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1. Introduction

Privacy Pass is a protocol for authorization based on anonymous-

credential authentication mechanisms. Typical approaches for

authorizing clients, such as through the use of long-term cookies,

are not privacy-friendly since they allow servers to track clients

across sessions and interactions. Privacy Pass takes a different

approach: instead of presenting linkable state carrying information

to servers, e.g., whether or not the client is an authorized user or

has completed some prior challenge, clients present unlinkable

proofs that attest to this information.

The most basic Privacy Pass protocol provides a set of cross-origin

authorization tokens that protect the client's anonymity during

interactions with a server. This allows clients to communicate an
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attestation of a previously authenticated server action, without

having to reauthenticate manually. The tokens retain anonymity in

the sense that the act of revealing them cannot be linked back to

the session where they were initially issued.

At a high level, Privacy Pass is composed of two protocols: issuance

and redemption.

The issuance protocol runs between a Client and two network

functions in the Privacy Pass architecture: Attestation and

Issuance. These two network functions can be implemented by the same

protocol participant, but can also be implemented separately. The

Issuer is responsible for issuing tokens in response to requests

from Clients. The Attester is responsible for attesting properties

about the Client for which tokens are issued. The Issuer needs to be

trusted by the server that later redeems the token. Attestation can

be performed by the Issuer or by an Attester that is trusted by the

Issuer. Clients might prefer to select different Attesters, separate

from the Issuer, to be able to use preferred authentication methods

or improve privacy by not directly communicating with an Issuer.

Depending on the attestation, Attesters can store state about a

Client, such as the number of overall tokens issued thus far. As an

example of an Issuance protocol, in the original Privacy Pass

protocol [PPSRV], tokens were only issued to Clients that solved

CAPTCHAs. In this context, the Attester attested that some client

solved a CAPTCHA and the resulting token produced by the Issuer was

proof of this fact.

The redemption protocol runs between Client and Origin (server). It

allows Origins to challenge Clients to present one or more tokens

for authorization. Depending on the type of token, e.g., whether or

not it is cross-origin or per-origin, and whether or not it can be

cached, the Client either presents a previously obtained token or

invokes the issuance protocol to acquire one for authorization.

The issuance and redemption protocols operate in concert as shown in

the figure below.
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Figure 1: Privacy Pass Architectural Components

This document describes requirements for both issuance and

redemption protocols. This document also describes ecosystem

considerations that impact the stated privacy and security

guarantees of the protocol.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used throughout this document.

Client: An entity that seeks authorization to an Origin.

Origin: An entity that challenges Clients for tokens.

Issuer: An entity that issues tokens to Clients for properties

attested to by the Attester.

Attester: An entity that attests to properties of Client for the

purposes of token issuance.

3. Architecture

The Privacy Pass architecture consists of four logical entities --

Client, Origin, Issuer, and Attester -- that work in concert as

shown in Section 1 for token issuance and redemption. This section

describes the purpose of token issuance and redemption and the

requirements therein on the relevant participants.

      Origin          Client        Attester          Issuer

  /--------------------------------------------------------------------

  |                 /-----------------------------------------\

  |   Challenge ----> Attest --->                             |

  |                 | TokenRequest --------------->           |

  |   Redemption    |                              (validate) | Issuance

  |      Flow       |                              (evaluate) |   Flow

  |                 |     <-------------------  TokenResponse |

  |   <--- Response |                                         |

  |                 \-----------------------------------------/

  \--------------------------------------------------------------------
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3.1. Redemption Protocol

The redemption protocol is a simple challenge-response based

authorization protocol between Client and Origin. Origins prompt

Clients with a token challenge and, if possible, Clients present a

valid token for the challenge in response. The context in which an

Origin challenges a Client for a token is referred to as the

redemption context. This context includes all information associated

with the redemption event, such as the timestamp of the event,

Client visible information (including the IP address), and the

Origin name.

The challenge controls the type of token that the Origin will accept

for the given resource. As described in [HTTP-Authentication], there

are a number of ways in which the token may vary, including:

Issuance protocol. The token identifies the type of issuance

protocol required for producing the token. Different issuance

protocols have different security properties, e.g., some issuance

protocols may produce tokens that are publicly verifiable,

whereas others may not have this property.

Issuer identity. Tokens identify which issuers are trusted for a

given issuance protocol.

Interactive or non-interactive. Tokens can either be interactive

or not. An interactive token is one which requires a freshly

issued token based on the challenge, whereas a non-interactive

token can be issued proactively and cached for future use.

Per-origin or cross-origin. Tokens can be constrained to the

Origin for which the challenge originated, or can be used across

Origins.

Depending on the use case, Origins may need to maintain state to

track redeemed tokens. For example, Origins that accept non-

interactive, cross-origin tokens SHOULD track which tokens have been

redeemed already, since these tokens can be issued and then spent

multiple times in response to any such challenge. See Section 6.1

for discussion.

Origins that admit cross-origin tokens bear some risk of allowing

tokens issued for one Origin to be spent in an interaction with

another Origin. If tokens protected with resources are unique to a

single Origin, then said Origin MUST NOT admit cross-origin tokens

for authorization.
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3.2. Issuance Protocol

The issuance protocol embodies the core of Privacy Pass. It takes as

input a challenge from the redemption protocol and produces a token,

as shown in the figure below.

Figure 2: Issuance Overview

Clients interact with the Attester and Issuer to produce a token in

response to a challenge. The context in which an Attester vouches

for a Client during issuance is referred to as the attestation

context. This context includes all information associated with the

issuance event, such as the timestamp of the event and Client

visible information, including the IP address or other information

specific to the type of attestation done.

Each issuance protocol may be different, e.g., in the number and

types of participants, underlying cryptographic constructions used

when issuing tokens, and even privacy properties.

Clients initiate the Token issuance protocol using the challenge, a

randomly generated nonce, and public key for the Issuer. The Token

issuance protocol itself can be any interactive protocol between

Client, Issuer, or other parties that produces a valid authenticator

over the Client's input, subject to the following security

requirements.

Unconditional input secrecy. The issuance protocol MUST NOT

reveal anything about the Client's private input, including the

challenge and nonce, to the Attester or Issuer. The issuance

protocol can reveal the Issuer public key for the purposes of

determining which private key to use in producing the issuance

protocol. A result of this property is that the redemption flow

is unlinkable from the issuance flow.

One-more forgery security. The issuance protocol MUST NOT allow

malicious Clients or Attesters (acting as Clients) to forge

tokens without interacting with the Issuer directly.

¶

  Origin          Client        Attester          Issuer

                  +--------------------------------------\

    Challenge ----> TokenRequest --->                    |

                  |             (attest)                 |

                  |                TokenRequest --->     |

                  |                            (evaluate)|

                  |                   <--- TokenResponse |

      Token  <----+ TokenResponse <---                   |

                  |--------------------------------------/
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Concurrent security. The issuance protocol MUST be safe to run

concurrently with arbitrarily many Clients.

Each Issuance protocol MUST come with a detailed analysis of the

privacy impacts of the protocol, why these impacts are justified,

and guidelines on changes to the parametrization in Section 7.

The mechanism by which clients obtain the Issuer public key is not

specified. Clients may be configured with this key or they may

discover it via some other form. See [CONSISTENCY].

Depending on the use case, issuance may require some form of Client

anonymization service similar to an IP-hiding proxy so that Issuers

cannot learn information about Clients. This can be provided by an

explicit participant in the issuance protocol, or it can be provided

via external means, e.g., through the use of an IP-hiding proxy

service like Tor. In general, Clients SHOULD minimize or remove

identifying information where possible when invoking the issuance

protocol.

Issuers MUST NOT issue tokens for Clients through untrusted

Attesters. This is important because the Attester's role is to vouch

for trust in privacy-sensitive Client information, such as account

identifiers or IP address information, to the Issuer. Tokens

produced by an Issuer that admits issuance for any type of

attestation cannot be relied on for any specific property. See 

Section 3.2.1 for more details.

3.2.1. Attester Role

Attestation is an important part of the issuance protocol.

Attestation is the process by which an Attester bears witness to,

confirms, or authenticates a Client so as to verify a property about

the Client that is required for Issuance. Examples of attestation

properties include, though are not limited to:

Capable of solving a CAPTCHA. Clients that solve CAPTCHA

challenges can attest to this capability for the purposes of

being ruled out as a bot or otherwise automated Client.

Client state. Clients can be associated with state and the

attester can attest to this state. Examples of state include the

number of issuance protocol invocations, the client's geographic

region, and whether the client has a valid application-layer

account.

Trusted device. Some Clients run on trusted hardware that are

capable of producing device-level attestation statements.

3. 
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Each of these attestation types have different security properties.

For example, attesting to having a valid account is different from

attesting to be running on trusted hardware. In general, Attesters

should accept a limited form of attestation formats.

Each attestation format also has an impact on the overall system

privacy. For example, the number of users in possession of a single

class of trusted device might be lesser than the number of users

that can solve CAPTCHAs. Similarly, requiring a conjunction of

attestation types could decrease the overall anonymity set size. For

example, the number of Clients that have solved a CAPTCHA in the

past day, have a valid account, and are running on a trusted device

is lesser than the number of Clients that have solved a CAPTCHA in

the past day. Attesters should not admit attestation types that

result in small anonymity sets.

3.2.2. Issuer Role

Issuers MUST be uniquely identifiable by all Clients with a

consistent identifier. In a web context, this identifier might be

the Issuer host name. As discussed later in Section 5, ecosystems

that admit a large number of Issuers can lead to privacy concerns

for the Clients in the ecosystem. Therefore, in practice, the number

of Issuers should be bounded. The actual Issuers can be replaced

with different Issuers as long as the total never exceeds these

bounds. Moreover, Issuer replacements also have an effect on client

anonymity that is similar to when a key rotation occurs. See Section

5 for more details about maintaining privacy with multiple Issuers.

3.2.2.1. Key Management

To facilitate issuance, the Issuer MUST hold an Issuance key pair at

any given time. The Issuer public key MUST be made available to all

Clients in such a way that key rotations and other updates are

publicly visible. The key material and protocol configuration that

an Issuer uses to produce tokens corresponds to a number of

different pieces of information.

The issuance protocol in use; and

The public keys that are active for the Issuer.

The way that the Issuer publishes and maintains this information

impacts the effective privacy of the clients; see Section 5 for more

details. The fundamental requirement for key management and

discovery is that Issuers must be unable to target specific clients

¶
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with unique keys without detection. There are a number of ways in

which this might be implemented:

Servers use a verifiable, tamper-free registry from which clients

discover keys. Similar to related mechanisms and protocols such

as Certificate Transparency [RFC6962], this may require external

auditors or additional client behavior to ensure the registry

state is consistent for all clients.

Clients use an anonymity-preserving tool such as Tor to discover

keys from multiple network vantage points. This is done to ensure

consistent keys to seemingly different clients.

Clients embed Issuer keys into software.

As above, specific mechanisms for key management and discovery are

out of scope for this document.

3.2.2.2. Key Rotation

Token issuance associates all issued tokens with a particular choice

of key. If an Issuer issues tokens with many keys, then this may

harm the anonymity of the Client. For example, they would be able to

map the Client's access patterns by inspecting which key each token

they possess has been issued under.

To prevent against this, Issuers MUST only use one private key for

issuing tokens at any given time. Servers MAY use one or more keys

for redemption to allow Issuers for seamless key rotation.

Servers may rotate keys as a means of revoking tokens issued under

old or otherwise expired keys. Alternatively, Issuers may include

expiration information as metadata alongside the token; See Section

3.2.3 for more discussion about metadata constraints. Both

techniques are equivalent since they cryptographically bind

expiration to individual tokens.

Key rotations should be limited in frequency for similar reasons.

See Section 7 for guidelines on what frequency of key rotations are

permitted.

3.2.3. Metadata

Certain instantiations of the issuance protocol may permit public or

private metadata to be cryptographically bound to a token. As an

example, one trivial way to include public metadata is to assign a

unique issuer public key for each value of metadata, such that N

keys yields log2(N) bits of metadata. The total amount of metadata

bits included in a token is the sum of public and private metadata

bits. See Section 7 for discussion about metadata limits.

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶



Public metadata is that which clients can observe as part of the

token issuance flow. Public metadata can either be transparent or

opaque. For example, transparent public metadata is a value that the

client either generates itself, or the Issuer provides during the

issuance flow and the client can check for correctness. Opaque

public metadata is metadata the client can see but cannot check for

correctness. As an example, the opaque public metadata might be a

"fraud detection signal", computed on behalf of the Issuer, during

token issuance. In normal circumstances, clients cannot determine if

this value is correct or otherwise a tracking vector.

Private metadata is that which clients cannot observe as part of the

token issuance flow. Such instantiations may be built on the Private

Metadata Bit construction from Kreuter et al. [KLOR20] or the

attribute-based VOPRF from Huang et al. [HIJK21].

Metadata may also be arbitrarily long or bounded in length. The

amount of permitted metadata may be determined by application or by

the underlying cryptographic protocol.

3.2.4. Issuance Protocol Extensibility

The Privacy Pass protocol and ecosystem are both intended to be

receptive to extensions that expand the current set of

functionalities through new issuance protocols. Each issuance

protocol SHOULD come with a detailed analysis of the privacy impacts

of the extension, why these impacts are justified, and guidelines on

changes to the parametrization in Section 7. Any extension to the

Privacy Pass protocol MUST adhere to the guidelines specified in 

Section 3.2.2 for managing Issuer public key data.

4. Deployment Considerations

Client uses Privacy Pass to separate attestation context and

redemption context. Linking or combining these contexts can reveal

sensitive information about the Client, including their identity or

browsing history. Depending on the deployment model, separating

these contexts can take different forms. The Origin, Attester, and

Issuer portrayed in Figure 1 can be instantiated and deployed in a

number of different ways. This section covers some expected

deployment models and their corresponding security and privacy

considerations. The discussion below assumes non-collusion between

entities when operated by separate parties. Mechanisms for enforcing

non-collusion are out of scope for this architecture.

4.1. Shared Origin, Attester, Issuer

In this model, the Origin, Attester, and Issuer are all operated by

the same entity, as shown in the figure below.
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Figure 3: Shared Deployment Model

This model represents the initial deployment of Privacy Pass, as

described in [PPSRV]. In this model, the Attester, Issuer, and

Origin share the attestation and redemption contexts. As a result,

attestation mechanisms that can uniquely identify a Client, e.g.,

requiring that Clients authenticate with some type of application-

layer account, are not appropriate, as they could be used to learn

or reconstruct a Client's browsing history.

Attestation and redemption context unlinkability requires that these

events be separated over time, e.g., through the use of non-

interactive tokens that can be issued without a fresh Origin

challenge, or over space, e.g., through the use of an anonymizing

proxy when connecting to the Origin.

4.2. Joint Attester and Issuer

In this model, the Attester and Issuer are operated by the same

entity that is separate from the Origin, as shown in the figure

below.

                   +------------------------------------------+

      Client       |  Attester         Issuer         Origin  |

        |          |                                          |

        |          |          Challenge                       |

        <----------------------------------------------+      |

        |          | Attest                                   |

        +----------------->                                   |

        |          |     TokenRequest                         |

        +-------------------------------->                    |

        |          |     TokenResponse                        |

        <--------------------------------+                    |

        |          |          Redeem                          |

        +---------------------------------------------->      |

                   +------------------------------------------+

¶

¶
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Figure 4: Joint Attester and Issuer Deployment Model

This model is useful if an Origin wants to offload attestation and

issuance to a trusted entity. In this model, the Attester and Issuer

share attestation context for the Client, which can be separate from

the Origin's redemption context.

For certain types of issuance protocols, this model separates

attestation and redemption contexts. However, Issuance protocols

that require the Issuer to learn information about the Origin, such

as that which is described in [rate-limited], are not appropriate

since they could link attestation and redemption contexts through

the Origin name.

4.3. Joint Origin and Issuer

In this model, the Origin and Issuer are operated by the same

entity, separate from the Attester, as shown in the figure below.

                                                   +-----------+

      Client                                       |   Origin  |

        |                    Challenge             |           |

        <-----------------------------------------------+      |

        |                                          |           |

        |          +---------------------------+   |           |

        |          |  Attester         Issuer  |   |           |

        |          |                           |   |           |

        |          | Attest                    |   |           |

        +----------------->                    |   |           |

        |          |     TokenRequest          |   |           |

        +-------------------------------->     |   |           |

        |          |     TokenResponse         |   |           |

        <--------------------------------+     |   |           |

        |          +---------------------------+   |           |

        |                                          |           |

        |                    Redeem                |           |

        +----------------------------------------------->      |

                                                   |           |

                                                   +-----------+

¶

¶
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Figure 5: Joint Origin and Issuer Deployment Model

This model is useful for Origins that require Client-identifying

attestation, e.g., through the use of application-layer account

information, but do not otherwise want to learn information about

individual Clients beyond what is observed during the token

redemption, such as Client IP addresses.

In this model, attestation and redemption contexts are separate. As

a result, any type of attestation is suitable in this model.

Moreover, any type of token challenge is suitable assuming there is

more than one Origin involved, since no single party will have

access to the identifying Client information and unique Origin

information. If there is only a single Origin, then per-Origin

tokens are not appropriate in this model, since the Attester can

learn the redemption context. (Note, however, that the Attester does

not learn whether a token is per-Origin or cross-Origin.)

4.4. Split Origin, Attester, Issuer

In this model, the Origin, Attester, and Issuer are all operated by

different entities, as shown in the figure below.

                                    +--------------------------+

      Client                        |   Issuer         Origin  |

        |                Challenge  |                          |

        <-----------------------------------------------+      |

        |                           |                          |

        |          +-----------+    |                          |

        |          |  Attester |    |                          |

        |          |           |    |                          |

        |          | Attest    |    |                          |

        +----------------->    |    |                          |

        |          |           |    |                          |

        |          |     TokenRequest                          |

        +-------------------------------->                     |

        |          |           |    |                          |

        |          |     TokenResponse                         |

        <--------------------------------+                     |

        |          |           |    |                          |

        |          +-----------+    |                          |

        |                           |                          |

        |                 Redeem    |                          |

        +----------------------------------------------->      |

                                    +--------------------------+

¶
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Figure 6: Split Deployment Model

This is the most general deployment model, and is necessary for some

types of issuance protocols where the Attester plays a role in token

issuance; see [rate-limited] for one such type of issuance protocol.

In this model, the Attester, Issuer, and Origin have a separate view

of the Client: the Attester sees potentially sensitive Client

identifying information, such as account identifiers or IP

addresses, the Issuer sees only the information necessary for

Issuance, and the Origin sees token challenges, corresponding

tokens, and Client source information, such as their IP address. As

a result, attestation and redemption contexts are separate, and

therefore any type of token challenge is suitable in this model

assuming there is more than a single Origin. As in the Joint Origin

and Issuer model in Section 4.3, if there is only a single Origin,

then per-Origin tokens are not appropriate.

5. Privacy Considerations

Client uses Private Pass to separate attestation context and

redemption context. Depending on the deployment model, this can take

different forms. For example, any Client can only remain private

relative to the entire space of other Clients using the protocol.

Moreover, by owning tokens for a given set of keys, the Client's

                                                   +-----------+

      Client                                       |   Origin  |

        |                    Challenge             |           |

        <-----------------------------------------------+      |

        |                                          |           |

        |          +-----------+                   |           |

        |          |  Attester |                   |           |

        |          |           |                   |           |

        |          | Attest    |    +----------+   |           |

        +----------------->    |    |  Issuer  |   |           |

        |          |           |    |          |   |           |

        |          |     TokenRequest          |   |           |

        +-------------------------------->     |   |           |

        |          |           |    |          |   |           |

        |          |     TokenResponse         |   |           |

        <--------------------------------+     |   |           |

        |          |           |    |          |   |           |

        |          +-----------+    +----------+   |           |

        |                                          |           |

        |                    Redeem                |           |

        +----------------------------------------------->      |

                                                   |           |

                                                   +-----------+
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anonymity set shrinks to the total number of clients controlling

tokens for the same keys.

In the following, we consider the possible ways that Issuers can

leverage their position to try and reduce the anonymity sets that

Clients belong to (or, user segregation). For each case, we provide

mitigations that the Privacy Pass ecosystem must implement to

prevent these actions.

5.1. Metadata Privacy Implications

Any metadata bits of information can be used to further segment the

size of the Client's anonymity set. Any Issuer that wanted to track

a single Client could add a single metadata bit to Client tokens.

For the tracked Client it would set the bit to 1, and 0 otherwise.

Adding additional bits provides an exponential increase in tracking

granularity similarly to introducing more Issuers (though with more

potential targeting).

For this reason, the amount of metadata used by an Issuer in

creating redemption tokens must be taken into account -- together

with the bits of information that Issuer's may learn about Clients

otherwise. Since this metadata may be useful for practical

deployments of Privacy Pass, Issuers must balance this against the

reduction in Client privacy. In general, Issuers should permit no

more than 32 bits of metadata, as this can uniquely identify each

possible user. We discuss this more in Section 7.

5.2. Issuer Key Rotation

Techniques to introduce Client "segregation" can be used to reduce

Client anonymity. Such techniques are closely linked to the type of

key schedule that is used by the Issuer. When an Issuer rotates

their key, any Client that invokes the issuance protocol in this key

cycle will be part of a group of possible clients owning valid

tokens for this key. To mechanize this attack strategy, an Issuer

could introduce a key rotation policy that forces Clients into small

key cycles. Thus, reducing the size of the anonymity set for these

Clients.

Issuers SHOULD invoke key rotation for a period of time between 1

and 12 weeks. Key rotations represent a trade-off between Client

privacy and continued Issuer security. Therefore, it is still

important that key rotations occur on a regular cycle to reduce the

harmfulness of an Issuer key compromise.

With a large number of Clients, a minimum of one week gives a large

enough window for Clients to participate in the issuance protocol

and thus enjoy the anonymity guarantees of being part of a larger

group. A maximum of 12 weeks limits the damage caused by a key
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compromise. If an Issuer realizes that a key compromise has occurred

then the Issuer should generate a new key and make it available to

Clients. If possible, it should invoke any revocation procedures

that may apply for the old key.

5.3. Large Number of Issuers

Similarly to the Issuer rotation dynamic that is raised above, if

there are a large number of Issuers, and Origins accept all of them,

segregation can occur. For example, if Clients obtain tokens from

many Issuers, and Origins later challenge a Client for a token from

each Issuer, Origins can learn information about the Client. Each

per-Issuer token that a Client holds essentially corresponds to a

bit of information about the Client that Origin learn. Therefore,

there is an exponential loss in anonymity relative to the number of

Issuers that there are.

For example, if there are 32 Issuers, then Origins learn 32 bits of

information about the Client if a valid token is presented for each

one. If the distribution of Issuer trust is anything close to a

uniform distribution, then this is likely to uniquely identify any

Client amongst all other Internet users. Assuming a uniform

distribution is clearly the worst-case scenario, and unlikely to be

accurate, but it provides a stark warning against allowing too many

Issuers at any one time.

In cases where clients can hold tokens for all Issuers at any given

time, a strict bound SHOULD be applied to the active number of

Issuers in the ecosystem. We propose that allowing no more than 4

Issuers at any one time is highly preferable (leading to a maximum

of 64 possible user segregations). However, as highlighted in 

Section 7, having a very large user base (> 5 million users), could

potentially allow for larger values. Issuer replacements should only

occur with the same frequency as config rotations as they can lead

to similar losses in anonymity if clients still hold redemption

tokens for previously active Issuers.

In addition, we RECOMMEND that trusted registries indicate at all

times which Issuers are deemed to be active. If a Client is asked to

invoke any Privacy Pass exchange for an Issuer that is not declared

active, then the client SHOULD refuse to retrieve the Issuer public

key during the protocol.

5.3.1. Allowing More Issuers

The bounds on the numbers of Issuers that this document proposes

above are very restrictive. This is because this document considers

a situation where a Client could be challenged (and asked to redeem)

tokens for any Issuer.
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An alternative system is to ensure a robust strategy for ensuring

that Clients only possess redemption tokens for a similarly small

number of Issuers at any one time. This prevents a malicious

verifier from being able to invoke redemptions for many Issuers

since the Client would only be holding redemption tokens for a small

set of Issuers. When a Client is issued tokens from a new Issuer and

already has tokens from the maximum number of Issuers, it simply

deletes the oldest set of redemption tokens in storage and then

stores the newly acquired tokens.

For example, if Clients ensure that they only hold redemption tokens

for 4 Issuers, then this increases the potential size of the

anonymity sets that the Client belongs to. However, this doesn't

protect Clients completely as it would if only 4 Issuers were

permitted across the whole system. For example, these 4 Issuers

could be different for each Client. Therefore, the selection of

Issuers they possess tokens for is still revealing. Understanding

this trade-off is important in deciding the effective anonymity of

each Client in the system.

5.3.1.1. Redemption Partitions

Another option to allow a large number of Issuers in the ecosystem,

while preventing the joining of a number of different tokens is for

the Client to maintain sharded "redemption partitions". This would

allow the Client to redeem the tokens it wishes to use in a

particular context, while still allowing the Client to maintain a

large variety of tokens from many Issuers. Within a redemption

partition, the Client limits the number of different Issuers used to

a small number to maintain the privacy properties the Client

requires. As long as each redemption partition maintains a strong

privacy boundary with each other, the verifier will only be able to

learn a number of bits of information up to the limits within that

"redemption partitions".

To support this strategy, the client keeps track of a partition

which contains the set of Issuers that redemptions have been

attempted against. An empty redemption is returned when the limit

has been hit:
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6. Security Considerations

We present a number of security considerations that prevent

malicious Clients from abusing the protocol.

6.1. Double-spend Protection

When applicable for non-interactive tokens, all Origins SHOULD

implement a robust storage-query mechanism for checking that tokens

sent by clients have not been spent before. Such tokens only need to

be checked for each Origin individually. But all Origins must

perform global double-spend checks to avoid clients from exploiting

the possibility of spending tokens more than once against

distributed token checking systems. For the same reason, the global

data storage must have quick update times. While an update is

occurring it may be possible for a malicious client to spend a token

more than once.

6.2. Token Exhaustion

When a Client holds tokens for an Issuer, it is possible for any

verifier to invoke that client to redeem tokens for that Issuer.

This can lead to an attack where a malicious verifier can force a

  Client(partition, issuer)                     Issuer(skS, pkS)

  ------------------------------------------------------------

  if issuer not in partition {

    if partition.length > REDEEM_LIMIT {

      Output {}

      return

    }

    partition.push(issuer)

  }

  token = store[issuer.id].pop()

  req = Redeem(token, info)

                               req

                        ------------------>

                               if (dsIdx.includes(req.data)) {

                                 raise ERR_DOUBLE_SPEND

                               }

                               resp = Verify(pkS, skS, req)

                               if resp.success {

                                 dsIdx.push(req.data)

                               }

                                resp

                        <------------------

  Output resp
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Client to spend all of their tokens from a given Issuer. To prevent

this from happening, tokens can be scoped to single Origins such

that they can only be redeemed within for a single Origin.

If tokens are cross-Origin, Clients should use alternate methods to

prevent many tokens from being redeemed at once. For example, if the

Origin requests an excess of tokens, the Client could choose to not

present any tokens for verification if a redemption had already

occurred in a given time window.

7. Protocol Parameterization

This section provides a summary of the parameters used in the

Privacy Pass protocol ecosystem. These parameters are informed by

both privacy and security considerations that are highlighted in 

Section 5 and Section 6, respectively. These parameters are intended

as a single reference point for those implementing the protocol.

Firstly, let U be the total number of Clients (or users), I be the

total number of Issuers. We let M be the total number of metadata

bits that are allowed to be added by any given Issuer. Assuming that

each user accept tokens from a uniform sampling of all the possible

Issuers, as a worst-case analysis, this segregates Clients into a

total of 2^I buckets. As such, we see an exponential reduction in

the size of the anonymity set for any given user. This allows us to

specify the privacy constraints of the protocol below, relative to

the setting of A.

parameter value

Minimum anonymity set size (A) 5000

Recommended key lifetime (L) 2 - 24 weeks

Recommended key rotation frequency (F) L/2

Maximum additional metadata bits (M) 1

Maximum allowed Issuers (I) (log_2(U/A)-1)/2

Maximum active issuance keys 1

Maximum active redemption keys 2

Minimum cryptographic security parameter 128 bits

Table 1

7.1. Justification

We make the following assumptions in these parameter choices.

Inferring the identity of a user in a 5000-strong anonymity set

is difficult.

After 2 weeks, all Clients in a system will have rotated to the

new key.
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In terms of additional metadata, the only concrete applications of

Privacy Pass that use additional metadata require just a single bit.

Therefore, we set the ceiling of permitted metadata to 1 bit for

now, this may be revisited in future revisions.

The maximum choice of I is based on the equation 1/2 * U/2^(2I) = A.

This is derived from the fact that permitting I Issuers lead to 2^I

segregations of the total user-base U. Moreover, if we permit M = 1,

then this effectively halves the anonymity set for each Issuer, and

thus we incur a factor of 2I in the exponent. By reducing I, we

limit the possibility of performing the attacks mentioned in Section

5.

We must also account for each user holding issued data for more then

one possible active keys. While this may also be a vector for

monitoring the access patterns of Clients, it is likely to

unavoidable that Clients hold valid issuance data for the previous

key epoch. This also means that the Issuer can continue to verify

redemption data for a previously used key. This makes the rotation

period much smoother for Clients.

For privacy reasons, it is recommended that key epochs are chosen

that limit Clients to holding issuance data for a maximum of two

keys. By choosing F = L/2 then the minimum value of F is a week,

since the minimum recommended value of L is 2 weeks. Therefore, by

the initial assumption, then all users should only have access to

only two keys at any given time. This reduces the anonymity set by

another half at most.

Finally, the minimum security parameter size is related to the

cryptographic security offered by the protocol that is run. This

parameter corresponds to the number of operations that any adversary

has in breaking one of the security guarantees in the Privacy Pass

protocol [I-D.ietf-privacypass-protocol].

7.2. Example parameterization

Using the specification above, we can give some example

parameterizations. For example, the current Privacy Pass browser

extension [PPEXT] has nearly 300000 active users (from Chrome and

Firefox). As a result, log_2(U/A) is approximately 6 and so the

maximum value of I should be 3.

If the value of U is much bigger (e.g. 5 million) then this would

permit I = (log_2(5000000/5000)-1)/2 ~= 4 Issuers.

7.3. Allowing more Issuers

Using the recommendations in Section 5.3.1, it is possible to

tolerate larger number of Issuers if Clients in the ecosystem ensure
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[HTTP-Authentication]

[RFC2119]

[RFC8174]

[RFC8446]

[CONSISTENCY]

[HIJK21]

[I-D.ietf-privacypass-protocol]

that they only store tokens for a small number of them. In

particular, if Clients limit their storage of redemption tokens to

the bound implied by I, then prevents a malicious verifier from

triggering redemptions for all Issuers in the ecosystem.
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