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Abstract

   This document specifies the Privacy Pass protocol.  This protocol
   provides anonymity-preserving authorization of clients to servers.
   In particular, client re-authorization events cannot be linked to any
   previous initial authorization.  Privacy Pass is intended to be used
   as a performant protocol in the application-layer.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 9 July 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.

Table of Contents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info


   1.  Introduction
   2.  Terminology
   3.  Background
     3.1.  Motivating use-cases
     3.2.  Anonymity and security guarantees
     3.3.  Basic assumptions
   4.  Protocol description
     4.1.  Server setup
     4.2.  Client setup
     4.3.  Issuance phase
     4.4.  Redemption phase
       4.4.1.  Client info
       4.4.2.  Double-spend protection
     4.5.  Handling errors
   5.  Functionality
     5.1.  Data structures
       5.1.1.  Ciphersuite
       5.1.2.  Keys
       5.1.3.  IssuanceInput
       5.1.4.  IssuanceResponse
       5.1.5.  RedemptionToken
       5.1.6.  RedemptionRequest
       5.1.7.  RedemptionResponse
     5.2.  API functions
       5.2.1.  Generate
       5.2.2.  Issue
       5.2.3.  Process
       5.2.4.  Redeem
       5.2.5.  Verify
     5.3.  Error types
   6.  Security considerations
     6.1.  Unlinkability
     6.2.  One-more unforgeability
     6.3.  Double-spend protection
     6.4.  Additional token metadata
     6.5.  Maximum number of tokens issued
   7.  VOPRF instantiation
     7.1.  Recommended ciphersuites
     7.2.  Protocol contexts
     7.3.  Functionality
       7.3.1.  Generate
       7.3.2.  Issue
       7.3.3.  Process
       7.3.4.  Redeem
       7.3.5.  Verify
     7.4.  Security justification
   8.  Protocol ciphersuites
     8.1.  PP(OPRF2)
     8.2.  PP(OPRF4)
     8.3.  PP(OPRF5)



   9.  Extensions framework policy
   10. References
     10.1.  Normative References
     10.2.  Informative References

Appendix A.  Document contributors
   Authors' Addresses

1.  Introduction

   A common problem on the Internet is providing an effective mechanism
   for servers to derive trust from clients that they interact with.
   Typically, this can be done by providing some sort of authorization
   challenge to the client.  But this also negatively impacts the
   experience of clients that regularly have to solve such challenges.

   To mitigate accessibility issues, a client that correctly solves the
   challenge can be provided with a cookie.  This cookie can be
   presented the next time the client interacts with the server, instead
   of performing the challenge.  However, this does not solve the
   problem of reauthorization of clients across multiple domains.  Using
   current tools, providing some multi-domain authorization token would
   allow linking client browsing patterns across those domains, and
   severely reduces their online privacy.

   The Privacy Pass protocol provides a set of cross-domain
   authorization tokens that protect the client's anonymity in message
   exchanges with a server.  This allows clients to communicate an
   attestation of a previously authenticated server action, without
   having to reauthenticate manually.  The tokens retain anonymity in
   the sense that the act of revealing them cannot be linked back to the
   session where they were initially issued.

   This document lays out the generic description of the protocol, along
   with the data and message formats.  We detail an implementation of
   the protocol functionality based on the description of a verifiable
   oblivious pseudorandom function [I-D.irtf-cfrg-voprf].

   This document DOES NOT cover the architectural framework required for
   running and maintaining the Privacy Pass protocol in the Internet
   setting.  In addition, it DOES NOT cover the choices that are
   necessary for ensuring that client privacy leaks do not occur.  Both
   of these considerations are covered in a separate document
   [draft-davidson-pp-architecture].  In addition,
   [draft-svaldez-pp-http-api] provides an instantiation of this
   protocol intended for the HTTP setting.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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   The following terms are used throughout this document.

   *  Server: A service that provides the server-side functionality
      required by the protocol.  May be referred to as the issuer.

   *  Client: An entity that seeks authorization from a server that
      supports interactions in the Privacy Pass protocol.

   *  Key: The secret key used by the server for authorizing client
      data.

   We assume that all protocol messages are encoded into raw byte format
   before being sent.  We use the TLS presentation language [RFC8446] to
   describe the structure of protocol data types and messages.

3.  Background

   We discuss the core motivation behind the protocol along with the
   guarantees and assumptions that we make in this document.

3.1.  Motivating use-cases

   The Privacy Pass protocol was originally developed to provide
   anonymous authorization of Tor users.  In particular, the protocol
   allows clients to reveal authorization tokens that they have been
   issued without linking the authorization to the actual issuance
   event.  This means that the tokens cannot be used to link the
   browsing patterns of clients that reveal tokens.

   Beyond these uses-cases, the Privacy Pass protocol is used in a
   number of practical applications.  See [DGSTV18], [TrustTokenAPI],
   [PrivateStorage], [OpenPrivacy], and [Brave] for examples.

3.2.  Anonymity and security guarantees

   Privacy Pass provides anonymity-preserving authorization tokens for
   clients.  Throughout this document, we use the terms "anonymous",
   "anonymous-preserving" and "anonymity" to refer to the core security
   guarantee of the protocol.  Informally, this guarantee means that any
   token issued by a server key and subsequently redeemed is
   indistinguishable from any other token issued under the same key.

   Privacy Pass also prohibits clients from forging tokens, as otherwise
   the protocol would have little value as an authorization protocol.
   Informally, this means any client that is issued "N" tokens under a
   given server key cannot redeem more than "N" valid tokens.

Section 6 elaborates on these protocol anonymity and security
   requirements.

3.3.  Basic assumptions

https://datatracker.ietf.org/doc/html/rfc8446


   We make only a few minimal assumptions about the environment of the
   clients and servers supporting the Privacy Pass protocol.

   *  At any one time, we assume that the server uses only one
      configuration containing their ciphersuite choice along with their
      secret key data.  This ensures that all clients are issued tokens
      under the single key associated with any given epoch.

   *  We assume that the client has access to a global directory of the
      current public parts of the configurations used the server.

   The wider ecosystem that this protocol is employed in is described in
   [draft-davidson-pp-architecture].

4.  Protocol description

   The Privacy Pass protocol is split into two phases that are built
   upon the functionality described in Section 5 later.

   The first phase, "issuance", provides the client with unlinkable
   tokens that can be used to initiate re-authorization with the server
   in the future.  The second phase, "redemption", allows the client to
   redeem a given re-authorization token with the server that it
   interacted with during the issuance phase.  The protocol must satisfy
   two cryptographic security requirements known as "unlinkability" and
   "unforgeability".  These requirements are covered in Section 6.

4.1.  Server setup

   Before the protocol takes place, the server chooses a ciphersuite and
   generates a keypair by running "(pkS, skS) = KeyGen()".  This
   configuration must be available to all clients that interact with the
   server (for the purpose of engaging in a Privacy Pass exchange).  We
   assume that the server has a public (and unique) identity that the
   client uses to retrieve this configuration.

4.2.  Client setup

   The client initialises a global storage system "store" that allows it
   store the tokens that are received during issuance.  The storage
   system is a map of server identifiers ("server.id") to arrays of
   stored tokens.  We assume that the client knows the server public key
   "pkS" ahead of time.  The client picks a value "m" of tokens to
   receive during the issuance phase.  In
   [draft-davidson-pp-architecture] we discuss mechanisms that the
   client can use to ensure that this public key is consistent across
   the entire ecosystem.

4.3.  Issuance phase

   The issuance phase allows the client to receive "m" anonymous
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   authorization tokens from the server.

     Client(pkS, m)                              Server(skS, pkS)
     ------------------------------------------------------------
     cInput = Generate(m)
     req = cInput.req

                                 req
                         ------------------->

                                serverResp = Issue(pkS, skS, req)

                              issueResp
                         <-------------------

     tokens = Process(pkS, cInput, issueResp)
     store[server.id].push(tokens)

4.4.  Redemption phase

   The redemption phase allows the client to anonymously reauthenticate
   to the server, using data that it has received from a previous
   issuance phase.

     Client(info)                                Server(skS, pkS)
     ------------------------------------------------------------
     token = store[Issue.id].pop()
     req = Redeem(token, info)

                                  req
                           ------------------>

                                  if (dsIdx.includes(req.data)) {
                                    raise ERR_DOUBLE_SPEND
                                  }
                                  resp = Verify(pkS, skS, req)
                                  if (resp.success) {
                                    dsIdx.push(req.data)
                                  }

                                   resp
                           <------------------
     Output resp

4.4.1.  Client info

   The client input "info" is arbitrary byte data that is used for
   linking the redemption request to the specific session.  We RECOMMEND
   that "info" is constructed as the following concatenated byte-encoded
   data:

   len(aux) || aux || len(server.id) || server.id || current_time()



   where "len(x)" is the length of "x" in bytes, and "aux" is arbitrary
   auxiliary data chosen by the client.  The usage of "current_time()"
   allows the server to check that the redemption request has happened
   in an appropriate time window.

4.4.2.  Double-spend protection

   To protect against clients that attempt to spend a value "req.data"
   more than once, the server uses an index, "dsIdx", to collect valid
   inputs it witnesses.  Since this store needs to only be optimized for
   storage and querying, a structure such as a Bloom filter suffices.
   The storage should be parameterized to live as long as the server
   keypair that is in use.  See Section 6 for more details.

4.5.  Handling errors

   It is possible for the API functions from Section 5.2 to return one
   of the errors indicated in Section 5.3 rather than their expected
   value.  In these cases, we assume that the entire protocol aborts.

5.  Functionality

   This section details the data types and API functions that are used
   to construct the protocol in Section 4.

   We provide an explicit instantiation of the Privacy Pass API in
Section 7.3, based on the public API provided in

   [I-D.irtf-cfrg-voprf].

5.1.  Data structures

   The following data structures are used throughout the Privacy Pass
   protocol and are written in the TLS presentation language [RFC8446].
   It is intended that any of these data structures can be written into
   widely-adopted encoding schemes such as those detailed in TLS
   [RFC8446], CBOR [RFC7049], and JSON [RFC7159].

5.1.1.  Ciphersuite

   The "Ciphersuite" enum provides identifiers for each of the supported
   ciphersuites of the protocol.  Some initial values that are supported
   by the core protocol are described in Section 8.  Note that the list
   of supported ciphersuites may be expanded by extensions to the core
   protocol description in separate documents.

5.1.2.  Keys

   We use the following types to describe the public and private keys
   used by the server.

   opaque PublicKey<1..2^16-1>

https://datatracker.ietf.org/doc/html/rfc8446
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   opaque PrivateKey<1..2^16-1>

5.1.3.  IssuanceInput

   The "IssuanceInput" struct describes the data that is initially
   generated by the client during the issuance phase.

   Firstly, we define sequences of bytes that partition the client
   input.

   opaque Internal<1..2^16-1>
   opaque IssuanceRequest<1..2^16-1>

   These data types represent members of the wider "IssuanceInput" data
   type.

   struct {
     Internal data[m]
     IssuanceRequest req[m]
   } IssuanceInput;

   Note that a "IssuanceInput" contains equal-length arrays of
   "Internal" and "IssuanceRequest" types corresponding to the number of
   tokens that should be issued.

5.1.4.  IssuanceResponse

   Firstly, the "IssuedToken" type corresponds to a single sequence of
   bytes that represents a single issued token received from the server.

   opaque IssuedToken<1..2^16-1>

   Then an "IssuanceResponse" corresponds to a collection of
   "IssuedTokens" as well as a sequence of bytes "proof".

   struct {
     IssuedToken tokens[m]
     opaque proof<1..2^16-1>
   }

   The value of "m" is equal to the length of the "IssuanceRequest"
   vector sent by the client.

5.1.5.  RedemptionToken

   The "RedemptionToken" struct contains the data required to generate
   the client message in the redemption phase of the Privacy Pass
   protocol.

   struct {
     opaque data<1..2^16-1>;
     opaque issued<1..2^16-1>;



   } RedemptionToken;

5.1.6.  RedemptionRequest

   The "RedemptionRequest" struct consists of the data that is sent by
   the client during the redemption phase of the protocol.

   struct {
     opaque data<1..2^16-1>;
     opaque tag<1..2^16-1>;
     opaque info<1..2^16-1>;
   } RedemptionRequest;

5.1.7.  RedemptionResponse

   The "RedemptionResponse" struct corresponds to a boolean value that
   indicates whether the "RedemptionRequest" sent by the client is
   valid.  It can also contain any associated data.

   struct {
     boolean success;
     opaque ad<1..2^16-1>;
   } RedemptionResponse;

5.2.  API functions

   The following functions wrap the core of the functionality required
   in the Privacy Pass protocol.  For each of the descriptions, we
   essentially provide the function signature, leaving the actual
   contents to be defined by specific instantiations or extensions of
   the protocol.

5.2.1.  Generate

   A function run by the client to generate the initial data that is
   used as its input in the Privacy Pass protocol.

   Inputs:

   *  "m": A "uint8" value corresponding to the number of Privacy Pass
      tokens to generate.

   Outputs:

   *  "input": An "IssuanceInput" struct.

5.2.2.  Issue

   A function run by the server to issue valid redemption tokens to the
   client.

   Inputs:



   *  "pkS": A server "PublicKey".

   *  "skS": A server "PrivateKey".

   *  "req": An "IssuanceRequest" struct.

   Outputs:

   *  "resp": An "IssuanceResponse" struct.

5.2.3.  Process

   Run by the client when processing the server response in the issuance
   phase of the protocol.

   Inputs:

   *  "pkS": An server "PublicKey".

   *  "input": An "IssuanceInput" struct.

   *  "resp": An "IssuanceResponse" struct.

   Outputs:

   *  "tokens": A vector of "RedemptionToken" structs, whose length is
      equal to length of the internal "ServerEvaluation" vector in the
      "IssuanceResponse" struct.

   Throws:

   *  "ERR_PROOF_VALIDATION" (Section 5.3)

5.2.4.  Redeem

   Run by the client in the redemption phase of the protocol to generate
   the client's message.

   Inputs:

   *  "token": A "RedemptionToken" struct.

   *  "info": An "opaque<1..2^16-1>" type corresponding to data that is
      linked to the redemption.  See Section 4.4.1 for advice on how to
      construct this.

   Outputs:

   *  "req": A "RedemptionRequest" struct.

5.2.5.  Verify



   Run by the server in the redemption phase of the protocol.
   Determines whether the data sent by the client is valid.

   Inputs:

   *  "pkS": An server "PublicKey".

   *  "skS": An server "PrivateKey".

   *  "req": A "RedemptionRequest" struct.

   Outputs:

   *  "resp": A "RedemptionResponse" struct.

5.3.  Error types

   *  "ERR_PROOF_VALIDATION": Error occurred when a client attempted to
      verify the proof that is part of the server's response.

   *  "ERR_DOUBLE_SPEND": Error occurred when a client has attempted to
      redeem a token that has already been used for authorization.

6.  Security considerations

   We discuss the security requirements that are necessary to uphold
   when instantiating the Privacy Pass protocol.  In particular, we
   focus on the security requirements of "unlinkability", and
   "unforgeability".  Informally, the notion of unlinkability is
   required to preserve the anonymity of the client in the redemption
   phase of the protocol.  The notion of unforgeability is to protect
   against an adversarial client that may look to subvert the security
   of the protocol.

   Both requirements are modelled as typical cryptographic security
   games, following the formats laid out in [DGSTV18] and [KLOR20].

   Note that the privacy requirements of the protocol are covered in the
   architectural framework document [draft-davidson-pp-architecture].

6.1.  Unlinkability

   Formally speaking the security model is the following:

   *  The adversary runs the server setup and generates a keypair "(pkS,
      skS)".

   *  The adversary specifies a number "Q" of issuance phases to
      initiate, where each phase "i in range(Q)" consists of "m_i" Issue
      evaluations.

   *  The adversary runs "Issue" using the keypair that it generated on
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      each of the client messages in the issuance phase.

   *  When the adversary wants, it stops the issuance phase, and a
      random number "l" is picked from "range(Q)".

   *  A redemption phase is initiated with a single token with index "i"
      randomly sampled from "range(m_l)".

   *  The adversary guesses an index "l_guess" corresponding to the
      index of the issuance phase that it believes the redemption token
      was received in.

   *  The adversary succeeds if "l == l_guess".

   The security requirement is that the adversary has only a negligible
   probability of success greater than "1/Q".

6.2.  One-more unforgeability

   The one-more unforgeability requirement states that it is hard for
   any adversarial client that has received "m" valid tokens from the
   issuance phase to redeem "m+1" of them.  In essence, this requirement
   prevents a malicious client from being able to forge valid tokens
   based on the Issue responses that it sees.

   The security model roughly takes the following form:

   *  The adversary specifies a number "Q" of issuance phases to
      initiate with the server, where each phase "i in range(Q)"
      consists of "m_i" server evaluation.  Let "m = sum(m_i)" where "i
      in range(Q)".

   *  The adversary receives "Q" responses, where the response with
      index "i" contains "m_i" individual tokens.

   *  The adversary initiates "m_adv" redemption sessions with the
      server and the server verifies that the sessions are successful
      (return true), and that each request includes a unique token.  The
      adversary succeeds in "m_succ =< m_adv" redemption sessions.

   *  The adversary succeeds if "m_succ > m".

   The security requirement is that the adversarial client has only a
   negligible probability of succeeding.

   Note that [KLOR20] strengthens the capabilities of the adversary, in
   comparison to the original work of [DGSTV18].  In [KLOR20], the
   adversary is provided with oracle access that allows it to verify
   that the server responses in the issuance phase are valid.

6.3.  Double-spend protection



   All issuing servers should implement a robust, global storage-query
   mechanism for checking that tokens sent by clients have not been
   spent before.  Such tokens only need to be checked for each server
   individually.  This prevents clients from "replaying" previous
   requests, and is necessary for achieving the unforgeability
   requirement.

6.4.  Additional token metadata

   Some use-cases of the Privacy Pass protocol benefit from associating
   a limited amount of metadata with tokens that can be read by the
   server when a token is redeemed.  Adding metadata to tokens can be
   used as a vector to segment the anonymity of the client in the
   protocol.  Therefore, it is important that any metadata that is added
   is heavily limited.

   Any additional metadata that can be added to redemption tokens should
   be described in the specific protocol instantiation.  Note that any
   additional metadata will have to be justified in light of the privacy
   concerns raised above.  For more details on the impacts associated
   with segmenting user privacy, see [draft-davidson-pp-architecture].

   Any metadata added to tokens will be considered either "public" or
   "private".  Public metadata corresponds to unmodifiable bits that a
   client can read.  Private metadata corresponds to unmodifiable
   private bits that should be obscured to the client.

   Note that the instantiation in Section 7 provides randomized
   redemption tokens with no additional metadata for an server with a
   single key.

6.5.  Maximum number of tokens issued

   Servers SHOULD impose a hard ceiling on the number of tokens that can
   be issued in a single issuance phase to a client.  If there is no
   limit, malicious clients could abuse this and cause excessive
   computation, leading to a Denial-of-Service attack.

7.  VOPRF instantiation

   In this section, we show how to instantiate the functional API in
Section 5 with the VOPRF protocol described in [I-D.irtf-cfrg-voprf].

   Moreover, we show that this protocol satisfies the security
   requirements laid out in Section 6, based on the security proofs
   provided in [DGSTV18] and [KLOR20].

7.1.  Recommended ciphersuites

   The RECOMMENDED server ciphersuites are as follows: detailed in
   [I-D.irtf-cfrg-voprf]:

   *  OPRF(curve448, SHA-512) (ID = 0x0002);
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   *  OPRF(P-384, SHA-512) (ID = 0x0004);

   *  OPRF(P-521, SHA-512) (ID = 0x0005).

   We deliberately avoid the usage of smaller ciphersuites (associated
   with P-256 and curve25519) due to the potential to reduce security to
   unfavourable levels via static Diffie Hellman attacks.  See
   [I-D.irtf-cfrg-voprf] for more details.

7.2.  Protocol contexts

   Note that we must run the verifiable version of the protocol in
   [I-D.irtf-cfrg-voprf].  Therefore the "server" takes the role of the
   "Server" running in "modeVerifiable".  In other words, the "server"
   runs "(ctxtI, pkS) = SetupVerifiableServer(suite)"; where "suite" is
   one of the ciphersuites in Section 7.1, "ctxt" contains the internal
   VOPRF server functionality and secret key "skS", and "pkS" is the
   server public key.  Likewise, run "ctxtC =
   SetupVerifiableClient(suite)" to generate the Client context.

7.3.  Functionality

   We instantiate each functions using the API functions in
   [I-D.irtf-cfrg-voprf].  Note that we use the framework mentioned in
   the document to allow for batching multiple tokens into a single
   VOPRF evaluation.  For the explicit signatures of each of the
   functions, refer to Section 5.

7.3.1.  Generate

   def Generate(m):
     tokens = []
     blindedTokens = []
     for i in range(m):
       x = random_bytes()
       (token, blindedToken) = Blind(x)
       token[i] = token
       blindedToken[i] = blindedToken
     return IssuanceInput {
              internal: tokens,
              req: blindedTokens,
            }

7.3.2.  Issue

   For this functionality, note that we supply multiple tokens in "req"
   to "Evaluate".  This allows batching a single proof object for
   multiple evaluations.  While the construction in
   [I-D.irtf-cfrg-voprf] only permits a single input, we follow the
   advice for providing vectors of inputs.



   def Issue(pkS, skS, req):
     Ev = Evaluate(skS, pkS, req)
     return IssuanceResponse {
              tokens: Ev.elements,
              proof: Ev.proof,
            }

7.3.3.  Process

   Similarly to "Issue", we follow the advice for providing vectors of
   inputs to the "Unblind" function for verifying the batched proof
   object.

   Process(pkS, input, resp):
     unblindedTokens = Unblind(pkS, input.data, input.req, resp)
     redemptionTokens = []
     for bt in unblindedTokens:
       rt = RedemptionToken { data: input.data, issued: bt }
       redemptionTokens[i] = rt
     return redemptionTokens

7.3.4.  Redeem

   def Redeem(token, info):
     tag = Finalize(token.data, token.issued, info)
     return RedemptionRequest {
              data: data,
              tag: tag,
              info: info,
            }

7.3.5.  Verify

   def Verify(pkS, skS, req):
     resp = VerifyFinalize(skS, pkS, req.data, req.info, req.tag)
     Output RedemptionResponse {
              success: resp
            }

7.4.  Security justification

   The protocol devised in Section 4, coupled with the API instantiation
   in Section 7.3, are equivalent to the protocol description in
   [DGSTV18] and [KLOR20] from a security perspective.  In [DGSTV18], it
   is proven that this protocol satisfies the security requirements of
   unlinkability (Section 6.1) and unforgeability (Section 6.2).

   The unlinkability property follows unconditionally as the view of the
   adversary in the redemption phase is distributed independently of the
   issuance phase.  The unforgeability property follows from the one-
   more decryption security of the ElGamal cryptosystem [DGSTV18].  In
   [KLOR20] it is also proven that this protocol satisfies the stronger



   notion of unforgeability, where the adversary is granted a
   verification oracle, under the chosen-target Diffie-Hellman
   assumption.

   Note that the existing security proofs do not leverage the VOPRF
   primitive as a black-box in the security reductions.  Instead, it
   relies on the underlying operations in a non-black-box manner.
   Hence, an explicit reduction from the generic VOPRF primitive to the
   Privacy Pass protocol would strengthen these security guarantees.

8.  Protocol ciphersuites

   The ciphersuites that we describe for the Privacy Pass protocol are
   derived from the core instantiations of the protocol (such as in

Section 7).

   In each of the ciphersuites below, the maximum security provided
   corresponds to the maximum difficulty of computing a discrete
   logarithm in the group.  Note that the actual security level MAY be
   lower.  See the security considerations in [I-D.irtf-cfrg-voprf] for
   examples.

8.1.  PP(OPRF2)

   *  OPRF2 = OPRF(curve448, SHA-512)

   *  ID = 0x0001

   *  Maximum security provided: 224 bits

8.2.  PP(OPRF4)

   *  OPRF4 = OPRF(P-384, SHA-512)

   *  ID = 0x0002

   *  Maximum security provided: 192 bits

8.3.  PP(OPRF5)

   *  OPRF5 = OPRF(P-521, SHA-512)

   *  ID = 0x0003

   *  Maximum security provided: 256 bits

9.  Extensions framework policy

   The intention with providing the Privacy Pass API in Section 5 is to
   allow new instantiations of the Privacy Pass protocol.  These
   instantiations may provide either modified VOPRF constructions, or
   simply implement the API in a completely different way.



   Extensions to this initial draft SHOULD be specified as separate
   documents taking one of two possible routes:

   *  Produce new VOPRF-like primitives that use the same public API
      provided in [I-D.irtf-cfrg-voprf] to implement the Privacy Pass
      API, but with different internal operations.

   *  Implement the Privacy Pass API in a different way to the proposed
      implementation in Section 7.

   If an extension requires changing the generic protocol description as
   described in Section 4, then the change may have to result in changes
   to the draft specification here also.

   Each new extension that modifies the internals of the protocol in
   either of the two ways MUST re-justify that the extended protocol
   still satisfies the security requirements in Section 6.  Protocol
   extensions MAY put forward new security guarantees if they are
   applicable.

   The extensions MUST also conform with the extension framework policy
   as set out in the architectural framework document.  For example,
   this may concern any potential impact on client anonymity that the
   extension may introduce.
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