
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-ack-frequency-01

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: J. Iyengar

Fastly

I. Swett

Google

QUIC Acknowledgement Frequency

Abstract

This document describes a QUIC extension for an endpoint to control

its peer's delaying of acknowledgements.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic. Source code and

issues list for this draft can be found at https://github.com/

quicwg/ack-frequency.

Working Group information can be found at https://github.com/quicwg.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg/ack-frequency
https://github.com/quicwg/ack-frequency
https://github.com/quicwg
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terms and Definitions

2. Motivation

3. Negotiating Extension Use

4. ACK_FREQUENCY Frame

5. Multiple ACK_FREQUENCY Frames

6. IMMEDIATE_ACK Frame

7. Sending Acknowledgments

7.1. Response to Out-of-Order Packets

7.2. Expediting Congestion Signals

7.3. Batch Processing of Packets

8. Computation of Probe Timeout Period

9. Implementation Considerations

9.1. Loss Detection

9.2. New Connections

9.3. Window-based Congestion Controllers

9.4. Connection Migration

9.5. Path MTU Discovery

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Change Log

Acknowledgments

Authors' Addresses

1. Introduction

This document describes a QUIC extension for an endpoint to control

its peer's delaying of acknowledgements.

1.1. Terms and Definitions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

https://trustee.ietf.org/license-info

In the rest of this document, "sender" refers to a QUIC data sender

(and acknowledgement receiver). Similarly, "receiver" refers to a

QUIC data receiver (and acknowledgement sender).

An "acknowledgement packet" refers to a QUIC packet that contains

only an ACK frame.

This document uses terms, definitions, and notational conventions

described in Section 1.2 and Section 1.3 of [QUIC-TRANSPORT].

2. Motivation

A receiver acknowledges received packets, but it can delay sending

these acknowledgements. The delaying of acknowledgements can impact

connection throughput, loss detection and congestion controller

performance at a data sender, and CPU utilization at both a data

sender and a data receiver.

Reducing the frequency of acknowledgement packets can improve

connection and endpoint performance in the following ways:

Sending UDP packets can be noticeably CPU intensive on some

platforms. Reducing the number of packets that only contain

acknowledgements can therefore reduce the amount of CPU consumed

at a data receiver. Experience shows that this cost reduction can

be significant for high bandwidth connections.

Similarly, receiving and processing UDP packets can also be CPU

intensive, and reducing acknowledgement frequency reduces this

cost at a data sender.

Severely asymmetric link technologies, such as DOCSIS, LTE, and

satellite links, connection throughput in the data direction

becomes constrained when the reverse bandwidth is filled by

acknowledgment packets. When traversing such links, reducing the

number of acknowledgments allows connection throughput to scale

much further.

As discussed in Section 9 however, there can be undesirable

consequences to congestion control and loss recovery if a receiver

uniltaerally reduces the acknowledgment frequency. A sender's

constraints on the acknowledgement frequency need to be taken into

account to maximize congestion controller and loss recovery

performance.

[QUIC-TRANSPORT] currently specifies a simple delayed

acknowledgement mechanism that a receiver can use: send an

acknowledgement for every other packet, and for every packet that is

received out of order (Section 13.2.1 of [QUIC-TRANSPORT]). This

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-1.2
https://rfc-editor.org/rfc/rfc9000#section-1.3

min_ack_delay (0xff03de1a):

simple mechanism does not allow a sender to signal its constraints.

This extension provides a mechanism to solve this problem.

3. Negotiating Extension Use

Endpoints advertise their support of the extension described in this

document by sending the following transport parameter (Section 7.2

of [QUIC-TRANSPORT]):

A variable-length integer representing

the minimum amount of time in microseconds by which the endpoint

can delay an acknowledgement. This limit could be based on the

receiver's clock or timer granularity.

An endpoint's min_ack_delay MUST NOT be greater than its

max_ack_delay. Endpoints that support this extension MUST treat

receipt of a min_ack_delay that is greater than the received

max_ack_delay as a connection error of type

TRANSPORT_PARAMETER_ERROR. Note that while the endpoint's

max_ack_delay transport parameter is in milliseconds (Section 18.2

of [QUIC-TRANSPORT]), min_ack_delay is specified in microseconds.

The min_ack_delay transport parameter is a unilateral indication of

support for receiving ACK_FREQUENCY frames. If an endpoint sends the

transport parameter, the peer is allowed to send ACK_FREQUENCY

frames independent of whether it also sends the min_ack_delay

transport parameter or not.

Receiving a min_ack_delay transport parameter indicates that the

peer might send ACK_FREQUENCY frames in the future. Until an

ACK_FREQUENCY frame is received, receiving this transport parameter

does not cause the endpoint to change its acknowledgement behavior.

Endpoints MUST NOT remember the value of the min_ack_delay transport

parameter they received. Consequently, ACK_FREQUENCY frames cannot

be sent in 0-RTT packets, as per Section 7.4.1 of [QUIC-TRANSPORT].

This Transport Parameter is encoded as per Section 18 of [QUIC-

TRANSPORT].

4. ACK_FREQUENCY Frame

Delaying acknowledgements as much as possible reduces both work done

by the endpoints and network load. An endpoint's loss detection and

congestion control mechanisms however need to be tolerant of this

delay at the peer. An endpoint signals the frequency it wants to

receive ACK frames to its peer using an ACK_FREQUENCY frame, shown

below:

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-7.2
https://rfc-editor.org/rfc/rfc9000#section-18.2
https://rfc-editor.org/rfc/rfc9000#section-7.4.1
https://rfc-editor.org/rfc/rfc9000#section-18

Sequence Number:

Ack-Eliciting Threshold:

Request Max Ack Delay:

Reserved:

Ignore Order:

Ignore CE:

Following the common frame format described in Section 12.4 of

[QUIC-TRANSPORT], ACK_FREQUENCY frames have a type of 0xaf, and

contain the following fields:

A variable-length integer representing the

sequence number assigned to the ACK_FREQUENCY frame by the sender

to allow receivers to ignore obsolete frames, see Section 5.

A variable-length integer representing the

maximum number of ack-eliciting packets the recipient of this

frame can receive without sending an acknowledgment. In other

words, an acknowledgement is sent when more than this number of

ack-eliciting packets have been received. Since this is a maximum

value, a receiver can send an acknowledgement earlier. A value of

0 results in a receiver immediately acknowledging every ack-

eliciting packet.

A variable-length integer representing the

value to which the endpoint requests the peer update its

max_ack_delay (Section 18.2 of [QUIC-TRANSPORT]). The value of

this field is in microseconds, unlike the 'max_ack_delay'

transport parameter, which is in milliseconds. Sending a value

smaller than the min_ack_delay advertised by the peer is invalid.

Receipt of an invalid value MUST be treated as a connection error

of type PROTOCOL_VIOLATION.

This field has no meaning in this version of

ACK_FREQUENCY. The value of this field MUST be 0x00. Receipt of

any other value MUST be treated as a connection error of type

FRAME_ENCODING_ERROR.

A 1-bit field representing a boolean truth value.

This field is set to true by an endpoint that does not wish to

receive an immediate acknowledgement when the peer receives a

packet out of order (Section 7.1). 0 represents 'false' and 1

represents 'true'.

A 1-bit field representing a boolean truth value. This

field is set to true by an endpoint that does not wish to receive

ACK_FREQUENCY Frame {

 Type (i) = 0xaf,

 Sequence Number (i),

 Ack-Eliciting Threshold (i),

 Request Max Ack Delay (i),

 Reserved (6),

 Ignore CE (1),

 Ignore Order (1)

}

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-12.4
https://rfc-editor.org/rfc/rfc9000#section-18.2

an immediate acknowledgement when the peer receives CE-marked

packets (Section 7.1). 0 represents 'false' and 1 represents

'true'.

ACK_FREQUENCY frames are ack-eliciting. However, their loss does not

require retransmission if an ACK_FREQUENCY frame with a larger

Sequence Number value has been sent.

An endpoint MAY send ACK_FREQUENCY frames multiple times during a

connection and with different values.

An endpoint will have committed a max_ack_delay value to the peer,

which specifies the maximum amount of time by which the endpoint

will delay sending acknowledgments. When the endpoint receives an

ACK_FREQUENCY frame, it MUST update this maximum time to the value

proposed by the peer in the Request Max Ack Delay field.

5. Multiple ACK_FREQUENCY Frames

An endpoint can send multiple ACK_FREQUENCY frames, and each one of

them can have different values in all fields. An endpoint MUST use a

sequence number of 0 for the first ACK_FREQUENCY frame it constructs

and sends, and a strictly increasing value thereafter.

An endpoint MUST allow reordered ACK_FREQUENCY frames to be received

and processed, see Section 13.3 of [QUIC-TRANSPORT].

On the first received ACK_FREQUENCY frame in a connection, an

endpoint MUST immediately record all values from the frame. The

sequence number of the frame is recorded as the largest seen

sequence number. The new Ack-Eliciting Threshold and Request Max Ack

Delay values MUST be immediately used for delaying acknowledgements;

see Section 7.

On a subsequently received ACK_FREQUENCY frame, the endpoint MUST

check if this frame is more recent than any previous ones, as

follows:

If the frame's sequence number is not greater than the largest

one seen so far, the endpoint MUST ignore this frame.

If the frame's sequence number is greater than the largest one

seen so far, the endpoint MUST immediately replace old recorded

state with values received in this frame. The endpoint MUST start

using the new values immediately for delaying acknowledgements;

see Section 7. The endpoint MUST also replace the recorded

sequence number.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc9000#section-13.3

6. IMMEDIATE_ACK Frame

A sender can use an ACK_FREQUENCY frame to reduce the number of

acknowledgements sent by a receiver, but doing so increases the

chances that time-sensitive feedback is delayed as well. For

example, as described in Section 9.1, delaying acknowledgements can

increase the time it takes for a sender to detect packet loss. The

IMMEDIATE_ACK frame helps mitigate this problem.

An IMMEDIATE_ACK frame can be useful in other situations as well.

For example, it can be used with a PING frame (Section 19.2 of

[QUIC-TRANSPORT]) if a sender wants an immediate RTT measurement or

if a sender wants to establish receiver liveness as quickly as

possible.

An endpoint SHOULD send a packet containing an ACK frame immediately

upon receiving an IMMEDIATE_ACK frame. An endpoint MAY delay sending

an ACK frame despite receiving an IMMEDIATE_ACK frame. For example,

an endpoint might do this if a large number of received packets

contain an IMMEDIATE_ACK or if the endpoint is under heavy load.

7. Sending Acknowledgments

Prior to receiving an ACK_FREQUENCY frame, endpoints send

acknowledgements as specified in Section 13.2.1 of [QUIC-TRANSPORT].

On receiving an ACK_FREQUENCY frame and updating its recorded

max_ack_delay and Ack-Eliciting Threshold values (Section 5), the

endpoint MUST send an acknowledgement when one of the following

conditions are met:

Since the last acknowledgement was sent, the number of received

ack-eliciting packets is greater than or equal to the recorded

Ack-Eliciting Threshold.

Since the last acknowledgement was sent, max_ack_delay amount of

time has passed.

Section 7.1, Section 7.2, and Section 7.3 describe exceptions to

this strategy.

An endpoint is expected to bundle acknowledgements when possible.

Every time an acknowledgement is sent, bundled or otherwise, all

counters and timers related to delaying of acknowledgments are

reset.

¶

¶

¶

IMMEDIATE_ACK Frame {

 Type (i) = 0xac,

}

¶

¶

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-13.2.1

The receiver of an ACK_FREQUENCY frame can continue to process

multiple available packets before determining whether to send an ACK

frame in response, as stated in Section 13.2.2 of [QUIC-TRANSPORT].

7.1. Response to Out-of-Order Packets

As specified in Section 13.2.1 of [QUIC-TRANSPORT], endpoints are

expected to send an acknowledgement immediately on receiving a

reordered ack-eliciting packet. This extension modifies this

behavior.

If the endpoint has not yet received an ACK_FREQUENCY frame, or if

the most recent frame received from the peer has an Ignore Order

value of false (0x00), the endpoint MUST immediately acknowledge any

subsequent packets that are received out of order.

If the most recent ACK_FREQUENCY frame received from the peer has an

Ignore Order value of true (0x01), the endpoint does not make this

exception. That is, the endpoint MUST NOT send an immediate

acknowledgement in response to packets received out of order, and

instead continues to use the peer's Ack-Eliciting Threshold and

max_ack_delay thresholds for sending acknowledgements.

7.2. Expediting Congestion Signals

An endpoint SHOULD send an immediate acknowledgement when a packet

marked with the ECN Congestion Experienced (CE) codepoint in the IP

header is received and the previously received packet was not marked

CE.

Doing this maintains the peer's response time to congestion events,

while also reducing the ACK rate compared to Section 13.2.1 of

[QUIC-TRANSPORT] during extreme congestion or when peers are using

DCTCP [RFC8257] or other congestion controllers that mark more

frequently than classic ECN [RFC3168].

7.3. Batch Processing of Packets

For performance reasons, an endpoint can receive incoming packets

from the underlying platform in a batch of multiple packets. This

batch can contain enough packets to cause multiple acknowledgements

to be sent.

To avoid sending multiple acknowledgements in rapid succession, an

endpoint MAY process all packets in a batch before determining

whether a threshold has been met and an acknowledgement is to be

sent in response.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-13.2.2
https://rfc-editor.org/rfc/rfc9000#section-13.2.1
https://rfc-editor.org/rfc/rfc9000#section-13.2.1

8. Computation of Probe Timeout Period

On sending an update to the peer's max_ack_delay, an endpoint can

use this new value in later computations of its Probe Timeout (PTO)

period; see Section 5.2.1 of [QUIC-RECOVERY]. The endpoint MUST

however wait until the ACK_FREQUENCY frame that carries this new

value is acknowledged by the peer.

Until the frame is acknowledged, the endpoint MUST use the greater

of the current max_ack_delay and the value that is in flight when

computing the PTO period. Doing so avoids spurious PTOs that can be

caused by an update that increases the peer's max_ack_delay.

While it is expected that endpoints will have only one ACK_FREQUENCY

frame in flight at any given time, this extension does not prohibit

having more than one in flight. Generally, when using max_ack_delay

for PTO computations, endpoints MUST use the maximum of the current

value and all those in flight.

When the number of in-flight ack-eliciting packets is larger than

the ACK-Eliciting Threshold, an endpoint can expect that the peer

will not need to wait for its max_ack_delay period before sending an

acknowledgement. In such cases, the endpoint MAY therefore exclude

the peer's 'max_ack_delay' from its PTO calculation. Note that this

optimization requires some care in implementation, since it can

cause premature PTOs under packet loss when ignore_order is enabled.

9. Implementation Considerations

There are tradeoffs inherent in a sender sending an ACK_FREQUENCY

frame to the receiver. As such it is recommended that implementers

experiment with different strategies and find those which best suit

their applications and congestion controllers. There are, however,

noteworthy considerations when devising strategies for sending

ACK_FREQUENCY frames.

9.1. Loss Detection

A sender relies on receipt of acknowledgements to determine the

amount of data in flight and to detect losses, e.g. when packets

experience reordering, see [QUIC-RECOVERY]. Consequently, how often

a receiver sends acknowledgments determines how long it takes for

losses to be detected at the sender.

9.2. New Connections

Many congestion control algorithms have a startup mechanism during

the beginning phases of a connection. It is typical that in this

period the congestion controller will quickly increase the amount of

data in the network until it is signalled to stop. While the

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9002#section-5.2.1

mechanism used to achieve this increase varies, acknowledgments by

the peer are generally critical during this phase to drive the

congestion controller's machinery. A sender can send ACK_FREQUENCY

frames while its congestion controller is in this state, ensuring

that the receiver will send acknowledgments at a rate which is

optimal for the the sender's congestion controller.

9.3. Window-based Congestion Controllers

Congestion controllers that are purely window-based and strictly

adherent to packet conservation, such as the one defined in [QUIC-

RECOVERY], rely on receipt of acknowledgments to move the congestion

window forward and send additional data into the network. Such

controllers will suffer degraded performance if acknowledgments are

delayed excessively. Similarly, if these controllers rely on the

timing of peer acknowledgments (an "ACK clock"), delaying

acknowledgments will cause undesirable bursts of data into the

network.

9.4. Connection Migration

To avoid additional delays to connection migration confirmation when

using this extension, a client can bundle an IMMEDIATE_ACK frame

with the first non-probing frame (Section 9.2 of [QUIC-TRANSPORT])

it sends or it can simply send an IMMEDIATE_ACK frame, which is a

non-probing frame.

An endpoint's congestion controller and RTT estimator are reset upon

confirmation of migration (Section 9.4 of [QUIC-TRANSPORT]), which

can impact the number of acknowledgements received after migration.

An endpoint that has sent an ACK_FREQUENCY frame earlier in the

connection SHOULD update and send a new ACK_FREQUENCY frame

immediately upon confirmation of connection migration.

9.5. Path MTU Discovery

A sender might use timers to detect loss of PMTUD probe packets. A

sender SHOULD bundle an IMMEDIATE_ACK frame with any PTMUD probes to

avoid triggering such timers.

10. Security Considerations

TBD.

11. IANA Considerations

TBD.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-9.2
https://rfc-editor.org/rfc/rfc9000#section-9.4

[QUIC-TRANSPORT]

[QUIC-RECOVERY]

[RFC2119]

[RFC8174]

[RFC8257]

[RFC3168]

12. References

12.1. Normative References

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", RFC 9002, DOI

10.17487/RFC9002, May 2021, <https://www.rfc-editor.org/

rfc/rfc9002>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

12.2. Informative References

Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,

and G. Judd, "Data Center TCP (DCTCP): TCP Congestion

Control for Data Centers", RFC 8257, DOI 10.17487/

RFC8257, October 2017, <https://www.rfc-editor.org/rfc/

rfc8257>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/rfc/rfc3168>.

Appendix A. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Acknowledgments

The following people directly contributed key ideas that shaped this

draft: Bob Briscoe, Kazuho Oku, Marten Seemann.

Authors' Addresses

Jana Iyengar

Fastly

¶

¶

https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8257
https://www.rfc-editor.org/rfc/rfc8257
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc3168

Email: jri.ietf@gmail.com

Ian Swett

Google

Email: ian.swett@google.com

mailto:jri.ietf@gmail.com
mailto:ian.swett@google.com

	QUIC Acknowledgement Frequency
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terms and Definitions

	2. Motivation
	3. Negotiating Extension Use
	4. ACK_FREQUENCY Frame
	5. Multiple ACK_FREQUENCY Frames
	6. IMMEDIATE_ACK Frame
	7. Sending Acknowledgments
	7.1. Response to Out-of-Order Packets
	7.2. Expediting Congestion Signals
	7.3. Batch Processing of Packets

	8. Computation of Probe Timeout Period
	9. Implementation Considerations
	9.1. Loss Detection
	9.2. New Connections
	9.3. Window-based Congestion Controllers
	9.4. Connection Migration
	9.5. Path MTU Discovery

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Change Log
	Acknowledgments
	Authors' Addresses

