
Network Working Group A. Melnikov
Internet-Draft Isode Ltd.
Obsoletes: 4551 (if approved) September 11, 2013
Updates: 3501, 2683 (if approved)
Intended status: Standards Track
Expires: March 15, 2014

IMAP Extension for Conditional STORE Operation or Quick Flag Changes
Resynchronization

draft-ietf-qresync-rfc4551bis-04.txt

Abstract

 Often, multiple IMAP (RFC 3501) clients need to coordinate changes to
 a common IMAP mailbox. Examples include different clients working on
 behalf of the same user, and multiple users accessing shared
 mailboxes. These clients need a mechanism to synchronize state
 changes for messages within the mailbox. They must be able to
 guarantee that only one client can change message state (e.g.,
 message flags) at any time. An example of such an application is use
 of an IMAP mailbox as a message queue with multiple dequeueing
 clients.

 The Conditional Store facility provides a protected update mechanism
 for message state information that can detect and resolve conflicts
 between multiple writing mail clients.

 The Conditional Store facility also allows a client to quickly
 resynchronize mailbox flag changes.

 This document defines an extension to IMAP (RFC 3501).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Melnikov Expires March 15, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4551
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2683
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft IMAP CONDSTORE September 2013

 This Internet-Draft will expire on March 15, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction and Overview 3
2. Conventions Used in This Document 5
3. IMAP Protocol Changes . 6
3.1. New OK Untagged Responses for SELECT and EXAMINE 6
3.1.1. HIGHESTMODSEQ Response Code 6
3.1.2. NOMODSEQ Response Code 7

3.2. STORE and UID STORE Commands 8
3.3. FETCH and UID FETCH Commands 14
3.3.1. CHANGEDSINCE FETCH Modifier 14
3.3.2. MODSEQ Message Data Item in FETCH Command 14

3.4. MODSEQ Search Criterion in SEARCH 17
3.5. Modified SEARCH Untagged Response 18
3.6. HIGHESTMODSEQ Status Data Items 18
3.7. CONDSTORE Parameter to SELECT and EXAMINE 19
3.8. Interaction with IMAP SORT and THREAD extensions 19
3.9. Interaction with IMAP ESORT and ESEARCH extensions . . . 20
3.10. Additional Quality-of-Implementation Issues 20

4. Formal Syntax . 20
5. Server Implementation Considerations 23
6. Long Command Lines . 24
7. Security Considerations 24
8. IANA Considerations . 25
9. Acknowledgements . 25
10. References . 25
10.1. Normative References 25
10.2. Informative References 26

Appendix A. Changes since RFC 4551 26
 Author's Address . 27

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc4551

Melnikov Expires March 15, 2014 [Page 2]

Internet-Draft IMAP CONDSTORE September 2013

1. Introduction and Overview

 The Conditional STORE extension is present in any IMAP4
 implementation that returns "CONDSTORE" as one of the supported
 capabilities in the CAPABILITY command response.

 An IMAP server that supports this extension MUST associate a positive
 unsigned 64-bit value called a modification sequence (mod-sequence)
 with every IMAP message. This is an opaque value updated by the
 server whenever a metadata item is modified. The server MUST
 guarantee that each STORE command performed on the same mailbox
 (including simultaneous stores to different metadata items from
 different connections) will get a different mod-sequence value.
 Also, for any two successful STORE operations performed in the same
 session on the same mailbox, the mod-sequence of the second completed
 operation MUST be greater than the mod-sequence of the first
 completed. Note that the latter rule disallows the use of the system
 clock as a mod-sequence, because if system time changes (e.g., an NTP
 [RFC1305] client adjusting the time), the next generated value might
 be less than the previous one.

 Mod-sequences allow a client that supports the CONDSTORE extension to
 determine if a message metadata has changed since some known moment.
 Whenever the state of a flag changes (i.e., the flag is added where
 previously it wasn't set, or the flag is removed and before it was
 set) the value of the modification sequence for the message MUST be
 updated. Adding the flag when it is already present or removing when
 it is not present SHOULD NOT change the mod-sequence.

 When a message is appended to a mailbox (via the IMAP APPEND command,
 COPY to the mailbox, or using an external mechanism) the server
 generates a new modification sequence that is higher than the highest
 modification sequence of all messages in the mailbox and assigns it
 to the appended message.

 The server MAY store separate (per-message) modification sequence
 values for different metadata items. If the server does so, per-
 message mod-sequence is the highest mod-sequence of all metadata
 items for the specified message.

 The server that supports this extension is not required to be able to
 store mod-sequences for every available mailbox. Section 3.1.2
 describes how the server may act if a particular mailbox doesn't
 support the persistent storage of mod-sequences.

 This extension makes the following changes to the IMAP4 protocol:

 a. adds UNCHANGEDSINCE STORE modifier.

https://datatracker.ietf.org/doc/html/rfc1305

Melnikov Expires March 15, 2014 [Page 3]

Internet-Draft IMAP CONDSTORE September 2013

 b. adds the MODIFIED response code which should be used with an OK
 response to the STORE command. (It can also be used in a NO
 response.)

 c. adds a new MODSEQ message data item for use with the FETCH
 command.

 d. adds CHANGEDSINCE FETCH modifier.

 e. adds a new MODSEQ search criterion.

 f. extends the syntax of untagged SEARCH responses to include mod-
 sequence.

 g. adds new OK untagged responses for the SELECT and EXAMINE
 commands.

 h. defines an additional parameter to SELECT/EXAMINE commands.

 i. adds the HIGHESTMODSEQ status data item to the STATUS command.

 A client supporting CONDSTORE extension indicates its willingness to
 receive mod-sequence updates in all untagged FETCH responses by
 issuing:

 o a SELECT or EXAMINE command with the CONDSTORE parameter,

 o a STATUS (HIGHESTMODSEQ) command,

 o a FETCH or SEARCH command that includes the MODSEQ message data
 item,

 o a FETCH command with the CHANGEDSINCE modifier,

 o a STORE command with the UNCHANGEDSINCE modifier, or

 o an ENABLE command containing "CONDSTORE" as one of the parameters.
 (This requirement only applies to servers that also implement the
 ENABLE extension [RFC5161].)

 The server MUST include mod-sequence data in all subsequent untagged
 FETCH responses (until the connection is closed), whether they were
 caused by a regular STORE, a STORE with UNCHANGEDSINCE modifier, or
 an external agent.

 This document uses the term "CONDSTORE-aware client" to refer to a
 client that announces its willingness to receive mod-sequence updates
 as described above. The term "CONDSTORE enabling command" will refer

https://datatracker.ietf.org/doc/html/rfc5161

Melnikov Expires March 15, 2014 [Page 4]

Internet-Draft IMAP CONDSTORE September 2013

 any of the commands listed above. A future extension to this
 document may extend the list of CONDSTORE enabling commands. A first
 CONDSTORE enabling command executed in the session with a mailbox
 selected MUST cause the server to return HIGHESTMODSEQ
 (Section 3.1.1) for the mailbox, unless the server has sent NOMODSEQ
 (Section 3.1.2) response code when the currently selected mailbox was
 selected.

 The rest of this document describes the protocol changes more
 rigorously.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In examples, lines beginning with "S:" are sent by the IMAP server,
 and lines beginning with "C:" are sent by the client. Line breaks
 may appear in example commands solely for editorial clarity; when
 present in the actual message, they are represented by "CRLF".

 Formal syntax is defined using ABNF [RFC5234].

 The term "metadata" or "metadata item" is used throughout this
 document. It refers to any system or user-defined keyword. Future
 documents may extend "metadata" to include other dynamic message
 data.

 Some IMAP mailboxes are private, accessible only to the owning user.
 Other mailboxes are not, either because the owner has set an Access
 Control List [RFC4314] that permits access by other users, or because
 it is a shared mailbox. Let's call a metadata item "shared" for the
 mailbox if any changes to the metadata items are persistent and
 visible to all other users accessing the mailbox. Otherwise, the
 metadata item is called "private". Note that private metadata items
 are still visible to all sessions accessing the mailbox as the same
 user. Also note that different mailboxes may have different metadata
 items as shared.

 See Section 1 for the definition of a "CONDSTORE-aware client" and a
 "CONDSTORE enabling command".

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4314

Melnikov Expires March 15, 2014 [Page 5]

Internet-Draft IMAP CONDSTORE September 2013

3. IMAP Protocol Changes

3.1. New OK Untagged Responses for SELECT and EXAMINE

 This document adds two new response codes, HIGHESTMODSEQ and
 NOMODSEQ. One of these response codes MUST be returned in the OK
 untagged response for a successful SELECT/EXAMINE command.

 When opening a mailbox, the server must check if the mailbox supports
 the persistent storage of mod-sequences. If the mailbox supports the
 persistent storage of mod-sequences and the mailbox open operation
 succeeds, the server MUST send the OK untagged response including
 HIGHESTMODSEQ response code. If the persistent storage for the
 mailbox is not supported, the server MUST send the OK untagged
 response including NOMODSEQ response code instead.

3.1.1. HIGHESTMODSEQ Response Code

 This document adds a new response code that is returned in the OK
 untagged response for the SELECT and EXAMINE commands. A server
 supporting the persistent storage of mod-sequences for the mailbox
 MUST send the OK untagged response including HIGHESTMODSEQ response
 code with every successful SELECT or EXAMINE command:

 OK [HIGHESTMODSEQ <mod-sequence-value>]

 where <mod-sequence-value> is the highest mod-sequence value of
 all messages in the mailbox. When the server changes UIDVALIDITY
 for a mailbox, it doesn't have to keep the same HIGHESTMODSEQ for
 the mailbox.

 Note that this requirement applies whether or not a CONDSTORE
 enabling command was issued in the session.

 A disconnected client can use the value of HIGHESTMODSEQ to check if
 it has to refetch metadata from the server. If the UIDVALIDITY value
 has changed for the selected mailbox, the client MUST delete the
 cached value of HIGHESTMODSEQ. If UIDVALIDITY for the mailbox is the
 same, and if the HIGHESTMODSEQ value stored in the client's cache is
 less than the value returned by the server, then some metadata items
 on the server have changed since the last synchronization, and the
 client needs to update its cache. The client MAY use SEARCH MODSEQ
 (Section 3.4) to find out exactly which metadata items have changed.
 Alternatively, the client MAY issue FETCH with the CHANGEDSINCE
 modifier (Section 3.3.1) in order to fetch data for all messages that
 have metadata items changed since some known modification sequence.

Melnikov Expires March 15, 2014 [Page 6]

Internet-Draft IMAP CONDSTORE September 2013

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [HIGHESTMODSEQ 715194045007]
 S: A142 OK [READ-WRITE] SELECT completed

 Example 1

3.1.2. NOMODSEQ Response Code

 A server that doesn't support the persistent storage of mod-sequences
 for the mailbox MUST send the OK untagged response including NOMODSEQ
 response code with every successful SELECT or EXAMINE command. Note
 that this requirement applies whether or not a CONDSTORE enabling
 command was issued in the session.

 A server that returned NOMODSEQ response code for a mailbox, which
 subsequently receives one of the following commands while the mailbox
 is selected:

 o a FETCH command with the CHANGEDSINCE modifier,

 o a FETCH or SEARCH command that includes the MODSEQ message data
 item, or

 o a STORE command with the UNCHANGEDSINCE modifier

 MUST reject any such command with a tagged BAD response.

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [NOMODSEQ] Sorry, this mailbox format doesn't support
 modsequences
 S: A142 OK [READ-WRITE] SELECT completed

 Example 2

Melnikov Expires March 15, 2014 [Page 7]

Internet-Draft IMAP CONDSTORE September 2013

3.2. STORE and UID STORE Commands

 This document defines the following STORE modifier (see Section 2.5
 of [RFC4466]):

 UNCHANGEDSINCE <mod-sequence> For each message specified in the
 message set, the server performs the following. If the mod-
 sequence of any metadata item of the message is equal to or less
 than the specified UNCHANGEDSINCE value, then the requested
 operation (as described by the message data item) is performed.
 If the operation is successful, the server MUST update the mod-
 sequence attribute of the message. An untagged FETCH response
 MUST be sent, even if the .SILENT suffix is specified, and the
 response MUST include the MODSEQ message data item. This is
 required to update the client's cache with the correct mod-
 sequence values. See Section 3.3.2 for more details.

 However, if the mod-sequence of any metadata item of the message is
 greater than the specified UNCHANGEDSINCE value, then the requested
 operation MUST NOT be performed. In this case, the mod-sequence
 attribute of the message is not updated, and the message number (or
 unique identifier in the case of the UID STORE command) is added to
 the list of messages that failed the UNCHANGEDSINCE test.

 When the server finishes performing the operation on all the messages
 in the message set, it checks for a non-empty list of messages that
 failed the UNCHANGEDSINCE test. If this list is non-empty, the
 server MUST return in the tagged response a MODIFIED response code.
 The MODIFIED response code includes the message set (for STORE) or
 set of UIDs (for UID STORE) of all messages that failed the
 UNCHANGEDSINCE test.

 All messages pass the UNCHANGEDSINCE test.

 C: a103 UID STORE 6,4,8 (UNCHANGEDSINCE 12121230045)
 +FLAGS.SILENT (\Deleted)
 S: * 1 FETCH (UID 4 MODSEQ (12121231000))
 S: * 2 FETCH (UID 6 MODSEQ (12121230852))
 S: * 4 FETCH (UID 8 MODSEQ (12121130956))
 S: a103 OK Conditional Store completed

 Example 3

https://datatracker.ietf.org/doc/html/rfc4466#section-2.5
https://datatracker.ietf.org/doc/html/rfc4466#section-2.5

Melnikov Expires March 15, 2014 [Page 8]

Internet-Draft IMAP CONDSTORE September 2013

 C: a104 STORE * (UNCHANGEDSINCE 12121230045) +FLAGS.SILENT
 (\Deleted $Processed)
 S: * 50 FETCH (MODSEQ (12111230047))
 S: a104 OK Store (conditional) completed

 Example 4

 C: c101 STORE 50 (UNCHANGEDSINCE 12121230045) -FLAGS.SILENT
 (\Deleted)
 S: * OK [HIGHESTMODSEQ 12111230047]
 S: * 50 FETCH (MODSEQ (12111230048))
 S: c101 OK Store (conditional) completed

 HIGHESTMODSEQ response code was sent by the server presumably because
 this was the first CONDSTORE enabling command.

 Example 5

 The failure of the conditional STORE operation for any particular
 message or messages (7 in this example) does not stop the server from
 finding all messages that fail the UNCHANGEDSINCE test. All such
 messages are returned in the MODIFIED response code.

 C: d105 STORE 7,5,9 (UNCHANGEDSINCE 320162338)
 +FLAGS.SILENT (\Deleted)
 S: * 5 FETCH (MODSEQ (320162350))
 S: d105 OK [MODIFIED 7,9] Conditional STORE failed

 Example 6

 Same as above, but the server follows the SHOULD recommendation in
Section 6.4.6 of [RFC3501].

 C: d105 STORE 7,5,9 (UNCHANGEDSINCE 320162338)
 +FLAGS.SILENT (\Deleted)
 S: * 7 FETCH (MODSEQ (320162342) FLAGS (\Seen \Deleted))
 S: * 5 FETCH (MODSEQ (320162350))
 S: * 9 FETCH (MODSEQ (320162349) FLAGS (\Answered))
 S: d105 OK [MODIFIED 7,9] Conditional STORE failed

 Use of UNCHANGEDSINCE with a modification sequence of 0 always fails
 if the metadata item exists. A system flag MUST always be considered
 existent, whether it was set or not.

 Example 7

 C: a102 STORE 12 (UNCHANGEDSINCE 0)
 +FLAGS.SILENT ($MDNSent)

https://datatracker.ietf.org/doc/html/rfc3501#section-6.4.6

Melnikov Expires March 15, 2014 [Page 9]

Internet-Draft IMAP CONDSTORE September 2013

 S: a102 OK [MODIFIED 12] Conditional STORE failed

 The client has tested the presence of the $MDNSent user-defined
 keyword.

 Example 8

 Note: A client trying to make an atomic change to the state of a
 particular metadata item (or a set of metadata items) should be
 prepared to deal with the case when the server returns the MODIFIED
 response code if the state of the metadata item being watched hasn't
 changed (but the state of some other metadata item has). This is
 necessary, because some servers don't store separate mod-sequences
 for different metadata items. However, a server implementation
 SHOULD avoid generating spurious MODIFIED responses for +FLAGS/-FLAGS
 STORE operations, even when the server stores a single mod-sequence
 per message. Section 5 describes how this can be achieved.

 Unless the server has included an unsolicited FETCH to update
 client's knowledge about messages that have failed the UNCHANGEDSINCE
 test, upon receipt of the MODIFIED response code, the client SHOULD
 try to figure out if the required metadata items have indeed changed
 by issuing FETCH or NOOP command. It is RECOMMENDED that the server
 avoids the need for the client to do that by sending an unsolicited
 FETCH response (Examples 9 and 10).

 If the required metadata items haven't changed, the client SHOULD
 retry the command with the new mod-sequence. The client SHOULD allow
 for a configurable but reasonable number of retries (at least 2).

Melnikov Expires March 15, 2014 [Page 10]

Internet-Draft IMAP CONDSTORE September 2013

 In the example below, the server returns the MODIFIED response code
 without sending information describing why the STORE UNCHANGEDSINCE
 operation has failed.

 C: a106 STORE 100:150 (UNCHANGEDSINCE 212030000000)
 +FLAGS.SILENT ($Processed)
 S: * 100 FETCH (MODSEQ (303181230852))
 S: * 102 FETCH (MODSEQ (303181230852))
 ...
 S: * 150 FETCH (MODSEQ (303181230852))
 S: a106 OK [MODIFIED 101] Conditional STORE failed

 The flag $Processed was set on the message 101...

 C: a107 NOOP
 S: * 101 FETCH (MODSEQ (303011130956) FLAGS ($Processed))
 S: a107 OK

 Example 9

 Or the flag hasn't changed, but another has (note that this server
 behaviour is discouraged. Server implementers should also see

Section 5)...

 C: b107 NOOP
 S: * 101 FETCH (MODSEQ (303011130956) FLAGS (\Deleted \Answered))
 S: b107 OK

 ...and the client retries the operation for the message 101 with
 the updated UNCHANGEDSINCE value

 C: b108 STORE 101 (UNCHANGEDSINCE 303011130956)
 +FLAGS.SILENT ($Processed)
 S: * 101 FETCH (MODSEQ (303181230852))
 S: b108 OK Conditional Store completed

 Same as above, but the server avoids the need for the client to poll
 for changes.

Melnikov Expires March 15, 2014 [Page 11]

Internet-Draft IMAP CONDSTORE September 2013

 The flag $Processed was set on the message 101 by another
 client...

 C: a106 STORE 100:150 (UNCHANGEDSINCE 212030000000)
 +FLAGS.SILENT ($Processed)
 S: * 100 FETCH (MODSEQ (303181230852))
 S: * 101 FETCH (MODSEQ (303011130956) FLAGS ($Processed))
 S: * 102 FETCH (MODSEQ (303181230852))
 ...
 S: * 150 FETCH (MODSEQ (303181230852))
 S: a106 OK [MODIFIED 101] Conditional STORE failed

 Example 10

 Or the flag hasn't changed, but another has (note that this server
 behaviour is discouraged. Server implementers should also see

Section 5)...

 C: a106 STORE 100:150 (UNCHANGEDSINCE 212030000000)
 +FLAGS.SILENT ($Processed)
 S: * 100 FETCH (MODSEQ (303181230852))
 S: * 101 FETCH (MODSEQ (303011130956) FLAGS (\Deleted \Answered))
 S: * 102 FETCH (MODSEQ (303181230852))
 ...
 S: * 150 FETCH (MODSEQ (303181230852))
 S: a106 OK [MODIFIED 101] Conditional STORE failed

 ...and the client retries the operation for the message 101 with
 the updated UNCHANGEDSINCE value

 C: b108 STORE 101 (UNCHANGEDSINCE 303011130956)
 +FLAGS.SILENT ($Processed)
 S: * 101 FETCH (MODSEQ (303181230852))
 S: b108 OK Conditional Store completed

 Or the flag hasn't changed, but another has (nice server behaviour.
 Server implementers should also see Section 5)...

 C: a106 STORE 100:150 (UNCHANGEDSINCE 212030000000)
 +FLAGS.SILENT ($Processed)
 S: * 100 FETCH (MODSEQ (303181230852))
 S: * 101 FETCH (MODSEQ (303011130956) FLAGS ($Processed \Deleted
 \Answered))
 S: * 102 FETCH (MODSEQ (303181230852))
 ...
 S: * 150 FETCH (MODSEQ (303181230852))

Melnikov Expires March 15, 2014 [Page 12]

Internet-Draft IMAP CONDSTORE September 2013

 S: a106 OK Conditional STORE completed

 The following example is based on the example from the Section 4.2.3
 of [RFC2180] and demonstrates that the MODIFIED response code may be
 also returned in the tagged NO response.

 Client tries to conditionally STORE flags on a mixture of expunged
 and non-expunged messages; one message fails the UNCHANGEDSINCE
 test.

 C: B001 STORE 1:7 (UNCHANGEDSINCE 320172338) +FLAGS (\SEEN)
 S: * 1 FETCH (MODSEQ (320172342) FLAGS (\SEEN))
 S: * 3 FETCH (MODSEQ (320172342) FLAGS (\SEEN))
 S: B001 NO [MODIFIED 2] Some of the messages no longer exist.

 C: B002 NOOP
 S: * 4 EXPUNGE
 S: * 4 EXPUNGE
 S: * 4 EXPUNGE
 S: * 4 EXPUNGE
 S: * 2 FETCH (MODSEQ (320172340) FLAGS (\Deleted \Answered))
 S: B002 OK NOOP Completed.

 By receiving FETCH responses for messages 1 and 3, and EXPUNGE
 responses that indicate that messages 4 through 7 have been
 expunged, the client retries the operation only for the message 2.
 The updated UNCHANGEDSINCE value is used.

 C: b003 STORE 2 (UNCHANGEDSINCE 320172340) +FLAGS (\Seen)
 S: * 2 FETCH (MODSEQ (320180050) FLAGS (\SEEN \Flagged))
 S: b003 OK Conditional Store completed

 Example 11

 Note: If a message is specified multiple times in the message set,
 and the server doesn't internally eliminate duplicates from the
 message set, it MUST NOT fail the conditional STORE operation for the
 second (or subsequent) occurrence of the message if the operation
 completed successfully for the first occurrence. For example, if the
 client specifies:

 e105 STORE 7,3:9 (UNCHANGEDSINCE 12121230045) +FLAGS.SILENT
 (\Deleted)

 the server must not fail the operation for message 7 as part of
 processing "3:9" if it succeeded when message 7 was processed the
 first time.

https://datatracker.ietf.org/doc/html/rfc2180#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc2180#section-4.2.3

Melnikov Expires March 15, 2014 [Page 13]

Internet-Draft IMAP CONDSTORE September 2013

 As specified in Section 1, once the client specified the
 UNCHANGEDSINCE modifier in a STORE command, the server starts
 including the MODSEQ fetch response data items in all subsequent
 unsolicited FETCH responses.

 This document also changes the behaviour of the server when it has
 performed a STORE or UID STORE command and the UNCHANGEDSINCE
 modifier is not specified. If the operation is successful for a
 message, the server MUST update the mod-sequence attribute of the
 message. The server is REQUIRED to include the mod-sequence value
 whenever it decides to send the unsolicited FETCH response to all
 CONDSTORE-aware clients that have opened the mailbox containing the
 message.

 Server implementers should also see Section 3.10 for additional
 quality of implementation issues related to the STORE command.

3.3. FETCH and UID FETCH Commands

3.3.1. CHANGEDSINCE FETCH Modifier

 This document defines the following FETCH modifier (see Section 2.4
 of [RFC4466]):

 CHANGEDSINCE <mod-sequence> CHANGEDSINCE FETCH modifier allows to
 create a further subset of the list of messages described by
 sequence set. The information described by message data items is
 only returned for messages that have mod-sequence bigger than
 <mod-sequence>.

 When CHANGEDSINCE FETCH modifier is specified, it implicitly adds
 MODSEQ FETCH message data item (Section 3.3.2).

 C: s100 UID FETCH 1:* (FLAGS) (CHANGEDSINCE 12345)
 S: * 1 FETCH (UID 4 MODSEQ (65402) FLAGS (\Seen))
 S: * 2 FETCH (UID 6 MODSEQ (75403) FLAGS (\Deleted))
 S: * 4 FETCH (UID 8 MODSEQ (29738) FLAGS ($NoJunk $AutoJunk
 $MDNSent))
 S: s100 OK FETCH completed

 Example 12

3.3.2. MODSEQ Message Data Item in FETCH Command

 This extension adds a MODSEQ message data item to the FETCH command.
 The MODSEQ message data item allows clients to retrieve mod-sequence
 values for a range of messages in the currently selected mailbox.

https://datatracker.ietf.org/doc/html/rfc4466#section-2.4
https://datatracker.ietf.org/doc/html/rfc4466#section-2.4

Melnikov Expires March 15, 2014 [Page 14]

Internet-Draft IMAP CONDSTORE September 2013

 As specified in Section 1, once the client has specified the MODSEQ
 message data item in a FETCH request, the server starts including the
 MODSEQ fetch response data items in all subsequent unsolicited FETCH
 responses.

 Syntax: MODSEQ The MODSEQ message data item causes the server to
 return MODSEQ fetch response data items.

 Syntax: MODSEQ (<permsg-modsequence>) MODSEQ response data items
 contain per-message mod-sequences.

 The MODSEQ response data item is returned if the client issued
 FETCH with MODSEQ message data item. It also allows the server to
 notify the client about mod-sequence changes caused by conditional
 STOREs (Section 3.2) and/or changes caused by external sources.

 C: a FETCH 1:3 (MODSEQ)
 S: * 1 FETCH (MODSEQ (624140003))
 S: * 2 FETCH (MODSEQ (624140007))
 S: * 3 FETCH (MODSEQ (624140005))
 S: a OK Fetch complete

 In this example, the client requests per-message mod-sequences for a
 set of messages.

 Example 13

 When a flag for a message is modified in a different session, the
 server sends an unsolicited FETCH response containing the mod-
 sequence for the message.

 (Session 1, authenticated as a user "alex"). The user adds a
 shared flag \Deleted:

 C: A142 SELECT INBOX
 ...
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Answered \Deleted \Seen *)] Limited
 ...
 C: A160 STORE 7 +FLAGS.SILENT (\Deleted)
 S: * 7 FETCH (MODSEQ (2121231000))
 S: A160 OK Store completed

 (Session 2, also authenticated as the user "alex"). Any changes
 to flags are always reported to all sessions authenticated as the
 same user as in the session 1.

 C: C180 NOOP

Melnikov Expires March 15, 2014 [Page 15]

Internet-Draft IMAP CONDSTORE September 2013

 S: * 7 FETCH (FLAGS (\Deleted \Answered) MODSEQ (12121231000))
 S: C180 OK Noop completed

 (Session 3, authenticated as a user "andrew"). As \Deleted is a
 shared flag, changes in session 1 are also reported in session 3:

 C: D210 NOOP
 S: * 7 FETCH (FLAGS (\Deleted \Answered) MODSEQ (12121231000))
 S: D210 OK Noop completed

 The user modifies a private flag \Seen in session 1...

 C: A240 STORE 7 +FLAGS.SILENT (\Seen)
 S: * 7 FETCH (MODSEQ (12121231777))
 S: A240 OK Store completed

 ...which is only reported in session 2...

 C: C270 NOOP
 S: * 7 FETCH (FLAGS (\Deleted \Answered \Seen) MODSEQ
 (12121231777))
 S: C270 OK Noop completed

 ...but not in session 3.

 C: D300 NOOP
 S: D300 OK Noop completed

 And finally, the user removes flags \Answered (shared) and \Seen
 (private) in session 1.

 C: A330 STORE 7 -FLAGS.SILENT (\Answered \Seen)
 S: * 7 FETCH (MODSEQ (12121245160))
 S: A330 OK Store completed

 Both changes are reported in the session 2...

 C: C360 NOOP
 S: * 7 FETCH (FLAGS (\Deleted) MODSEQ (12121245160))
 S: C360 OK Noop completed

 ...and only changes to shared flags are reported in session 3.

 C: D390 NOOP
 S: * 7 FETCH (FLAGS (\Deleted) MODSEQ (12121245160))
 S: D390 OK Noop completed

 Example 14

Melnikov Expires March 15, 2014 [Page 16]

Internet-Draft IMAP CONDSTORE September 2013

 Server implementers should also see Section 3.10 for additional
 quality of implementation issues related to the FETCH command.

3.4. MODSEQ Search Criterion in SEARCH

 The MODSEQ criterion for the SEARCH (or UID SEARCH) command allows a
 client to search for the metadata items that were modified since a
 specified moment.

 Syntax: MODSEQ [<entry-name> <entry-type-req>] <mod-sequence-valzer>

 Messages that have modification values that are equal to or
 greater than <mod-sequence-valzer>. This allows a client, for
 example, to find out which messages contain metadata items that
 have changed since the last time it updated its disconnected
 cache. The client may also specify <entry-name> (name of metadata
 item) and <entry-type-req> (type of metadata item) before <mod-
 sequence-valzer>. <entry-type-req> can be one of "shared", "priv"
 (private), or "all". The last means that the server should use
 the biggest value among "priv" and "shared" mod- sequences for the
 metadata item. If the server doesn't store internally separate
 mod-sequences for different metadata items, it MUST ignore <entry-
 name> and <entry-type-req>. Otherwise, the server should use them
 to narrow down the search.

 For a flag <flagname>, the corresponding <entry-name> has a form "
 /flags/<flagname>" as defined in [RFC4466]. Note that the leading
 "\" character that denotes a system flag has to be escaped as per

Section 4.3 of [RFC3501], as the <entry-name> uses syntax for
 quoted strings.

 If client specifies a MODSEQ criterion in a SEARCH (or UID SEARCH)
 command and the server returns a non-empty SEARCH result, the server
 MUST also append (to the end of the untagged SEARCH response) the
 highest mod-sequence for all messages being returned. See also

Section 3.5. Note that other IMAP extensions such as ESEARCH
 [RFC4731] can override this requirement (see Section 3.9 for more
 details.)

https://datatracker.ietf.org/doc/html/rfc4466
https://datatracker.ietf.org/doc/html/rfc3501#section-4.3
https://datatracker.ietf.org/doc/html/rfc4731

Melnikov Expires March 15, 2014 [Page 17]

Internet-Draft IMAP CONDSTORE September 2013

 C: a SEARCH MODSEQ "/flags/\\draft" all 620162338
 S: * SEARCH 2 5 6 7 11 12 18 19 20 23 (MODSEQ 917162500)
 S: a OK Search complete

 In the above example, the message numbers of any messages containing
 the string "IMAP4" in the "value" attribute of the "/comment" entry
 and having a mod-sequence equal to or greater than 620162338 for the
 "\Draft" flag are returned in the search results.

 Example 15

 C: t SEARCH OR NOT MODSEQ 720162338 LARGER 50000
 S: * SEARCH
 S: t OK Search complete, nothing found

 Example 16

3.5. Modified SEARCH Untagged Response

 Data: zero or more numbers
 mod-sequence value (omitted if no match)

 This document extends syntax of the untagged SEARCH response to
 include the highest mod-sequence for all messages being returned.

 If a client specifies a MODSEQ criterion in a SEARCH (or UID SEARCH)
 command and the server returns a non-empty SEARCH result, the server
 MUST also append (to the end of the untagged SEARCH response) the
 highest mod-sequence for all messages being returned. See

Section 3.4 for examples.

3.6. HIGHESTMODSEQ Status Data Items

 This document defines a new status data item:

 HIGHESTMODSEQ The highest mod-sequence value of all messages in the
 mailbox. This is the same value that is returned by the server in
 the HIGHESTMODSEQ response code in an OK untagged response (see

Section 3.1.1). If the server doesn't support the persistent
 storage of mod-sequences for the mailbox (see Section 3.1.2), the
 server MUST return 0 as the value of HIGHESTMODSEQ status data
 item.

 C: A042 STATUS blurdybloop (UIDNEXT MESSAGES HIGHESTMODSEQ)
 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292
 HIGHESTMODSEQ 7011231777)
 S: A042 OK STATUS completed

Melnikov Expires March 15, 2014 [Page 18]

Internet-Draft IMAP CONDSTORE September 2013

 Example 17

3.7. CONDSTORE Parameter to SELECT and EXAMINE

 The CONDSTORE extension defines a single optional select parameter,
 "CONDSTORE", which tells the server that it MUST include the MODSEQ
 fetch response data items in all subsequent unsolicited FETCH
 responses.

 The CONDSTORE parameter to SELECT/EXAMINE helps avoid a race
 condition that might arise when one or more metadata items are
 modified in another session after the server has sent the
 HIGHESTMODSEQ response code and before the client was able to issue a
 CONDSTORE enabling command.

 C: A142 SELECT INBOX (CONDSTORE)
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [HIGHESTMODSEQ 715194045007]
 S: A142 OK [READ-WRITE] SELECT completed, CONDSTORE is now enabled

 Example 18

3.8. Interaction with IMAP SORT and THREAD extensions

 MODSEQ Search Criterion (see Section 3.4) causes modifications to
 SORT [RFC5256] responses similar to modifications to SEARCH responses
 defined in Section 3.5:

 SORT response Data: zero or more numbers
 mod-sequence value (omitted if no match)

 This document extends syntax of the untagged SORT response to include
 the highest mod-sequence for all messages being returned.

 If a client specifies a MODSEQ criterion in a SORT (or UID SORT)
 command and the server returns a non-empty SORT result, the server
 MUST also append (to the end of the untagged SORT response) the
 highest mod-sequence for all messages being returned. Note that
 other IMAP extensions such as ESORT [RFC5267] can override this
 requirement (see Section 3.9 for more details.)

https://datatracker.ietf.org/doc/html/rfc5256
https://datatracker.ietf.org/doc/html/rfc5267

Melnikov Expires March 15, 2014 [Page 19]

Internet-Draft IMAP CONDSTORE September 2013

 THREAD commands which include a MODSEQ Search Criterion return THREAD
 responses as specified in [RFC5256].

3.9. Interaction with IMAP ESORT and ESEARCH extensions

 If a client specifies a MODSEQ criterion in an extended SEARCH (or
 extended UID SEARCH) [RFC4731] command and the server returns a non-
 empty SEARCH result, the server MUST return the ESEARCH response
 containing the MODSEQ result option as defined in Section 3.2 of
 [RFC4731].

 C: a SEARCH RETURN (ALL) MODSEQ 1234
 S: * ESEARCH (TAG "a") ALL 1:3,5 MODSEQ 1236
 S: a OK Extended SEARCH completed

 Example 19

 If a client specifies a MODSEQ criterion in an extended SORT (or
 extended UID SORT) [RFC5267] command and the server returns a non-
 empty SORT result, the server MUST return the ESEARCH response
 containing the MODSEQ result option defined in Section 3.2 of
 [RFC4731].

 C: a SORT RETURN (ALL) (DATE) UTF-8 MODSEQ 1234
 S: * ESEARCH (TAG "a") ALL 5,3,2,1 MODSEQ 1236
 S: a OK Extended SORT completed

 Example 20

3.10. Additional Quality-of-Implementation Issues

 Server implementations should follow the following rule, which
 applies to any successfully completed STORE/UID STORE (with and
 without UNCHANGEDSINCE modifier), as well as to a FETCH command that
 implicitly sets \Seen flag:

 Adding the flag when it is already present or removing when it is
 not present SHOULD NOT change the mod-sequence.

 This will prevent spurious client synchronization requests.

 However, note that client implementers MUST NOT rely on this server
 behavior. A client can't distinguish between the case when a server
 has violated the SHOULD mentioned above, and that when one or more
 clients set and unset (or unset and set) the flag in another session.

4. Formal Syntax

https://datatracker.ietf.org/doc/html/rfc5256
https://datatracker.ietf.org/doc/html/rfc4731
https://datatracker.ietf.org/doc/html/rfc4731#section-3.2
https://datatracker.ietf.org/doc/html/rfc4731#section-3.2
https://datatracker.ietf.org/doc/html/rfc5267
https://datatracker.ietf.org/doc/html/rfc4731#section-3.2
https://datatracker.ietf.org/doc/html/rfc4731#section-3.2

Melnikov Expires March 15, 2014 [Page 20]

Internet-Draft IMAP CONDSTORE September 2013

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) [RFC5234] notation. Elements not defined here can be
 found in the formal syntax of the ABNF [RFC5234], IMAP [RFC3501], and
 IMAP ABNF extensions [RFC4466] specifications.

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper- or lowercase characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

 capability =/ "CONDSTORE"

 status-att =/ "HIGHESTMODSEQ"
 ;; extends non-terminal defined in RFC 3501.

 status-att-val =/ "HIGHESTMODSEQ" SP mod-sequence-valzer
 ;; extends non-terminal defined in [RFC4466].
 ;; Value 0 denotes that the mailbox doesn't
 ;; support persistent mod-sequences
 ;; as described in Section 3.1.2 [[Check the ref]]

 store-modifier =/ "UNCHANGEDSINCE" SP mod-sequence-valzer
 ;; Only a single "UNCHANGEDSINCE" may be
 ;; specified in a STORE operation

 fetch-modifier =/ chgsince-fetch-mod
 ;; conforms to the generic "fetch-modifier"
 ;; syntax defined in [RFC4466].

 chgsince-fetch-mod = "CHANGEDSINCE" SP mod-sequence-value
 ;; CHANGEDSINCE FETCH modifier conforms to
 ;; the fetch-modifier syntax

 fetch-att =/ fetch-mod-sequence
 ;; modifies original IMAP4 fetch-att

 fetch-mod-sequence = "MODSEQ"

 fetch-mod-resp = "MODSEQ" SP "(" permsg-modsequence ")"

 msg-att-dynamic =/ fetch-mod-resp

 search-key =/ search-modsequence
 ;; modifies original IMAP4 search-key
 ;;
 ;; This change applies to all commands
 ;; referencing this non-terminal, in
 ;; particular SEARCH, SORT and THREAD.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4466
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4466
https://datatracker.ietf.org/doc/html/rfc4466

Melnikov Expires March 15, 2014 [Page 21]

Internet-Draft IMAP CONDSTORE September 2013

 search-modsequence = "MODSEQ" [search-modseq-ext] SP
 mod-sequence-valzer

 search-modseq-ext = SP entry-name SP entry-type-req

 resp-text-code =/ "HIGHESTMODSEQ" SP mod-sequence-value /
 "NOMODSEQ" /
 "MODIFIED" SP sequence-set

 entry-name = entry-flag-name

 entry-flag-name = DQUOTE "/flags/" attr-flag DQUOTE
 ;; each system or user defined flag <flag>
 ;; is mapped to "/flags/<flag>".
 ;;
 ;; <entry-flag-name> follows the escape rules
 ;; used by "quoted" string as described in
 ;; Section 4.3 of [RFC3501], e.g., for the flag
 ;; \Seen the corresponding <entry-name> is
 ;; "/flags/\\seen", and for the flag
 ;; $MDNSent, the corresponding <entry-name>
 ;; is "/flags/$mdnsent".

 entry-type-resp = "priv" / "shared"
 ;; metadata item type

 entry-type-req = entry-type-resp / "all"
 ;; perform SEARCH operation on private
 ;; metadata item, shared metadata item or both

 permsg-modsequence = mod-sequence-value
 ;; per message mod-sequence

 mod-sequence-value = 1*DIGIT
 ;; Positive unsigned 64-bit integer
 ;; (mod-sequence)
 ;; (1 <= n < 18,446,744,073,709,551,615)

 mod-sequence-valzer = "0" / mod-sequence-value

 search-sort-mod-seq = "(" "MODSEQ" SP mod-sequence-value ")"

 select-param =/ condstore-param
 ;; conforms to the generic "select-param"
 ;; non-terminal syntax defined in [RFC4466].

 condstore-param = "CONDSTORE"

https://datatracker.ietf.org/doc/html/rfc3501#section-4.3
https://datatracker.ietf.org/doc/html/rfc4466

Melnikov Expires March 15, 2014 [Page 22]

Internet-Draft IMAP CONDSTORE September 2013

 mailbox-data =/ "SEARCH" [1*(SP nz-number) SP
 search-sort-mod-seq]

 sort-data = "SORT" [1*(SP nz-number) SP
 search-sort-mod-seq]
 ; Updates SORT response from RFC 5256

 attr-flag = "\\Answered" / "\\Flagged" / "\\Deleted" /
 "\\Seen" / "\\Draft" / attr-flag-keyword /
 attr-flag-extension
 ;; Does not include "\\Recent"

 attr-flag-extension = "\\" atom
 ;; Future expansion. Client implementations
 ;; MUST accept flag-extension flags. Server
 ;; implementations MUST NOT generate
 ;; flag-extension flags except as defined by
 ;; future standard or standards-track
 ;; revisions of [RFC3501].

 attr-flag-keyword = atom

5. Server Implementation Considerations

 This section describes how a server implementation that doesn't store
 separate per-metadata mod-sequences for different metadata items can
 avoid sending the MODIFIED response to any of the following
 conditional STORE operations:

 +FLAGS

 -FLAGS

 +FLAGS.SILENT

 -FLAGS.SILENT

 Note that the optimization described in this section can't be
 performed in case of a conditional STORE FLAGS operation.

 Let's use the following example. The client has issued

 C: a106 STORE 100:150 (UNCHANGEDSINCE 212030000000)
 +FLAGS.SILENT ($Processed)

https://datatracker.ietf.org/doc/html/rfc5256
https://datatracker.ietf.org/doc/html/rfc3501

Melnikov Expires March 15, 2014 [Page 23]

Internet-Draft IMAP CONDSTORE September 2013

 When the server receives the command and parses it successfully, it
 iterates through the message set and tries to execute the conditional
 STORE command for each message.

 Each server internally works as a client, i.e., it has to cache the
 current state of all IMAP flags as it is known to the client. In
 order to report flag changes to the client, the server compares the
 cached values with the values in its database for IMAP flags.

 Imagine that another client has changed the state of a flag \Deleted
 on the message 101 and that the change updated the mod-sequence for
 the message. The server knows that the mod-sequence for the mailbox
 has changed; however, it also knows that:

 a. the client is not interested in \Deleted flag, as it hasn't
 included it in +FLAGS.SILENT operation; and

 b. the state of the flag $Processed hasn't changed (the server can
 determine this by comparing cached flag state with the state of
 the flag in the database).

 Therefore, the server doesn't have to report MODIFIED to the client.
 Instead, the server may set $Processed flag, update the mod-sequence
 for the message 101 once again and send an untagged FETCH response
 with new mod-sequence and flags:

 S: * 101 FETCH (MODSEQ (303011130956)
 FLAGS ($Processed \Deleted \Answered))

 See also Section 3.10 for additional quality-of-implementation
 issues.

6. Long Command Lines

 This document updates recommended line length limits specified in
Section 3.2.1.5 of [RFC2683]. While the advice in the first

 paragraph of that section still applies ("use compact message/UID set
 representations"), the 1000 octet limit suggested in the second
 paragraph turned out to be quite problematic when the CONDSTORE
 extension is used. The updated recommendation is as follows: a
 client should limit the length of the command lines it generates to
 approximately 8192 octets (including all quoted strings but not
 including literals).

7. Security Considerations

https://datatracker.ietf.org/doc/html/rfc2683#section-3.2.1.5

Melnikov Expires March 15, 2014 [Page 24]

Internet-Draft IMAP CONDSTORE September 2013

 It is believed that the Conditional STORE extension doesn't raise any
 new security concerns that are not already discussed in [RFC3501].
 However, the availability of this extension may make it possible for
 IMAP4 to be used in critical applications it could not be used for
 previously, making correct IMAP server implementation and operation
 even more important.

8. IANA Considerations

 IMAP4 capabilities are registered by publishing a standards track or
 IESG approved experimental RFC. The registry is currently located
 at:

http://www.iana.org/assignments/imap4-capabilities

 This document defines the CONDSTORE IMAP capability. IANA has added
 it to the registry accordingly.

9. Acknowledgements

 Thank you to Steve Hole for co-editing RFC 4551.

 Thank you to Dave Cridland for helping to convert the original text
 RFC to xml2rfc format.

 Some text was borrowed from "IMAP ANNOTATE Extension" [RFC5257] by
 Randall Gellens and Cyrus Daboo and from "ACAP -- Application
 Configuration Access Protocol" [RFC2244] by Chris Newman and John
 Myers.

 Many thanks to Randall Gellens for his thorough review of the
 document.

 The authors also acknowledge the feedback provided by Pete Maclean,
 Cyrus Daboo, Larry Greenfield, Chris Newman, Harrie Hazewinkel, Arnt
 Gulbrandsen, Timo Sirainen, Mark Crispin, Ned Freed, Ken Murchison,
 and Dave Cridland.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

https://datatracker.ietf.org/doc/html/rfc3501
http://www.iana.org/assignments/imap4-capabilities
https://datatracker.ietf.org/doc/html/rfc4551
https://datatracker.ietf.org/doc/html/rfc5257
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3501

Melnikov Expires March 15, 2014 [Page 25]

Internet-Draft IMAP CONDSTORE September 2013

 [RFC4466] Melnikov, A. and C. Daboo, "Collected Extensions to IMAP4
 ABNF", RFC 4466, April 2006.

 [RFC5161] Gulbrandsen, A. and A. Melnikov, "The IMAP ENABLE
 Extension", RFC 5161, March 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5256] Crispin, M. and K. Murchison, "Internet Message Access
 Protocol - SORT and THREAD Extensions", RFC 5256, June
 2008.

10.2. Informative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305, March 1992.

 [RFC2180] Gahrns, M., "IMAP4 Multi-Accessed Mailbox Practice", RFC
2180, July 1997.

 [RFC2244] Newman, C. and J. Myers, "ACAP -- Application
 Configuration Access Protocol", RFC 2244, November 1997.

 [RFC2683] Leiba, B., "IMAP4 Implementation Recommendations", RFC
2683, September 1999.

 [RFC4314] Melnikov, A., "IMAP4 Access Control List (ACL) Extension",
RFC 4314, December 2005.

 [RFC4731] Melnikov, A. and D. Cridland, "IMAP4 Extension to SEARCH
 Command for Controlling What Kind of Information Is
 Returned", RFC 4731, November 2006.

 [RFC5257] Daboo, C. and R. Gellens, "Internet Message Access
 Protocol - ANNOTATE Extension", RFC 5257, June 2008.

 [RFC5267] Cridland, D. and C. King, "Contexts for IMAP4", RFC 5267,
 July 2008.

Appendix A. Changes since RFC 4551

 Fixed errata 3401, 3506 and 3509.

 Updated references.

 Incorporated some text from RFC 5161 (no semantic change.)

https://datatracker.ietf.org/doc/html/rfc4466
https://datatracker.ietf.org/doc/html/rfc5161
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5256
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc2180
https://datatracker.ietf.org/doc/html/rfc2180
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2683
https://datatracker.ietf.org/doc/html/rfc2683
https://datatracker.ietf.org/doc/html/rfc4314
https://datatracker.ietf.org/doc/html/rfc4731
https://datatracker.ietf.org/doc/html/rfc5257
https://datatracker.ietf.org/doc/html/rfc5267
https://datatracker.ietf.org/doc/html/rfc4551
https://datatracker.ietf.org/doc/html/rfc5161

Melnikov Expires March 15, 2014 [Page 26]

Internet-Draft IMAP CONDSTORE September 2013

 Editorial corrections.

Author's Address

 Alexey Melnikov
 Isode Ltd.
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex TW12 2BX
 UK

 Email: Alexey.Melnikov@isode.com

Melnikov Expires March 15, 2014 [Page 27]

