general, an UDP datagram containing PPSPP messages SHOULD fit
 inside a single IP packet, so its maximum size depends on the MTU of
 the network. The default is to use fixed-sized chunks of 1 kilobyte
 such that a UDP datagram with a DATA message can be transmitted as a
 single IP packet over an Ethernet network with 1500-byte frames.
 PPSPP implementations can use larger chunk sizes. For example, on
 CPU-limited hardware 8 kilobyte chunks MAY be used, transported as a
 single UDP datagram fragmented over multiple IP packets (with the
 increased chance of that UDP datagram getting lost). The chunk
 addressing schemes can all work with different chunk sizes, see

Section 4.

 The chunk size used for a particular swarm MUST be part of the
 swarm's metadata (which then consists of the swarm ID and the chunk
 size), unless it is the 1 KB default.

Bakker, et al. Expires June 9, 2013 [Page 33]

Internet-Draft PPSP Peer Protocol December 2012

8.2. Datagrams and Messages

 When using UDP, the abstract datagram described above corresponds
 directly to a UDP datagram. Most messages within a datagram have a
 fixed length, which generally depends on the type of the message.
 The first byte of a message denotes its type. The currently defined
 types are:

 o HANDSHAKE = 0x00

 o DATA = 0x01

 o ACK = 0x02

 o HAVE = 0x03

 o INTEGRITY = 0x04

 o PEX_RESv4 = 0x05

 o PEX_REQ = 0x06

 o SIGNED_INTEGRITY = 0x07

 o REQUEST = 0x08

 o CANCEL = 0x09

 o CHOKE = 0x0a

 o UNCHOKE = 0x0b

 o PEX_RESv6 = 0x0c

 o PEX_REScert = 0x0d

 Furthermore, integers are serialized in the network (big-endian) byte
 order. So consider the example of a HAVE message (Section 3.2) using
 bin chunk addressing. It has message type of 0x02 and a payload of a
 bin number, a four-byte integer (say, 1); hence, its on the wire
 representation for UDP can be written in hex as: "0200000001".

 All messages are idempotent or recognizable as duplicates. In
 particular, a peer MAY resend DATA, ACK, HAVE, INTEGRITY, PEX_*,
 SIGNED_INTEGRITY, REQUEST, CANCEL, CHOKE and UNCHOKE messages without
 problems when loss is suspected. When a peer resends a HANDSHAKE
 message it can be recognized as duplicate by the receiver and be
 dealt with.

Bakker, et al. Expires June 9, 2013 [Page 34]

Internet-Draft PPSP Peer Protocol December 2012

8.3. Channels

 As it is increasingly complex for peers to enable UDP communication
 between each other due to NATs and firewalls, PPSPP-over-UDP uses a
 multiplexing scheme, called "channels", to allow multiple swarms to
 use the same UDP port. Channels loosely correspond to TCP
 connections and each channel belongs to a single swarm. To support
 channels, each datagram starts with four bytes corresponding to the
 receiving channel number.

8.4. HANDSHAKE

 A channel is established with a handshake. To start a handshake, the
 initiating peer needs to know:

 1. the IP address of a peer

 2. peer's UDP port and

 3. the swarm ID of the content (see Section 5.1 and Section 6).

 4. the chunk size used, unless the 1 KB default

 To do the handshake the initiating peer sends a datagram that MUST
 start with an all 0-zeros channel number, followed by a HANDSHAKE
 message, whose payload is a locally unused channel number and a list
 of protocol options.

 On the wire the datagram will look something like this:

 (CHANNEL) 00000000 HANDSHAKE 00000011 v=01 si=123...1234 ca=0 end

 (to unknown channel, handshake from channel 0x11 speaking protocol
 version 0x01, initiating a transfer of a file with a root hash
 123...1234 using bins for chunk addressing)

 The receiving peer MAY respond in which case the returned datagram
 MUST consist of the channel number from the sender's HANDSHAKE
 message, a HANDSHAKE message, whose payload is a locally unused
 channel number and a list of protocol options, followed by any other
 messages it wants to send.

 Peer's response datagram on the wire:

 (CHANNEL) 00000011 HANDSHAKE 00000022 v=01 protocol options end

 (peer to the initiator: use channel number 0x22 for this transfer and
 proto version 0x01.)

Bakker, et al. Expires June 9, 2013 [Page 35]

Internet-Draft PPSP Peer Protocol December 2012

 At this point, the initiator knows that the peer really responds; for
 that purpose channel IDs MUST be random enough to prevent easy
 guessing. So, the third datagram of a handshake MAY already contain
 some heavy payload. To minimize the number of initialization
 roundtrips, the first two datagrams MAY also contain some minor
 payload, e.g. a couple of HAVE messages roughly indicating the
 current progress of a peer or a REQUEST (see Section 3.7). When
 receiving the third datagram, both peers have the proof they really
 talk to each other; the three-way handshake is complete.

 A peer MAY explicit close a channel by sending a HANDSHAKE message
 that MUST contain an all 0-zeros channel number and a list of
 protocol options. The list MUST be either empty or contain the
 maximum version number the sender supports, following the Min/max
 versioning scheme defined in [RFC6709], Section 4.1.

 On the wire:

 (CHANNEL) 00000022 HANDSHAKE 00000000 end

8.5. HAVE

 A HAVE message (type 0x03) consists of a chunk specification that
 states that the sending peer has those chunks and successfully
 checked their integrity. A bin consists of a single integer, and a
 chunk or byte range of two integers, of the width specified by the
 Chunk Addressing protocol options, encoded big endian.

 A HAVE message for bin 3 on the wire:

 HAVE 00000003

 (received and checked first four kilobytes of a file/stream)

8.6. DATA

 A DATA message (type 0x01) consists of a chunk specification, a
 timestamp and the actual chunk. In case a datagram contains one DATA
 message, a sender MUST always put the DATA message in the tail of the
 datagram. A datagram MAY contain multiple DATA messages unless one
 of the chunks is the last chunk and smaller than the chunk size. As
 the LEDBAT congestion control is used, a sender MUST include a
 timestamp, in particular, a 64-bit integer representing the current
 system time with microsecond accuracy. The timestamp MUST be
 included between chunk specification and the actual chunk.

 A DATA message for bin 0, with timestamp 12345678, and some data on
 the wire:

https://datatracker.ietf.org/doc/html/rfc6709#section-4.1

Bakker, et al. Expires June 9, 2013 [Page 36]

Internet-Draft PPSP Peer Protocol December 2012

 DATA 00000000 12345678 48656c6c6f20776f726c6421

 (This message accommodates an entire file: "Hello world!")

8.7. ACK

 An ACK message (type 0x02) acknowledges data that was received from
 its addressee; to comply with the LEDBAT delay-based congestion
 control an ACK message consists of a chunk specification and a
 timestamp representing an one-way delay sample. The one-way delay
 sample is a 64-bit integer with microsecond accuracy, and is computed
 from the timestamp received from the previous DATA message containing
 the chunk being acknowledged following the LEDBAT specification.

 An ACK message for bin 2 with one-way delay 12345678 on the wire:

 ACK 00000002 12345678

8.8. INTEGRITY

 An INTEGRITY message (type 0x04) consists of a chunk specification
 and the cryptographic hash for the specified chunk or node. The type
 and format of the hash depends on the protocol options.

 An INTEGRITY message for bin 0 with a SHA1 hash on the wire:

 INTEGRITY 00000000 1234123412341234123412341234123412341234

8.9. SIGNED_INTEGRITY

 A SIGNED_INTEGRITY message (type 0x07) consists of a chunk
 specification and a digital signature encoded as in DNSSEC without
 the BASE-64 encoding [RFC4034]. The signature algorithm is defined
 by the Live Signature Algorithm protocol option, see Section 7.7.

8.10. REQUEST

 A REQUEST message (type 0x08) consists of a chunk specification for
 the chunks the requester wants to download.

8.11. CANCEL

 A CANCEL message (type 0x09) consists of a chunk specification for
 the chunks the requester no longer is interested in.

https://datatracker.ietf.org/doc/html/rfc4034

Bakker, et al. Expires June 9, 2013 [Page 37]

Internet-Draft PPSP Peer Protocol December 2012

8.12. CHOKE and UNCHOKE

 Both CHOKE and UNCHOKE messages (types 0x0a and 0x0b, respectively)
 carry no payload.

8.13. PEX_REQ, PEX_RESv4, PEX_RESv6 and PEX_REScert

 A PEX_REQ (0x06) message has no payload. A PEX_RES (0x05) message
 consists of an IPv4 address in big endian format followed by a UDP
 port number in big endian format. A PEX_RESv6 (0x0c) message
 contains a 128-bit IPv6 address instead of an IPv4 one. If sender of
 the PEX_REQ message does not have a private or link-local address,
 then the PEX_RES* messages MUST NOT contain such addresses
 [RFC1918][RFC4291].

 A PEX_REScert (0x0d) message consists of a 16-bit integer in big
 endian specifying the size of the membership certificate that
 follows, see Section 12.2.1. This membership certificate states that
 peer P at time T is a member of swarm S and is a X.509v3 certificate
 [RFC2459] that is encoded using the ASN.1 distinguished encoding
 rules (DER) [CCITT.X208.1988]. The certificate MUST contain a
 "Subject Alternative Name" extension, marked as critical, of type
 uniformResourceIdentifier.

 The URL the name extension contains MUST follow the generic syntax
 for URLs [RFC3986], where its scheme component is "ppsp", the host in
 the authority component is the DNS name or IP address of peer P, the
 port in the authority component is the port of peer P, and the path
 contains the swarm identifier for swarm S, in hexadecimal form. In
 particular, the preferred form of the swarm identifier is xxyyzz...,
 where the 'x's, 'y's and 'z's are 2 hexadecimal digits of the 8-bit
 pieces of the identifier. The validity time of the certificate is
 set with notBefore UTCTime set to T and notAfter UTCTime set to T
 plus some expiry time defined by the issuer. An example URL:

 ppsp://192.168.0.1:6778/e5a12c7ad2d8fab33c699d1e198d66f79fa610c3

8.14. KEEPALIVE

 Keepalives do not have a message type on UDP. They are just simple
 datagrams consisting of a 4-byte channel number only.

 On the wire:

 (CHANNEL) 00000022

 A guideline for declaring a peer dead consist of a 3 minute delay
 since that last packet has been received from that peer, and at least

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc3986

Bakker, et al. Expires June 9, 2013 [Page 38]

Internet-Draft PPSP Peer Protocol December 2012

 3 datagrams were sent to that peer during the same period.

8.15. Flow and Congestion Control

 Explicit flow control is not necessary in PPSPP-over-UDP. In the
 case of video-on-demand the receiver will request data explicitly
 from peers and is therefore in control of how much data is coming
 towards it. In the case of live streaming, where a push-model may be
 used, the amount of data incoming is limited to the bitrate, which
 the receiver must be able to process otherwise it cannot play the
 stream. Should, for any reason, the receiver get saturated with data
 that situation is perfectly detected by the congestion control.
 PPSPP-over-UDP can support different congestion control algorithms.
 At present, it uses the LEDBAT congestion control algorithm
 [I-D.ietf-ledbat-congestion].

9. Extensibility

9.1. Chunk Picking Algorithms

 Chunk (or piece) picking entirely depends on the receiving peer. The
 sender peer is made aware of preferred chunks by the means of REQUEST
 messages. In some (live) scenarios it may be beneficial to allow the
 sender to ignore those hints and send unrequested data.

 The chunk picking algorithm is external to the PPSPP protocol and
 will generally be a pluggable policy that uses the mechanisms
 provided by PPSPP. The algorithm will handle the choices made by the
 user consuming the content, such as seeking, switching audio tracks
 or subtitles. Example policies for P2P streaming can be found in
 [BITOS], and [EPLIVEPERF].

9.2. Reciprocity Algorithms

 The role of reciprocity algorithms in peer-to-peer systems is to
 promote client contribution and prevent freeriding. A peer is said
 to be freeriding if it only downloads content but never uploads to
 others. Examples of reciprocity algorithms are tit-for-tat as used
 in BitTorrent [TIT4TAT] and Give-to-Get [GIVE2GET]. In PPSPP,
 reciprocity enforcement is the sole responsibility of the sender
 peer.

10. Acknowledgements

 Arno Bakker, Riccardo Petrocco and Victor Grishchenko are partially
 supported by the P2P-Next project (http://www.p2p-next.org/), a

http://www.p2p-next.org/

Bakker, et al. Expires June 9, 2013 [Page 39]

Internet-Draft PPSP Peer Protocol December 2012

 research project supported by the European Community under its 7th
 Framework Programme (grant agreement no. 216217). The views and
 conclusions contained herein are those of the authors and should not
 be interpreted as necessarily representing the official policies or
 endorsements, either expressed or implied, of the P2P-Next project or
 the European Commission.

 The PPSPP protocol was designed by Victor Grishchenko at Technische
 Universiteit Delft. The authors would like to thank the following
 people for their contributions to this draft: the chairs and members
 of the IETF PPSP working group, and Mihai Capota, Raul Jimenez,
 Flutra Osmani, Johan Pouwelse, and Raynor Vliegendhart.

11. IANA Considerations

 To be determined.

12. Security Considerations

 As any other network protocol, the PPSPP faces a common set of
 security challenges. An implementation must consider the possibility
 of buffer overruns, DoS attacks and manipulation (i.e. reflection
 attacks). Any guarantee of privacy seems unlikely, as the user is
 exposing its IP address to the peers. A probable exception is the
 case of the user being hidden behind a public NAT or proxy. This
 section discusses the protocol's security considerations in detail.

12.1. Security of the Handshake Procedure

 Borrowing from the analysis in [RFC5971], the PPSP peer protocol may
 be attacked with 3 types of denial-of-service attacks:

 1. DOS amplification attack: attackers try to use a PPSPP peer to
 generate more traffic to a victim.

 2. DOS flood attack: attackers try to deny service to other peers by
 allocating lots of state at a PPSPP peer.

 3. Disrupt service to an individual peer: attackers send bogus e.g.
 REQUEST and HAVE messages appearing to come from victim peer A to
 the peers B1..Bn serving that peer. This causes A to receive
 chunks it did not request or to not receive the chunks it
 requested.

 The basic scheme to protect against these attacks is the use of a
 secure handshake procedure. In the UDP encapsulation the handshake

https://datatracker.ietf.org/doc/html/rfc5971

Bakker, et al. Expires June 9, 2013 [Page 40]

Internet-Draft PPSP Peer Protocol December 2012

 procedure is secured by the use of randomly chosen channel IDs as
 follows. The channel IDs must be generated following the
 requirements in [RFC4960](Sec. 5.1.3).

 When UDP is used, all datagrams carrying PPSPP messages are prefixed
 with a 4-byte channel ID. These channel IDs are random numbers,
 established during the handshake phase as follows. Peer A initiates
 an exchange with peer B by sending a datagram containing a HANDSHAKE
 message prefixed with the channel ID consisting of all 0s. Peer A's
 HANDSHAKE contains a randomly chosen channel ID, chanA:

 A->B: chan0 + HANDSHAKE(chanA) + ...

 When peer B receives this datagram, it creates some state for peer A,
 that at least contains the channel ID chanA. Next, peer B sends a
 response to A, consisting of a datagram containing a HANDSHAKE
 message prefixed with the chanA channel ID. Peer B's HANDSHAKE
 contains a randomly chosen channel ID, chanB.

 B->A: chanA + HANDSHAKE(chanB) + ...

 Peer A now knows that peer B really responds, as it echoed chanA. So
 the next datagram that A sends may already contain heavy payload,
 i.e., a chunk. This next datagram to B will be prefixed with the
 chanB channel ID. When B receives this datagram, both peers have the
 proof they are really talking to each other, the three-way handshake
 is complete. In other words, the randomly chosen channel IDs act as
 tags (cf. [RFC4960](Sec. 5.1)).

 A->B: chanB + HAVE + DATA + ...

12.1.1. Protection against attack 1

 In short, PPSPP does a so-called return routability check before
 heavy payload is sent. This means that attack 1 is fended off: PPSPP
 does not send back much more data than it received, unless it knows
 it is talking to a live peer. Attackers sending a spoofed HANDSHAKE
 to B pretending to be A now need to intercept the message from B to A
 to get B to send heavy payload, and ensure that that heavy payload
 goes to the victim, something assumed too hard to be a practical
 attack.

 Note the rule is that no heavy payload may be sent until the third
 datagram. This has implications for PPSPP implementations that use
 chunk addressing schemes that are verbose. If a PPSPP implementation
 uses large bitmaps to convey chunk availability these may not be sent
 by peer B in the second datagram.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

Bakker, et al. Expires June 9, 2013 [Page 41]

Internet-Draft PPSP Peer Protocol December 2012

12.1.2. Protection against attack 2

 On receiving the first datagram peer B will record some state about
 peer A. At present this state consists of the chanA channel ID, and
 the results of processing the other messages in the first datagram.
 In particular, if A included some HAVE messages, B may add a chunk
 availability map to A's state. In addition, B may request some
 chunks from A in the second datagram, and B will maintain state about
 these outgoing requests.

 So presently, PPSPP is somewhat vulnerable to attack 2. An attacker
 could send many datagrams with HANDSHAKEs and HAVEs and thus allocate
 state at the PPSPP peer. Therefore peer A MUST respond immediately
 to the second datagram, if it is still interested in peer B.

 The reason for using this slightly vulnerable three-way handshake
 instead of the safer handshake procedure of SCTP [RFC4960](Sec. 5.1)
 is quicker response time for the user. In the SCTP procedure, peer A
 and B cannot request chunks until datagrams 3 and 4 respectively, as
 opposed to 2 and 1 in the proposed procedure. This means that the
 user has to wait shorter in PPSPP between starting the video stream
 and seeing the first images.

12.1.3. Protection against attack 3

 In general, channel IDs serve to authenticate a peer. Hence, to
 attack, a malicious peer T would need to be able to eavesdrop on
 conversations between victim A and a benign peer B to obtain the
 channel ID B assigned to A, chanB. Furthermore, attacker T would
 need to be able to spoof e.g. REQUEST and HAVE messages from A to
 cause B to send heavy DATA messages to A, or prevent B from sending
 them, respectively.

 The capability to eavesdrop is not common, so the protection afforded
 by channel IDs will be sufficient in most cases. If not, point-to-
 point encryption of traffic should be used, see below.

12.2. Secure Peer Address Exchange

 As described in Section 3.10, a peer A can send a Peer-Exchange
 message PEX_RES to a peer B, which contains the IP address and port
 of other peers that are supposedly also in the current swarm. The
 strength of this mechanism is that it allows decentralized tracking:
 after an initial bootstrap no central tracker is needed anymore. The
 vulnerability of this mechanism (and DHTs) is that malicious peers
 can use it for an Amplification attack.

 In particular, a malicious peer T could send a PEX_RES to well-

https://datatracker.ietf.org/doc/html/rfc4960

Bakker, et al. Expires June 9, 2013 [Page 42]

Internet-Draft PPSP Peer Protocol December 2012

 behaved peer A containing a list of address B1,B2,...,BN and on
 receipt, peer A could send a HANDSHAKE to all these peers. So in the
 worst case, a single datagram results in N datagrams. The actual
 damage depends on A's behaviour. E.g. when A already has sufficient
 connections it may not connect to the offered ones at all, but if it
 is a fresh peer it may connect to all directly.

 In addition, PEX can be used in Eclipse attacks [ECLIPSE] where
 malicious peers try to isolate a particular peer such that it only
 interacts with malicious peers. Let us distinguish two specific
 attacks:

 E1. Malicious peers try to eclipse the single injector in live
 streaming.

 E2. Malicious peers try to eclipse a specific consumer peer.

 Attack E1 has the most impact on the system as it would disrupt all
 peers.

12.2.1. Protection against the Amplification Attack

 If peer addresses are relatively stable, strong protection against
 the attack can be provided by using public key cryptography and
 certification. In particular, a PEX_RES message will carry swarm-
 membership certificates rather than IP address and port. A
 membership certificate for peer B states that peer B at address
 (ipB,portB) is part of swarm S at time T and is cryptographically
 signed. The receiver A can check the cert for a valid signature, the
 right swarm and liveliness and only then consider contacting B. These
 swarm-membership certificates correspond to signed node descriptors
 in secure decentralized peer sampling services [SPS].

 Several designs are possible for the security environment for these
 membership certificates. That is, there are different designs
 possible for who signs the membership certificates and how public
 keys are distributed. As an example, we describe a design where the
 PPSP tracker acts as certification authority.

12.2.2. Example: Tracker as Certification Authority

 A peer A wanting to join swarm S sends a certificate request message
 to a tracker X for that swarm. Upon receipt, the tracker creates a
 membership certificate from the request with swarm ID S, a timestamp
 T and the external IP and port it received the message from, signed
 with the tracker's private key. This certificate is returned to A.

 Peer A then includes this certificate when it sends a PEX_RES to peer

Bakker, et al. Expires June 9, 2013 [Page 43]

Internet-Draft PPSP Peer Protocol December 2012

 B. Receiver B verifies it against the tracker public key. This
 tracker public key should be part of the swarm's metadata, which B
 received from a trusted source. Subsequently, peer B can send the
 member certificate of A to other peers in PEX_RES messages.

 Peer A can send the certification request when it first contacts the
 tracker, or at a later time. Furthermore, the responses the tracker
 sends could contain membership certificates instead of plain
 addresses, such that they can be gossiped securely as well.

 We assume the tracker is protected against attacks and does a return
 routability check. The latter ensures that malicious peers cannot
 obtain a certificate for a random host, just for hosts where they can
 eavesdrop on incoming traffic.

 The load generated on the tracker depends on churn and the lifetime
 of a certificate. Certificates can be fairly long lived, given that
 the main goal of the membership certificates is to prevent that
 malicious peer T can cause good peer A to contact *random* hosts.
 The freshness of the timestamp just adds extra protection in addition
 to achieving that goal. It protects against malicious hosts causing
 a good peer A to contact hosts that previously participated in the
 swarm.

 The membership certificate mechanism itself can be used for a kind of
 amplification attack against good peers. Malicious peer T can cause
 peer A to spend some CPU to verify the signatures on the membership
 certificates that T sends. To counter this, A SHOULD check a few of
 the certificates sent and discard the rest if they are defective.

 The same membership certificates described above can be registered in
 a Distributed Hash Table that has been secured against the well-known
 DHT specific attacks [SECDHTS].

 Note that this scheme does not work for peers behind a symmetric
 Network Address Translator, but neither does normal tracker
 registration.

12.2.3. Protection Against Eclipse Attacks

 Before we can discuss Eclipse attacks we first need to establish the
 security properties of the central tracker. A tracker is vulnerable
 to Amplification attacks too. A malicious peer T could register a
 victim B with the tracker, and many peers joining the swarm will
 contact B. Trackers can also be used in Eclipse attacks. If many
 malicious peers register themselves at the tracker, the percentage of
 bad peers in the returned address list may become high. Leaving the
 protection of the tracker to the PPSP tracker protocol specification,

Bakker, et al. Expires June 9, 2013 [Page 44]

Internet-Draft PPSP Peer Protocol December 2012

 we assume for the following discussion that it returns a true random
 sample of the actual swarm membership (achieved via Sybil attack
 protection). This means that if 50% of the peers is bad, you'll
 still get 50% good addresses from the tracker.

 Attack E1 on PEX can be fended off by letting live injectors disable
 PEX. Or at least, let live injectors ensure that part of their
 connections are to peers whose addresses came from the trusted
 tracker.

 The same measures defend against attack E2 on PEX. They can also be
 employed dynamically. When the current set of peers B that peer A is
 connected to doesn't provide good quality of service, A can contact
 the tracker to find new candidates.

12.3. Support for Closed Swarms (PPSP.SEC.REQ-1)

 The Closed Swarms [CLOSED] and Enhanced Closed Swarms [ECS]
 mechanisms provide swarm-level access control. The basic idea is
 that a peer cannot download from another peer unless it shows a
 Proof-of-Access. Enhanced Closed Swarms improve on the original
 Closed Swarms by adding on-the-wire encryption against man-in-the-
 middle attacks and more flexible access control rules.

 The exact mapping of ECS to PPSPP is defined in
 [I-D.gabrijelcic-ppsp-ecs].

12.4. Confidentiality of Streamed Content (PPSP.SEC.REQ-2+3)

 No extra mechanism is needed to support confidentiality in PPSPP. A
 content publisher wishing confidentiality should just distribute
 content in cyphertext / DRM-ed format. In that case it is assumed a
 higher layer handles key management out-of-band. Alternatively, pure
 point-to-point encryption of content and traffic can be provided by
 the proposed Closed Swarms access control mechanism, or by DTLS
 [RFC6347] or IPsec [RFC4301].

12.5. Limit Potential Damage and Resource Exhaustion by Bad or Broken
 Peers (PPSP.SEC.REQ-4+6)

 In this section an analysis is given of the potential damage a
 malicious peer can do with each message in the protocol, and how it
 is prevented by the protocol (implementation).

12.5.1. HANDSHAKE

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4301

Bakker, et al. Expires June 9, 2013 [Page 45]

Internet-Draft PPSP Peer Protocol December 2012

 o Secured against DoS amplification attacks as described in
Section 12.1.

 o Threat HS.1: An Eclipse attack where peers T1..TN fill all
 connection slots of A by initiating the connection to A.

 Solution: Peer A must not let other peers fill all its available
 connection slots, i.e., A must initiate connections itself too, to
 prevent isolation.

12.5.2. HAVE

 o Threat HAVE.1: Malicious peer T can claim to have content which it
 hasn't. Subsequently T won't respond to requests.

 Solution: peer A will consider T to be a slow peer and not ask it
 again.

 o Threat HAVE.2: Malicious peer T can claim not to have content.
 Hence it won't contribute.

 Solution: Peer and chunk selection algorithms external to the
 protocol will implement fairness and provide sharing incentives.

12.5.3. DATA

 o Threat DATA.1: peer T sending bogus chunks.

 Solution: The content integrity protection schemes defend against
 this.

 o Threat DATA.2: peer T sends peer A unrequested chunks.

 To protect against this threat we need network-level DoS
 prevention.

12.5.4. ACK

 o Threat ACK.1: peer T acknowledges wrong chunks.

 Solution: peer A will detect inconsistencies with the data it sent
 to T.

 o Threat ACK.2: peer T modifies timestamp in ACK to peer A used for
 time-based congestion control.

 Solution: In theory, by decreasing the timestamp peer T could fake
 there is no congestion when in fact there is, causing A to send

Bakker, et al. Expires June 9, 2013 [Page 46]

Internet-Draft PPSP Peer Protocol December 2012

 more data than it should. [I-D.ietf-ledbat-congestion] does not
 list this as a security consideration. Possibly this attack can
 be detected by the large resulting asymmetry between round-trip
 time and measured one-way delay.

12.5.5. INTEGRITY and SIGNED_INTEGRITY

 o Threat INTEGRITY.1: An amplification attack where peer T sends
 bogus INTEGRITY or SIGNED_INTEGRITY messages, causing peer A to
 checks hashes or signatures, thus spending CPU unnecessarily.

 Solution: If the hashes/signatures don't check out A will stop
 asking T because of the atomic datagram principle and the content
 integrity protection. Subsequent unsolicited traffic from T will
 be ignored.

12.5.6. REQUEST

 o Threat REQUEST.1: peer T could request lots from A, leaving A
 without resources for others.

 Solution: A limit is imposed on the upload capacity a single peer
 can consume, for example, by using an upload bandwidth scheduler
 that takes into account the need of multiple peers. A natural
 upper limit of this upload quotum is the bitrate of the content,
 taking into account that this may be variable.

12.5.7. CANCEL

 o Threat CANCEL.1: peer T sends CANCEL messages for content it never
 requested to peer A.

 Solution: peer A will detect the inconsistency of the messages and
 ignore them. Note that CANCEL messages may be received
 unexpectedly when a transport is used where REQUEST messages may
 be lost or reordered with respect to the subsequent CANCELs.

12.5.8. CHOKE

 o Threat CHOKE.1: peer T sends REQUEST messages after peer A sent B
 a CHOKE message.

 Solution: peer A will just discard the unwanted REQUESTs and
 resend the CHOKE, assuming it got lost.

Bakker, et al. Expires June 9, 2013 [Page 47]

Internet-Draft PPSP Peer Protocol December 2012

12.5.9. UNCHOKE

 o Threat UNCHOKE.1: peer T sends an UNCHOKE message to peer A
 without having sent a CHOKE message before.

 Solution: peer A can easily detect this violation of protocol
 state, and ignore it. Note this can also happen due to loss of a
 CHOKE message sent by a benign peer.

 o Threat UNCHOKE.2: peer T sends an UNCHOKE message to peer A, but
 subsequently does not respond to its REQUESTs.

 Solution: peer A will consider T to be a slow peer and not ask it
 again.

12.5.10. PEX_RES

 o Secured against amplification and Eclipse attacks as described in
Section 12.2.

12.5.11. Unsolicited Messages in General

 o Threat: peer T could send a spoofed PEX_REQ or REQUEST from peer B
 to peer A, causing A to send a PEX_RES/DATA to B.

 Solution: the message from peer T won't be accepted unless T does
 a handshake first, in which case the reply goes to T, not victim
 B.

12.6. Exclude Bad or Broken Peers (PPSP.SEC.REQ-5)

 A receiving peer can detect malicious or faulty senders as just
 described, which it can then subsequently ignore. However, excluding
 such a bad peer from the system completely is complex. Random
 monitoring by trusted peers that would blacklist bad peers as
 described in [DETMAL] is one option. This mechanism does require
 extra capacity to run such trusted peers, which must be
 indistinguishable from regular peers, and requires a solution for the
 timely distribution of this blacklist to peers in a scalable manner.

13. References

13.1. Normative References

 [CCITT.X208.1988]
 International International Telephone and Telegraph
 Consultative Committee, "Specification of Abstract Syntax

Bakker, et al. Expires June 9, 2013 [Page 48]

Internet-Draft PPSP Peer Protocol December 2012

 Notation One (ASN.1)", CCITT Recommendation X.208,
 November 1988.

 [FIPS180-3]
 Information Technology Laboratory, National Institute of
 Standards and Technology, "Federal Information Processing
 Standards: Secure Hash Standard (SHS)", Publication 180-3,
 Oct 2008.

 [I-D.ietf-ledbat-congestion]
 Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)",

draft-ietf-ledbat-congestion-10 (work in progress),
 September 2012.

 [IANADNSSECALGNUM]
 IANA, "Domain Name System Security (DNSSEC) Algorithm
 Numbers",
 <http://www.iana.org/assignments/dns-sec-alg-numbers>.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2459] Housley, R., Ford, W., Polk, T., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, January 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC6709] Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 September 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-ledbat-congestion-10
http://www.iana.org/assignments/dns-sec-alg-numbers
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6709

Bakker, et al. Expires June 9, 2013 [Page 49]

Internet-Draft PPSP Peer Protocol December 2012

13.2. Informative References

 [ABMRKL] Bakker, A., "Merkle hash torrent extension", BitTorrent
 Enhancement Proposal 30, Mar 2009,
 <http://bittorrent.org/beps/bep_0030.html>.

 [BINMAP] Grishchenko, V. and J. Pouwelse, "Binmaps: hybridizing
 bitmaps and binary trees", Technical Report PDS-2011-005,
 Parallel and Distributed Systems Group, Fac. of
 Electrical Engineering, Mathematics, and Computer
 Science, Delft University of Technology, The Netherlands,
 Apr 2009.

 [BITOS] Vlavianos, A., Iliofotou, M., Mathieu, F., and M.
 Faloutsos, "BiToS: Enhancing BitTorrent for Supporting
 Streaming Applications", IEEE INFOCOM Global Internet
 Symposium Barcelona, Spain, Apr 2006.

 [BITTORRENT]
 Cohen, B., "The BitTorrent Protocol Specification",
 BitTorrent Enhancement Proposal 3, Feb 2008,
 <http://bittorrent.org/beps/bep_0003.html>.

 [CLOSED] Borch, N., Mitchell, K., Arntzen, I., and D. Gabrijelcic,
 "Access Control to BitTorrent Swarms Using Closed Swarms",
 ACM workshop on Advanced Video Streaming Techniques for
 Peer-to-Peer Networks and Social Networking (AVSTP2P '10),
 Florence, Italy, Oct 2010,
 <http://doi.acm.org/10.1145/1877891.1877898>.

 [DETMAL] Shetty, S., Galdames, P., Tavanapong, W., and Ying. Cai,
 "Detecting Malicious Peers in Overlay Multicast
 Streaming", IEEE Conference on Local Computer
 Networks (LCN'06). Tampa, FL, USA, Nov 2006.

 [ECLIPSE] Sit, E. and R. Morris, "Security Considerations for Peer-
 to-Peer Distributed Hash Tables", IPTPS '01: Revised
 Papers from the First International Workshop on Peer-to-
 Peer Systems pp. 261-269, Springer-Verlag, 2002.

 [ECS] Jovanovikj, V., Gabrijelcic, D., and T. Klobucar, "Access
 Control in BitTorrent P2P Networks Using the Enhanced
 Closed Swarms Protocol", International Conference on
 Emerging Security Information, Systems and
 Technologies (SECURWARE 2011), pp. 97-102, Nice, France,
 Aug 2011.

 [EPLIVEPERF]

http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0003.html
http://doi.acm.org/10.1145/1877891.1877898

Bakker, et al. Expires June 9, 2013 [Page 50]

Internet-Draft PPSP Peer Protocol December 2012

 Bonald, T., Massoulie, L., Mathieu, F., Perino, D., and A.
 Twigg, "Epidemic Live Streaming: Optimal Performance
 Trade-offs", Proceedings of the 2008 ACM SIGMETRICS
 International Conference on Measurement and Modeling of
 Computer Systems Annapolis, MD, USA, Jun 2008.

 [GIVE2GET]
 Mol, J., Pouwelse, J., Meulpolder, M., Epema, D., and H.
 Sips, "Give-to-Get: Free-riding Resilient Video-on-demand
 in P2P Systems", Proceedings Multimedia Computing and
 Networking conference (Proceedings of SPIE Vol. 6818) San
 Jose, California, USA, Jan 2008.

 [HAC01] Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", CRC Press, (Fifth Printing,
 August 2001), Oct 1996.

 [I-D.gabrijelcic-ppsp-ecs]
 Gabrijelcic, D., "Enhanced Closed Swarm protocol",

draft-ppsp-gabrijelcic-ecs (work in progress),
 November 2012.

 [I-D.ietf-ppsp-reqs]
 Williams, C., Xiao, L., Zong, N., Pascual, V., and Y.
 Zhang, "P2P Streaming Protocol (PPSP) Requirements",

draft-ietf-ppsp-reqs-05 (work in progress), October 2011.

 [JIM11] Jimenez, R., Osmani, F., and B. Knutsson, "Sub-Second
 Lookups on a Large-Scale Kademlia-Based Overlay", IEEE
 International Conference on Peer-to-Peer
 Computing (P2P'11), Kyoto, Japan, Aug 2011.

 [MERKLE] Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Ph.D. thesis Dept. of Electrical Engineering,
 Stanford University, CA, USA, pp 40-45, 1979.

 [POLLIVE] Dhungel, P., Hei, Xiaojun., Ross, K., and N. Saxena,
 "Pollution in P2P Live Video Streaming", International
 Journal of Computer Networks & Communications
 (IJCNC) Vol.1, No.2, Jul 2009.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",

https://datatracker.ietf.org/doc/html/draft-ppsp-gabrijelcic-ecs
https://datatracker.ietf.org/doc/html/draft-ietf-ppsp-reqs-05
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc4301

Bakker, et al. Expires June 9, 2013 [Page 51]

Internet-Draft PPSP Peer Protocol December 2012

RFC 4960, September 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, October 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RMCATCHART]
 Eggert, L. and others, "RTP Media Congestion Avoidance
 Techniques (rmcat) Description of Working Group", 2012,
 <http://datatracker.ietf.org/wg/rmcat/charter/>.

 [SECDHTS] Urdaneta, G., Pierre, G., and M. van Steen, "A Survey of
 DHT Security Techniques", ACM Computing Surveys vol.
 43(2), Jun 2011.

 [SIGMCAST]
 Wong, C. and S. Lam, "Digital Signatures for Flows and
 Multicasts", IEEE/ACM Transactions on Networking 7(4), pp.
 502-513, 1999.

 [SNP] Ford, B., Srisuresh, P., and D. Kegel, "Peer-to-Peer
 Communication Across Network Address Translators",
 Feb 2005, <http://www.brynosaurus.com/pub/net/p2pnat/>.

 [SPS] Jesi, G., Montresor, A., and M. van Steen, "Secure Peer
 Sampling", Computer Networks vol. 54(12), pp. 2086-2098,
 Elsevier, Aug 2010.

 [SWIFTIMPL]
 Grishchenko, V., Paananen, J., Pronchenkov, A., Bakker,
 A., and R. Petrocco, "Swift reference implementation",
 2012, <https://github.com/triblerteam/libswift/>.

 [TIT4TAT] Cohen, B., "Incentives Build Robustness in BitTorrent",
 1st Workshop on Economics of Peer-to-Peer
 Systems, Berkeley, CA, USA, Jun 2003.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5971
https://datatracker.ietf.org/doc/html/rfc6347
http://datatracker.ietf.org/wg/rmcat/charter/
http://www.brynosaurus.com/pub/net/p2pnat/
https://github.com/triblerteam/libswift/

Bakker, et al. Expires June 9, 2013 [Page 52]

Internet-Draft PPSP Peer Protocol December 2012

Appendix A. Revision History

 -00 2011-12-19 Initial version.

 -01 2012-01-30 Minor text revision:

 * Changed heading to "A. Bakker"

 * Changed title to *Peer* Protocol, and abbreviation PPSPP.

 * Replaced swift with PPSPP.

 * Removed Sec. 6.4. "HTTP (as PPSP)".

 * Renamed Sec. 8.4. to "Chunk Picking Algorithms".

 * Resolved Ticket #3: Removed sentence about random set of
 peers.

 * Resolved Ticket #6: Added clarification to "Chunk Picking
 Algorithms" section.

 * Resolved Ticket #11: Added Sec. 3.12 on Storage Independence

 * Resolved Ticket #14: Added clarification to "Automatic Size
 Detection" section.

 * Resolved Ticket #15: Operation section now states it shows
 example behaviour for a specific set of policies and schemes.

 * Resolved Ticket #30: Explained why multiple REQUESTs in one
 datagram.

 * Resolved Ticket #31: Renamed PEX_ADD message to PEX_RES.

 * Resolved Ticket #32: Renamed Sec 3.8. to "Keep Alive
 Signaling", and updated explanation.

 * Resolved Ticket #33: Explained NAT hole punching via only
 PPSPP messages.

 * Resolved Ticket #34: Added section about limited overhead of
 the Merkle hash tree scheme.

Bakker, et al. Expires June 9, 2013 [Page 53]

Internet-Draft PPSP Peer Protocol December 2012

 -02 2012-04-17 Major revision

 * Allow different chunk addressing and content integrity
 protection schemes (ticket #13):

 * Added chunk ID, chunk specification, chunk addressing scheme,
 etc. to terminology.

 * Created new Sections 4 and 5 discussing chunk addressing and
 content integrity protection schemes, respectively and moved
 relevant sections on bin numbering and Merkle hash trees
 there.

 * Renamed Section 4 to "Merkle Hash Trees and The Automatic
 Detection of Content Size".

 * Reformulated automatic size detection in terms of nodes, not
 bins.

 * Extended HANDSHAKE message to carry protocol options and
 created Section 8 on Protocol options. VERSION and
 MSGTYPE_RCVD messages replaced with protocol options.

 * Renamed HASH message to INTEGRITY.

 * Renamed HINT to REQUEST.

 * Added description of chunk addressing via (start,end) ranges.

 * Resolved Ticket #26: Extended "Security Considerations" with
 section on the handshake procedure.

 * Resolved Ticket #17: Defined recently as "in last 60 seconds"
 in PEX.

 * Resolved Ticket #20: Extended "Security Considerations" with
 design to make Peer Address Exchange more secure.

 * Resolved Ticket #38+39 / PPSP.SEC.REQ-2+3: Extended "Security
 Considerations" with a section on confidentiality of content.

 * Resolved Ticket #40+42 / PPSP.SEC.REQ-4+6: Extended "Security
 Considerations" with a per-message analysis of threats and
 how PPSPP is protected from them.

 * Progressed Ticket #41 / PPSP.SEC.REQ-5: Extended "Security
 Considerations" with a section on possible ways of excluding
 bad or broken peers from the system.

Bakker, et al. Expires June 9, 2013 [Page 54]

Internet-Draft PPSP Peer Protocol December 2012

 * Moved Rationale to Appendix.

 * Resolved Ticket #43: Updated Live Streaming section to
 include "Sign All" content authentication, and reference to
 [SIGMCAST] following discussion with Fabio Picconi.

 * Resolved Ticket #12: Added a CANCEL message to cancel
 REQUESTs for the same data that were sent to multiple peers
 at the same time in time-critical situations.

 -03 2012-10-22 Major revision

 * Updated Abstract and Introduction, removing download case.

 * Resolved Ticket #4: Added explicit CHOKE/UNCHOKE messages.

 * Removed directory lists unused in streaming.

 * Resolved Ticket #22, #23, #28: Failure behaviour, error codes
 and dealing with peer crashes.

 * Resolved Ticket #13: Chunk ranges are the default chunk
 addressing scheme that all peers MUST support.

 * Added a section on compatibility between chunk addressing
 schemes.

 * Expanded the explanation of Unified Merkle Trees as a method
 for content integrity protection for live streams.

 * Added a section on forgetting chunks in live streaming.

 * Added "End" option to protocol options and corrected bugs in
 UDP encapsulation, following Karl Knutsson's comments.

 * Added SHA-2 support for Merkle Hash functions.

 * Added content integrity protection methods for live streaming
 to the relevant protocol option.

 * Added a Live Signature Algorithm protocol option.

 * Resolved Ticket #24+27: The choice for UDP + LEDBAT as
 transport has now been reflected in the draft. TCP and RTP
 encapsulations have been removed.

 * Superfluous parts of Section 10 on extensibility have been
 removed.

Bakker, et al. Expires June 9, 2013 [Page 55]

Internet-Draft PPSP Peer Protocol December 2012

 * Removed appendix with Rationale.

 * Resolved Ticket #21+25: PPSPP currently uses LEDBAT and the
 DATA and ACK messages now contain the time fields it
 requires. Should other congestion control algorithms be
 supported in the future, a protocol option will be added.

 -04 2012-11-07 Minor revision

 * Corrected typos.

 * Added empty protocol option list when HANDSHAKE is used for
 explicitly closing a channel in the UDP encapsulation.

 * Corrected definition of a range chunk specification to be a
 single (start,end) pair. To send multiple disjunct ranges
 multiple messages should be used.

 * Clarified that in a range chunk specification the end is
 inclusive. I.e., [start,end] not [start,end)

 * Added PEX_REScert message to carry a membership certificate.
 Renamed PEX_RES to PEX_RESv4.

 * Added a guideline about private and link-local addresses in
 PEX_RES messages.

 * Defined the format of the public key that is used as swarm ID
 in live streaming.

 * Clarified that a HANDSHAKE message must be the first message
 in a datagram.

 * Clarified sending INTEGRITY messages ahead in a separate
 datagram if not all necessary hashes that still need to be
 sent and the chunk fit into a single datagram. Defined an
 order for the INTEGRITY messages.

 * Clarified rare case of sending multiple DATA messages in one
 datagram.

 * Clarified UDP datagrams carrying PPSPP should adhere to the
 network's MTU to avoid IP fragmentation.

 * Defined value for version protocol option.

 * Added small clarifications and corrected typos.

Bakker, et al. Expires June 9, 2013 [Page 56]

Internet-Draft PPSP Peer Protocol December 2012

 * Extended versioning scheme to Min/max versioning scheme
 defined in [RFC6709], Section 4.1, following Riccardo
 Bernardini's suggestion.

 * Processed comments on unclear phrasing from Riccardo
 Bernardini.

 * Added a guideline on when to declare a peer dead.

 * Made sure all essential references are listed as Normative
 references following RFC3967.

Authors' Addresses

 Arno Bakker
 Technische Universiteit Delft
 Mekelweg 4
 Delft, 2628CD
 The Netherlands

 Phone:
 Email: arno@cs.vu.nl

 Riccardo Petrocco
 Technische Universiteit Delft
 Mekelweg 4
 Delft, 2628CD
 The Netherlands

 Phone:
 Email: r.petrocco@gmail.com

 Victor Grishchenko
 Technische Universiteit Delft
 Mekelweg 4
 Delft, 2628CD
 The Netherlands

 Phone:
 Email: victor.grishchenko@gmail.com

https://datatracker.ietf.org/doc/html/rfc6709#section-4.1
https://datatracker.ietf.org/doc/html/rfc3967

Bakker, et al. Expires June 9, 2013 [Page 57]

