
Network Working Group S. Celi
Internet-Draft Cloudflare
Intended status: Informational A. Davidson
Expires: 9 July 2021 LIP
 A. Faz-Hernandez
 Cloudflare
 5 January 2021

Privacy Pass Protocol Specification
draft-ietf-privacypass-protocol-00

Abstract

 This document specifies the Privacy Pass protocol. This protocol
 provides anonymity-preserving authorization of clients to servers.
 In particular, client re-authorization events cannot be linked to any
 previous initial authorization. Privacy Pass is intended to be used
 as a performant protocol in the application-layer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 July 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 1. Introduction
 2. Terminology
 3. Background
 3.1. Motivating use-cases
 3.2. Anonymity and security guarantees
 3.3. Basic assumptions
 4. Protocol description
 4.1. Server setup
 4.2. Client setup
 4.3. Issuance phase
 4.4. Redemption phase
 4.4.1. Client info
 4.4.2. Double-spend protection
 4.5. Handling errors
 5. Functionality
 5.1. Data structures
 5.1.1. Ciphersuite
 5.1.2. Keys
 5.1.3. IssuanceInput
 5.1.4. IssuanceResponse
 5.1.5. RedemptionToken
 5.1.6. RedemptionRequest
 5.1.7. RedemptionResponse
 5.2. API functions
 5.2.1. Generate
 5.2.2. Issue
 5.2.3. Process
 5.2.4. Redeem
 5.2.5. Verify
 5.3. Error types
 6. Security considerations
 6.1. Unlinkability
 6.2. One-more unforgeability
 6.3. Double-spend protection
 6.4. Additional token metadata
 6.5. Maximum number of tokens issued
 7. VOPRF instantiation
 7.1. Recommended ciphersuites
 7.2. Protocol contexts
 7.3. Functionality
 7.3.1. Generate
 7.3.2. Issue
 7.3.3. Process
 7.3.4. Redeem
 7.3.5. Verify
 7.4. Security justification
 8. Protocol ciphersuites
 8.1. PP(OPRF2)
 8.2. PP(OPRF4)
 8.3. PP(OPRF5)

 9. Extensions framework policy
 10. References
 10.1. Normative References
 10.2. Informative References

Appendix A. Document contributors
 Authors' Addresses

1. Introduction

 A common problem on the Internet is providing an effective mechanism
 for servers to derive trust from clients that they interact with.
 Typically, this can be done by providing some sort of authorization
 challenge to the client. But this also negatively impacts the
 experience of clients that regularly have to solve such challenges.

 To mitigate accessibility issues, a client that correctly solves the
 challenge can be provided with a cookie. This cookie can be
 presented the next time the client interacts with the server, instead
 of performing the challenge. However, this does not solve the
 problem of reauthorization of clients across multiple domains. Using
 current tools, providing some multi-domain authorization token would
 allow linking client browsing patterns across those domains, and
 severely reduces their online privacy.

 The Privacy Pass protocol provides a set of cross-domain
 authorization tokens that protect the client's anonymity in message
 exchanges with a server. This allows clients to communicate an
 attestation of a previously authenticated server action, without
 having to reauthenticate manually. The tokens retain anonymity in
 the sense that the act of revealing them cannot be linked back to the
 session where they were initially issued.

 This document lays out the generic description of the protocol, along
 with the data and message formats. We detail an implementation of
 the protocol functionality based on the description of a verifiable
 oblivious pseudorandom function [I-D.irtf-cfrg-voprf].

 This document DOES NOT cover the architectural framework required for
 running and maintaining the Privacy Pass protocol in the Internet
 setting. In addition, it DOES NOT cover the choices that are
 necessary for ensuring that client privacy leaks do not occur. Both
 of these considerations are covered in a separate document
 [draft-davidson-pp-architecture]. In addition,
 [draft-svaldez-pp-http-api] provides an instantiation of this
 protocol intended for the HTTP setting.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/draft-svaldez-pp-http-api
https://datatracker.ietf.org/doc/html/rfc2119

 The following terms are used throughout this document.

 * Server: A service that provides the server-side functionality
 required by the protocol. May be referred to as the issuer.

 * Client: An entity that seeks authorization from a server that
 supports interactions in the Privacy Pass protocol.

 * Key: The secret key used by the server for authorizing client
 data.

 We assume that all protocol messages are encoded into raw byte format
 before being sent. We use the TLS presentation language [RFC8446] to
 describe the structure of protocol data types and messages.

3. Background

 We discuss the core motivation behind the protocol along with the
 guarantees and assumptions that we make in this document.

3.1. Motivating use-cases

 The Privacy Pass protocol was originally developed to provide
 anonymous authorization of Tor users. In particular, the protocol
 allows clients to reveal authorization tokens that they have been
 issued without linking the authorization to the actual issuance
 event. This means that the tokens cannot be used to link the
 browsing patterns of clients that reveal tokens.

 Beyond these uses-cases, the Privacy Pass protocol is used in a
 number of practical applications. See [DGSTV18], [TrustTokenAPI],
 [PrivateStorage], [OpenPrivacy], and [Brave] for examples.

3.2. Anonymity and security guarantees

 Privacy Pass provides anonymity-preserving authorization tokens for
 clients. Throughout this document, we use the terms "anonymous",
 "anonymous-preserving" and "anonymity" to refer to the core security
 guarantee of the protocol. Informally, this guarantee means that any
 token issued by a server key and subsequently redeemed is
 indistinguishable from any other token issued under the same key.

 Privacy Pass also prohibits clients from forging tokens, as otherwise
 the protocol would have little value as an authorization protocol.
 Informally, this means any client that is issued "N" tokens under a
 given server key cannot redeem more than "N" valid tokens.

Section 6 elaborates on these protocol anonymity and security
 requirements.

3.3. Basic assumptions

https://datatracker.ietf.org/doc/html/rfc8446

 We make only a few minimal assumptions about the environment of the
 clients and servers supporting the Privacy Pass protocol.

 * At any one time, we assume that the server uses only one
 configuration containing their ciphersuite choice along with their
 secret key data. This ensures that all clients are issued tokens
 under the single key associated with any given epoch.

 * We assume that the client has access to a global directory of the
 current public parts of the configurations used the server.

 The wider ecosystem that this protocol is employed in is described in
 [draft-davidson-pp-architecture].

4. Protocol description

 The Privacy Pass protocol is split into two phases that are built
 upon the functionality described in Section 5 later.

 The first phase, "issuance", provides the client with unlinkable
 tokens that can be used to initiate re-authorization with the server
 in the future. The second phase, "redemption", allows the client to
 redeem a given re-authorization token with the server that it
 interacted with during the issuance phase. The protocol must satisfy
 two cryptographic security requirements known as "unlinkability" and
 "unforgeability". These requirements are covered in Section 6.

4.1. Server setup

 Before the protocol takes place, the server chooses a ciphersuite and
 generates a keypair by running "(pkS, skS) = KeyGen()". This
 configuration must be available to all clients that interact with the
 server (for the purpose of engaging in a Privacy Pass exchange). We
 assume that the server has a public (and unique) identity that the
 client uses to retrieve this configuration.

4.2. Client setup

 The client initialises a global storage system "store" that allows it
 store the tokens that are received during issuance. The storage
 system is a map of server identifiers ("server.id") to arrays of
 stored tokens. We assume that the client knows the server public key
 "pkS" ahead of time. The client picks a value "m" of tokens to
 receive during the issuance phase. In
 [draft-davidson-pp-architecture] we discuss mechanisms that the
 client can use to ensure that this public key is consistent across
 the entire ecosystem.

4.3. Issuance phase

 The issuance phase allows the client to receive "m" anonymous

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

 authorization tokens from the server.

 Client(pkS, m) Server(skS, pkS)
 --
 cInput = Generate(m)
 req = cInput.req

 req
 ------------------->

 serverResp = Issue(pkS, skS, req)

 issueResp
 <-------------------

 tokens = Process(pkS, cInput, issueResp)
 store[server.id].push(tokens)

4.4. Redemption phase

 The redemption phase allows the client to anonymously reauthenticate
 to the server, using data that it has received from a previous
 issuance phase.

 Client(info) Server(skS, pkS)
 --
 token = store[Issue.id].pop()
 req = Redeem(token, info)

 req
 ------------------>

 if (dsIdx.includes(req.data)) {
 raise ERR_DOUBLE_SPEND
 }
 resp = Verify(pkS, skS, req)
 if (resp.success) {
 dsIdx.push(req.data)
 }

 resp
 <------------------
 Output resp

4.4.1. Client info

 The client input "info" is arbitrary byte data that is used for
 linking the redemption request to the specific session. We RECOMMEND
 that "info" is constructed as the following concatenated byte-encoded
 data:

 len(aux) || aux || len(server.id) || server.id || current_time()

 where "len(x)" is the length of "x" in bytes, and "aux" is arbitrary
 auxiliary data chosen by the client. The usage of "current_time()"
 allows the server to check that the redemption request has happened
 in an appropriate time window.

4.4.2. Double-spend protection

 To protect against clients that attempt to spend a value "req.data"
 more than once, the server uses an index, "dsIdx", to collect valid
 inputs it witnesses. Since this store needs to only be optimized for
 storage and querying, a structure such as a Bloom filter suffices.
 The storage should be parameterized to live as long as the server
 keypair that is in use. See Section 6 for more details.

4.5. Handling errors

 It is possible for the API functions from Section 5.2 to return one
 of the errors indicated in Section 5.3 rather than their expected
 value. In these cases, we assume that the entire protocol aborts.

5. Functionality

 This section details the data types and API functions that are used
 to construct the protocol in Section 4.

 We provide an explicit instantiation of the Privacy Pass API in
Section 7.3, based on the public API provided in

 [I-D.irtf-cfrg-voprf].

5.1. Data structures

 The following data structures are used throughout the Privacy Pass
 protocol and are written in the TLS presentation language [RFC8446].
 It is intended that any of these data structures can be written into
 widely-adopted encoding schemes such as those detailed in TLS
 [RFC8446], CBOR [RFC7049], and JSON [RFC7159].

5.1.1. Ciphersuite

 The "Ciphersuite" enum provides identifiers for each of the supported
 ciphersuites of the protocol. Some initial values that are supported
 by the core protocol are described in Section 8. Note that the list
 of supported ciphersuites may be expanded by extensions to the core
 protocol description in separate documents.

5.1.2. Keys

 We use the following types to describe the public and private keys
 used by the server.

 opaque PublicKey<1..2^16-1>

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159

 opaque PrivateKey<1..2^16-1>

5.1.3. IssuanceInput

 The "IssuanceInput" struct describes the data that is initially
 generated by the client during the issuance phase.

 Firstly, we define sequences of bytes that partition the client
 input.

 opaque Internal<1..2^16-1>
 opaque IssuanceRequest<1..2^16-1>

 These data types represent members of the wider "IssuanceInput" data
 type.

 struct {
 Internal data[m]
 IssuanceRequest req[m]
 } IssuanceInput;

 Note that a "IssuanceInput" contains equal-length arrays of
 "Internal" and "IssuanceRequest" types corresponding to the number of
 tokens that should be issued.

5.1.4. IssuanceResponse

 Firstly, the "IssuedToken" type corresponds to a single sequence of
 bytes that represents a single issued token received from the server.

 opaque IssuedToken<1..2^16-1>

 Then an "IssuanceResponse" corresponds to a collection of
 "IssuedTokens" as well as a sequence of bytes "proof".

 struct {
 IssuedToken tokens[m]
 opaque proof<1..2^16-1>
 }

 The value of "m" is equal to the length of the "IssuanceRequest"
 vector sent by the client.

5.1.5. RedemptionToken

 The "RedemptionToken" struct contains the data required to generate
 the client message in the redemption phase of the Privacy Pass
 protocol.

 struct {
 opaque data<1..2^16-1>;
 opaque issued<1..2^16-1>;

 } RedemptionToken;

5.1.6. RedemptionRequest

 The "RedemptionRequest" struct consists of the data that is sent by
 the client during the redemption phase of the protocol.

 struct {
 opaque data<1..2^16-1>;
 opaque tag<1..2^16-1>;
 opaque info<1..2^16-1>;
 } RedemptionRequest;

5.1.7. RedemptionResponse

 The "RedemptionResponse" struct corresponds to a boolean value that
 indicates whether the "RedemptionRequest" sent by the client is
 valid. It can also contain any associated data.

 struct {
 boolean success;
 opaque ad<1..2^16-1>;
 } RedemptionResponse;

5.2. API functions

 The following functions wrap the core of the functionality required
 in the Privacy Pass protocol. For each of the descriptions, we
 essentially provide the function signature, leaving the actual
 contents to be defined by specific instantiations or extensions of
 the protocol.

5.2.1. Generate

 A function run by the client to generate the initial data that is
 used as its input in the Privacy Pass protocol.

 Inputs:

 * "m": A "uint8" value corresponding to the number of Privacy Pass
 tokens to generate.

 Outputs:

 * "input": An "IssuanceInput" struct.

5.2.2. Issue

 A function run by the server to issue valid redemption tokens to the
 client.

 Inputs:

 * "pkS": A server "PublicKey".

 * "skS": A server "PrivateKey".

 * "req": An "IssuanceRequest" struct.

 Outputs:

 * "resp": An "IssuanceResponse" struct.

5.2.3. Process

 Run by the client when processing the server response in the issuance
 phase of the protocol.

 Inputs:

 * "pkS": An server "PublicKey".

 * "input": An "IssuanceInput" struct.

 * "resp": An "IssuanceResponse" struct.

 Outputs:

 * "tokens": A vector of "RedemptionToken" structs, whose length is
 equal to length of the internal "ServerEvaluation" vector in the
 "IssuanceResponse" struct.

 Throws:

 * "ERR_PROOF_VALIDATION" (Section 5.3)

5.2.4. Redeem

 Run by the client in the redemption phase of the protocol to generate
 the client's message.

 Inputs:

 * "token": A "RedemptionToken" struct.

 * "info": An "opaque<1..2^16-1>" type corresponding to data that is
 linked to the redemption. See Section 4.4.1 for advice on how to
 construct this.

 Outputs:

 * "req": A "RedemptionRequest" struct.

5.2.5. Verify

 Run by the server in the redemption phase of the protocol.
 Determines whether the data sent by the client is valid.

 Inputs:

 * "pkS": An server "PublicKey".

 * "skS": An server "PrivateKey".

 * "req": A "RedemptionRequest" struct.

 Outputs:

 * "resp": A "RedemptionResponse" struct.

5.3. Error types

 * "ERR_PROOF_VALIDATION": Error occurred when a client attempted to
 verify the proof that is part of the server's response.

 * "ERR_DOUBLE_SPEND": Error occurred when a client has attempted to
 redeem a token that has already been used for authorization.

6. Security considerations

 We discuss the security requirements that are necessary to uphold
 when instantiating the Privacy Pass protocol. In particular, we
 focus on the security requirements of "unlinkability", and
 "unforgeability". Informally, the notion of unlinkability is
 required to preserve the anonymity of the client in the redemption
 phase of the protocol. The notion of unforgeability is to protect
 against an adversarial client that may look to subvert the security
 of the protocol.

 Both requirements are modelled as typical cryptographic security
 games, following the formats laid out in [DGSTV18] and [KLOR20].

 Note that the privacy requirements of the protocol are covered in the
 architectural framework document [draft-davidson-pp-architecture].

6.1. Unlinkability

 Formally speaking the security model is the following:

 * The adversary runs the server setup and generates a keypair "(pkS,
 skS)".

 * The adversary specifies a number "Q" of issuance phases to
 initiate, where each phase "i in range(Q)" consists of "m_i" Issue
 evaluations.

 * The adversary runs "Issue" using the keypair that it generated on

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

 each of the client messages in the issuance phase.

 * When the adversary wants, it stops the issuance phase, and a
 random number "l" is picked from "range(Q)".

 * A redemption phase is initiated with a single token with index "i"
 randomly sampled from "range(m_l)".

 * The adversary guesses an index "l_guess" corresponding to the
 index of the issuance phase that it believes the redemption token
 was received in.

 * The adversary succeeds if "l == l_guess".

 The security requirement is that the adversary has only a negligible
 probability of success greater than "1/Q".

6.2. One-more unforgeability

 The one-more unforgeability requirement states that it is hard for
 any adversarial client that has received "m" valid tokens from the
 issuance phase to redeem "m+1" of them. In essence, this requirement
 prevents a malicious client from being able to forge valid tokens
 based on the Issue responses that it sees.

 The security model roughly takes the following form:

 * The adversary specifies a number "Q" of issuance phases to
 initiate with the server, where each phase "i in range(Q)"
 consists of "m_i" server evaluation. Let "m = sum(m_i)" where "i
 in range(Q)".

 * The adversary receives "Q" responses, where the response with
 index "i" contains "m_i" individual tokens.

 * The adversary initiates "m_adv" redemption sessions with the
 server and the server verifies that the sessions are successful
 (return true), and that each request includes a unique token. The
 adversary succeeds in "m_succ =< m_adv" redemption sessions.

 * The adversary succeeds if "m_succ > m".

 The security requirement is that the adversarial client has only a
 negligible probability of succeeding.

 Note that [KLOR20] strengthens the capabilities of the adversary, in
 comparison to the original work of [DGSTV18]. In [KLOR20], the
 adversary is provided with oracle access that allows it to verify
 that the server responses in the issuance phase are valid.

6.3. Double-spend protection

 All issuing servers should implement a robust, global storage-query
 mechanism for checking that tokens sent by clients have not been
 spent before. Such tokens only need to be checked for each server
 individually. This prevents clients from "replaying" previous
 requests, and is necessary for achieving the unforgeability
 requirement.

6.4. Additional token metadata

 Some use-cases of the Privacy Pass protocol benefit from associating
 a limited amount of metadata with tokens that can be read by the
 server when a token is redeemed. Adding metadata to tokens can be
 used as a vector to segment the anonymity of the client in the
 protocol. Therefore, it is important that any metadata that is added
 is heavily limited.

 Any additional metadata that can be added to redemption tokens should
 be described in the specific protocol instantiation. Note that any
 additional metadata will have to be justified in light of the privacy
 concerns raised above. For more details on the impacts associated
 with segmenting user privacy, see [draft-davidson-pp-architecture].

 Any metadata added to tokens will be considered either "public" or
 "private". Public metadata corresponds to unmodifiable bits that a
 client can read. Private metadata corresponds to unmodifiable
 private bits that should be obscured to the client.

 Note that the instantiation in Section 7 provides randomized
 redemption tokens with no additional metadata for an server with a
 single key.

6.5. Maximum number of tokens issued

 Servers SHOULD impose a hard ceiling on the number of tokens that can
 be issued in a single issuance phase to a client. If there is no
 limit, malicious clients could abuse this and cause excessive
 computation, leading to a Denial-of-Service attack.

7. VOPRF instantiation

 In this section, we show how to instantiate the functional API in
Section 5 with the VOPRF protocol described in [I-D.irtf-cfrg-voprf].

 Moreover, we show that this protocol satisfies the security
 requirements laid out in Section 6, based on the security proofs
 provided in [DGSTV18] and [KLOR20].

7.1. Recommended ciphersuites

 The RECOMMENDED server ciphersuites are as follows: detailed in
 [I-D.irtf-cfrg-voprf]:

 * OPRF(curve448, SHA-512) (ID = 0x0002);

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

 * OPRF(P-384, SHA-512) (ID = 0x0004);

 * OPRF(P-521, SHA-512) (ID = 0x0005).

 We deliberately avoid the usage of smaller ciphersuites (associated
 with P-256 and curve25519) due to the potential to reduce security to
 unfavourable levels via static Diffie Hellman attacks. See
 [I-D.irtf-cfrg-voprf] for more details.

7.2. Protocol contexts

 Note that we must run the verifiable version of the protocol in
 [I-D.irtf-cfrg-voprf]. Therefore the "server" takes the role of the
 "Server" running in "modeVerifiable". In other words, the "server"
 runs "(ctxtI, pkS) = SetupVerifiableServer(suite)"; where "suite" is
 one of the ciphersuites in Section 7.1, "ctxt" contains the internal
 VOPRF server functionality and secret key "skS", and "pkS" is the
 server public key. Likewise, run "ctxtC =
 SetupVerifiableClient(suite)" to generate the Client context.

7.3. Functionality

 We instantiate each functions using the API functions in
 [I-D.irtf-cfrg-voprf]. Note that we use the framework mentioned in
 the document to allow for batching multiple tokens into a single
 VOPRF evaluation. For the explicit signatures of each of the
 functions, refer to Section 5.

7.3.1. Generate

 def Generate(m):
 tokens = []
 blindedTokens = []
 for i in range(m):
 x = random_bytes()
 (token, blindedToken) = Blind(x)
 token[i] = token
 blindedToken[i] = blindedToken
 return IssuanceInput {
 internal: tokens,
 req: blindedTokens,
 }

7.3.2. Issue

 For this functionality, note that we supply multiple tokens in "req"
 to "Evaluate". This allows batching a single proof object for
 multiple evaluations. While the construction in
 [I-D.irtf-cfrg-voprf] only permits a single input, we follow the
 advice for providing vectors of inputs.

 def Issue(pkS, skS, req):
 Ev = Evaluate(skS, pkS, req)
 return IssuanceResponse {
 tokens: Ev.elements,
 proof: Ev.proof,
 }

7.3.3. Process

 Similarly to "Issue", we follow the advice for providing vectors of
 inputs to the "Unblind" function for verifying the batched proof
 object.

 Process(pkS, input, resp):
 unblindedTokens = Unblind(pkS, input.data, input.req, resp)
 redemptionTokens = []
 for bt in unblindedTokens:
 rt = RedemptionToken { data: input.data, issued: bt }
 redemptionTokens[i] = rt
 return redemptionTokens

7.3.4. Redeem

 def Redeem(token, info):
 tag = Finalize(token.data, token.issued, info)
 return RedemptionRequest {
 data: data,
 tag: tag,
 info: info,
 }

7.3.5. Verify

 def Verify(pkS, skS, req):
 resp = VerifyFinalize(skS, pkS, req.data, req.info, req.tag)
 Output RedemptionResponse {
 success: resp
 }

7.4. Security justification

 The protocol devised in Section 4, coupled with the API instantiation
 in Section 7.3, are equivalent to the protocol description in
 [DGSTV18] and [KLOR20] from a security perspective. In [DGSTV18], it
 is proven that this protocol satisfies the security requirements of
 unlinkability (Section 6.1) and unforgeability (Section 6.2).

 The unlinkability property follows unconditionally as the view of the
 adversary in the redemption phase is distributed independently of the
 issuance phase. The unforgeability property follows from the one-
 more decryption security of the ElGamal cryptosystem [DGSTV18]. In
 [KLOR20] it is also proven that this protocol satisfies the stronger

 notion of unforgeability, where the adversary is granted a
 verification oracle, under the chosen-target Diffie-Hellman
 assumption.

 Note that the existing security proofs do not leverage the VOPRF
 primitive as a black-box in the security reductions. Instead, it
 relies on the underlying operations in a non-black-box manner.
 Hence, an explicit reduction from the generic VOPRF primitive to the
 Privacy Pass protocol would strengthen these security guarantees.

8. Protocol ciphersuites

 The ciphersuites that we describe for the Privacy Pass protocol are
 derived from the core instantiations of the protocol (such as in

Section 7).

 In each of the ciphersuites below, the maximum security provided
 corresponds to the maximum difficulty of computing a discrete
 logarithm in the group. Note that the actual security level MAY be
 lower. See the security considerations in [I-D.irtf-cfrg-voprf] for
 examples.

8.1. PP(OPRF2)

 * OPRF2 = OPRF(curve448, SHA-512)

 * ID = 0x0001

 * Maximum security provided: 224 bits

8.2. PP(OPRF4)

 * OPRF4 = OPRF(P-384, SHA-512)

 * ID = 0x0002

 * Maximum security provided: 192 bits

8.3. PP(OPRF5)

 * OPRF5 = OPRF(P-521, SHA-512)

 * ID = 0x0003

 * Maximum security provided: 256 bits

9. Extensions framework policy

 The intention with providing the Privacy Pass API in Section 5 is to
 allow new instantiations of the Privacy Pass protocol. These
 instantiations may provide either modified VOPRF constructions, or
 simply implement the API in a completely different way.

 Extensions to this initial draft SHOULD be specified as separate
 documents taking one of two possible routes:

 * Produce new VOPRF-like primitives that use the same public API
 provided in [I-D.irtf-cfrg-voprf] to implement the Privacy Pass
 API, but with different internal operations.

 * Implement the Privacy Pass API in a different way to the proposed
 implementation in Section 7.

 If an extension requires changing the generic protocol description as
 described in Section 4, then the change may have to result in changes
 to the draft specification here also.

 Each new extension that modifies the internals of the protocol in
 either of the two ways MUST re-justify that the extended protocol
 still satisfies the security requirements in Section 6. Protocol
 extensions MAY put forward new security guarantees if they are
 applicable.

 The extensions MUST also conform with the extension framework policy
 as set out in the architectural framework document. For example,
 this may concern any potential impact on client anonymity that the
 extension may introduce.

10. References

10.1. Normative References

 [draft-davidson-pp-architecture]
 Davidson, A., "Privacy Pass: Architectural Framework",
 n.d., <https://github.com/alxdavids/privacy-pass-

ietf/tree/master/drafts/draft-davidson-pp-architecture>.

 [draft-svaldez-pp-http-api]
 Valdez, S., "Privacy Pass: HTTP API", n.d.,
 <https://github.com/alxdavids/privacy-pass-

ietf/tree/master/drafts/draft-davidson-pp-architecture>.

 [I-D.irtf-cfrg-voprf]
 Davidson, A., Faz-Hernandez, A., Sullivan, N., and C.
 Wood, "Oblivious Pseudorandom Functions (OPRFs) using
 Prime-Order Groups", Work in Progress, Internet-Draft,

draft-irtf-cfrg-voprf-05, 2 November 2020,
 <http://www.ietf.org/internet-drafts/draft-irtf-cfrg-

voprf-05.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/draft-svaldez-pp-http-api
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-05
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-05.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-05.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [Brave] "Brave Rewards", n.d., <https://brave.com/brave-rewards/>.

 [DGSTV18] "Privacy Pass, Bypassing Internet Challenges Anonymously",
 n.d., <https://petsymposium.org/2018/files/papers/issue3/

popets-2018-0026.pdf>.

 [KLOR20] "Anonymous Tokens with Private Metadata Bit", n.d.,
 <https://eprint.iacr.org/2020/072>.

 [OpenPrivacy]
 "Token Based Services - Differences from PrivacyPass",
 n.d., <https://openprivacy.ca/assets/towards-anonymous-

prepaid-services.pdf>.

 [PrivateStorage]
 Steininger, L., "The Path from S4 to PrivateStorage",
 n.d., <https://medium.com/least-authority/the-path-from-

s4-to-privatestorage-ae9d4a10b2ae>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [TrustTokenAPI]
 WICG, ., "Trust Token API", n.d.,
 <https://github.com/WICG/trust-token-api>.

Appendix A. Document contributors

 * Alex Davidson (alex.davidson92@gmail.com)

 * Sofia Celi (cherenkov@riseup.net)

 * Christopher Wood (caw@heapingbits.net)

Authors' Addresses

 Sofía Celi
 Cloudflare
 Lisbon
 Portugal

https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://brave.com/brave-rewards/
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://eprint.iacr.org/2020/072
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://github.com/WICG/trust-token-api

 Email: sceli@cloudflare.com

 Alex Davidson
 LIP
 Lisbon
 Portugal

 Email: alex.davidson92@gmail.com

 Armando Faz-Hernandez
 Cloudflare
 101 Townsend St
 San Francisco,
 United States of America

 Email: armfazh@cloudflare.com

