
PPSP Y. Gu
Internet-Draft Unaffiliated
Intended status: Informational N. Zong, Ed.
Expires: April 30, 2015 Huawei
 Y. Zhang
 Coolpad
 China Mobile
 F. Piccolo
 Cisco
 S. Duan
 CATR
 October 27, 2014

Survey of P2P Streaming Applications
draft-ietf-ppsp-survey-09

Abstract

 This document presents a survey of some of the most popular Peer-to-
 Peer (P2P) streaming applications on the Internet. The main
 selection criteria have been popularity and availability of
 information on operation details at writing time. In doing this,
 selected applications are not reviewed as a whole, but they are
 reviewed with main focus on the signaling and control protocol used
 to establish and maintain overlay connections among peers and to
 advertise and download streaming content.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Gu, et al. Expires April 30, 2015 [Page 1]

Internet-Draft Survey of P2P Streaming Applications October 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminologies and concepts 4

 3. Classification of P2P Streaming Applications Based on Overlay
 Topology . 5

4. Mesh-based P2P Streaming Applications 5
4.1. Octoshape . 6
4.2. PPLive . 7
4.3. Zattoo . 9
4.4. PPStream . 11
4.5. Tribler . 12
4.6. QQLive . 14

5. Tree-based P2P Streaming Systems 15
5.1. End System Multicast (ESM) 15

6. Hybrid P2P streaming applications 17
6.1. New Coolstreaming . 17

7. Security Considerations 18
8. IANA Considerations . 19
9. Author List . 19
10. Acknowledgments . 20
11. Informative References 20

 Authors' Addresses . 21

1. Introduction

 An ever-increasing number of multimedia streaming systems have been
 adopting Peer-to-Peer (P2P) paradigm to stream multimedia audio and
 video contents from a source to a large number of end users. This is
 the reference scenario of this document, which presents a survey of
 some of the most popular P2P streaming applications available on the
 nowadays Internet.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Gu, et al. Expires April 30, 2015 [Page 2]

Internet-Draft Survey of P2P Streaming Applications October 2014

 The presented survey does not aim at being exhaustive. Reviewed
 applications have indeed been selected mainly based on their
 popularity and on the information publicly available on P2P operation
 details at writing time. In addition, the provided descriptions may
 sometimes appear inhomogeneous from the detail level point of view,
 but this always depends on the amount of available information at
 writing time.

 In addition, the selected applications are not reviewed as a whole,
 but they are reviewed with main focus on signaling and control
 protocols used to construct and maintain the overlay connections
 among peers and to advertise and download multimedia content. More
 precisely, we assume throughout the document the high level system
 model reported in Figure 1.

 +---+
 | +--------------------------------+ |
 | | Tracker | |
 | | | |
 | | Information on multimedia | |
 | | content and peer set | |
 | +--------------------------------+ |
 | ^ | ^ | | | |
 | | | | | |
 | | | Tracker | | Tracker |
 | | | Protocol | | Protocol |
 | | | | | |
 | | | | | |
 | | | | | |
 | | V | V |
 | +-------------+ +------------+ |
 | | Peer 1 |<--------| Peer 2 | |
 | | |-------->| | |
 | +-------------+ +------------+ |
 | Peer Protocol |
 | |
 +---+

 Figure 1, High level architecture of P2P streaming systems assumed as
 reference model througout the document

 As Figure 1 shows, it is possible to identify in every P2P streaming
 system two main types of entity: peers and trackers. Peers represent
 end users, which join the system dynamically to send and receive
 streamed media content, whereas trackers represent well-known nodes,
 which are stably connected to the system and provide peers with
 metadata information about the streamed content and the set of active

Gu, et al. Expires April 30, 2015 [Page 3]

Internet-Draft Survey of P2P Streaming Applications October 2014

 peers. According to this model, it is possible to distinguish
 between two different control/signaling protocols:

 -the "tracker protocol" for the interaction between trackers and
 peer;

 -the "peer protocol" for the interaction between peers.

 Hence, whenever possible, we always try to identify tracker and peer
 protocols and we provide the corresponding details.

 This document is organized as follows. Section 2 introduces
 terminology and concepts used throughout the current survey. Since
 overlay topology built on connections among peers impacts some
 aspects of tracker and peer protocols, Section 3 classifies P2P
 streaming applications according to the overlay topology: mesh-based,
 tree-based and hybrid. Then, Section 4 presents some of the most
 popular mesh-based P2P streaming applications: Octoshape, PPLive,
 Zattoo, PPStream, Tribler, QQLive. Likewise, Section 5 presents End
 System Multicast as example of tree-based P2P streaming applications,
 whereas Section 6 presents New Coolstreaming as example of hybrid-
 topology P2P streaming application. Finally, Section 7 provides some
 security considerations.

2. Terminologies and concepts

 Reader is referred to RFC 6972 [RFC6972] for concepts such as chunk,
 live streaming, video-on-demand (VOD), peer, tracker, swarm, which
 will be extensively used throughout the document.

 In addition, reader can refer to this section for the following
 concepts.

 CHANNEL: A CHANNEL denotes a TV channel from which live streaming
 content is transmitted in a P2P streaming application.

 PEER PROTOCOL: PEER PROTOCOL denotes the control and signaling
 protocol for the interaction among peers.

 PULL: PULL denotes the transmission of multimedia content that is
 initiated by receiving peers.

 PUSH: PUSH denotes the transmission of multimedia content that is not
 initiated by receiving peers.

 TRACKER PROTOCOL: TRACKER PROTOCOL denotes the control and signaling
 protocol for the interaction among peers and trackers.

https://datatracker.ietf.org/doc/html/rfc6972
https://datatracker.ietf.org/doc/html/rfc6972

Gu, et al. Expires April 30, 2015 [Page 4]

Internet-Draft Survey of P2P Streaming Applications October 2014

3. Classification of P2P Streaming Applications Based on Overlay
 Topology

 Depending on the topology of overlay connections among peers, it is
 possible to distinguish among the following general types of P2P
 streaming applications:

 -mesh-based: peers are organized in a randomly connected overlay
 network, and multimedia content delivery is pull-based. This is
 the reason why these systems are also referred to as "data-
 driven". Due to their unstructured nature, mesh-based P2P
 streaming applications are very resilient with respect to peer
 churn and guarantee high network resource utilization. On the
 other side, the cost to maintain overlay topology may limit
 performance in terms of delay, and pull-based data delivery calls
 for large size buffers to store chunks;

 -tree-based: peers are organized to form a tree-shape overlay
 network rooted at the streaming source, and multimedia content
 delivery is push-based. Peers that forward data are called parent
 nodes, and peers that receive it are called children nodes. Due
 to their structured nature, tree-based P2P streaming applications
 guarantee both topology maintenance at very low cost and good
 delay performance. On the other side, they are not very resilient
 to peer churn, that may be very high in a P2P environment;

 -hybrid: this category includes all the P2P applications that
 cannot be classified as simply mesh-based or tree-based and
 present characteristics of both mesh-based and tree-based
 categories.

4. Mesh-based P2P Streaming Applications

 In mesh-based P2P streaming application peers self-organize in a
 randomly connected overlay graph where each peer interacts with a
 limited subset of other peers (neighbors) and explicitly requests
 chunks it needs (pull-based or data-driven delivery). This type of
 content delivery may be associated with high overhead, not only
 because peers formulate requests in order to download chunks they
 need, but also because in some applications peers exchange chunk
 availability information in form of buffer-maps (a sort of bit maps
 with a bit "1" in correspondence of chunks stored in the local
 buffer). On the one side, the main advantage of this kind of
 applications lies in that a peer does not rely on a single peer for
 retrieving multimedia content. Hence, these applications are very
 resilient to peer churn. On the other side, overlay connections are
 highly dynamic and not persistent (being driven by content
 availability), and this makes content distribution efficiency

Gu, et al. Expires April 30, 2015 [Page 5]

Internet-Draft Survey of P2P Streaming Applications October 2014

 unpredictable. In fact, different chunks may be retrieved via
 different network paths, and this may imply for end users playback
 quality degradation ranging from low bit rates to long start-up
 delays, to frequent playback freezes. Moreover, peers have to
 maintain large buffers to increase the probability of satisfying
 chunk requests received by neighbors.

4.1. Octoshape

 Octoshape [Octoshape] is a P2P plug-in that has been realized by the
 homonym Danish company and has become popular for being used by CNN
 [CNN] to broadcast live streaming content. Octoshape helps indeed
 CNN serve a peak of more than a million simultaneous viewers thanks
 not only to the P2P content distribution paradigm, but also to
 several innovative delivery technologies such as loss resilient
 transport, adaptive bit rate, adaptive path optimization and adaptive
 proximity delivery.

 Figure 2 depicts the architecture of the Octoshape system.

 +------------+ +--------+
 | Peer 1 |---| Peer 2 |
 +------------+ +--------+
 | \ / |
 | \ / |
 | \ |
 | / \ |
 | / \ |
 | / \ |
 +--------------+ +-------------+
 | Peer 4 |----| Peer 3 |
 +--------------+ +-------------+

 |
 |
 +---------------+
 | Content Server|
 +---------------+

 Figure 2, Architecture of Octoshape system

 As it can be seen from the picture, there are no trackers and
 consequently no tracker protocol is necessary. The content server
 plays indeed the role of tracker and transmits the information on
 peers that already joined the channel in form of metadata when
 streaming the live content.

Gu, et al. Expires April 30, 2015 [Page 6]

Internet-Draft Survey of P2P Streaming Applications October 2014

 As regards the peer protocol, each peer maintains a sort of Address
 Book with the information necessary to contact other peers who are
 watching the same channel.

 Regarding the data distribution strategy, in the Octoshape solution
 the original stream is split into a number K of smaller equal-sized
 data streams, but a number N > K of unique data streams are actually
 constructed, in such a way that a peer receiving any K of the N
 available data streams is able to play the original stream. For
 instance, if the original live stream is a 400 kbit/sec signal, for
 K=4 and N=12, 12 unique data streams are constructed, and a peer that
 downloads any 4 of the 12 data streams is able to play the live
 stream. In this way, each peer sends requests of data streams to
 some selected peers, and it receives positive/negative answers
 depending on availability of upload capacity at requested peers. In
 case of negative answers, a peer continues sending requests until it
 finds K peers willing to upload the minimum number of data streams
 needed to display the original live stream. This allows a flexible
 use of bandwidth at end users. In fact, since the original stream is
 split into smaller data streams, a peer that does not have enough
 upload capacity to transmit the original whole stream can transmit a
 number of smaller data streams that fits its actual upload capacity.

 In order to mitigate the impact of peer loss, the address book is
 also used at each peer to derive the so called Standby List, which
 Octoshape peers use to probe other peers and be sure that they are
 ready to take over if one of the current senders leaves or gets
 congested.

 Finally, in order to optimize bandwidth utilization, Octoshape
 leverages peers within a network to minimize external bandwidth usage
 and to select the most reliable and "closest" source to each viewer.
 It also chooses the best matching available codecs and players, and
 it scales bit rate up and down according to the available Internet
 connection.

4.2. PPLive

 PPLive [PPLive] was first developed in Huazhong University of Science
 and Technology in 2004, and it is one of the earliest and most
 popular P2P streaming software in China. To give an idea, PPLive
 website served 50 millions visitors during the Beijing 2008 Olympics
 opening ceremony, and the dedicated Olympics channel attracted 221
 millions of viewers in two weeks.

 Even though PPLive was renamed to PPTV in 2010, we continue using the
 old name PPLive throughout this document.

Gu, et al. Expires April 30, 2015 [Page 7]

Internet-Draft Survey of P2P Streaming Applications October 2014

 PPLive system includes the following main components:

 -video streaming server, that plays the role of source of video
 content and copes with content coding issues;

 -peer, also called node or client, that is PPLive entity
 downloading video content from other peers and uploading video
 content to other peers

 -channel server, that provides the list of available channels
 (live TV or VoD content) to a PPLive peer, as soon as the peer
 joins the system;

 -tracker server, that provides a PPLive peer with the list of
 online peers that are watching the same channel as the one the
 joining peer is interested in.

 Figure 3 illustrates the high level diagram of PPLive system.

 +------------+ +------------+
 | Peer 2 |----| Peer 3 |
 +------------+ +------------+
 | | | |
 | | | |
 | +--------------+ |
 | | Peer 1 | |
 | +--------------+ |
 | | |
 | | |
 | | |
 +------------------------------+
 | |
 | +----------------------+ |
 | |Video Streaming Server| |
 | +----------------------+ |
 | | Channel Server | |
 | +----------------------+ |
 | | Tracker Server | |
 | +----------------------+ |
 | |
 +------------------------------+

 Figure 3, High level overview of PPLive system architecture

 As regards the tracker protocol, as soon as a PPLive peer joins the
 systems and selects the channel to watch, it retrieves from the
 tracker server a list of peers that are watching the same channel.

Gu, et al. Expires April 30, 2015 [Page 8]

Internet-Draft Survey of P2P Streaming Applications October 2014

 As regards the peer protocol, it controls both peer discovery and
 chunk distribution process. More specifically, peer discovery is
 implemented by a kind of gossip-like mechanism. After retrieving the
 list of active peers watching a specific channel from tracker server,
 a PPLive peer sends out probes to establish active peer connections,
 and some of those peers may return also their own list of active
 peers to help the new peer discover more peers in the initial phase.
 Chunk distribution process is mainly based on buffer map exchange to
 advertise the availability of cached chunks. In more detail, PPLive
 software client exploits two local buffers to cache chunks: the
 PPLive TV engine buffer and media player buffer. The main reason
 behind the double buffer structure is to address the download rate
 variations when downloading chunks from PPLive network. In fact,
 received chunks are first buffered and reassembled into the PPLive TV
 engine buffer; as soon as the number of consecutive chunks in PPLive
 TV engine buffer overcomes a predefined threshold, the media player
 buffer downloads chunks from the PPLive TV engine buffer; finally,
 when the media player buffer fills up to the required level, the
 actual video playback starts.

 Since the protocols and algorithm of PPLive are proprietary, most of
 known details have been derived from measurement studies.
 Specifically, it seems that:

 -number of peers from which a PPLive node downloads live TV chunks
 from is constant and relatively low, and the top-ten peers
 contribute to a major part of the download traffic, as shown in
 [P2PIPTVMEA];

 -PPLive can provide satisfactory performance for popular live TV
 and VoD channels. For unpopular live TV channels, performance may
 severely degrade, whereas for unpopular VoD channels this problem
 rarely happens, as it shown in [CNSR]. Authors of [CNSR] also
 demonstrate that the workload in most VoD channels is well
 balanced, whereas for live TV channels the workload distribution
 is unbalanced, and a small number of peers provide most video
 data.

4.3. Zattoo

 Zattoo [Zattoo] is P2P live streaming system that was launched in
 Switzerland in 2006 in coincidence with the EUFA European Football
 Championship and in few years was able to attract almost 10 million
 registered users in several European countries.

 Figure 4 depicts the high level architecture of Zattoo system. The
 main reference for the information provided in this document is
 [IMC09].

Gu, et al. Expires April 30, 2015 [Page 9]

Internet-Draft Survey of P2P Streaming Applications October 2014

 +-----------------------------------+
 | ------------------------------- | +------+
 | | Broadcast Server | |---|Peer 1|---|
 | ------------------------------- | +------+ |
 | | Authentication Server | | +-------------+
 | ------------------------------- | |Repeater node|
 | | Rendezvous Server | | +-------------+
 | ------------------------------- | +------+ |
 | | Bandwidth Estimation Server | |---|Peer 2|---|
 | ------------------------------- | +------+
 | | Other Servers | |
 | ------------------------------- |
 +-----------------------------------+

 Figure 4, High level overview of Zattoo system architecture

 Broadcast server is in charge of capturing, encoding, encrypting and
 sending the TV channel to the Zattoo network. A number N of logical
 sub-streams is derived from the original stream, and packets of the
 same order in the sub-streams are grouped together into the so-called
 segments. Each segment is then coded via a Reed-Salomon error
 correcting code in such a way that any number k < N of received
 packets in the segment is enough to reconstruct the whole segment.

 Authentication server is the first point of contact for a peer that
 joins the system, and it authenticates Zattoo users. Then, a user
 contacts the Rendezvous server and specifies the TV channel of
 interest. The rendezvous server returns a list of Zattoo peers that
 have already joined the requested channel. Hence, rendezvous server
 plays the role of tracker. At this point the direct interaction
 between peers starts using the peer protocol.

 A new Zattoo user contacts the peers returned by the rendezvous
 server in order to identify a set of neighboring peers covering the
 full set of sub-streams in the TV channel. This process is denoted
 in Zattoo jargon as Peer Division Multiplexing (PDM). To ease the
 identification of neighboring peers, each contacted peer provides
 also the list of its own known peers, in such a way that a new Zattoo
 user, if needed, can contact new peers besides the ones indicated by
 the rendezvous server. In selecting which peers to establish
 connections with, a peer adopts the criterion of topological
 closeness. The topological location of a peer is defined in Zattoo
 as (in order of preference) its subset number, its autonomous system
 number and its country code, and it is provided to each peer by the
 authentication server.

 Zattoo peer protocol provides also a mechanism to make PDM process
 adaptive with respect to bandwidth fluctuations. First of all, a

Gu, et al. Expires April 30, 2015 [Page 10]

Internet-Draft Survey of P2P Streaming Applications October 2014

 peer controls the admission of new connections based on the available
 uplink bandwidth. This is estimated i) at beginning with each peer
 sending probe messages to the Bandwidth Estimation server, and ii)
 while forwarding sub-streams to other peers based on the quality-of-
 service feedback received by those peers. A quality-of-service
 feedback is sent from the receiver to the sender only when the
 quality of the received sub-stream is below a given threshold. So if
 a quality-of-service feedback is received, a Zattoo peer decrements
 the estimation of available uplink bandwidth, and if this drops below
 the amount needed to supports the current connections, a proper
 number of connections is closed. On the other side, if no quality-
 of-service feedback is received for a given time interval, a Zattoo
 peer increments the estimation of available uplink bandwidth
 according to a mechanism very similar to the one of TCP congestion
 window (a mechanism very similar to the one of TCP congestion window
 (double increase or linear increase depending on whether the estimate
 is below or above a given threshold).

 Figure 4 also shows that there exist two classes of Zattoo nodes:
 simple peers, whose behavior has already been presented, and repeater
 nodes, that implement the same peer protocol as simple peers and in
 addition are high-bandwidth peers and are able to forward any sub-
 stream. In such a way repeater nodes serve as bandwidth multiplier.

4.4. PPStream

 PPStream [PPStream] is a very popular P2P streaming software in China
 and in many other countries of East Asia.

 The system architecture of PPStream is very similar to the one of
 PPLive. When a PPStream peer joins the system, it retrieves the list
 of channels from the channel list server. After selecting the
 channel to watch, a PPStream peer retrieves from the peer list server
 the identifiers of peers that are watching the selected channel, and
 it establishes connections that are used first of all to exchange
 buffer-maps. In more detail, a PPStream chunk is identified by the
 play time offset which is encoded by the streaming source and it is
 subdivided into sub-chunks. So buffer-maps in PPStream carry the
 play time offset information and are strings of bits that indicate
 the availability of sub-chunks. After receiving the buffer-maps from
 the connected peers, a PPStream peer selects peers to download sub-
 chunks according to a rate-based algorithm, which maximizes the
 utility of uplink and downlink bandwidth.

Gu, et al. Expires April 30, 2015 [Page 11]

Internet-Draft Survey of P2P Streaming Applications October 2014

4.5. Tribler

 Tribler [Tribler] is a BitTorrent [Bittorrent] client that was able
 to go very much beyond BitTorrent model also thanks to the support
 for video streaming. Initially developed by a team of researchers at
 Delft University of Technology, Tribler was able to both i) attract
 attention from other universities and media companies and ii) receive
 European Union research funding (P2P-Next and QLectives projects).

 Differently from BitTorrent, where a tracker server centrally
 coordinates peers in uploads/downloads of chunks and peers directly
 interact with each other only when they actually upload/download
 chunks to/from each other, there is no tracker server in Tribler and,
 as a consequence, there is no need of tracker protocol.

 This is illustrated also in Figure 5, which depicts the high level
 architecture of Tribler.

 +------------+
 | Superpeer |
 +------------+
 / \
 / \
 +------------+ +------------+
 | Peer 2 |----| Peer 3 |
 +------------+ +------------+
 / | \
 / | \
 / +--------------+ \
 / | Peer 1 | \
 / +--------------+ \
 / / \ \
 +------------+ / +--------------+
 | Peer 4 | / | Peer 5 |
 +------------+ / +--------------+
 \ / /
 \ / /
 \ / +------------+
 +------------+ | Superpeer |
 | Superpeer | +------------+
 +------------+

 Figure 5, High level overview of Tribler system architecture

 Regarding peer protocol and the organization of overlay mesh, Tribler
 bootstrap process consists in preloading well known superpeer
 addresses into peer local cache, in such a way that a joining peer
 randomly selects a superpeer to retrieve a random list of already

Gu, et al. Expires April 30, 2015 [Page 12]

Internet-Draft Survey of P2P Streaming Applications October 2014

 active peers to establish overlay connections with. A gossip-like
 mechanism called BuddyCast allows Tribler peers to exchange their
 preference list, that is their downloaded files, and to build the so
 called Preference Cache. This cache is used to calculate similarity
 levels among peers and to identify the so called "taste buddies" as
 the peers with highest similarity. Thanks to this mechanism each
 peer maintains two lists of peers: i) a list of its top-N taste
 buddies along with their current preference lists, and ii) a list of
 random peers. So a peer alternatively selects a peer from one of the
 lists and sends it its preference list, taste-buddy list and a
 selection of random peers. The goal behind the propagation of this
 kind of information is the support for the remote search function, a
 completely decentralized search service that consists in querying
 Preference Cache of taste buddies in order to find the torrent file
 associated with an interest file. If no torrent is found in this
 way, Tribler users may alternatively resort to a web-based torrent
 collector server available for BitTorrent clients.

 Tribler supports video streaming in two different forms: video on
 demand and live streaming.

 As regards video on demand, a peer first of all keeps informed its
 neighbors about the chunks it has. Then, on the one side it applies
 suitable chunk-picking policy in order to establish the order
 according to which to request the chunks he wants to download. This
 policy aims to assure that chunks come to the media player in order
 and in the same time that overall chunk availability is maximized.
 To this end, the chunk-picking policy differentiates among high, mid
 and low priority chunks depending on their closeness with the
 playback position. High priority chunks are requested first and in
 strict order. When there are no more high priority chunks to
 request, mid priority chunks are requested according to a rarest-
 first policy. Finally, when there are no more mid priority chunks to
 request, low priority chunks are requested according to a rarest-
 first policy as well. On the other side, Tribler peers follow the
 give-to-get policy in order to establish which peer neighbors are
 allowed to request chunks (according to BitTorrent jargon to be
 unchoked). In more detail, time is subdivided in periods and after
 each period Tribler peers first sort their neighbors according to the
 decreasing numbers of chunks they have forwarded to other peers,
 counting only the chunks they originally received from them. In case
 of tie, Tribler sorts their neighbors according to the decreasing
 total number of chunks they have forwarded to other peers. In this
 way, Tribler peer unchokes the three highest-ranked neighbours and,
 in order to saturate upload bandwidth and in the same time not
 decrease the performance of individual connections, it further
 unchokes a limited number of neighbors. Moreover, in order to search
 for better neighbors, Tribler peers randomly select a new peer in the

Gu, et al. Expires April 30, 2015 [Page 13]

Internet-Draft Survey of P2P Streaming Applications October 2014

 rest of the neighbours and optimistically unchoke it every two
 periods.

 As regards live streaming, differently from video on demand scenario,
 the number of chunks cannot be known in advance. As a consequence a
 sliding window of fixed width is used to identify chunks of interest:
 every chunk that falls out the sliding window is considered outdated,
 is locally deleted and is considered as deleted by peer neighbors as
 well. In this way, when a peer joins the network, it learns about
 chunks its neighbors possess and identify the most recent one. This
 is assumed as beginning of the sliding window at the joining peer,
 which starts downloading and uploading chunks according to the
 description provided for video on demand scenario.

4.6. QQLive

 QQLive [QQLive] is large-scale video broadcast software including
 streaming media encoding, distribution and broadcasting. Its client
 can apply for web, desktop program or other environments and provides
 abundant interactive function in order to meet the watching
 requirements of different kinds of users.

 QQLive adopts Content Delivery Network (CDN) [CDN] and P2P
 architecture for video distribution and is different from other
 popular P2P streaming applications. QQLive provides video by source
 servers and CDN, and the video content can be push to every region by
 CDN throughout China. In each region, QQLive adopts P2P technology
 for video content distribution.

 One of the main aims for QQLive is to use the simplest architecture
 to provide the best user experience. So QQLive takes some servers to
 implement P2P file distribution. There are two servers in QQLive:
 Stun Server [RFC5389] and Tracker Server. Stun Server is responsible
 for NAT traversing. Tracker Server is responsible for providing
 content address information. There are a group of these two Servers
 for providing services. There is no Super Peer in QQLive.

 Working flow of QQLive includes startup stage and play stage.

 -Startup stage includes only interactions between peers and
 Tracker servers. There is a built-in URL in QQLive client
 software. When the client startups and connects to the network,
 the client gets the Tracker's address through DNS and tells the
 Tracker the information of its owned video contents.

 -Play stage includes interactions between peers and peers or peers
 and CDN. Generally, the client will download the video content
 from CDN during the first 30 seconds and then gets contents from

https://datatracker.ietf.org/doc/html/rfc5389

Gu, et al. Expires April 30, 2015 [Page 14]

Internet-Draft Survey of P2P Streaming Applications October 2014

 other peers. If unfortunately there is no peer which owns the
 content, the client will get the content from CDN again.

 As the client watches the video, the client will store the video to
 the hard disk. The default storage space is one Gbyte. If the
 storage space is full, the client will delete the oldest content.
 When the client does VCR operation, if the video content is stored in
 hard disk, the client will not do interactions with other peers or
 CDN. If there are messages or video content missing, the client will
 take retransmission and the retransmission interval is decided by the
 network condition. The QQLive does not take care of the strategy of
 transmission and chunk selection, which is simple and not similar
 with BT because of the CDN support.

5. Tree-based P2P Streaming Systems

 In tree-based P2P streaming applications peers self-organize in a
 tree-shape overlay network, where peers do not ask for a specific
 chunk, but simply receive it from their so called "parent" node.
 Such content delivery model is denoted as push-based. Receiving
 peers are denoted as children, whereas sending nodes are denoted as
 parents. Overhead to maintain overlay topology is usually lower for
 tree-based streaming applications than for mesh-based streaming
 applications, whereas performance in terms of delay is usually
 better. On the other side, the greatest drawback of this type of
 application lies in that each node depends on one single node, its
 parent in overlay tree, to receive streamed content. Thus, tree-
 based streaming applications suffer from peer churn phenomenon more
 than mesh-based ones.

5.1. End System Multicast (ESM)

 Even though End System Multicast (ESM) project is ended by now and
 ESM infrastructure is not being currently implemented anywhere, we
 decided to include it in this survey for a twofold reason. First of
 all, it was probably the first and most significant research work
 proposing the possibility of implementing multicast functionality at
 end hosts in a P2P way. Secondly, ESM research group at Carnegie
 Mellon University developed the first P2P live streaming system of
 the world, and some members founded later Conviva [conviva] live
 platform.

 The main property of ESM is that it constructs the multicast tree in
 a two-step process. The first step aims at the construction of a
 mesh among participating peers, whereas the second step aims at the
 construction of data delivery trees rooted at the stream source.
 Therefore a peer participates in two types of topology management
 structures: a control structure that guarantees peers are always

Gu, et al. Expires April 30, 2015 [Page 15]

Internet-Draft Survey of P2P Streaming Applications October 2014

 connected in a mesh, and a data delivery structure that guarantees
 data gets delivered in an overlay multicast tree.

 There exist two versions of ESM.

 The first version of ESM architecture [ESM1] was conceived for small
 scale multi-source conferencing applications. Regarding the mesh
 construction phase, when a new member wants to join the group, an
 out-of-bandwidth bootstrap mechanism provides the new member with a
 list of some group members. The new member randomly selects a few
 group members as peer neighbors. The number of selected neighbors
 never exceeds a given bound, which reflects the bandwidth of the
 peer's connection to the Internet. Each peer periodically emits a
 refresh message with monotonically increasing sequence number, which
 is propagated across the mesh in such a way that each peer can
 maintain a list of all the other peers in the system. When a peer
 leaves, either it notifies its neighbors and the information is
 propagated across the mesh to all the participating peers, or peer
 neighbors detect the condition of abrupt departure and propagate it
 through the mesh. To improve mesh/tree quality, on the one side
 peers constantly and randomly probe each other to add new links; on
 the other side, peers continually monitor existing links in order to
 drop the ones that are not perceived as good-quality links. This is
 done thanks to the evaluation of a utility function and a cost
 function, which are conceived to guarantee that the shortest overlay
 delay between any pair of peers is comparable to the unicast delay
 among them. Regarding multicast tree construction phase, peers run a
 distance-vector protocol on top of the tree and use latency as
 routing metric. In this way, data delivery trees may be constructed
 from the reverse shortest path between source and recipients.

 The second and subsequent version of ESM architecture [ESM2] was
 conceived for an operational large scale single-source Internet
 broadcast system. As regards the mesh construction phase, a node
 joins the system by contacting the source and retrieving a random
 list of already connected nodes. Information on active participating
 peers is maintained thanks to a gossip protocol: each peer
 periodically advertises to a randomly selected neighbor a subset of
 nodes he knows and the last timestamps it has heard for each known
 node. The main difference with the first version is that the second
 version constructs and maintains the data delivery tree in a
 completely distributed manner according to the following criteria: i)
 each node maintains a degree bound on the maximum number of children
 it can accept depending on its uplink bandwidth, ii) tree is
 optimized mainly for bandwidth and secondarily for delay. To this
 end, a parent selection algorithm allows identifying among the
 neighbors the one that guarantees the best performance in terms of
 throughput and delay. The same algorithm is also applied either if a

Gu, et al. Expires April 30, 2015 [Page 16]

Internet-Draft Survey of P2P Streaming Applications October 2014

 parent leaves the system or if a node is experiencing poor
 performance (in terms of both bandwidth and packet loss). As loop
 prevention mechanism, each node keeps also the information about the
 hosts in the path between the source and its parent node.

 This second ESM prototype is also able to cope with receiver
 heterogeneity and presence of NAT/firewalls. In more detail, audio
 stream is kept separated from video stream and multiple bit-rate
 video streams are encoded at source and broadcast in parallel though
 the overlay tree. Audio is always prioritized over video streams,
 and lower quality video is always prioritized over high quality
 video. In this way, system can dynamically select the most suitable
 video stream according to receiver bandwidth and network congestion
 level. Moreover, in order to take presence of hosts behind NAT/
 firewalls, tree is structured in such a way that public hosts use
 hosts behind NAT/firewalls as parents.

6. Hybrid P2P streaming applications

 This type of applications aims at integrating the main advantages of
 mesh-based and tree-based approaches. To this end, overlay topology
 is mixed mesh-tree, and content delivery model is push-pull.

6.1. New Coolstreaming

 Coolstreaming, first released in summer 2004 with a mesh-based
 structure, arguably represented the first successful large-scale P2P
 live streaming. Nevertheless, it suffers poor delay performance and
 high overhead associated with each video block transmission. In the
 attempt of overcoming such a limitation, New Coolstreaming
 [NEWCOOLStreaming] adopts a hybrid mesh-tree overlay structure and a
 hybrid pull-push content delivery mechanism.

 Like in the old Coolstreaming, a newly joined node contacts a special
 bootstrap node and retrieves a partial list of active nodes in the
 system.

 The interaction with bootstrap node is the only one related to the
 tracker protocol. The rest of New Coolstreaming interactions are
 related to peer protocol.

 The newly joined node then establishes a partnership with few active
 nodes by periodically exchanging information on content availability.
 Streaming content is divided in New Coolstreaming in equal-size
 blocks or chunks, which are unambiguously associated with sequence
 numbers that represent the playback order. Chunks are then grouped
 to form multiple sub-streams.

Gu, et al. Expires April 30, 2015 [Page 17]

Internet-Draft Survey of P2P Streaming Applications October 2014

 Like in most of P2P streaming applications information on content
 availability is exchanged in form of buffer-maps. However, New
 Coolstreaming buffer-maps differ from the usual format of strings of
 bits where each bit represents the availability of a chunk. Two
 vectors represent indeed buffer-maps in New Coolstreaming. The first
 vector reports the sequence numbers of the last chunk received for a
 given sub-stream. The second vector is used to explicitly request
 chunks from partner peers. In more details, the second vector has as
 many bits as sub-streams, and a peer receiving a bit "1" in
 correspondence of a given sub-stream is being requested from the
 sending peer to upload chunks belonging to that sub-streams. Since
 chunks are explicitly requested, data delivery may be regarded as
 pull-based. However, data delivery is push-based as well, since
 every time a node is requested to upload chunks, it uploads all
 chunks for that sub-stream starting from the one indicated in the
 first vector of received buffer-map. Hence, the overall overlay
 topology is mesh-based, but it is also possible to identify as many
 overlay trees as sub-streams.

 In order to improve quality of mesh-tree overlay, each node
 continuously monitors the quality of active connections in terms of
 mutual delay between sub-streams. If such quality drops below a
 predefined threshold, a New Coolstreaming node selects a new partner
 among its partners. Parent re-selection is also triggered for a peer
 when its previous parent leaves.

7. Security Considerations

 Security in P2P streaming applications may be addressed at two
 different levels: on the one side, at the control protocol level, on
 the other side, at streamed multimedia content level.

 In PPLive and PPStream control protocol messages are sent over HTTP,
 UDP and TCP mostly in plain text, and this can allow malicious users
 to interfere with the normal operation of the system and can lead to
 malicious attacks that can make key components of the system
 ineffective.

 In Zattoo authentication server authenticates Zattoo users and
 assigns them with a limited lifetime ticket. Then, a user presents
 the tickets received by the authentication server to the rendezvous
 server. Provided that the presented ticket is valid, the rendezvous
 server returns a list of Zattoo peers that have already joined the
 requested channel and a signed channel ticket.

 In Tribler authentication of peers is based on secure, permanent peer
 identifiers called PermIDs. PermID maps to a single IP address and
 port number and is initially used to identify users. The idea is to

Gu, et al. Expires April 30, 2015 [Page 18]

Internet-Draft Survey of P2P Streaming Applications October 2014

 have each Tribler user assigned with a public/private keypair based
 on Elliptic Curve Cryptography (ECC), where public key acts as the
 PermID for the user. Users distribute their PermID to their friends
 out-of-band to establish trusted friend relationships. When two
 peers connect as part of a download, they authenticate each other
 using the standard ISO/IEC 9798-3 [ISO/IEC 9798-3] challenge/response
 identification protocol. If the peer is successfully authenticated
 but not a friend of the user (i.e., does not appear in the list of
 friends' PermIDs), the Tribler client will allow it to request non-
 privileged operations, such as exchanging file preferences. If the
 peer is a friend, it may request privileged operations such as
 coordinating a friends-assisted download. Moreover, Tribler provides
 security at streamed content level too. In the video on demand
 scenario torrent files include a hash for each chunk in order to
 prevent malicious attackers from corrupting data. In live streaming
 scenario torrent files include the public key of the stream source.
 Each chunk is then assigned with absolute sequence number and
 timestamp and signed by source public key. Such a mechanism allows
 Tribler peers to use the public key included in torrent file and
 verify the integrity of each chunk.

 In QQLive both tracker and peer protocol are fully private and
 encrypt the whole message. The tracker protocol uses UDP and the
 port for the tracker server is fixed. For the streamed content, if
 the client gets the streaming from CDN, the client use the HTTP with
 port 80 and no encryption. If the client gets the streaming from
 other peers, the client use UDP to transfer the encrypted media
 streaming and not RTP/RTCP.

8. IANA Considerations

 This document has no actions for IANA.

9. Author List

 Other authors of this document are listed as below.

 Hui Zhang, NEC Labs America.

 Jun Lei, University of Goettingen.

 Gonzalo Camarillo, Ericsson.

 Yong Liu, Polytechnic University.

 Delfin Montuno, Huawei.

 Lei Xie, Huawei.

Gu, et al. Expires April 30, 2015 [Page 19]

Internet-Draft Survey of P2P Streaming Applications October 2014

10. Acknowledgments

 We would like to acknowledge Jiang xingfeng for providing good ideas
 for this document.

11. Informative References

 [RFC6972] RFC 6972, "Problem Statement and Requirements of the Peer-
 to-Peer Streaming Protocol (PPSP)".

 [Octoshape] Alstrup, Stephen, et al., "Introducing Octoshape-a new
 technology for large-scale streaming over the Internet".

 [CNN] CNN web site, http://www.cnn.com

 [PPLive] PPLive web site, http://www.pplive.com

 [P2PIPTVMEA] Silverston, Thomas, et al., "Measuring P2P IPTV
 Systems", June 2007.

 [CNSR] Li, Ruixuan, et al., "Measurement Study on PPLive Based on
 Channel Popularity", May 2011.

 [Zattoo] Zattoo web site, http://www.zattoo.com

 [IMC09] Chang, Hyunseok, et al., "Live streaming performance of the
 Zattoo network", November 2009.

 [PPStream] PPStream web site, http:// www.ppstream.com

 [Tribler] Tribler Protocol Specification, January 2009, on line
 available at http://svn.tribler.org/bt2-design/proto-spec-

unified/trunk/proto-spec-current.pdf

 [Bittorrent] BitTorrent web site, http:// www.bittorrent.com

 [QQLive] QQLive web site, http://v.qq.com

 [CDN] CDN wiki, http://en.wikipedia.org/wiki/Content_delivery_network

 [RFC5389] RFC5389, "Session Traversal Utilities for NAT (STUN)".

 [conviva] Conviva web site, http://www.conviva.com

 [ESM1] Chu, Yang-hua, et al., "A Case for End System Multicast", June
 2000. (http://esm.cs.cmu.edu/technology/papers/

Sigmetrics.CaseForESM.2000.pdf)

https://datatracker.ietf.org/doc/html/rfc6972
http://www.cnn.com
http://www.pplive.com
http://www.zattoo.com
http://svn.tribler.org/bt2-design/proto-spec-unified/trunk/proto-spec-current.pdf
http://svn.tribler.org/bt2-design/proto-spec-unified/trunk/proto-spec-current.pdf
http://v.qq.com
http://en.wikipedia.org/wiki/Content_delivery_network
https://datatracker.ietf.org/doc/html/rfc5389
http://www.conviva.com
http://esm.cs.cmu.edu/technology/papers/Sigmetrics.CaseForESM.2000.pdf
http://esm.cs.cmu.edu/technology/papers/Sigmetrics.CaseForESM.2000.pdf

Gu, et al. Expires April 30, 2015 [Page 20]

Internet-Draft Survey of P2P Streaming Applications October 2014

 [ESM2] Chu, Yang-hua, et al., "Early Experience with an Internet
 Broadcast System Based on Overlay Multicast", June 2004.
 (http://static.usenix.org/events/usenix04/tech/general/full_papers/

chu/chu.pdf)

 [NEWCOOLStreaming] Li, Bo, et al., "Inside the New Coolstreaming:
 Principles,Measurements and Performance Implications", April 2008.

 [ISO/IEC 9798-3] ISO web site, http://www.iso.org/iso/
catalogue_detail.htm?csnumber=29062

Authors' Addresses

 Yingjie Gu
 Unaffiliated

 Email: guyingjie@gmail.com

 Ning Zong (editor)
 Huawei
 101 Software Avenue
 Nanjing 210012
 China

 Phone: +86-25-56624760
 Fax: +86-25-56624702
 Email: zongning@huawei.com

 Yunfei Zhang
 Coolpad
 China Mobile
 Email: hishigh@gmail.com

 Francesca Lo Piccolo
 Cisco
 Via del Serafico 200
 Rome 00142
 Italy

 Phone: +39-06-51645136
 Email: flopicco@cisco.com

http://static.usenix.org/events/usenix04/tech/general/full_papers/chu/chu.pdf
http://static.usenix.org/events/usenix04/tech/general/full_papers/chu/chu.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29062
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29062

Gu, et al. Expires April 30, 2015 [Page 21]

Internet-Draft Survey of P2P Streaming Applications October 2014

 Shihui Duan
 CATR
 No.52 HuaYuan BeiLu
 Beijing 100191
 P.R.China

 Phone: +86-10-62300068
 Email: duanshihui@catr.cn

Gu, et al. Expires April 30, 2015 [Page 22]

