
Network Working Group M. Kuehlewind
Internet-Draft B. Trammell
Intended status: Informational ETH Zurich
Expires: January 3, 2019 July 02, 2018

Applicability of the QUIC Transport Protocol
draft-ietf-quic-applicability-02

Abstract

 This document discusses the applicability of the QUIC transport
 protocol, focusing on caveats impacting application protocol
 development and deployment over QUIC. Its intended audience is
 designers of application protocol mappings to QUIC, and implementors
 of these application protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kuehlewind & Trammell Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC Applicability July 2018

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The Necessity of Fallback 3
3. Zero RTT . 3
3.1. Thinking in Zero RTT 4
3.2. Here There Be Dragons 4
3.3. Session resumption versus Keep-alive 4

4. Use of Streams . 4
4.1. Stream versus Flow Multiplexing 5
4.2. Packetization and latency 6
4.3. Prioritization . 6

5. Graceful connection closure 6
6. Information exposure and the Connection ID 7
6.1. Server-Generated Connection ID 7
6.2. Using Server Retry for Redirection 8

7. Use of Versions and Cryptographic Handshake 8
8. IANA Considerations . 8
9. Security Considerations 8
10. Contributors . 9
11. Acknowledgments . 9
12. References . 9
12.1. Normative References 9
12.2. Informative References 9

 Authors' Addresses . 10

1. Introduction

 QUIC [QUIC] is a new transport protocol currently under development
 in the IETF quic working group, focusing on support of semantics as
 needed for HTTP/2 [QUIC-HTTP] such as stream-multiplexing to avoid
 head-of-line blocking. Based on current deployment practices, QUIC
 is encapsulated in UDP. The version of QUIC that is currently under
 development will integrate TLS 1.3 [TLS13] to encrypt all payload
 data and most control information.

 This document provides guidance for application developers that want
 to use the QUIC protocol without implementing it on their own. This
 includes general guidance for application use of HTTP/2 over QUIC as
 well as the use of other application layer protocols over QUIC. For
 specific guidance on how to integrate HTTP/2 with QUIC, see
 [QUIC-HTTP].

 In the following sections we discuss specific caveats to QUIC's
 applicability, and issues that application developers must consider
 when using QUIC as a transport for their application.

Kuehlewind & Trammell Expires January 3, 2019 [Page 2]

Internet-Draft QUIC Applicability July 2018

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when these words are capitalized, they
 have a special meaning as defined in [RFC2119].

2. The Necessity of Fallback

 QUIC uses UDP as a substrate for userspace implementation and port
 numbers for NAT and middlebox traversal. While there is no evidence
 of widespread, systematic disadvantage of UDP traffic compared to TCP
 in the Internet [Edeline16], somewhere between three [Trammell16] and
 five [Swett16] percent of networks simply block UDP traffic. All
 applications running on top of QUIC must therefore either be prepared
 to accept connectivity failure on such networks, or be engineered to
 fall back to some other transport protocol. This fallback SHOULD
 provide TLS 1.3 or equivalent cryptographic protection, if available,
 in order to keep fallback from being exploited as a downgrade attack.
 In the case of HTTP, this fallback is TLS 1.3 over TCP.

 These applications must operate, perhaps with impaired functionality,
 in the absence of features provided by QUIC not present in the
 fallback protocol. For fallback to TLS over TCP, the most obvious
 difference is that TCP does not provide stream multiplexing and
 therefore stream multiplexing would need to be implemented in the
 application layer if needed. Further, TCP without the TCP Fast Open
 extension does not support 0-RTT session resumption. TCP Fast Open
 can be requested by the connection initiator but might no be
 supported by the far end or could be blocked on the network path.
 Note that there is some evidence of middleboxes blocking SYN data
 even if TFO was successfully negotiated (see [PaaschNanog]).

 Any fallback mechanism is likely to impose a degradation of
 performance; however, fallback MUST not silently violate the
 application's expectation of confidentiality or integrity of its
 payload data.

 Moreover, while encryption (in this case TLS) is inseparably
 integrated with QUIC, TLS negotiation over TCP can be blocked. In
 case it is RECOMMENDED to abort the connection, allowing the
 application to present a suitable prompt to the user that secure
 communication is unavailable.

3. Zero RTT

 QUIC provides for 0-RTT connection establishment (see section 3.2 of
 [QUIC]). This presents opportunities and challenges for applications
 using QUIC.

https://datatracker.ietf.org/doc/html/rfc2119

Kuehlewind & Trammell Expires January 3, 2019 [Page 3]

Internet-Draft QUIC Applicability July 2018

3.1. Thinking in Zero RTT

 A transport protocol that provides 0-RTT connection establishment to
 recently contacted servers is qualitatively different than one that
 does not from the point of view of the application using it.
 Relative trade-offs between the cost of closing and reopening a
 connection and trying to keep it open are different; see Section 3.3.

 Applications must be slightly rethought in order to make best use of
 0-RTT resumption. Most importantly, application operations must be
 divided into idempotent and non-idempotent operations, as only
 idempotent operations may appear in 0-RTT packets. This implies that
 the interface between the application and transport layer exposes
 idempotence either explicitly or implicitly.

3.2. Here There Be Dragons

 Retransmission or (malicious) replay of data contained in 0-RTT
 resumption packets could cause the server side to receive two copies
 of the same data. This is further described in [HTTP-RETRY]. Data
 sent during 0-RTT resumption also cannot benefit from perfect forward
 secrecy (PFS).

 Data in the first flight sent by the client in a connection
 established with 0-RTT MUST be idempotent (as specified in section

3.2 in [QUIC-TLS]). Applications MUST be designed, and their data
 MUST be framed, such that multiple reception of idempotent data is
 recognized as such by the receiverApplications that cannot treat data
 that may appear in a 0-RTT connection establishment as idempotent
 MUST NOT use 0-RTT establishment. For this reason the QUIC transport
 SHOULD provide an interface for the application to indicate if 0-RTT
 support is in general desired or a way to indicate whether data is
 idempotent, and/or whether PFS is a hard requirement for the
 application.

3.3. Session resumption versus Keep-alive

 [EDITOR'S NOTE: see https://github.com/quicwg/ops-drafts/issues/6]

4. Use of Streams

 QUIC's stream multiplexing feature allows applications to run
 multiple streams over a single connection, without head-of-line
 blocking between streams, associated at a point in time with a single
 five-tuple. Stream data is carried within Frames, where one (UDP)
 packet on the wire can carry one of multiple stream frames.

https://github

Kuehlewind & Trammell Expires January 3, 2019 [Page 4]

Internet-Draft QUIC Applicability July 2018

 Stream can be independently open and closed, gracefully or by error.
 If a critical stream for the application is closed, the application
 can generate respective error messages on the application layer to
 inform the other end or the higher layer and eventually indicate quic
 to reset the connection. QUIC, however, does not need to know which
 streams are critical, and does not provide an interface to
 exceptional handling of any stream. There are special streams in
 QUIC that are used for control on the QUIC connection, however, these
 streams are not exposed to the application.

 Mapping of application data to streams is application-specific and
 described for HTTP/s in [QUIC-HTTP]. In general data that can be
 processed independently, and therefore would suffer from head of line
 blocking, if forced to be received in order, should be transmitted
 over different streams. If there is a logical grouping of those data
 chunks or messages, stream can be reused, or a new stream can be
 opened for each chunk/message. If a QUIC receiver has maximum
 allowed concurrent streams open and the sender on the other end
 indicates that more streams are needed, it doesn't automatically lead
 to an increase of the maximum number of streams by the receiver.
 Therefore it can be valuable to expose maximum number of allowed,
 currently open and currently used streams to the application to make
 the mapping of data to streams dependent on this information.

 Further, streams have a maximum number of bytes that can be sent on
 one stream. This number is high enough (2^64) that this will usually
 not be reached with current applications. Applications that send
 chunks of data over a very long period of time (such as days, months,
 or years), should rather utilize the 0-RTT session resumption ability
 provided by QUIC, than trying to maintain one connection open.

4.1. Stream versus Flow Multiplexing

 Streams are meaningful only to the application; since stream
 information is carried inside QUIC's encryption boundary, no
 information about the stream(s) whose frames are carried by a given
 packet is visible to the network. Therefore stream multiplexing is
 not intended to be used for differentiating streams in terms of
 network treatment. Application traffic requiring different network
 treatment SHOULD therefore be carried over different five-tuples
 (i.e. multiple QUIC connections). Given QUIC's ability to send
 application data in the first RTT of a connection (if a previous
 connection to the same host has been successfully established to
 provide the respective credentials), the cost for establishing
 another connection are extremely low.

Kuehlewind & Trammell Expires January 3, 2019 [Page 5]

Internet-Draft QUIC Applicability July 2018

4.2. Packetization and latency

 Quic provides an interface that provides multiple streams to the
 application, however, the application usually doesn't have control
 how the data transmitted over one stream is mapped into frame and how
 frames are bundled into packets. By default QUIC will try to
 maximally pack packets to minimize bandwidth consumption and
 computational costs with one or multiple same data frames. If not
 enough data available to send QUIC may even wait for a short time,
 trading of latency and bandwidth efficiency. This time might either
 be pre-configured or can the dynamically adjusted based on the
 observed sending pattern of the application. If the application
 requires low latency, with only small chunks of data to send, it may
 be valuable to indicate to QUIC that all data should be send out
 immediately. Or if a certain sending pattern is know by the
 application, it might also provide valuable guidance to QUIC how long
 it should wait to bundle frame into a packet.

4.3. Prioritization

 Stream prioritization is not exposed to the network, nor to the
 receiver. Prioritization can be realized by the sender and the QUIC
 transport should provide an interface for applications to prioritize
 streams [QUIC]. Further applications can implement their own
 prioritization scheme on top of QUIC: (an application) protocol that
 runs on top of QUIC can define explicit messages for signaling
 priority, such as those defined for HTTP/2; it can define rules that
 allow an endpoint to determine priority based on context; or it can
 provide a higher level interface and leave the determination to the
 application on top.

 Priority handling of retransmissions can be implemented by the sender
 in the transport layer. [QUIC] recommends to retransmit lost data
 before new data, unless indicated differently by the application.
 Currently QUIC only provides fully reliable stream transmission, and
 as such prioritization of retransmissions likely beneficial in most
 cases, as gaps that get filled up and thereby free up flow control.
 For not fully reliable streams priority scheduling of retransmissions
 over data of higher-priority streams might not be desired. In this
 case QUIC could also provide an interface or derive the
 prioritization decision from the reliability level of the stream.

5. Graceful connection closure

 [EDITOR'S NOTE: give some guidance here about the steps an
 application should take; however this is still work in progress]

Kuehlewind & Trammell Expires January 3, 2019 [Page 6]

Internet-Draft QUIC Applicability July 2018

6. Information exposure and the Connection ID

 QUIC exposes some information to the network in the unencrypted part
 of the header, either before the encryption context is established,
 because the information is intended to be used by the network. QUIC
 has a long header that is used during connection establishment and
 for other control processes, and a short header that may be used for
 data transmission in an established connection. While the long
 header is fixed and exposes some information, the short header only
 exposes the packet number by default and may optionally expose a
 connection ID.

 Given that exposing this information may make it possible to
 associate multiple addresses with a single client during rebinding,
 which has privacy implications, an application may indicate to not
 support exposure of certain information after the handshake.
 Specifically, an application that has additional information that the
 client is not behind a NAT and the server is not behind a load
 balancer, and therefore it is unlikely that the addresses will be re-
 bound, may indicate to the transport that is wishes to not expose a
 connection ID.

6.1. Server-Generated Connection ID

 QUIC supports a server-generated Connection ID, transmitted to the
 client during connection establishment: see Section 5.7 of [QUIC].
 Servers behind load balancers should propose a Connection ID during
 the handshake, encoding the identity of the server or information
 about its load balancing pool, in order to support stateless load
 balancing. Once the server generates a Connection ID that encodes
 its identity, every CDN load balancer would be able to forward the
 packets to that server without needing information about every
 specific flow it is forwarding.

 Server-generated Connection IDs must not encode any information other
 that that needed to route packets to the appropriate backend
 server(s): typically the identity of the backend server or pool of
 servers, if the data-center's load balancing system keeps "local"
 state of all flows itself. Care must be exercised to ensure that the
 information encoded in the Connection ID is not sufficient to
 identify unique end users. Note that by encoding routing information
 in the Connection ID, load balancers open up a new attack vector that
 allows bad actors to direct traffic at a specific backend server or
 pool. It is therefore recommended that Server-Generated Connection
 ID includes a cryptographic MAC that the load balancer pool server is
 able to identify and discard packets featuring an invalid MAC.

Kuehlewind & Trammell Expires January 3, 2019 [Page 7]

Internet-Draft QUIC Applicability July 2018

6.2. Using Server Retry for Redirection

 QUIC provides a Server Retry packet that can be sent by a server in
 response to the Client Initial packet. The server may choose a new
 connection ID in that packet and the client will retry by sending
 another Client Initial packet with the server-selected connection ID.
 This mechanism can be used to redirect a connection to a different
 server, e.g. due to performance reasons or when servers in a server
 pool are upgraded gradually, and therefore may support different
 versions of QUIC. In this case, it is assumed that all servers
 belonging to a certain pool are served in cooperation with load
 balancers that forward the traffic based on the connection ID. A
 server can chose the connection ID in the Server Retry packet such
 that the load balancer will redirect the next Client Initial packet
 to a different server in that pool.

7. Use of Versions and Cryptographic Handshake

 Versioning in QUIC may change the protocol's behavior completely,
 except for the meaning of a few header fields that have been declared
 to be fixed. As such version of QUIC with a higher version number
 does not necessarily provide a better service, but might simply
 provide a very different service, so an application needs to be able
 to select which versions of QUIC it wants to use.

 A new version could use an encryption scheme other than TLS 1.3 or
 higher. [QUIC] specifies requirements for the cryptographic
 handshake as currently realized by TLS 1.3 and described in a
 separate specification [QUIC-TLS]. This split is performed to enable
 light-weight versioning with different cryptographic handshakes.

8. IANA Considerations

 This document has no actions for IANA.

9. Security Considerations

 See the security considerations in [QUIC] and [QUIC-TLS]; the
 security considerations for the underlying transport protocol are
 relevant for applications using QUIC, as well.

 Application developers should note that any fallback they use when
 QUIC cannot be used due to network blocking of UDP SHOULD guarantee
 the same security properties as QUIC; if this is not possible, the
 connection SHOULD fail to allow the application to explicitly handle
 fallback to a less-secure alternative. See Section 2.

Kuehlewind & Trammell Expires January 3, 2019 [Page 8]

Internet-Draft QUIC Applicability July 2018

10. Contributors

 Igor Lubashev contributed text to Section 6 on server-selected
 connection IDs.

11. Acknowledgments

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

12. References

12.1. Normative References

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-13 (work
 in progress), June 2018.

 [QUIC-TLS]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-13 (work in
 progress), June 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

 [TLS13] Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-13 (work in
 progress), June 2018.

12.2. Informative References

 [Edeline16]
 Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
 B. Donnet, "Using UDP for Internet Transport Evolution
 (arXiv preprint 1612.07816)", December 2016,
 <https://arxiv.org/abs/1612.07816>.

 [HTTP-RETRY]
 Nottingham, M., "Retrying HTTP Requests", draft-

nottingham-httpbis-retry-01 (work in progress), February
 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://arxiv.org/abs/1612.07816
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01

Kuehlewind & Trammell Expires January 3, 2019 [Page 9]

Internet-Draft QUIC Applicability July 2018

 [I-D.nottingham-httpbis-retry]
 Nottingham, M., "Retrying HTTP Requests", draft-

nottingham-httpbis-retry-01 (work in progress), February
 2017.

 [PaaschNanog]
 Paasch, C., "Network Support for TCP Fast Open (NANOG 67
 presentation)", June 2016,
 <https://www.nanog.org/sites/default/files/

Paasch_Network_Support.pdf>.

 [QUIC-HTTP]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-13 (work in progress), June
 2018.

 [Swett16] Swett, I., "QUIC Deployment Experience at Google (IETF96
 QUIC BoF presentation)", July 2016,
 <https://www.ietf.org/proceedings/96/slides/slides-96-

quic-3.pdf>.

 [Trammell16]
 Trammell, B. and M. Kuehlewind, "Internet Path
 Transparency Measurements using RIPE Atlas (RIPE72 MAT
 presentation)", May 2016, <https://ripe72.ripe.net/wp-

content/uploads/presentations/86-atlas-udpdiff.pdf>.

Authors' Addresses

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf

Kuehlewind & Trammell Expires January 3, 2019 [Page 10]

