
Network Working Group A. Davidson
Internet-Draft LIP
Intended status: Informational 5 January 2021
Expires: 9 July 2021

Privacy Pass Architectural Framework
draft-ietf-privacypass-architecture-00

Abstract

 This document specifies the architectural framework for constructing
 secure and anonymity-preserving instantiations of the Privacy Pass
 protocol. It provides recommendations on how the protocol ecosystem
 should be constructed to ensure the privacy of clients, and the
 security of all participating entities.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 July 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 3. Ecosystem participants
 3.1. Servers
 3.2. Clients
 3.2.1. Client identifying information
 4. Key management framework
 4.1. Public key registries
 4.2. Key rotation
 4.3. Ciphersuites
 5. Server running modes
 5.1. Single-Verifier
 5.2. Delegated-Verifier
 5.3. Asynchronous-Verifier
 5.4. Public-Verifier
 5.5. Bounded number of servers
 6. Client-Server trust relationship
 7. Privacy considerations
 7.1. Server key rotation
 7.2. Large numbers of servers
 7.2.1. Allowing larger number of servers
 7.3. Partitioning of server key material
 7.4. Additional token metadata
 7.5. Tracking and identity leakage
 7.6. Client incentives for anonymity reduction
 8. Security considerations
 8.1. Double-spend protection
 8.2. Token exhaustion
 8.3. Avoiding server centralization
 9. Protocol parametrization
 9.1. Justification
 9.2. Example parameterization
 9.3. Allowing more servers
 10. Extension integration policy
 11. Existing applications
 11.1. Cloudflare challenge pages
 11.2. Trust Token API
 11.3. Zero-knowledge Access Passes
 11.4. Basic Attention Tokens
 11.5. Token Based Services
 12. References
 12.1. Normative References
 12.2. Informative References

Appendix A. Contributors
 Author's Address

1. Introduction

 The Privacy Pass protocol provides an anonymity-preserving mechanism
 for authorization of clients with servers. The protocol is detailed
 in [draft-davidson-pp-protocol] and is intended for use in the
 application-layer.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

 The way that the ecosystem around the protocol is set up can have
 significant impacts on the stated privacy and security guarantees of
 the protocol. For instance, the number of servers issuing Privacy
 Pass tokens, along with the number of registered clients, determines
 the anonymity set of each individual client. Moreover, this can be
 influenced by other factors, such as: the key rotation policy used by
 each server; and, the number of supported ciphersuites. There are
 also client behavior patterns that can reduce the effective security
 of the server.

 In this document, we will provide a structural framework for building
 the ecosystem around the Privacy Pass protocol. The core of the
 document also includes policies for the following considerations.

 * How server key material should be managed and accessed.

 * Compatible server issuance and redemption running modes and
 associated expectations.

 * How clients should evaluate server trust relationships.

 * Security and privacy properties of the protocol.

 * A concrete assessment and parametrization of the privacy budget
 associated with different settings of the above policies.

 * The incorporation of potential extensions into the wider
 ecosystem.

 Finally, we will discuss existing applications that make use of the
 Privacy Pass protocol, and highlight how these may fit with the
 proposed framework.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are used throughout this document.

 * Server: An entity that issues anonymous tokens to clients. In
 symmetric verification cases, the server must also verify tokens.
 Also referred to as the server.

 * Client: An entity that seeks authorization from a server.

 We assume that all protocol messages are encoded into raw byte format
 before being sent. We use the TLS presentation language [RFC8446] to
 describe the structure of the data that is communicated and stored.

3. Ecosystem participants

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446

 The Privacy Pass ecosystem refers to the global framework in which
 multiple instances of the Privacy Pass protocol operate. This refers
 to all servers that support the protocol, or any extension of it,
 along with all of the clients that may interact with these servers.

 The ecosystem itself, and the way it is constructed, is critical for
 evaluating the privacy of each individual client. We assume that a
 client's privacy refers to fraction of users that it represents in
 the anonymity set that it belongs to. We discuss this more in

Section 7.

 +---+
 | |
 | Ecosystem |
 | |
 | |
 | |
 | +-----+ |
 | | | +-----+ | | |
 | | C1 | <--------------------> | | |
 | | | | S1 | |
 | +-----+ +-------------> | | |
 | | +-----+ |
 | | |
 | +-----+ | |
 | | | <------+ |
 | | C2 | |
 | | | <------+ +-----+ |
 | +-----+ +-------------> | | |
 | | S2 | |
 | +-------------> | | |
 | +-----+ | +-----+ |
 | | | | |
 | | C3 | <------+ |
 | | | |
 | +-----+ |
 | |
 +---+

 In the above diagram, the arrows indicate the open channels between a
 client and a server. An open channel indicates that a client accepts
 Privacy Pass tokens from this server.

 If no channel exists, this means that the client chooses not to
 accept tokens from (or redeem tokens with) that particular server.
 We discuss the roles of servers and clients further in Section 3.1
 and Section 3.2, respectively.

3.1. Servers

 Generally, servers in the Privacy Pass ecosystem are entities whose
 primary function is to undertake the role of the "server" in
 [draft-davidson-pp-protocol]. To facilitate this, the server MUST
 hold a Privacy Pass protocol keypair at any given time. The server
 public key MUST be made available to all clients in such a way that
 key rotations and other updates are publicly visible. The server MAY
 also require additional state for ensuring this. We provide a wider
 discussion in Section 4.

 Note that, in the core protocol instantiation from
 [draft-davidson-pp-protocol], the redemption phase is a symmetric
 protocol. This means that the server is the same server that
 ultimately processes token redemptions from clients. However,
 plausible extensions to the protocol specification may allow public
 verification of tokens by entities which do not hold the secret
 Privacy Pass keying material. We highlight possible client and
 server configurations in Section 5.

 The server must be uniquely identifiable by all clients with a
 consistent identifier.

3.2. Clients

 Clients in the Privacy Pass ecosystem are entities whose primary
 function is to undertake the role of the "Client" in
 [draft-davidson-pp-protocol]. Clients are assumed to only store data
 related to the tokens that it has been issued by the server. This
 storage is used for constructing redemption requests.

 Clients MAY choose not to accept tokens from servers that they do not
 trust. See Section 6 for a wider discussion.

3.2.1. Client identifying information

 Privacy properties of this protocol do not take into account other
 possibly identifying information available in an implementation, such
 as a client's IP address. Servers which monitor IP addresses may use
 this to track client redemption patterns over time. Clients cannot
 check whether servers monitor such identifying information. Thus,
 clients SHOULD minimize or remove identifying information where
 possible, e.g., by using anonymity-preserving tools such as Tor to
 interact with servers.

4. Key management framework

 The key material and protocol configuration that a server uses to
 issue tokens corresponds to a number of different pieces of
 information.

 * The ciphersuite that the server is using.

 * The public keys that are active for the server.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

 For reasons that we address later in Section 7, the way that the
 server publishes and maintains this information impacts the effective
 privacy of the clients. In this section, we describe the main
 policies that need to be satisfied for a key management system in a
 Privacy Pass ecosystem.

 Note that we only specify a set of guidelines and recommendations for
 operating a public key registry in this document. Actual
 specification of such a registry and how it operates will be covered
 elsewhere.

4.1. Public key registries

 Server's must provide their public keys to clients along with details
 about the cryptographic ciphersuite that they are using. In

Section 7, we address the importance of providing clients with
 sources of truth for learning the server's key configuration.

 In particular, server key material MUST be publicly available in a
 tamper-proof data structure, which we refer to as a key registry. A
 registry must be globally consistent. Clients using the same
 registry should coordinate in some way to ensure they have a
 consistent view of said registry. This can be done via gossiping or
 some other mechanism. The exact mechanism for this coordination will
 be described elsewhere. It is assumed there will be at least one
 such mechanism.

 It is RECOMMENDED that each key registry is an append-only data
 structure, such as a Merkle Tree. The key registry should be
 operated independently of any server that publishes key material to
 the registry. This ensures that any client can make better
 judgements on whether to trust the registry and, transitively, each
 server.

 +--+
 | |
 | Ecosystem +---+ |
 | | C | |
 | +--------------+ <------ pkS1 ----> +---+ |
 | | Registry 1 | |
 | ++-------------+ <-------------- pkS1 --------> +---+ |
		C	
	+--------------+ <--------- pkS3 --------> +---+		
		Registry 2	
pkS1 +----^-------^-+ <--------- pkS2 --------> +---+			
	pkS2 pkS3 +---+		
++---+ +-+--+ +-+--+			
	S1		S2

 | +----+ +----+ +----+ |
 | |
 +--+

 While there may be multiple key registries for a given ecosystem, a
 server MUST only publish its key material to a single registry. This
 ensures that the server is keeping a consistent view of its key
 material.

4.2. Key rotation

 Token issuance associates all issued tokens with a particular choice
 of key. If a server issues tokens with many keys, then this may harm
 the anonymity of the Client. For example, they would be able to map
 the Client's access patterns by inspecting which key each token they
 possess has been issued under.

 To prevent against this, servers MUST only use one private key for
 issuing tokens at any given time. Servers may use two or more keys
 for redemption to allow servers for seamless key rotation.

 Key rotations must be limited in frequency for similar reasons. See
Section 9 for guidelines on what frequency of key rotations are

 permitted.

4.3. Ciphersuites

 Since a server is only permitted to have a single active issuing key,
 this implies that only a single ciphersuite is allowed per issuance
 period. If a server wishes to change their ciphersuite, they MUST do
 so during a key rotation.

5. Server running modes

 We provide an overview of some of the possible frameworks for
 configuring the way that servers run in the Privacy Pass ecosystem.
 In short, servers may be configured to provide symmetric issuance and
 redemption with clients. While some servers may be configured as
 proxies that accept Privacy Pass data and send it to another server
 that actually processes issuance or redemption data. Finally, we
 also consider instances of the protocol that may permit public
 verification.

 The intention with providing each of these running modes is to cover
 the different applications that utilize variants of the Privacy Pass
 protocol. We RECOMMEND that any Privacy Pass server implementation
 adheres to one of these frameworks.

5.1. Single-Verifier

 The simplest way of considering the Privacy Pass protocol is in a
 setting where the same server plays the role of server and verifier,

 we call this "Single-Verifier" (SV).

 Let S be the server, and C be the client. When S wants to issue
 tokens to C, they invoke the issuance protocol where C generates
 their own inputs, and S uses their secret key skS. In this setting,
 C can only perform token redemption with S. When a token redemption
 is required, C and S invoke the redemption phase of the protocol,
 where C uses an issued token from a previous exchange, and S uses skS
 to validate the redemption.

5.2. Delegated-Verifier

 In this setting, each client C obtains issued tokens from a derver S
 via the issuance phase of the protocol. The difference is that C can
 prove that they hold a valid authorization with any verifier V. We
 still only consider S to hold their own secret key. We name this
 mode "Delegated-Verifier" (DV).

 When C interacts with V, V can ask C to provide proof of
 authorization to the separate server S. The first stage of the
 redemption phase of the protocol is invoked between C and V, which
 sees C send an unused redemption token to V. This message is then
 used in a redemption exchange between V and S, where V plays the role
 of the Client. Then S sends the result of the redemption
 verification to V, and V uses this result to determine whether C has
 a valid token.

5.3. Asynchronous-Verifier

 This setting is inspired by recently proposed APIs such as
 [TrustTokenAPI]. It is similar to the DV configuration, except that
 the verifiers V no longer interact with the server S. Only C
 interacts with S, and this is done asynchronously to the
 authorization request from V. Hence "Asynchronous-Verifier" (AV).

 When V invokes a redemption for C, C then invokes a redemption
 exchange with S in a separate session. If verification is carried
 out successfully by S, S instead returns a Signed Redemption Record
 (SRR) that contains the following information:

 "result": {
 "timestamp":"2019-10-09-11:06:11",
 "verifier": "V",
 },
 "signature":sig,

 The "signature" field carries a signature evaluated over the contents
 of "result" using a long-term signing key for the server S, of which
 the corresponding public key is well-known to C and V. This would
 need to be published alongside other public key data for S. Then C
 can prove that they hold a valid authorization from S to V by sending

 the SRR to V. The SRR can be verified by V by verifying the
 signature, using the well-known public key for S.

 Such records can be cached to display again in the future. The
 server can also add an expiry date to the record to determine when
 the client must refresh the record.

5.4. Public-Verifier

 We consider the case where client redemptions can be verified
 publicly using the server public key. This allows for defining
 extensions of Privacy Pass that use public-key cryptography to allow
 public verification.

 In this case, the client C obtains a redemption token from S. The
 redemption token is publicly verifiable in the sense that any entity
 that knows the public key for S can verify the token. This running
 mode is known as "Public-Verifier" (PV).

5.5. Bounded number of servers

 Each of the configurations above can be generalized to settings where
 a bounded number of servers are allowed, and verifiers can invoke
 authorization verification for any of the available servers.

 As we will discuss later in Section 7, configuring a large number of
 servers can lead to privacy concerns for the clients in the
 ecosystem. Therefore, we are careful to ensure that the number of
 servers is kept strictly bounded. The actual servers can be replaced
 with different servers as long as the total never exceeds this bound.
 Moreover, server replacements also have an effect on client anonymity
 that is similar to when a key rotation occurs. server so replacement
 should only be permitted at similar intervals.

 See Section 7 for more details about maintaining privacy with
 multiple servers.

6. Client-Server trust relationship

 It is important, based on the architecture above, that any client can
 determine whether it would like to interact with a given server in
 the ecosystem. Note that this decision must be taken before a client
 issues a valid redemption to the server, since redemptions reveal the
 anonymity set that the client belongs to.

 This judgement can be based on a multitude of factors, associated
 with the way that a server presents itself in the ecosystem. A non-
 exhaustive list of server characteristics that a client MAY want to
 check are the following.

 * Which key registry a server posts their key updates to.

 * How frequent key updates are issued, and which ciphersuite they
 use.

 * The reason given to initiate the redemption.

 To aid client trust decisions, a server can publish a "Privacy Pass
 policy" that documents the procedures that the server uses to ensure
 that client privacy is respected. If a server does not publish such
 a document then the client may choose to use its own judgement, or to
 reject the server altogether.

 It should be noted that the client trust decision can be made apriori
 by specifying an allow-list of all servers that it accepts tokens
 from. This means that these checks do not have to be performed
 online.

7. Privacy considerations

 In the Privacy Pass protocol [draft-davidson-pp-protocol], redemption
 tokens intentionally encode very little information beyond which key
 was used to sign them. The protocol intentionally uses components
 that provide cryptographic guarantees of this fact. However, even
 with these guarantees, the way that the ecosystem is constructed can
 be used to identify clients based on this limited information.

 The goal of the Privacy Pass ecosystem is to construct an environment
 that can easily measure (and maximize) the relative anonymity of any
 client that is part of it. An inherent feature of being part of this
 ecosystem is that any client can only remain private relative to the
 entire space of users using the protocol. Moreover, by owning tokens
 for a given set of keys, the client's anonymity set shrinks to the
 total number of clients controlling tokens for the same keys.

 In the following, we consider the possible ways that servers and
 servers can leverage their position to try and reduce the anonymity
 sets that clients belong to (or, user segregation). For each case,
 we provide mitigations that the Privacy Pass ecosystem must implement
 to prevent these actions.

7.1. Server key rotation

 Techniques to introduce client "segregation" can be used to reduce
 client anonymity. Such techniques are closely linked to the type of
 key schedule that is used by the server. When a server rotates their
 key, any client that invokes the issuance protocol in this key cycle
 will be part of a group of possible clients owning valid tokens for
 this key. To mechanize this attack strategy, a server could
 introduce a key rotation policy that forces clients into small key
 cycles. Thus, reducing the size of the anonymity set for these
 clients.

 We RECOMMEND that servers should only invoke key rotation for fairly

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

 large periods of time such as between 1 and 12 weeks. Key rotations
 represent a trade-off between client privacy and continued server
 security. Therefore, it is still important that key rotations occur
 on a fairly regular cycle to reduce the harmfulness of a server key
 compromise.

 With an active user-base, a week gives a fairly large window for
 clients to participate in the Privacy Pass protocol and thus enjoy
 the anonymity guarantees of being part of a larger group. The low
 ceiling of 12 weeks prevents a key compromise from being too
 destructive. If a server realizes that a key compromise has occurred
 then the server should sample a new key, and upload the public key to
 the key registry; invoking any revocation procedures that may apply
 for the old key.

7.2. Large numbers of servers

 Similarly to the server rotation dynamic that is raised above, if
 there are a large number of servers then segregation can occur. In
 the FV, AV and PV running modes (Section 5), a verifier OV can
 trigger redemptions for any of the available servers. Each
 redemption token that a client holds essentially corresponds to a bit
 of information about the client that OV can learn. Therefore, there
 is an exponential loss in anonymity relative to the number of servers
 that there are.

 For example, if there are 32 servers, then OV learns 32 bits of
 information about the client. If the distribution of server trust is
 anything close to a uniform distribution, then this is likely to
 uniquely identify any client amongst all other Internet users.
 Assuming a uniform distribution is clearly the worst-case scenario,
 and unlikely to be accurate, but it provides a stark warning against
 allowing too many servers at any one time.

 In cases where clients can hold tokens for all servers at any given
 time, a strict bound SHOULD be applied to the active number of
 servers in the ecosystem. We propose that allowing no more than 4
 servers at any one time is highly preferable (leading to a maximum of
 64 possible user segregations). However, as highlighted in

Section 9, having a very large user base (> 5 million users), could
 potentially allow for larger values. server replacements should only
 occur with the same frequency as config rotations as they can lead to
 similar losses in anonymity if clients still hold redemption tokens
 for previously active servers.

 In addition, we RECOMMEND that trusted registries indicate at all
 times which servers are deemed to be active. If a client is asked to
 invoke any Privacy Pass exchange for an server that is not declared
 active, then the client SHOULD refuse to retrieve the server
 configuration during the protocol.

7.2.1. Allowing larger number of servers

 The bounds on the numbers of servers that we proposed above are very
 restrictive. This is due to the fact that we considered a situation
 where a client could be issued (and forced to redeem) tokens for any
 issuing key.

 An alternative system is to ensure a robust strategy for ensuring
 that clients only possess redemption tokens for a similarly small
 number of servers at any one time. This prevents a malicious
 verifier from being able to invoke redemptions for many servers since
 the client would only be holding redemption tokens for a small set of
 servers. When a client is issued tokens from a new server and
 already has tokens from the maximum number of servers, it simply
 deletes the oldest set of redemption tokens in storage and then
 stores the newly acquired tokens.

 For example, if clients ensure that they only hold redemption tokens
 for 4 servers, then this increases the potential size of the
 anonymity sets that the client belongs to. However, this doesn't
 protect clients completely as it would if only 4 servers were
 permitted across the whole system. For example, these 4 servers
 could be different for each client. Therefore, the selection of
 servers they possess tokens for is still revealing. Understanding
 this trade-off is important in deciding the effective anonymity of
 each client in the system.

7.3. Partitioning of server key material

 If there are multiple key registries, or if a key registry colludes
 with an server, then it is possible to provide a split-view of an
 server's key material to different clients. This would involve
 posting different key material in different locations, or actively
 modifying the key material at a given location.

 Key registries should operate independently of server's in the
 ecosystem, and within the guidelines stated in Section 4. Any client
 should follow the recommendations in Section 6 for determining
 whether an server and its key material should be trusted.

7.4. Additional token metadata

 In [draft-davidson-pp-protocol], it is permissible to add public and
 private metadata bits to redemption tokens. The core protocol
 instantiation that is described does not include additional metadata.
 However, future instantiations may use this functionality to provide
 redemption verifiers with additional information about the user.

 Note that any arbitrary bits of information can be used to further
 segment the size of the user's anonymity set. Any server that wanted
 to track a single user could add a single metadata bit to user

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

 tokens. For the tracked user it would set the bit to "1", and "0"
 otherwise. Adding additional bits provides an exponential increase
 in tracking granularity similarly to introducing more servers (though
 with more potential targeting).

 For this reason, the amount of metadata used by an server in creating
 redemption tokens must be taken into account -- together with the
 bits of information that server's may learn about clients otherwise.
 We discuss this more in Section 9.

7.5. Tracking and identity leakage

 Privacy losses may be encountered if too many redemptions are allowed
 in a short burst. For instance, in the Internet setting, this may
 allow delegated or asynchronous verifiers to learn more information
 from the metadata that the client may hold (such as first-party
 cookies for other domains). Mitigations for this issue are similar
 to those proposed in Section 7.2 for tackling the problem of having
 large number of servers.

 In AV, cached SRRs and their associated server public keys have a
 similar tracking potential to first party cookies in the browser
 setting. These considerations will be covered in a separate
 document, detailing Privacy Pass protocol integration into the wider
 web architecture [draft-svaldez-pp-http-api].

7.6. Client incentives for anonymity reduction

 Clients may see an incentive in accepting all tokens that are issued
 by a server, even if the tokens fail later verification checks. This
 is because tokens effectively represent a form of currency that they
 can later redeem for some sort of benefit. The verification checks
 that are put in place are there to ensure that the client does not
 sacrifice their anonymity. However, a client may judge the
 "monetary" benefit of owning tokens to be greater than their own
 privacy.

 Firstly, a client behaving in this way would not be compliant with
 the protocol, as laid out in [draft-davidson-pp-protocol].

 Secondly, acting in this way only affects the privacy of the
 immediate client. There is an exception if a large number of clients
 colluded to accept bad data, then any client that didn't accept would
 be part of a smaller anonymity set. However, such a situation would
 be identical to the situation where the total number of clients in
 the ecosystem is small. Therefore, the reduction in the size of the
 anonymity set would be equivalent; see Section 7.2 for more details.

8. Security considerations

 We present a number of security considerations that prevent malicious
 clients from abusing the protocol.

https://datatracker.ietf.org/doc/html/draft-svaldez-pp-http-api
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

8.1. Double-spend protection

 All issuing server should implement a robust storage-query mechanism
 for checking that tokens sent by clients have not been spent before.
 Such tokens only need to be checked for each server individually.
 But all servers must perform global double-spend checks to avoid
 clients from exploiting the possibility of spending tokens more than
 once against distributed token checking systems. For the same
 reason, the global data storage must have quick update times. While
 an update is occurring it may be possible for a malicious client to
 spend a token more than once.

8.2. Token exhaustion

 When a client holds tokens for an server, it is possible for any
 verifier to invoke that client to redeem tokens for that server.
 This can lead to an attack where a malicious verifier can force a
 client to spend all of their tokens for a given server. To prevent
 this from happening, methods should be put into place to prevent many
 tokens from being redeemed at once.

 For example, it may be possible to cache a redemption for the entity
 that is invoking a token redemption. If the verifier requests more
 tokens then the client simply returns the cached token that it
 returned previously. This could also be handled by simply not
 redeeming any tokens for verification if a redemption had already
 occurred in a given time window.

 In AV, the client instead caches the SRR that it received in the
 asynchronous redemption exchange with the server. If the same
 verifier attempts another redemption request, then the client simply
 returns the cached SRR. The SRRs can be revoked by the server, if
 need be, by providing an expiry date or by signaling that records
 from a particular window need to be refreshed.

8.3. Avoiding server centralization

 [[OPEN ISSUE: explain potential and mitigations for server
 centralization]]

9. Protocol parametrization

 We provide a summary of the parameters that we use in the Privacy
 Pass protocol ecosystem. These parameters are informed by both
 privacy and security considerations that are highlighted in Section 7
 and Section 8, respectively. These parameters are intended as a
 single reference point for those implementing the protocol.

 Firstly, let U be the total number of users, I be the total number of
 servers. We let M be the total number of metadata bits that are
 allowed to be added by any given server. Assuming that each user

 accept tokens from a uniform sampling of all the possible servers, as
 a worst-case analysis, this segregates users into a total of 2^I
 buckets. As such, we see an exponential reduction in the size of the
 anonymity set for any given user. This allows us to specify the
 privacy constraints of the protocol below, relative to the setting of
 A.

 +--+------------------+
 | parameter | value |
 +==+==================+
 | Minimum anonymity set size (A) | 5000 |
 +--+------------------+
 | Recommended key lifetime (L) | 2 - 24 weeks |
 +--+------------------+
 | Recommended key rotation frequency (F) | L/2 |
 +--+------------------+
 | Maximum additional metadata bits (M) | 1 |
 +--+------------------+
 | Maximum allowed servers (I) | (log_2(U/A)-1)/2 |
 +--+------------------+
 | Maximum active issuance keys | 1 |
 +--+------------------+
 | Maximum active redemption keys | 2 |
 +--+------------------+
 | Minimum cryptographic security parameter | 128 bits |
 +--+------------------+

 Table 1

9.1. Justification

 We make the following assumptions in these parameter choices.

 * Inferring the identity of a user in a 5000-strong anonymity set is
 difficult.

 * After 2 weeks, all clients in a system will have rotated to the
 new key.

 In terms of additional metadata, the only concrete applications of
 Privacy Pass that use additional metadata require just a single bit.
 Therefore, we set the ceiling of permitted metadata to 1 bit for now,
 this may be revisited in future revisions.

 The maximum choice of I is based on the equation 1/2 * U/2^(2I) = A.
 This is derived from the fact that permitting I servers lead to 2^I
 segregations of the total user-base U. Moreover, if we permit M = 1,
 then this effectively halves the anonymity set for each server, and
 thus we incur a factor of 2I in the exponent. By reducing I, we
 limit the possibility of performing the attacks mentioned in

Section 7.

 We must also account for each user holding issued data for more then
 one possible active keys. While this may also be a vector for
 monitoring the access patterns of clients, it is likely to
 unavoidable that clients hold valid issuance data for the previous
 key epoch. This also means that the server can continue to verify
 redemption data for a previously used key. This makes the rotation
 period much smoother for clients.

 For privacy reasons, it is recommended that key epochs are chosen
 that limit clients to holding issuance data for a maximum of two
 keys. By choosing F = L/2 then the minimum value of F is a week,
 since the minimum recommended value of L is 2 weeks. Therefore, by
 the initial assumption, then all users should only have access to
 only two keys at any given time. This reduces the anonymity set by
 another half at most.

 Finally, the minimum security parameter size is related to the
 cryptographic security offered by the protocol that is run. This
 parameter corresponds to the number of operations that any adversary
 has in breaking one of the security guarantees in the Privacy Pass
 protocol [draft-davidson-pp-protocol].

9.2. Example parameterization

 Using the specification above, we can give some example
 parameterizations. For example, the current Privacy Pass browser
 extension [PPEXT] has nearly 300000 active users (from Chrome and
 Firefox). As a result, log_2(U/A) is approximately 6 and so the
 maximum value of I should be 3.

 If the value of U is much bigger (e.g. 5 million) then this would
 permit I = (log_2(5000000/5000)-1)/2 ~= 4 servers.

9.3. Allowing more servers

 Using the recommendations in Section 7.2.1, it is possible to
 tolerate larger number of servers if clients in the ecosystem ensure
 that they only store tokens for a small number of them. In
 particular, if clients limit their storage of redemption tokens to
 the bound implied by I, then prevents a malicious verifier from
 triggering redemptions for all servers in the ecosystem.

10. Extension integration policy

 The Privacy Pass protocol and ecosystem are both intended to be
 receptive to extensions that expand the current set of functionality.
 As specified in [draft-davidson-pp-protocol], all extensions to the
 Privacy Pass protocol SHOULD be specified as separate documents that
 modify the content of this document in some way. We provide guidance
 on the type of modifications that are possible in the following.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

 Any such extension should also come with a detailed analysis of the
 privacy impacts of the extension, why these impacts are justified,
 and guidelines on changes to the parametrization in Section 9.
 Similarly, extensions MAY also add new server running modes, if
 applicable, to those that are documented in Section 5.

 Any extension to the Privacy Pass protocol must adhere to the
 guidelines specified in Section 4 for managing server public key
 data.

11. Existing applications

 The following is a non-exhaustive list of applications that currently
 make use of the Privacy Pass protocol, or some variant of the
 underlying functionality.

11.1. Cloudflare challenge pages

 Cloudflare uses an implementation of the Privacy Pass protocol for
 allowing clients that have previously interacted with their Internet
 challenge protection system to bypass future challenges [PPSRV].
 These challenges can be expensive for clients, and there have been
 cases where bugs in the implementations can severely degrade client
 accessibility.

 Clients must install a browser extension [PPEXT] that acts as the
 Privacy Pass client in an exchange with Cloudflare's Privacy Pass
 server, when an initial challenge solution is provided. The client
 extension stores the issued tokens and presents a valid redemption
 token when it sees future Cloudflare challenges. If the redemption
 token is verified by the server, the client passes through the
 security mechanism without completing a challenge.

11.2. Trust Token API

 The Trust Token API [TrustTokenAPI] has been devised as a generic API
 for providing Privacy Pass functionality in the browser setting. The
 API is intended to be implemented directly into browsers so that
 server's can directly trigger the Privacy Pass workflow.

11.3. Zero-knowledge Access Passes

 The PrivateStorage API developed by Least Authority is a solution for
 uploading and storing end-to-end encrypted data in the cloud. A
 recent addition to the API [PrivateStorage] allows clients to
 generate Zero-knowledge Access Passes (ZKAPs) that the client can use
 to show that it has paid for the storage space that it is using. The
 ZKAP protocol is based heavily on the Privacy Pass redemption
 mechanism. The client receives ZKAPs when it pays for storage space,
 and redeems the passes when it interacts with the PrivateStorage API.

11.4. Basic Attention Tokens

 The browser Brave uses Basic Attention Tokens (BATs) to provide the
 basis for an anonymity-preserving rewards scheme [Brave]. The BATs
 are essentially Privacy Pass redemption tokens that are provided by a
 central Brave server when a client performs some action that triggers
 a reward event (such as watching an advertisement). When the client
 amasses BATs, it can redeem them with the Brave central server for
 rewards.

11.5. Token Based Services

 Similarly to BATs, a more generic approach for providing anonymous
 peers to purchase resources from anonymous servers has been proposed
 [OpenPrivacy]. The protocol is based on a variant of Privacy Pass
 and is intended to allow clients purchase (or pre-purchase) services
 such as message hosting, by using Privacy Pass redemption tokens as a
 form of currency. This is also similar to how ZKAPs are used.

12. References

12.1. Normative References

 [draft-davidson-pp-protocol]
 Davidson, A., "Privacy Pass: The Protocol", n.d.,
 <https://tools.ietf.org/html/draft-davidson-pp-protocol-

00>.

 [draft-svaldez-pp-http-api]
 Valdez, S., "Privacy Pass: HTTP API", n.d.,
 <https://github.com/alxdavids/privacy-pass-

ietf/tree/master/drafts/draft-svaldez-pp-http-api>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

12.2. Informative References

 [Brave] "Brave Rewards", n.d., <https://brave.com/brave-rewards/>.

 [OpenPrivacy]
 "Token Based Services - Differences from PrivacyPass",
 n.d., <https://openprivacy.ca/assets/towards-anonymous-

prepaid-services.pdf>.

 [PPEXT] "Privacy Pass Browser Extension", n.d.,
 <https://github.com/privacypass/challenge-bypass-

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://tools.ietf.org/html/draft-davidson-pp-protocol-00
https://tools.ietf.org/html/draft-davidson-pp-protocol-00
https://datatracker.ietf.org/doc/html/draft-svaldez-pp-http-api
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-svaldez-pp-http-api
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-svaldez-pp-http-api
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://brave.com/brave-rewards/
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://github.com/privacypass/challenge-bypass-extension

extension>.

 [PPSRV] Sullivan, N., "Cloudflare Supports Privacy Pass", n.d.,
 <https://blog.cloudflare.com/cloudflare-supports-privacy-

pass/>.

 [PrivateStorage]
 Steininger, L., "The Path from S4 to PrivateStorage",
 n.d., <https://medium.com/least-authority/the-path-from-

s4-to-privatestorage-ae9d4a10b2ae>.

 [TrustTokenAPI]
 Google, ., "Getting started with Trust Tokens", n.d.,
 <https://web.dev/trust-tokens/>.

Appendix A. Contributors

 * Alex Davidson (alex.davidson92@gmail.com)

 * Christopher Wood (caw@heapingbits.net)

Author's Address

 Alex Davidson
 LIP
 Lisbon
 Portugal

 Email: alex.davidson92@gmail.com

https://github.com/privacypass/challenge-bypass-extension
https://blog.cloudflare.com/cloudflare-supports-privacy-pass/
https://blog.cloudflare.com/cloudflare-supports-privacy-pass/
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://web.dev/trust-tokens/

