
Network Working Group M. Kuehlewind
Internet-Draft B. Trammell
Intended status: Informational ETH Zurich
Expires: April 25, 2019 October 22, 2018

Applicability of the QUIC Transport Protocol
draft-ietf-quic-applicability-03

Abstract

 This document discusses the applicability of the QUIC transport
 protocol, focusing on caveats impacting application protocol
 development and deployment over QUIC. Its intended audience is
 designers of application protocol mappings to QUIC, and implementors
 of these application protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kuehlewind & Trammell Expires April 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUIC Applicability October 2018

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The Necessity of Fallback 3
3. Zero RTT . 4
3.1. Thinking in Zero RTT 4
3.2. Here There Be Dragons 4
3.3. Session resumption versus Keep-alive 4

4. Use of Streams . 6
4.1. Stream versus Flow Multiplexing 6
4.2. Packetization and latency 7
4.3. Prioritization . 7

5. Port Selection . 8
6. Graceful connection closure 8
7. Information exposure and the Connection ID 8
7.1. Server-Generated Connection ID 9

 7.2. Mitigating Timing Linkability with Connection ID
 Migration . 9

7.3. Using Server Retry for Redirection 9
8. Use of Versions and Cryptographic Handshake 10
9. IANA Considerations . 10
10. Security Considerations 10
11. Contributors . 10
12. Acknowledgments . 11
13. References . 11
13.1. Normative References 11
13.2. Informative References 11

 Authors' Addresses . 13

1. Introduction

 QUIC [QUIC] is a new transport protocol currently under development
 in the IETF quic working group, focusing on support of semantics as
 needed for HTTP/2 [QUIC-HTTP] such as stream-multiplexing to avoid
 head-of-line blocking. Based on current deployment practices, QUIC
 is encapsulated in UDP. The version of QUIC that is currently under
 development will integrate TLS 1.3 [TLS13] to encrypt all payload
 data and most control information.

 This document provides guidance for application developers that want
 to use the QUIC protocol without implementing it on their own. This
 includes general guidance for application use of HTTP/2 over QUIC as
 well as the use of other application layer protocols over QUIC. For
 specific guidance on how to integrate HTTP/2 with QUIC, see
 [QUIC-HTTP].

Kuehlewind & Trammell Expires April 25, 2019 [Page 2]

Internet-Draft QUIC Applicability October 2018

 In the following sections we discuss specific caveats to QUIC's
 applicability, and issues that application developers must consider
 when using QUIC as a transport for their application.

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when these words are capitalized, they
 have a special meaning as defined in [RFC2119].

2. The Necessity of Fallback

 QUIC uses UDP as a substrate for userspace implementation and port
 numbers for NAT and middlebox traversal. While there is no evidence
 of widespread, systematic disadvantage of UDP traffic compared to TCP
 in the Internet [Edeline16], somewhere between three [Trammell16] and
 five [Swett16] percent of networks simply block UDP traffic. All
 applications running on top of QUIC must therefore either be prepared
 to accept connectivity failure on such networks, or be engineered to
 fall back to some other transport protocol. This fallback SHOULD
 provide TLS 1.3 or equivalent cryptographic protection, if available,
 in order to keep fallback from being exploited as a downgrade attack.
 In the case of HTTP, this fallback is TLS 1.3 over TCP.

 These applications must operate, perhaps with impaired functionality,
 in the absence of features provided by QUIC not present in the
 fallback protocol. For fallback to TLS over TCP, the most obvious
 difference is that TCP does not provide stream multiplexing and
 therefore stream multiplexing would need to be implemented in the
 application layer if needed. Further, TCP without the TCP Fast Open
 extension does not support 0-RTT session resumption. TCP Fast Open
 can be requested by the connection initiator but might no be
 supported by the far end or could be blocked on the network path.
 Note that there is some evidence of middleboxes blocking SYN data
 even if TFO was successfully negotiated (see [PaaschNanog]).

 Any fallback mechanism is likely to impose a degradation of
 performance; however, fallback MUST not silently violate the
 application's expectation of confidentiality or integrity of its
 payload data.

 Moreover, while encryption (in this case TLS) is inseparably
 integrated with QUIC, TLS negotiation over TCP can be blocked. In
 case it is RECOMMENDED to abort the connection, allowing the
 application to present a suitable prompt to the user that secure
 communication is unavailable.

https://datatracker.ietf.org/doc/html/rfc2119

Kuehlewind & Trammell Expires April 25, 2019 [Page 3]

Internet-Draft QUIC Applicability October 2018

3. Zero RTT

 QUIC provides for 0-RTT connection establishment. This presents
 opportunities and challenges for applications using QUIC.

3.1. Thinking in Zero RTT

 A transport protocol that provides 0-RTT connection establishment to
 recently contacted servers is qualitatively different than one that
 does not from the point of view of the application using it.
 Relative trade-offs between the cost of closing and reopening a
 connection and trying to keep it open are different; see Section 3.3.

 Applications must be slightly rethought in order to make best use of
 0-RTT resumption. Most importantly, application operations must be
 divided into idempotent and non-idempotent operations, as only
 idempotent operations may appear in 0-RTT packets. This implies that
 the interface between the application and transport layer exposes
 idempotence either explicitly or implicitly.

3.2. Here There Be Dragons

 Retransmission or (malicious) replay of data contained in 0-RTT
 resumption packets could cause the server side to receive two copies
 of the same data. This is further described in [HTTP-RETRY]. Data
 sent during 0-RTT resumption also cannot benefit from perfect forward
 secrecy (PFS).

 Data in the first flight sent by the client in a connection
 established with 0-RTT MUST be idempotent (as specified in section

2.1 in [QUIC-TLS]). Applications MUST be designed, and their data
 MUST be framed, such that multiple reception of idempotent data is
 recognized as such by the receiverApplications that cannot treat data
 that may appear in a 0-RTT connection establishment as idempotent
 MUST NOT use 0-RTT establishment. For this reason the QUIC transport
 SHOULD provide an interface for the application to indicate if 0-RTT
 support is in general desired or a way to indicate whether data is
 idempotent, and/or whether PFS is a hard requirement for the
 application.

3.3. Session resumption versus Keep-alive

 Because QUIC is encapsulated in UDP, applications using QUIC must
 deal with short idle timeouts. Deployed stateful middleboxes will
 generally establish state for UDP flows on the first packet state,
 and keep state for much shorter idle periods than for TCP. According
 to a 2010 study ([Hatonen10]), UDP applications can assume that any

Kuehlewind & Trammell Expires April 25, 2019 [Page 4]

Internet-Draft QUIC Applicability October 2018

 NAT binding or other state entry will be expired after just thirty
 seconds of inactivity.

 A QUIC application has three strategies to deal with this issue:

 o Ignore it, if the application-layer protocol consists only of
 interactions with no or very short idle periods.

 o Ensure there are no long idle periods.

 o Resume the session after a long idle period, using 0-RTT
 resumption when appropriate.

 The first strategy is the easiest, but it only applies to certain
 applications.

 Either the server or the client in a QUIC application can send PING
 frames as keep-alives, to prevent the connection and any on-path
 state from timing out. Recommendations for the use of keep-alives
 are application specific, mainly depending on the latency
 requirements and message frequency of the application. In this case,
 the application mapping must specify whether the client or server is
 responsible for keeping the application alive. Note that sending
 PING frames more frequently than every 30 seconds over long idle
 periods may result in a too much unproductive traffic and power usage
 for some situations.

 Alternatively, the client (but not the server) can use session
 resumption instead of sending keepalive traffic. In this case, a
 client that wants to send data to a server over a connection idle
 longer than the server's idle timeout (available from the
 idle_timeout transport parameter) can simply reconnect. When
 possible, this reconnection can use 0-RTT session resumption,
 reducing the latency involved with restarting the connection. This
 of course only applies in cases in which 0-RTT data is safe, when the
 client is the restarting peer, and when the data to be sent is
 idempotent.

 The tradeoffs between resumption and keepalive need to be evaluated
 on a per-application basis. However, in general applications should
 use keepalives only in circumstances where continued communication is
 highly likely; [QUIC-HTTP], for instance, recommends using PING
 frames for keepalive only when a request is outstanding.

Kuehlewind & Trammell Expires April 25, 2019 [Page 5]

Internet-Draft QUIC Applicability October 2018

4. Use of Streams

 QUIC's stream multiplexing feature allows applications to run
 multiple streams over a single connection, without head-of-line
 blocking between streams, associated at a point in time with a single
 five-tuple. Stream data is carried within Frames, where one (UDP)
 packet on the wire can carry one of multiple stream frames.

 Stream can be independently open and closed, gracefully or by error.
 If a critical stream for the application is closed, the application
 can generate respective error messages on the application layer to
 inform the other end or the higher layer and eventually indicate QUIC
 to reset the connection. QUIC, however, does not need to know which
 streams are critical, and does not provide an interface to
 exceptional handling of any stream. There are special streams in
 QUIC that are used for control on the QUIC connection, however, these
 streams are not exposed to the application.

 Mapping of application data to streams is application-specific and
 described for HTTP/s in [QUIC-HTTP]. In general data that can be
 processed independently, and therefore would suffer from head of line
 blocking, if forced to be received in order, should be transmitted
 over different streams. If there is a logical grouping of those data
 chunks or messages, stream can be reused, or a new stream can be
 opened for each chunk/message. If a QUIC receiver has maximum
 allowed concurrent streams open and the sender on the other end
 indicates that more streams are needed, it doesn't automatically lead
 to an increase of the maximum number of streams by the receiver.
 Therefore it can be valuable to expose maximum number of allowed,
 currently open and currently used streams to the application to make
 the mapping of data to streams dependent on this information.

 Further, streams have a maximum number of bytes that can be sent on
 one stream. This number is high enough (2^64) that this will usually
 not be reached with current applications. Applications that send
 chunks of data over a very long period of time (such as days, months,
 or years), should rather utilize the 0-RTT session resumption ability
 provided by QUIC, than trying to maintain one connection open.

4.1. Stream versus Flow Multiplexing

 Streams are meaningful only to the application; since stream
 information is carried inside QUIC's encryption boundary, no
 information about the stream(s) whose frames are carried by a given
 packet is visible to the network. Therefore stream multiplexing is
 not intended to be used for differentiating streams in terms of
 network treatment. Application traffic requiring different network
 treatment SHOULD therefore be carried over different five-tuples

Kuehlewind & Trammell Expires April 25, 2019 [Page 6]

Internet-Draft QUIC Applicability October 2018

 (i.e. multiple QUIC connections). Given QUIC's ability to send
 application data in the first RTT of a connection (if a previous
 connection to the same host has been successfully established to
 provide the respective credentials), the cost of establishing another
 connection is extremely low.

4.2. Packetization and latency

 QUIC provides an interface that provides multiple streams to the
 application; however, the application usually cannot control how data
 transmitted over one stream is mapped into frames or how those frames
 are bundled into packets. By default, QUIC will try to maximally
 pack packets with one or more stream data frames to minimize
 bandwidth consumption and computational costs (see section 8 of
 [QUIC]). If there is not enough data available to fill a packet,
 QUIC may even wait for a short time, to optimize bandwidth efficiency
 instead of latency. This delay can either be pre-configured or
 dynamically adjusted based on the observed sending pattern of the
 application. If the application requires low latency, with only
 small chunks of data to send, it may be valuable to indicate to QUIC
 that all data should be send out immediately. Alternatively, if the
 application expects to use a specific sending pattern, it can also
 provide a suggested delay to QUIC for how long to wait before bundle
 frames into a packet.

4.3. Prioritization

 Stream prioritization is not exposed to either the network or the
 receiver. Prioritization is managed by the sender, and the QUIC
 transport should provide an interface for applications to prioritize
 streams [QUIC]. Further applications can implement their own
 prioritization scheme on top of QUIC: an application protocol that
 runs on top of QUIC can define explicit messages for signaling
 priority, such as those defined for HTTP/2; it can define rules that
 allow an endpoint to determine priority based on context; or it can
 provide a higher level interface and leave the determination to the
 application on top.

 Priority handling of retransmissions can be implemented by the sender
 in the transport layer. [QUIC] recommends to retransmit lost data
 before new data, unless indicated differently by the application.
 Currently, QUIC only provides fully reliable stream transmission,
 which means that prioritization of retransmissions will be beneficial
 in most cases, by filling in gaps and freeing up the flow control
 window. For partially reliable or unreliable streams, priority
 scheduling of retransmissions over data of higher-priority streams
 might not be desirable. For such streams, QUIC could either provide

Kuehlewind & Trammell Expires April 25, 2019 [Page 7]

Internet-Draft QUIC Applicability October 2018

 an explicit interface to control prioritization, or derive the
 prioritization decision from the reliability level of the stream.

5. Port Selection

 As QUIC is a general purpose transport protocol, there are no
 requirements that servers use a particular UDP port for QUIC in
 general. Instead, the same port number is used as would be used for
 the same application over TCP. In the case of HTTP the expectation
 is that port 443 is used, which has already been registered for "http
 protocol over TLS/SSL". However, [QUIC-HTTP] also specifies the use
 of Alt-Svc for HTTP/QUIC discovery which allows the server to use and
 announce a different port number.

 In general, port numbers serves two purposes: "first, they provide a
 demultiplexing identifier to differentiate transport sessions between
 the same pair of endpoints, and second, they may also identify the
 application protocol and associated service to which processes
 connect" [RFC6335]. Note that the assumption that an application can
 be identified in the network based on the port number is less true
 today, due to encapsulation, mechanisms for dynamic port assignments
 as well as NATs.

 However, whenever a non-standard port is used which does not enable
 easy mapping to a registered service name, this can lead to blocking
 by network elements such as firewalls that rely on the port number as
 a first order of filtering.

6. Graceful connection closure

 [EDITOR'S NOTE: give some guidance here about the steps an
 application should take; however this is still work in progress]

7. Information exposure and the Connection ID

 QUIC exposes some information to the network in the unencrypted part
 of the header, either before the encryption context is established,
 because the information is intended to be used by the network. QUIC
 has a long header that is used during connection establishment and
 for other control processes, and a short header that may be used for
 data transmission in an established connection. While the long
 header always exposes some information (such as the version and
 Connection IDs), the short header exposes at most only a single
 Connection ID.

https://datatracker.ietf.org/doc/html/rfc6335

Kuehlewind & Trammell Expires April 25, 2019 [Page 8]

Internet-Draft QUIC Applicability October 2018

7.1. Server-Generated Connection ID

 QUIC supports a server-generated Connection ID, transmitted to the
 client during connection establishment (see Section 6.1 of [QUIC]).
 Servers behind load balancers may need to propose a Connection ID
 during the handshake, encoding the identity of the server or
 information about its load balancing pool, in order to support
 stateless load balancing. Once the server generates a Connection ID
 that encodes its identity, every CDN load balancer would be able to
 forward the packets to that server without retaining connection
 state.

 Server-generated connection IDs should seek to obscure any encoding,
 of routing identities or any other information. Exposing the server
 mapping would allow linkage of multiple IP addresses to the same host
 if the server also supports migration. Furthermore, this opens an
 attack vector on specific servers or pools.

 The best way to obscure an encoding is to appear random to observers,
 which is most rigorously achieved with encryption.

7.2. Mitigating Timing Linkability with Connection ID Migration

 While sufficiently robust connection ID generation schemes will
 mitigate linkability issues, they do not provide full protection.
 Analysis of the lifetimes of six-tuples (source and destination
 addresses as well as the migrated CID) may expose these links anyway.

 In the limit where connection migration in a server pool is rare, it
 is trivial for an observer to associate two connection IDs.
 Conversely, in the opposite limit where every server handles multiple
 simultaneous migrations, even an exposed server mapping may be
 insufficient information.

 The most efficient mitigation for these attacks is operational,
 either by using a load balancing architecture that loads more flows
 onto a single server-side address, by coordinating the timing of
 migrations to attempt to increase the number of simultaneous
 migrations at a given time, or through other means.

7.3. Using Server Retry for Redirection

 QUIC provides a Server Retry packet that can be sent by a server in
 response to the Client Initial packet. The server may choose a new
 Connection ID in that packet and the client will retry by sending
 another Client Initial packet with the server-selected Connection ID.
 This mechanism can be used to redirect a connection to a different
 server, e.g. due to performance reasons or when servers in a server

Kuehlewind & Trammell Expires April 25, 2019 [Page 9]

Internet-Draft QUIC Applicability October 2018

 pool are upgraded gradually, and therefore may support different
 versions of QUIC. In this case, it is assumed that all servers
 belonging to a certain pool are served in cooperation with load
 balancers that forward the traffic based on the Connection ID. A
 server can choose the Connection ID in the Server Retry packet such
 that the load balancer will redirect the next Client Initial packet
 to a different server in that pool.

8. Use of Versions and Cryptographic Handshake

 Versioning in QUIC may change the protocol's behavior completely,
 except for the meaning of a few header fields that have been declared
 to be invariant [QUIC-INVARIANTS]. A version of QUIC with a higher
 version number will not necessarily provide a better service, but
 might simply provide a different feature set. As such, an
 application needs to be able to select which versions of QUIC it
 wants to use.

 A new version could use an encryption scheme other than TLS 1.3 or
 higher. [QUIC] specifies requirements for the cryptographic
 handshake as currently realized by TLS 1.3 and described in a
 separate specification [QUIC-TLS]. This split is performed to enable
 light-weight versioning with different cryptographic handshakes.

9. IANA Considerations

 This document has no actions for IANA.

10. Security Considerations

 See the security considerations in [QUIC] and [QUIC-TLS]; the
 security considerations for the underlying transport protocol are
 relevant for applications using QUIC, as well.

 Application developers should note that any fallback they use when
 QUIC cannot be used due to network blocking of UDP SHOULD guarantee
 the same security properties as QUIC; if this is not possible, the
 connection SHOULD fail to allow the application to explicitly handle
 fallback to a less-secure alternative. See Section 2.

11. Contributors

 Igor Lubashev contributed text to Section 7 on server-selected
 Connection IDs.

Kuehlewind & Trammell Expires April 25, 2019 [Page 10]

Internet-Draft QUIC Applicability October 2018

12. Acknowledgments

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

13. References

13.1. Normative References

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-15 (work
 in progress), October 2018.

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",

draft-ietf-quic-invariants-03 (work in progress), October
 2018.

 [QUIC-TLS]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-15 (work in
 progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [TLS13] Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-15 (work in
 progress), October 2018.

13.2. Informative References

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://www.rfc-editor.org/info/rfc6335
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-15

Kuehlewind & Trammell Expires April 25, 2019 [Page 11]

Internet-Draft QUIC Applicability October 2018

 [Edeline16]
 Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
 B. Donnet, "Using UDP for Internet Transport Evolution
 (arXiv preprint 1612.07816)", December 2016,
 <https://arxiv.org/abs/1612.07816>.

 [Hatonen10]
 Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
 Sarolahti, P., and M. Kojo, "An experimental study of home
 gateway characteristics (Proc. ACM IMC 2010)", October
 2010.

 [HTTP-RETRY]
 Nottingham, M., "Retrying HTTP Requests", draft-

nottingham-httpbis-retry-01 (work in progress), February
 2017.

 [I-D.nottingham-httpbis-retry]
 Nottingham, M., "Retrying HTTP Requests", draft-

nottingham-httpbis-retry-01 (work in progress), February
 2017.

 [PaaschNanog]
 Paasch, C., "Network Support for TCP Fast Open (NANOG 67
 presentation)", June 2016,
 <https://www.nanog.org/sites/default/files/

Paasch_Network_Support.pdf>.

 [QUIC-HTTP]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-15 (work in progress), October
 2018.

 [Swett16] Swett, I., "QUIC Deployment Experience at Google (IETF96
 QUIC BoF presentation)", July 2016,
 <https://www.ietf.org/proceedings/96/slides/

slides-96-quic-3.pdf>.

 [Trammell16]
 Trammell, B. and M. Kuehlewind, "Internet Path
 Transparency Measurements using RIPE Atlas (RIPE72 MAT
 presentation)", May 2016, <https://ripe72.ripe.net/wp-

content/uploads/presentations/86-atlas-udpdiff.pdf>.

https://arxiv.org/abs/1612.07816
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-retry-01
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-15
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf

Kuehlewind & Trammell Expires April 25, 2019 [Page 12]

Internet-Draft QUIC Applicability October 2018

Authors' Addresses

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

Kuehlewind & Trammell Expires April 25, 2019 [Page 13]

