
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-privacypass-http-api-01

Published: 12 July 2021

Intended Status: Informational

Expires: 13 January 2022

Authors: S. Valdez

Google LLC

Privacy Pass HTTP API

Abstract

This document specifies an integration for Privacy Pass over an HTTP

API, along with recommendations on how key commitments are stored

and accessed by HTTP-based consumers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

1.2. Layout

1.3. Requirements

2. Privacy Pass HTTP API Wrapping

3. Server key registry

3.1. Key Registry

3.2. Server Configuration Retrieval

4. Key Commitment Retrieval

5. Privacy Pass Issuance

6. Privacy Pass Redemption

6.1. Generic Token Redemption

6.2. Direct Redemption

6.3. Delegated Redemption

7. Security Considerations

8. Privacy considerations

9. IANA Considerations

9.1. Well-Known URI

10. Normative References

Author's Address

1. Introduction

The Privacy Pass protocol as described in [draft-ietf-privacypass-

protocol] can be integrated with a number of different settings,

from server to server communication to browsing the internet.

In this document, we will provide an API to use for integrating

Privacy Pass with an HTTP framework. Providing the format of HTTP

requests and responses needed to implement the Privacy Pass

protocol.

1.1. Terminology

We use the same definition of server and client that is used in

[draft-ietf-privacypass-protocol] and [draft-ietf-privacypass-

architecture].

We assume that all protocol messages are encoded into raw byte

format before being sent. We use the TLS presentation language

[RFC8446] to describe the structure of protocol messages.

1.2. Layout

Section 2: Describes the wrapping of messages within HTTP

requests/responses.

¶

¶

¶

¶

*

¶

Section 3: Describes how HTTP clients retrieve server

configurations and key commitments.

Section 5: Describes how issuance requests are performed via a

HTTP API.

Section 6: Describes how redemption requests are performed via a

HTTP API.

1.3. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Privacy Pass HTTP API Wrapping

Messages from HTTP-based clients to HTTP-based servers are performed

as GET and POST requests. The messages are sent via the Sec-Privacy-

Pass header.

Sec-Privacy-Pass is a Dictionary Structured Header [draft-ietf-

httpbis-header-structure-15]. The dictionary has two keys:

type whose value is a String conveying the function that is being

performed with this request.

body whose value is a byte sequence containing a Privacy Pass

protocol message.

Note that the requests may contain addition Headers, request data

and URL parameters that are not specified here, these extra fields

should be ignored, though may be used by the server to determine

whether to fulfill the requested issuance/redemption.

3. Server key registry

A client SHOULD fetch a server's current public key information

prior to performing issuance and redemption. This configuration is

accessible via a CONFIG_ENDPOINT, either provided by the server or

by a global registry that provides consistency and anonymization

guarantees.

3.1. Key Registry

To ensure that a server isn't providing different views of their

public key material to different users, servers are expected to

write their commitments to a verifiable data structure.

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

Using a verifiable log-backed map ([verifiable-data-structures]),

the server can publish their commitments to the log in a way that

clients can detect when the server is attempting to provide a split-

view of their key commitments to different clients.

The key to the map is the server_origin, with the value being:

The addition to the log is made via a signed message to the log

operator, which verifies the authenticity against a public key

associated with that server origin (either via the Web PKI or a out-

of-band key). The signature should be computed under a long-term

signing key that is associated with the server identity.

The server SHOULD then store an inclusion proof of the current key

commitment so that it can present it when delivering the key

commitment directly to the client or when the key commitment is

being delivered by a delegated party (other registries/preloaded

configuration lists/etc).

The client can then perform a request for the key commitment against

either the global registry or the server as described in Section 4.

Note that the signature should be verified by the client to ensure

that the key material is owned by the server. This requires that the

client know the public verification key that is associated with the

server.

To avoid user segregation as a result of server configuration/

commitment rotation, the log operator SHOULD enforce limits on how

many active commitments exist and how quickly the commitments are

being rotated. Clients SHOULD reject configurations/commitments that

violate their requirements for avoiding user segregation. These

considerations are discussed as part of [draft-ietf-privacypass-

architecture].

¶

¶

struct {

 opaque public_key<1..2^16-1>;

 uint64 expiry;

 uint8 supported_methods; # 3:Issue/Redeem, 2:Redeem, 1:Issue

 opaque signature<1..2^16-1>;

} KeyCommitment;

struct {

 opaque server_id<1..2^16-1>;

 uint16 ciphersuite;

 opaque verification_key<1..2^16-1>;

 KeyCommitment commitments<1..2^16-1>;

}

¶

¶

¶

¶

¶

3.2. Server Configuration Retrieval

Inputs: - server_origin: The origin to retrieve a server

configuration for.

No outputs.

The client makes an anonymous GET request to

CONFIG_ENDPOINT/.well-known/privacy-pass with a message of

type fetch-config and a body of:

The server looks up the configuration associated with the

origin server_origin and responds with a message of type config

and a body of:

The client then stores the associated configuration state under

the corresponding server_origin.

(TODO: This might be mergable with key commitment retrieval if

server_id = server_origin)

4. Key Commitment Retrieval

The client SHOULD retrieve server key commitments prior to both an

issuance and redemption to verify the consistency of the keys and to

monitor for key rotation between issuance and redemption events.

Inputs: - server_origin: The origin to retrieve a key commitment

for.

No outputs.

The client fetches the configuration state server_id,

ciphersuite, commitment_id associated with server_origin.

The client makes an anonymous GET request to

CONFIG_ENDPOINT/.well-known/privacy-pass with a message of

type fetch-commitment and a body of:

¶

¶

1.

¶

struct {

 opaque server_origin<1..2^16-1>;

}

¶

1.

¶

struct {

 opaque server_id<1..2^16-1>;

 uint16 ciphersuite;

 opaque commitment_id<1..2^8-1>;

 opaque verification_key<1..2^16-1>;

}

¶

1.

¶

¶

¶

¶

¶

1.

¶

2.

¶

The server looks up the current configuration, and constructs a

list of commitments to return, noting whether a key commitment

is valid for issuance or redemption or both.

The server then responds with a message of type commitment and

a body of:

The client then verifies the signature for each key commitment

and stores the list of commitments to the current scope. The

client SHOULD NOT cache the commitments beyond the current

scope, as new commitments should be fetched for each

independent issuance and redemption request. The client SHOULD

verify the inclusion_proofs to confirm that the key commitment

has been submitted to a trusted registry. Once the client

receives the ciphersuite for the server, it should implement

all Privacy Pass API functions (as detailed in [draft-ietf-

privacypass-protocol]) using this ciphersuite.

5. Privacy Pass Issuance

Inputs: - server_origin: The origin to request token issuance from.

- count: The number of tokens to request issuance for.

Outputs: - tokens: A list of tokens that have been signed via the

Privacy Pass protocol.

When a client wants to request tokens from a server, it should

first fetch a key commitment from the server via the process

described in Section 4 and keep the result as commitment.

struct {

 opaque server_id<1..2^16-1> = server_id;

 opaque commitment_id<1..2^8-1> = commitment_id;

}

¶

1.

¶

2.

¶

struct {

 opaque public_key<1..2^16-1>;

 uint64 expiry;

 uint8 supported_methods; # 3:Issue/Redeem, 2:Redeem, 1:Issue

 opaque signature<1..2^16-1>;

} KeyCommitment;

struct {

 opaque server_id<1..2^16-1>;

 uint16 ciphersuite;

 opaque verification_key<1..2^16-1>;

 KeyCommitment commitments<1..2^16-1>;

 opaque inclusion_proofs<1..2^16-1>;

}

¶

1.

¶

¶

¶

1.

¶

The client should then call the Generate function requesting

count tokens storing the resulting input data.

The client then makes a POST request to <server_origin>/.well-

known/privacy-pass with a message of type request-issuance and

a body of:

The server, upon receipt of the request should call the Issue

function with the public_key, secret_key and the value of msg

with a result of resp.

The server should then respond to the POST request with a

message of type issue and a body of:

The client should then should call the Process function with

the public_key, stored inputs and resulting resp, to extract a

list of redemption_tokens.

The client should store the public_key associated with these

tokens and the elements of redemption_tokens under storage

partitioned by the server_origin, accessible only via the

Privacy Pass API.

6. Privacy Pass Redemption

There are two forms of Privacy Pass redemption that could function

under the HTTP API. Either passing along a token directly to the

target endpoint, which would perform its own redemption Section 6.1,

or the client redeeming the token and passing the result along to

the target endpoint. These two methods are described below.

In the HTTP ecosystem, redemption contexts should generally be keyed

by the same privacy boundary used for cookies and other local

storage. Generally this is the top-level origin. Any redemption

context should be built following the principles outlined in [draft-

ietf-privacypass-architecture] and later in Section 8.

2.

¶

3.

¶

enum { Normal(0) } IssuanceType;

struct {

 IssuanceType type = 0;

 opaque msg<0..2^16-1> = input.msg;

}

¶

1.

¶

2.

¶

struct {

 IssuanceType type = request.type;

 IssuanceResp resp = resp;

}

¶

1.

¶

2.

¶

¶

¶

6.1. Generic Token Redemption

Inputs: - context: The request context to use. - server_id: The

server ID to redeem a token against. - ciphersuite: The ciphersuite

for this token. - public_key: The public key associated with this

token. - redemption_token: A Privacy Pass token. - info: Additional

data to bind to this token redemption.

Outputs: - result: The result of the redemption from the server.

The client should check whether the server_id is present in the

context. If it isn't and the size of the context is beneath the

client's limit, it should be added.

The client should call the Redeem function with

redemption_token and additional data of info storing the

resulting data and tag.

The client makes a POST request to <server_origin>/.well-known/

privacy-pass with a message of type token-redemption and a body

of:

The server, upon receipt of request should call the Verify

interface with public_key, secret_key and the received data,

tag, info storing the resulting resp.

The server should then respond to the POST request with a

message of type redemption-result and a signed body of:

The client upon receipt of this message should verify the

signature using the verification_key from the configuration and

return the result.

¶

¶

1.

¶

2.

¶

3.

¶

struct {

 opaque server_id<1..2^16-1> = server_id;

 opaque data<1..2^16-1> = data;

 opaque tag<1..2^16-1> = tag;

 opaque info<1..2^16-1> = info;

}

¶

1.

¶

2.

¶

struct {

 opaque info<1..2^16-1> = info;

 uint8 result = resp;

 // signature of info and result using

 // the server's verification key.

 opaque signature<1..2^16-1>;

}

¶

1.

¶

6.2. Direct Redemption

Inputs: - context: The request context to use. - server_origin: The

server origin to redeem a token for. - target: The target endpoint

to send the token to. - additional_data: Additional data to bind to

this redemption request.

When a client wants to redeem tokens for a server, it should

first fetch a key commitment from the server via the process

described in Section 4 and keep the result as commitment.

The client should then look up the storage partition associated

with server_origin and fetch a redemption_token and public_key.

The client should verify that the public_key is in the current

commitment. If not, it should discard the token and fail the

redemption attempt.

As part of the request to target, the client will include the

token as part of the request in the Sec-Privacy-Pass header

along with whatever other parameters are being passed as part

of the request to target. The header will contain a message of

type token-redemption with a body of:

At this point, the target can perform a generic redemption as

described in Section 6.1 by forwarding the message included in the

request to target.

6.3. Delegated Redemption

Inputs: - context: The request context to use. - server_origin: The

server origin to redeem a token for. - target: The target endpoint

to send the token to. - additional_data: Additional data to bind to

this redemption request.

When a client wants to redeem tokens for a server, it should

first fetch a key commitment from the server via the process

described in Section 4 and keep the result as commitment.

The client should then look up the storage partition associated

with server_origin and fetch a redemption_token and public_key.

¶

1.

¶

2.

¶

3.

¶

4.

¶

struct {

 opaque server_id<1..2^16-1> = server_id;

 uint16 ciphersuite = ciphersuite;

 opaque public_key<1..2^16-1> = public_key;

 RedemptionToken token<1..2^16-1> = redemption_token;

 opaque additional_data<1..2^16-1> = additional_data;

}

¶

¶

¶

1.

¶

2.

¶

The client should verify that the public_key is in the current

commitment. If not, it should discard the token and fail the

redemption attempt.

The client constructs a bytestring info made up of the target,

the current timestamp, and additional_data:

The client then performs a token redemption as described in

Section 6.1. Storing the resulting redemption-result message.

As part of the request to target, the client will include the

redemption result as part of the request in the Sec-Privacy-

Pass header along with whatever other parameters are being

passed as part of the request to target. The header will

contain a message of type signed-redemption-result with a body

of:

At this point, the target can verify the integrity of

signed_redemption.info based on the values of target, timestamp,

and additional_data and verify the signature of the redemption

result by querying the current configuration of the Privacy Pass

server. The inclusion of target and timestamp proves that the server

attested to the validity of the token in relation to this particular

request.

7. Security Considerations

Security considerations for Privacy Pass are discussed in [draft-

ietf-privacypass-architecture].

8. Privacy considerations

General privacy considerations for Privacy Pass are discussed in

[draft-ietf-privacypass-architecture].

3.

¶

4.

¶

struct {

 opaque target<1..2^16-1>;

 uint64 timestamp;

 opaque additional_data<0..2^16-1>;

}

¶

1.

¶

2.

¶

struct {

 opaque server_origin<1..2^16-1>;

 opaque target<1..2^16-1>;

 uint64 timestamp;

 opaque additional_data<1..2^16-1> = additional_data;

 opaque signed_redemption<1..2^16-1>;

}

¶

¶

¶

¶

[draft-ietf-httpbis-header-structure-15]

[draft-ietf-privacypass-architecture]

[draft-ietf-privacypass-protocol]

[RFC2119]

[RFC8446]

[verifiable-data-structures]

In order to implement this API with redemption contexts, a client

needs to maintain strong privacy boundaries between different

redemption contexts to avoid privacy leakage from redemptions across

them. Notably in the web/HTTP world, cross-site tracking and

fingerprinting will need to be considered and mitigated in order to

maintain these privacy boundaries.

9. IANA Considerations

9.1. Well-Known URI

This specification registers a new well-known URI.

URI suffix: "privacy-pass"

Change controller: IETF.

Specification document(s): this specification

10. Normative References

Nottingham, M. and P-H.

Kamp, "Structured Headers for HTTP", n.d., <https://

tools.ietf.org/html/draft-ietf-httpbis-header-

structure-15>.

Davidson, A., "Privacy Pass: Architectural Framework",

n.d., <https://tools.ietf.org/html/draft-ietf-

privacypass-architecture-00>.

Davidson, A., "Privacy Pass: The Protocol", n.d.,

<https://tools.ietf.org/html/draft-ietf-privacypass-

protocol-00>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

"Verifiable Data Structures", n.d.,

<https://github.com/google/trillian/blob/master/docs/

papers/VerifiableDataStructures.pdf>.

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-15
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-15
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-15
https://tools.ietf.org/html/draft-ietf-privacypass-architecture-00
https://tools.ietf.org/html/draft-ietf-privacypass-architecture-00
https://tools.ietf.org/html/draft-ietf-privacypass-protocol-00
https://tools.ietf.org/html/draft-ietf-privacypass-protocol-00
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8446
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf

Author's Address

Steven Valdez

Google LLC

Email: svaldez@chromium.org

mailto:svaldez@chromium.org

	Privacy Pass HTTP API
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Layout
	1.3. Requirements

	2. Privacy Pass HTTP API Wrapping
	3. Server key registry
	3.1. Key Registry
	3.2. Server Configuration Retrieval

	4. Key Commitment Retrieval
	5. Privacy Pass Issuance
	6. Privacy Pass Redemption
	6.1. Generic Token Redemption
	6.2. Direct Redemption
	6.3. Delegated Redemption

	7. Security Considerations
	8. Privacy considerations
	9. IANA Considerations
	9.1. Well-Known URI

	10. Normative References
	Author's Address

