
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-privacypass-auth-scheme-04

Published: 6 July 2022

Intended Status: Standards Track

Expires: 7 January 2023

Authors: T. Pauly

Apple Inc.

S. Valdez

Google LLC

C. A. Wood

Cloudflare

The Privacy Pass HTTP Authentication Scheme

Abstract

This document defines an HTTP authentication scheme that can be used

by clients to redeem Privacy Pass tokens with an origin. It can also

be used by origins to challenge clients to present an acceptable

Privacy Pass token.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

2. HTTP Authentication Scheme

2.1. Token Challenge

2.1.1. Redemption Context Construction

2.1.2. Token Caching

2.2. Token Redemption

3. User Interaction

4. Security Considerations

5. IANA Considerations

5.1. Authentication Scheme

5.2. Token Type Registry

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Test Vectors

Authors' Addresses

1. Introduction

Privacy Pass tokens are unlinkable authenticators that can be used

to anonymously authorize a client (see [ARCHITECTURE]). A client

possessing such a token is able to prove that it was able to get a

token issued by a token issuer -- based on some check from a token

issuer, such as authentication or solving a CAPTCHA -- without

allowing the relying party redeeming the client's token (the origin)

to link it with issuance flow.

Different types of authenticators, using different token issuance

protocols, can be used as Privacy Pass tokens.

This document defines a common HTTP authentication scheme

([RFC7235]), PrivateToken, that allows clients to redeem various

kinds of Privacy Pass tokens.

Clients and relying parties interact using this scheme to perform

the token challenge and token redemption flow. Clients use a token

issuance protocol to actually fetch tokens to redeem.

¶

¶

¶

¶

Figure 1: Token Architectural Components

In addition to working with different token issuance protocols, this

scheme supports optionally associating tokens with origin-chosen

contexts and specific origin names. Relying parties that request and

redeem tokens can choose a specific kind of token, as appropriate

for its use case. These options allow for different deployment

models to prevent double-spending, and allow for both interactive

(online challenges) and non-interactive (pre-fetched) tokens.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Unless otherwise specified, this document encodes protocol messages

in TLS notation from [TLS13], Section 3.

This document uses the terms "Client", "Origin", "Issuer", "Issuance

Protocol", and "Token" as defined in [ARCHITECTURE]. It additionally

uses the following terms in more specific ways:

Issuer key: Keying material that can be used with an issuance

protocol to create a signed token.

Token challenge: A requirement for tokens sent from an origin to

a client, using the "WWW-Authenticate" HTTP header. This

challenge is bound to a specific token issuer and issuance

protocol, and may be additionally bound to a specific context or

origin name.

Token redemption: An action by which a client presents a token to

an origin, using the "Authorization" HTTP header.

 Client Relying Party (Origin)

 <------------------------------ Challenge \

 |

+----------------------------------\ |

| | |

| Issuance Protocol | |

| | |

+----------------------------------/ |

 |

 Redemption -------------------------- > /

¶

¶

¶

¶

*

¶

*

¶

*

¶

2. HTTP Authentication Scheme

Token redemption is performed using HTTP Authentication ([RFC7235]),

with the scheme "PrivateToken". Origins challenge clients to present

a token from a specific issuer (Section 2.1). Once a client has

received a token from that issuer, or already has a valid token

available, it presents the token to the origin (Section 2.2).

2.1. Token Challenge

Origins send a token challenge to clients in an "WWW-Authenticate"

header with the "PrivateToken" scheme. This challenge includes a

TokenChallenge message, along with information about what keys to

use when requesting a token from the issuer.

Origins that support this authentication scheme need to handle the

following tasks:

Select which issuer to use, and configure the issuer name and

token-key to include in WWW-Authenticate challenges.

Determine a redemption context construction to include in the

TokenChallenge, as discussed in Section 2.1.1.

Select the origin information to include in the TokenChallenge.

This can be empty to allow fully cross-origin tokens, a single

origin name that matches the origin itself, or a list of origin

names containing the origin.

The TokenChallenge message has the following structure:

The structure fields are defined as follows:

"token_type" is a 2-octet integer, in network byte order. This

type indicates the issuance protocol used to generate the token.

Values are registered in an IANA registry, Section 5.2.

Challenges with unsupported token_type values MUST be ignored.

"issuer_name" is a string containing the name of the issuer. This

is a hostname that is used to identify the issuer that is allowed

to issue tokens that can be redeemed by this origin. The string

is prefixed with a 2-octet integer indicating the length, in

network byte order.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

struct {

 uint16_t token_type;

 opaque issuer_name<1..2^16-1>;

 opaque redemption_context<0..32>;

 opaque origin_info<0..2^16-1>;

} TokenChallenge;

¶

¶

*

¶

*

¶

"redemption_context" is an optional field. If present, it allows

the origin to require that clients fetch tokens bound to a

specific context, as opposed to reusing tokens that were fetched

for other contexts. See Section 2.1.1 for example contexts that

might be useful in practice. When present, this value is a 32-

byte context generated by the origin. Valid lengths for this

field are either 0 or 32 bytes. The field is prefixed with a

single octet indicating the length. Challenges with

redemption_context values of invalid lengths MUST be ignored.

"origin_info" is an optional string containing one or more origin

names, which allows a token to be scoped to a specific set of

origins. The string is prefixed with a 2-octet integer indicating

the length, in network byte order. If empty, any non-origin-

specific token can be redeemed. If the string contains multiple

origin names, they are delimited with commas "," without any

whitespace.

When used in an authentication challenge, the "PrivateToken" scheme

uses the following attributes:

"challenge", which contains a base64url-encoded [RFC4648]

TokenChallenge value. Since the length of the challenge is not

fixed, the base64url data MUST include padding. This MUST be

unique for every 401 HTTP response to prevent replay attacks.

This attribute is required for all challenges.

"token-key", which contains a base64url encoding of the public

key for use with the issuance protocol indicated by the

challenge. Since the length of the key is not fixed, the

base64url data MUST include padding. This attribute MAY be

omitted in deployments where clients are able to retrieve the

issuer key using an out-of-band mechanism.

"max-age", an optional attribute that consists of the number of

seconds for which the challenge will be accepted by the origin.

Clients can ignore the challenge if the token-key is invalid or

otherwise untrusted.

The header MAY also include the standard "realm" attribute, if

desired. Issuance protocols MAY require other attributes.

As an example, the WWW-Authenticate header could look like this:

Upon receipt of this challenge, a client uses the message and keys

in the issuance protocol indicated by the token_type. If the

TokenChallenge has a token_type the client does not recognize or

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

WWW-Authenticate: PrivateToken challenge=abc..., token-key=123...¶

support, it MUST NOT parse or respond to the challenge. If the

TokenChallenge contains a non-empty origin_info field, the client

MUST validate that the name of the origin that issued the

authentication challenge is included in the list of origin names.

Clients MAY have further restrictions and requirements around

validating when a challenge is considered acceptable or valid. For

example, clients can choose to reject challenges that list origin

names for which current connection is not authoritative (according

to the TLS certificate).

Caching and pre-fetching of tokens is discussed in Section 2.1.2.

Note that it is possible for the WWW-Authenticate header to include

multiple challenges. This allows the origin to indicate support for

different token types, issuers, or to include multiple redemption

contexts. For example, the WWW-Authenticate header could look like

this:

Origins should only include challenges for different types of

issuance protocols with functionally equivalent properties. For

instance, both issuance protocols in [ISSUANCE] have the same

functional properties, albeit with different mechanisms for

verifying the resulting tokens during redemption. Since clients are

free to choose which challenge they want to consume when presented

with options, mixing multiple challenges with different functional

properties for one use case is nonsensical.

2.1.1. Redemption Context Construction

The TokenChallenge redemption context allows the origin to determine

the context in which a given token can be redeemed. This value can

be a unique per-request nonce, constructed from 32 freshly generated

random bytes. It can also represent state or properties of the

client session. Some example properties and methods for constructing

the corresponding context are below. This list is not exhaustive.

Context bound to a given time window: Construct redemption

context as SHA256(current time window).

Context bound to a client location: Construct redemption context

as SHA256(client IP address prefix).

Context bound to a given time window and location: Construct

redemption context as SHA256(current time window, client IP

address prefix).

¶

¶

¶

WWW-Authenticate: PrivateToken challenge=abc..., token-key=123...,

PrivateToken challenge=def..., token-key=234...

¶

¶

¶

*

¶

*

¶

*

¶

An empty redemption context is not bound to any property of the

client session. Preventing double spending on tokens requires the

origin to keep state associated with the redemption context. The

size of this state varies based on the size of the redemption

context. For example, double spend state for unique, per-request

redemption contexts does only needs to exist within the scope of the

request connection or session. In contrast, double spend state for

empty redemption contexts must be stored and shared across all

requests until token-key expiration or rotation.

Origins that share redemption contexts, i.e., by using the same

redemption context, choosing the same issuer, and providing the same

origin_info field in the TokenChallenge, must necessarily share

state required to enforce double spend prevention. Origins should

consider the operational complexity of this shared state before

choosing to share redemption contexts. Failure to successfully

synchronize this state and use it for double spend prevention can

allow Clients to redeem tokens to one Origin that were issued after

an interaction with another Origin that shares the context.

2.1.2. Token Caching

Clients can generate multiple tokens from a single TokenChallenge,

and cache them for future use. This improves privacy by separating

the time of token issuance from the time of token redemption, and

also allows clients to avoid any overhead of receiving new tokens

via the issuance protocol.

Cached tokens can only be redeemed when they match all of the fields

in the TokenChallenge: token_type, issuer_name, redemption_context,

and origin_info. Clients ought to store cached tokens based on all

of these fields, to avoid trying to redeem a token that does not

match. Note that each token has a unique client nonce, which is sent

in token redemption (Section 2.2).

If a client fetches a batch of multiple tokens for future use that

are bound to a specific redemption context (the redemption_context

in the TokenChallenge was not empty), clients SHOULD discard these

tokens upon flushing state such as HTTP cookies [COOKIES], or

changing networks. Using these tokens in a context that otherwise

would not be linkable to the original context could allow the origin

to recognize a client.

2.2. Token Redemption

The output of the issuance protocol is a token that corresponds to

the origin's challenge (see Section 2.1). A token is a structure

that begins with a two-octet field that indicates a token type,

which MUST match the token_type in the TokenChallenge structure.

¶

¶

¶

¶

¶

¶

The structure fields are defined as follows:

"token_type" is a 2-octet integer, in network byte order. This

value must match the value in the challenge (Section 2.1).

"nonce" is a 32-octet message containing a client-generated

random nonce.

"challenge_digest" is a 32-octet message containing the hash of

the original TokenChallenge, SHA256(TokenChallenge).

"token_key_id" is an Nid-octet identifier for the the token

authentication key. The value of this field is defined by the

token_type and corresponding issuance protocol.

"authenticator" is a Nk-octet authenticator that covers the

preceding fields in the token. The value of this field is defined

by the token_type and corresponding issuance protocol.

The authenticator value in the Token structure is computed over the

token_type, nonce, context, and token_key_id fields.

When used for client authorization, the "PrivateToken"

authentication scheme defines one parameter, "token", which contains

the base64url-encoded Token struct. Since the length of the Token

struct is not fixed, the base64url data MUST include padding. All

unknown or unsupported parameters to "PrivateToken" authentication

credentials MUST be ignored.

Clients present this Token structure to origins in a new HTTP

request using the Authorization header as follows:

For token types that support public verifiability, origins verify

the token authenticator using the public key of the issuer, and

validate that the signed message matches the concatenation of the

client nonce and the hash of a valid TokenChallenge. For context-

bound tokens, origins store or reconstruct the contexts of previous

TokenChallenge structures in order to validate the token. A

TokenChallenge MAY be bound to a specific HTTP session with client,

but origins can also accept tokens for valid challenges in new

struct {

 uint16_t token_type;

 uint8_t nonce[32];

 uint8_t challenge_digest[32];

 uint8_t token_key_id[Nid];

 uint8_t authenticator[Nk];

} Token;

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Authorization: PrivateToken token=abc...¶

sessions. Origins SHOULD implement some form of double-spend

prevention that prevents a token with the same nonce from being

redeemed twice. This prevents clients from "replaying" tokens for

previous challenges. For context-bound tokens, this double-spend

prevention can require no state or minimal state, since the context

can be used to verify token uniqueness.

If a client is unable to fetch a token, it MUST react to the

challenge as if it could not produce a valid Authorization response.

3. User Interaction

When used in contexts like websites, origins that challenge clients

for tokens need to consider how to optimize their interaction model

to ensure a good user experience.

Tokens challenges can be performed without explicit user

involvement, depending on the issuance protocol. If tokens are

scoped to a specific origin, there is no need for per-challenge user

interaction. Note that the issuance protocol may separately involve

user interaction if the client needs to be newly validated.

If a client cannot use cached tokens to respond to a challenge

(either because it has run out of cached tokens or the associated

context is unique), the token issuance process can add user-

perceivable latency. Origins need not block useful work on token

authentication. Instead, token authentication can be used in similar

ways to CAPTCHA validation today, but without the need for user

interaction. If issuance is taking a long time, a website could show

an indicator that it is waiting, or fall back to another method of

user validation.

An origin MUST NOT use more than one redemption context value for a

given token type and issuer per client request. If an origin issues

a large number of challenges with unique contexts, such as more than

once for each request, this can indicate that the origin is either

not functioning correctly or is trying to attack or overload the

client or issuance server. In such cases, a client MUST ignore

redundant token challenges for the same request and SHOULD alert the

user if possible.

Origins MAY include multiple challenges, where each challenge refers

to a different issuer or a different token type, to allow clients to

choose a preferred issuer or type.

4. Security Considerations

The security properties of token challenges vary depending on

whether the challenge contains a redemption context or not, as well

as whether the challenge is per-origin or not. For example, cross-

¶

¶

¶

¶

¶

¶

¶

origin tokens with empty contexts can be replayed from one party by

another, as shown below.

Figure 2: Token Architectural Components

Token challenges that include non-empty origin_info bind tokens to

one or more specific origins. As described in Section 2.1, clients

only accept such challenges from origin names listed in the

origin_info string. Even if multiple origins are listed, a token can

only be redeemed for an origin if the challenge has an exact match

for the origin_info. For example, if "a.example.com" issues a

challenge with an origin_info string of

"a.example.com,b.example.com", a client could redeem a token fetched

for this challenge if and only if "b.example.com" also included an

origin_info string of "a.example.com,b.example.com". On the other

hand, if "b.example.com" had an origin_info string of

"b.example.com" or "b.example.com,a.example.com" or

"a.example.com,b.example.com,c.example.com", the string would not

match and the client would need to use a different token.

Context-bound token challenges require clients to obtain matching

tokens when challenged, rather than presenting a token that was

obtained from a different context in the past. This can make it more

likely that issuance and redemption events will occur at

approximately the same time. For example, if a client is challenged

for a token with a unique context at time T1 and then subsequently

obtains a token at time T2, a colluding issuer and origin can link

this to the same client if T2 is unique to the client. This

linkability is less feasible as the number of issuance events at

time T2 increases. Depending on the "max-age" token challenge

attribute, clients MAY try to augment the time between getting

challenged then redeeming a token so as to make this sort of

linkability more difficult. For more discussion on correlation risks

between token issuance and redemption, see [I-D.ietf-privacypass-

architecture].

As discussed in Section 2.1, clients SHOULD discard any context-

bound tokens upon flushing cookies or changing networks, to prevent

¶

 Client Attacker Origin

 <----------- Challenge \

 |

 <--------- Challenge |

 |

 Redemption ----> |

 |

 Redemption ----------> /

¶

¶

an origin using the redemption context state as a cookie to

recognize clients.

Applications SHOULD constrain tokens to a single origin unless the

use case can accommodate such replay attacks.

All random values in the challenge and token MUST be generated using

a cryptographically secure source of randomness.

5. IANA Considerations

5.1. Authentication Scheme

This document registers the "PrivateToken" authentication scheme in

the "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" established by [RFC7235].

Authentication Scheme Name: PrivateToken

Pointer to specification text: Section 2 of this document

5.2. Token Type Registry

The "Token Type" registry lists identifiers for issuance protocols

defined for use with the Privacy Pass token authentication scheme.

These identifiers are two-byte values, so the maximum possible value

is 0xFFFF = 65535.

Template:

Value: The two-byte identifier for the algorithm

Name: Name of the issuance protocol

Publicly Verifiable: A Y/N value indicating if the output tokens

are publicly verifiable

Public Metadata: A Y/N value indicating if the output tokens can

contain public metadata.

Private Metadata: A Y/N value indicating if the output tokens can

contain private metadata.

Nk: The length in bytes of an output authenticator

Nid: The length of the token key identifier

Reference: Where this algorithm is defined

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

This document defines several Reserved values, which can be used by

clients and servers to send "greased" values in token challenges and

responses to ensure that implementations remain able to handle

unknown token types gracefully (this technique is inspired by

[RFC8701]). Implemenations SHOULD select reserved values at random

when including them in greased messages. Servers can include these

in TokenChallenge structures, either as the only challenge when no

real token type is desired, or as one challenge in a list of

challenges that include real values. Clients can include these in

Token structures when they are not able to present a real token

response. The contents of the Token structure SHOULD be filled with

random bytes when using greased values.

The initial contents for this registry are defined in the table

below.

Value Name
Publicly

Verifiable

Public

Metadata

Private

Metadata
Nk Nid Reference

0x0000 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x02AA RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x1132 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x2E96 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x3CD3 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x4473 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x5A63 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x6D32 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x7F3F RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x8D07 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0x916B RESERVED N/A N/A N/A
N/

A
N/A

This

document

0xA6A4 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0xBEAB RESERVED N/A N/A N/A
N/

A
N/A

This

document

0xC3F3 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0xDA42 RESERVED N/A N/A N/A N/A

¶

¶

[RFC2119]

[RFC4648]

[RFC7235]

[RFC8174]

[TLS13]

[ARCHITECTURE]

[COOKIES]

Value Name
Publicly

Verifiable

Public

Metadata

Private

Metadata
Nk Nid Reference

N/

A

This

document

0xE944 RESERVED N/A N/A N/A
N/

A
N/A

This

document

0xF057 RESERVED N/A N/A N/A
N/

A
N/A

This

document

Table 1: Token Types

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/rfc/rfc7235>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

6.2. Informative References

Davidson, A., Iyengar, J., and C. A. Wood, "Privacy

Pass Architectural Framework", Work in Progress,

Internet-Draft, draft-ietf-privacypass-architecture-04, 1

July 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-privacypass-architecture-04>.

Chen, L., Englehardt, S., West, M., and J. Wilander,

"Cookies: HTTP State Management Mechanism", Work in

Progress, Internet-Draft, draft-ietf-httpbis-

rfc6265bis-10, 24 April 2022, <https://

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-10

[I-D.ietf-privacypass-architecture]

[ISSUANCE]

[RFC8701]

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

rfc6265bis-10>.

Davidson, A., Iyengar, J., and

C. A. Wood, "Privacy Pass Architectural Framework", Work

in Progress, Internet-Draft, draft-ietf-privacypass-

architecture-04, 1 July 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-privacypass-

architecture-04>.

Celi, S., Davidson, A., Faz-Hernandez, A., Valdez, S.,

and C. A. Wood, "Privacy Pass Issuance Protocol", Work in

Progress, Internet-Draft, draft-ietf-privacypass-

protocol-05, 1 July 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-privacypass-protocol-05>.

Benjamin, D., "Applying Generate Random Extensions And

Sustain Extensibility (GREASE) to TLS Extensibility", RFC

8701, DOI 10.17487/RFC8701, January 2020, <https://

www.rfc-editor.org/rfc/rfc8701>.

Appendix A. Test Vectors

This section includes test vectors for the challenge and redemption

functionalities described in Section 2.1 and Section 2.2. Each test

vector lists the following values:

token_type: The type of token issuance protocol, a value from

Section 5.2. For these test vectors, token_type is 0x0002,

corresponding to the issuance protocol in [ISSUANCE].

issuer_name: The name of the issuer in the TokenChallenge

structure, represented as a hexadecimal string.

redemption_context: The redemption context in the TokenChallenge

structure, represented as a hexadecimal string.

origin_info: The origin info in the TokenChallenge structure,

represented as a hexadecimal string.

nonce: The nonce in the Token structure, represented as a

hexadecimal string.

token_key: The public token-key, encoded based on the

corresponding token type, represented as a hexadecimal string.

token_authenticator_input: The values in the Token structure used

to compute the Token authenticator value, represented as a

hexadecimal string.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-10
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-05
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-05
https://www.rfc-editor.org/rfc/rfc8701
https://www.rfc-editor.org/rfc/rfc8701

token_authenticator: The output Token authenticator which

verifies under token_key, represented as a hexadecimal string.

Test vectors are provided for each of the following TokenChallenge

configurations:

TokenChallenge with a single origin and non-empty redemption

context

TokenChallenge with a single origin and empty redemption context

TokenChallenge with an empty origin and redemption context

TokenChallenge with an empty origin and redemption context

TokenChallenge with an empty origin and non-empty redemption

context

TokenChallenge with a multiple origins and non-empty redemption

context

These test vectors are below.

*

¶

¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

¶

token_type: 2

issuer_name: 6973737565722e6578616d706c65

redemption_context:

40ff3cdc296a1e823f43b49355df1a2ee4c5f65e5d38ebb3e24ecf4d874997c6

origin_info: 6f726967696e2e6578616d706c65

nonce: 4437fb872eab95b5831a5d01005ee2995e417862ecfd2079ee4c246859a060ae

token_key: 30820252303d06092a864886f70d01010a3030a00d300b060960864801650

3040202a11a301806092a864886f70d010108300b0609608648016503040202a20302013

00382020f003082020a0282020100d730ce8b3ec7336b48a4f5897564d87c87627298f21

ba4bf34e7931142875c0e52c5aef3222d67e86124403e436d0136ebd806de37730427f81

4f7f0485eace93015471d14e56f3824e8bc5fbe44cf67e241c7642ac3a39452a283ff806

84ddbd66929a371d01e50feef1faee7f63f3ceb4b5ceacb939e06a558c2a6bccfd96fb74

16d3edce151bc7b0a6582f0ce99a7c0e7d5793b13d41292105e510e1aa00e082975a1386

6dfaf3a0a51c0dd1ecb64cc55cc607ca1813b5f91fd8e9cb9db18ffd81ac985a6cfdd5cc

2a0b8a5e4e9fa1ea5f149c1662155bb071c95218cae9ae4af613351baf470b1597bb984c

5ea8326f98aff64f72b60bcd035f6b970eb6edd2f9f2180d5aa8a17ed400056af3faa520

4b73c89b4eada6a057dd3dda9d8e18b3a6d2347c1027e2711f21eb7d96fef50cc3dacb2f

5ccc36e4c138ab75953974ade74982f85b91f419654d390378e2ea5aae33f1b4acf534d0

6de2f114acfdd88d6d708f4d2b646a8112b0fe181489916e2ba5c634cdf9b95762d1e120

169482dd27f959132705079fc4a00eee1f353a81c1e810ade20d070d839277169e09150c

08605afe7cea2aec41d2f85c2af7bef5d577343b4385e2c6c159926c1c8267d00433b88b

ad314a5ddcef58936126f1dd8da7b5728da192f54b304e60f4088e5b0620404f82a5939d

975e6714453a533c172c8a9b4b5da976ea60a5aa91fef0203010001

token_authenticator_input: 00024437fb872eab95b5831a5d01005ee2995e417862e

cfd2079ee4c246859a060ae055038620bd58190f057b86af2883352fd9ec612487979b00

74a489aece337e79f9293b4d62e4b4759af064df8fa5759c79ab51a00f692541b26d466d

ab48091

token_authenticator: 9c2fc25cb429a7cfe6e21193b6122ffe18c2c09c1df10dfea3d

155c297ce3f4132d273bf2ad490c41e592219bb253378c21215657905fe713aca31f6ab7

1206c1c872210c71d53a8d9b3ee635cf22c47d518454f9f5a898218ed7aae78414e9d85f

4a62244babdb63accc1257f1f1824493549465a3c63d69e9e307a328121402022a4f1aea

a7e6ff46edf4884b5ab47531b8c949a225a9f5a9c1b7608af0641c2070533402683e6f86

d547b6083d6cfa2a985f4673bf46ae09864d31613acd5a7d61dae7a29133e37093baabe1

20e59714d662162324406403c1fb44312b03c509202041a44dc351ea3659d446ea024e96

23b522171d9af0c8ac81f8a6a0018cb049bda21d12c9783ae6f7057144f8d26699d20f19

023269256ff607ca1ab37b0d95704aa0299e64b3b823c148ff8c46e835c7060dbb3c247e

6034892b3f6b7401fb67366e8afe8267182d6f36bf3618712371e6ae4654c0897f7475d3

9e9c186189162e29a9d8b3e37860457843a1c2fa3cacc133bdb8c7f77aae0ea3a5649300

35a7689f3a24ea726d4506d19f0b1aedb8739cb3fe7177cfaed08c8902162ed530ef19a0

266ca61a1a0b1bfc329fd2d1c1ad307a32f531f5be6faf75d96a49020acca8e37a4cb55f

f4072916711c397daf5bcbd229132b47d10b16f646d1d675cdf58c6f057333b1cbb94b2d

c44320cd2e9cba6f1c33a708ae1bb97f0739a

token_type: 2

issuer_name: 6973737565722e6578616d706c65

redemption_context:

origin_info: 6f726967696e2e6578616d706c65

nonce: 4437fb872eab95b5831a5d01005ee2995e417862ecfd2079ee4c246859a060ae

token_key: 30820252303d06092a864886f70d01010a3030a00d300b060960864801650

3040202a11a301806092a864886f70d010108300b0609608648016503040202a20302013

00382020f003082020a0282020100d730ce8b3ec7336b48a4f5897564d87c87627298f21

ba4bf34e7931142875c0e52c5aef3222d67e86124403e436d0136ebd806de37730427f81

4f7f0485eace93015471d14e56f3824e8bc5fbe44cf67e241c7642ac3a39452a283ff806

84ddbd66929a371d01e50feef1faee7f63f3ceb4b5ceacb939e06a558c2a6bccfd96fb74

16d3edce151bc7b0a6582f0ce99a7c0e7d5793b13d41292105e510e1aa00e082975a1386

6dfaf3a0a51c0dd1ecb64cc55cc607ca1813b5f91fd8e9cb9db18ffd81ac985a6cfdd5cc

2a0b8a5e4e9fa1ea5f149c1662155bb071c95218cae9ae4af613351baf470b1597bb984c

5ea8326f98aff64f72b60bcd035f6b970eb6edd2f9f2180d5aa8a17ed400056af3faa520

4b73c89b4eada6a057dd3dda9d8e18b3a6d2347c1027e2711f21eb7d96fef50cc3dacb2f

5ccc36e4c138ab75953974ade74982f85b91f419654d390378e2ea5aae33f1b4acf534d0

6de2f114acfdd88d6d708f4d2b646a8112b0fe181489916e2ba5c634cdf9b95762d1e120

169482dd27f959132705079fc4a00eee1f353a81c1e810ade20d070d839277169e09150c

08605afe7cea2aec41d2f85c2af7bef5d577343b4385e2c6c159926c1c8267d00433b88b

ad314a5ddcef58936126f1dd8da7b5728da192f54b304e60f4088e5b0620404f82a5939d

975e6714453a533c172c8a9b4b5da976ea60a5aa91fef0203010001

token_authenticator_input: 00024437fb872eab95b5831a5d01005ee2995e417862e

cfd2079ee4c246859a060ae11e15c91a7c2ad02abd66645802373db1d823bea80f08d452

541fb2b62b5898b9f9293b4d62e4b4759af064df8fa5759c79ab51a00f692541b26d466d

ab48091

token_authenticator: 4be4655a33566de7409e7cfdcdb764c251c04138602a046a7d7

1540aa9bcdb34e7df5dfabe17e16a3569f67c36460a79e9e7278b454c4f505580ae99750

b9308022b20aa8807ee054881126d9a4afd134331d0ebb3f9a4f2948731cd0ad2fe468b1

f8c6fcf2d5b9a2991a684b3fb0dec6a3e32fd3335e546f58c2217736683d378076355727

0493eb0f607c7936633a0532d1828dc860f0bf3954c82f0e1ab6089eae92d9d97e3237f2

58c5c82e711bef1682deb6edd19b24bb543f4418825e5d41e126de82f1a4b63321f07c12

3029a7499356fa8bdc11982451c69fa3d1940a4781b646c99e33e83b95810dc1e7a32a25

953ba0a0e37917c9f85bb4f0e7687c826e7138c9a2e71e87644b36c3891b4fec6af02519

aafaa36d559c71d090ea081ceed6cb738ffb730fa5dcbe889362591eb0a89f8ba4057f09

3ca35cc684f3b4cdc7c177f275a9d74a75e98eb395689842a5626d61af84072c9eb858ea

ed7e467b570c771e6530e02dda20b47f6860bb341ca4f849168dc7b6cb8c6743b8113c3e

f09ce9b9b2eaf172204cc26ea7c3de962cc1a851195cf143c9f27cb8f1df219df1209097

5ba657de1d021f2044829a689decf1072e5f79fbef0d3ae6085532f81b32b2a47968b073

2928193894dabb521c3f4c4a6858d43c8abd4695db4e49d3b5d46059032819d8485b0ccb

c3d24c5c72ac3e44d9ff94946cb8f8ca69fb1

token_type: 2

issuer_name: 6973737565722e6578616d706c65

redemption_context:

origin_info:

nonce: 4437fb872eab95b5831a5d01005ee2995e417862ecfd2079ee4c246859a060ae

token_key: 30820252303d06092a864886f70d01010a3030a00d300b060960864801650

3040202a11a301806092a864886f70d010108300b0609608648016503040202a20302013

00382020f003082020a0282020100d730ce8b3ec7336b48a4f5897564d87c87627298f21

ba4bf34e7931142875c0e52c5aef3222d67e86124403e436d0136ebd806de37730427f81

4f7f0485eace93015471d14e56f3824e8bc5fbe44cf67e241c7642ac3a39452a283ff806

84ddbd66929a371d01e50feef1faee7f63f3ceb4b5ceacb939e06a558c2a6bccfd96fb74

16d3edce151bc7b0a6582f0ce99a7c0e7d5793b13d41292105e510e1aa00e082975a1386

6dfaf3a0a51c0dd1ecb64cc55cc607ca1813b5f91fd8e9cb9db18ffd81ac985a6cfdd5cc

2a0b8a5e4e9fa1ea5f149c1662155bb071c95218cae9ae4af613351baf470b1597bb984c

5ea8326f98aff64f72b60bcd035f6b970eb6edd2f9f2180d5aa8a17ed400056af3faa520

4b73c89b4eada6a057dd3dda9d8e18b3a6d2347c1027e2711f21eb7d96fef50cc3dacb2f

5ccc36e4c138ab75953974ade74982f85b91f419654d390378e2ea5aae33f1b4acf534d0

6de2f114acfdd88d6d708f4d2b646a8112b0fe181489916e2ba5c634cdf9b95762d1e120

169482dd27f959132705079fc4a00eee1f353a81c1e810ade20d070d839277169e09150c

08605afe7cea2aec41d2f85c2af7bef5d577343b4385e2c6c159926c1c8267d00433b88b

ad314a5ddcef58936126f1dd8da7b5728da192f54b304e60f4088e5b0620404f82a5939d

975e6714453a533c172c8a9b4b5da976ea60a5aa91fef0203010001

token_authenticator_input: 00024437fb872eab95b5831a5d01005ee2995e417862e

cfd2079ee4c246859a060aeb741ec1b6fd05f1e95f8982906aec1612896d9ca97d53eef9

4ad3c9fe023f7a49f9293b4d62e4b4759af064df8fa5759c79ab51a00f692541b26d466d

ab48091

token_authenticator: 31c2ae70c45f171ed822a9397ba844d6ee20d09323491f4f9fb

3db54d7d3c7b403fd8ee1e2eedebd693d2493b3b1973142cd85f54257c009edda7cd5ad5

3cf8a07d8a3252c62da14d688d225727faa294b5ed57bd0913482c845b502fd967c27b92

d7c4ee7566894134fc71999e55073bf9d19f95b10f0d2044bef815dccfa7632903af7fd2

09af17c008c93fe76e6c4dffd90de933d711366ee72adc32d1289205a306de9b15bb6639

9b2e89c7cb129eadf062be9c4fd54b1ffea79840d0451544f30cc4eab6c36a06ad6dac87

741059803aa57006ce5aea4e71e053f4901f9901dd1f9fa489763f1c499fdf8ec1903a31

79259c79f7a496eefbe937f5b6d69f17f2b96b184cfab98dc0e46b2b0f5fb57764f894bf

2025d5f26505d70d3fa8766406d246bc037d588f035ea7230969323cb237da949a87db95

854f09ba24363a608d0a56427fac57907204aa8c57dc29633a36a83cff385f1eefcfffc9

730eda756d80109a20394c21b40ddc3e0121bd08e4a1eae48daa3a3c7a78f682ee208a78

686960c270e0ffd0042f38e9f786276ef01f7bda5ee323692c8de4f590014c4f4ea1f583

bf3db5cee7ba39d612c73535ef488c796ea33d2f9049a3b34cbc7db3d58208a11ceaf1b0

ab7853b817f53a3ff470bd3e353ca9d4365de09b6a70d94ee4e9118a0901013026360e99

64b2d6c51d47d4307328cedff3561d65a5583

token_type: 2

issuer_name: 6973737565722e6578616d706c65

redemption_context:

40ff3cdc296a1e823f43b49355df1a2ee4c5f65e5d38ebb3e24ecf4d874997c6

origin_info:

6f726967696e2e6578616d706c652c6f726967696e322e6578616d706c65

nonce: 4437fb872eab95b5831a5d01005ee2995e417862ecfd2079ee4c246859a060ae

token_key: 30820252303d06092a864886f70d01010a3030a00d300b060960864801650

3040202a11a301806092a864886f70d010108300b0609608648016503040202a20302013

00382020f003082020a0282020100d730ce8b3ec7336b48a4f5897564d87c87627298f21

ba4bf34e7931142875c0e52c5aef3222d67e86124403e436d0136ebd806de37730427f81

4f7f0485eace93015471d14e56f3824e8bc5fbe44cf67e241c7642ac3a39452a283ff806

84ddbd66929a371d01e50feef1faee7f63f3ceb4b5ceacb939e06a558c2a6bccfd96fb74

16d3edce151bc7b0a6582f0ce99a7c0e7d5793b13d41292105e510e1aa00e082975a1386

6dfaf3a0a51c0dd1ecb64cc55cc607ca1813b5f91fd8e9cb9db18ffd81ac985a6cfdd5cc

2a0b8a5e4e9fa1ea5f149c1662155bb071c95218cae9ae4af613351baf470b1597bb984c

5ea8326f98aff64f72b60bcd035f6b970eb6edd2f9f2180d5aa8a17ed400056af3faa520

4b73c89b4eada6a057dd3dda9d8e18b3a6d2347c1027e2711f21eb7d96fef50cc3dacb2f

5ccc36e4c138ab75953974ade74982f85b91f419654d390378e2ea5aae33f1b4acf534d0

6de2f114acfdd88d6d708f4d2b646a8112b0fe181489916e2ba5c634cdf9b95762d1e120

169482dd27f959132705079fc4a00eee1f353a81c1e810ade20d070d839277169e09150c

08605afe7cea2aec41d2f85c2af7bef5d577343b4385e2c6c159926c1c8267d00433b88b

ad314a5ddcef58936126f1dd8da7b5728da192f54b304e60f4088e5b0620404f82a5939d

975e6714453a533c172c8a9b4b5da976ea60a5aa91fef0203010001

token_authenticator_input: 00024437fb872eab95b5831a5d01005ee2995e417862e

cfd2079ee4c246859a060ae175a86e01410befaee0307ec86990b8a6e1b8192dfca7f0a9

692e06813ec9d199f9293b4d62e4b4759af064df8fa5759c79ab51a00f692541b26d466d

ab48091

token_authenticator: 6b25498e0c809b8c83ec22f6d46a98cd866354ad56b7aa78ef3

fc237ebe9b7fc5ea3346257ddf085166931653d94016e37896df38a767c438d4b2ca440c

47ae62f5e9074f9a72b06bdf103b4f205b20075d07465750a06e463106bb1ff0f9393f00

1ac5377b9ba7edc28b88aeab4e0d4ca9bd101af13967a4d681be02f8f3308224c0115ef8

7ed890e04441486db438538a3a8a82050377d5882001689216c82bb74513ecab47eebaa4

17f030ee887a83f0cc805becc5dd417a3c1c79f828d28068872b0102e8b2fd21743d4aea

4d4bbe8193b496d4167c312c1bea39c5c337701b33f07706daf2e07d8e0ad178878604b3

adcd766ea93e70a70a0b7d1447d20a6af222d8a785db417f462639e89aa57fd664c1c93d

b0b75dc2189345ab83aa823a7b1eb7c3f965fca97780e46d019044dc9583fc3a4e13705c

7c97594c4e983c975f2ac6e5a3a3fe46bc811e9bb46e8f1d2997152d19eff15e2e238f7b

541413f05141d31154e4a59c4b552192ef1d39b0399c5a9b935d4133f4d4e2b3737e7f45

8f92a90719cf5620b05884a74a16db6dbc48b7e819543290cef76d0e761dff156a6800a7

4430a79cba2cc46178ab72b169222fb082f9e05874ccaf0734e2b24315fb2c429c0b1b42

dc6513d76b891b7ce1c9c819303a050c9251aaa8ea2bb61a3bbbfc770ccad6a53dfd29d9

a65f81e91de499d752b29a43294f0cdaf361a

¶

Authors' Addresses

Tommy Pauly

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Steven Valdez

Google LLC

Email: svaldez@chromium.org

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

mailto:tpauly@apple.com
mailto:svaldez@chromium.org
mailto:caw@heapingbits.net

	The Privacy Pass HTTP Authentication Scheme
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. HTTP Authentication Scheme
	2.1. Token Challenge
	2.1.1. Redemption Context Construction
	2.1.2. Token Caching

	2.2. Token Redemption

	3. User Interaction
	4. Security Considerations
	5. IANA Considerations
	5.1. Authentication Scheme
	5.2. Token Type Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Test Vectors
	Authors' Addresses

