
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-quic-applicability-10

Published: 22 February 2021

Intended Status: Informational

Expires: 26 August 2021

Authors: M. Kuehlewind

Ericsson

B. Trammell

Google

Applicability of the QUIC Transport Protocol

Abstract

This document discusses the applicability of the QUIC transport

protocol, focusing on caveats impacting application protocol

development and deployment over QUIC. Its intended audience is

designers of application protocol mappings to QUIC, and implementors

of these application protocols.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 August 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

2.  The Necessity of Fallback

3.  Zero RTT

3.1.  Replay Attacks

3.2.  Session resumption versus Keep-alive

4.  Use of Streams

4.1.  Stream versus Flow Multiplexing

4.2.  Prioritization

4.3.  Ordered and Reliable Delivery

4.4.  Flow Control Deadlocks

5.  Packetization and Latency

6.  Port Selection and Application Endpoint Discovery

7.  Connection Migration

8.  Connection Closure

9.  Information Exposure and the Connection ID

9.1.  Server-Generated Connection ID

9.2.  Mitigating Timing Linkability with Connection ID Migration

9.3.  Using Server Retry for Redirection

10. Quality of Service (QoS) and DSCP

11. Use of Versions and Cryptographic Handshake

12. Enabling New Versions

13. IANA Considerations

14. Security Considerations

15. Contributors

16. Acknowledgments

17. References

17.1.  Normative References

17.2.  Informative References

Authors' Addresses

1. Introduction

QUIC [QUIC] is a new transport protocol providing a number of

advanced features. While initially designed for the HTTP use case,

it provides capabilities that can be used with a much wider variety

of applications. QUIC is encapsulated in UDP. QUIC version 1

integrates TLS 1.3 [TLS13] to encrypt all payload data and most

control information. The version of HTTP that uses QUIC is known as

HTTP/3 [QUIC-HTTP].

This document provides guidance for application developers that want

to use the QUIC protocol without implementing it on their own. This

includes general guidance for applications operating over HTTP/3 or

directly over QUIC.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



In the following sections we discuss specific caveats to QUIC's

applicability, and issues that application developers must consider

when using QUIC as a transport for their application.

2. The Necessity of Fallback

QUIC uses UDP as a substrate. This enables userspace implementation

and permits traversal of network middleboxes (including NAT) without

requiring updates to existing network infrastructure.

While recent measurements have shown no evidence of a widespread,

systematic disadvantage of UDP traffic compared to TCP in the

Internet [Edeline16], somewhere between three [Trammell16] and five 

[Swett16] percent of networks block all UDP traffic. All

applications running on top of QUIC must therefore either be

prepared to accept connectivity failure on such networks or be

engineered to fall back to some other transport protocol. In the

case of HTTP, this fallback is TLS over TCP.

The IETF TAPS specifications [I-D.ietf-taps-arch] describe a system

with a common API for multiple protocols and some of the

implications of fallback between these different protocols,

specifically precluding fallback to insecure protocols or to weaker

versions of secure protocols.

An application that implements fallback needs to consider the

security consequences. A fallback to TCP and TLS exposes control

information to modification and manipulation in the network. Further

downgrades to older TLS versions than used in QUIC, which is 1.3,

might result in significantly weaker cryptographic protection. For

example, the results of protocol negotiation [RFC7301] only have

confidentiality protection if TLS 1.3 is used.

These applications must operate, perhaps with impaired

functionality, in the absence of features provided by QUIC not

present in the fallback protocol. For fallback to TLS over TCP, the

most obvious difference is that TCP does not provide stream

multiplexing and therefore stream multiplexing would need to be

implemented in the application layer if needed. Further, TCP

implementations and network paths often do not support the Fast Open

option, which is analogous to 0-RTT session resumption. Note that

there is some evidence of middleboxes blocking SYN data even if TFO

was successfully negotiated (see [PaaschNanog]). And even if Fast

Open successfully operates end-to-end, it is limited to a single

packet of payload, unlike QUIC 0-RTT.

Moreover, while encryption (in this case TLS) is inseparably

integrated with QUIC, TLS negotiation over TCP can be blocked. If

TLS over TCP cannot be supported, the connection should be aborted

¶

¶

¶

¶

¶

¶



instead, in order to enable the application to present a suitable

prompt to the user that secure communication is unavailable.

In summary, any fallback mechanism is likely to impose a degradation

of performance and can degrade security; however, fallback must not

silently violate the application's expectation of confidentiality or

integrity of its payload data.

3. Zero RTT

QUIC provides for 0-RTT connection establishment. Though the same

facility exists in TLS 1.3 with TCP, 0-RTT presents opportunities

and challenges for applications using QUIC.

A transport protocol that provides 0-RTT connection establishment is

qualitatively different than one that does not from the point of

view of the application using it. Relative trade-offs between the

cost of closing and reopening a connection and trying to keep it

open are different; see Section 3.2.

An application needs to deliberately choose to use 0-RTT, as 0-RTT

carries a risk of replay attack. Application protocols that use 0-

RTT require a profile that describes the types of information that

can be safely sent. For HTTP, this profile is described in [HTTP-

REPLAY].

3.1. Replay Attacks

Retransmission or (malicious) replay of data contained in 0-RTT

packets could cause the server side to receive two copies of the

same data.

Application data sent by the client in 0-RTT packets could be

processed more than once if it is replayed. Applications need to be

aware of what is safe to send in 0-RTT. Application protocols that

seek to enable the use of 0-RTT need a careful analysis and a

description of what can be sent in 0-RTT; see Section 5.6 of [QUIC-

TLS].

In some cases, it might be sufficient to limit application data sent

in 0-RTT to that which only causes actions at a server that are

known to be free of lasting effect. Initiating data retrieval or

establishing configuration are examples of actions that could be

safe. Idempotent operations - those for which repetition has the

same net effect as a single operation - might be safe. However, it

is also possible to combine individually idempotent operations into

a non-idempotent sequence of operations.

¶

¶

¶

¶

¶

¶

¶

¶



Once a server accepts 0-RTT data there is no means of selectively

discarding data that is received. However, protocols can define ways

to reject individual actions that might be unsafe if replayed.

Some TLS implementations and deployments might be able to provide

partial or even complete replay protection, which could be used to

manage replay risk.

3.2. Session resumption versus Keep-alive

Because QUIC is encapsulated in UDP, applications using QUIC must

deal with short network idle timeouts. Deployed stateful middleboxes

will generally establish state for UDP flows on the first packet

sent, and keep state for much shorter idle periods than for TCP. 

[RFC5382] suggests a TCP idle period of at least 124 minutes, though

there is not evidence of widespread implementation of this guideline

in the literature. Short network timeout for UDP, however, is well-

documented. According to a 2010 study ([Hatonen10]), UDP

applications can assume that any NAT binding or other state entry

can expire after just thirty seconds of inactivity. Section 3.5 of 

[RFC8085] further discusses keep-alive intervals for UDP: it

requires a minimum value of 15 seconds, but recommends larger

values, or omitting keep-alive entirely.

By using a connection ID, QUIC is designed to be robust to NAT

address rebinding after a timeout. However, this only helps if one

endpoint maintains availability at the address its peer uses, and

the peer is the one to send after the timeout occurs.

Some QUIC connections might not be robust to NAT rebinding because

the routing infrastructure (in particular, load balancers) uses the

address/port four-tuple to direct traffic. Furthermore, middleboxes

with functions other than address translation could still affect the

path. In particular, some firewalls do not admit server traffic for

which the firewall has no recent state for a corresponding packet

sent from the client.

QUIC applications can adjust idle periods to manage the risk of

timeout. Idle periods and the network idle timeout are distinct from

the connection idle timeout, which is defined as the minimum of

either endpoint's idle timeout parameter; see Section 10.1 of

[QUIC]). There are three options:

Ignore the issue, if the application-layer protocol consists only

of interactions with no or very short idle periods, or the

protocol's resistance to NAT rebinding is sufficient.

Ensure there are no long idle periods.

¶

¶

¶

¶

¶

¶

*

¶

* ¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-10.1


Resume the session after a long idle period, using 0-RTT

resumption when appropriate.

The first strategy is the easiest, but it only applies to certain

applications.

Either the server or the client in a QUIC application can send PING

frames as keep-alives, to prevent the connection and any on-path

state from timing out. Recommendations for the use of keep-alives

are application-specific, mainly depending on the latency

requirements and message frequency of the application. In this case,

the application mapping must specify whether the client or server is

responsible for keeping the application alive. While [Hatonen10]

suggests that 30 seconds might be a suitable value for the public

Internet when a NAT is on path, larger values are preferable if the

deployment can consistently survive NAT rebinding or is known to be

in a controlled environment (e.g. data centres) in order to lower

network and computational load.

Sending PING frames more frequently than every 30 seconds over long

idle periods may result in excessive unproductive traffic in some

situations, and to unacceptable power usage for power-constrained

(mobile) devices. Additionally, timeouts shorter than 30 seconds can

make it harder to handle transient network interruptions, such as VM

migration or coverage loss during mobilty. See [RFC8085], especially

Section 3.5.

Alternatively, the client (but not the server) can use session

resumption instead of sending keepalive traffic. In this case, a

client that wants to send data to a server over a connection idle

longer than the server's idle timeout (available from the

idle_timeout transport parameter) can simply reconnect. When

possible, this reconnection can use 0-RTT session resumption,

reducing the latency involved with restarting the connection. Of

course, this approach is only valid in cases in which 0-RTT data is

safe, when the client is the restarting peer, and when the data to

be sent is idempotent. It is also not applicable when the

application binds external state to the connection, as this state

cannot reliably be transferred to a resumed connection.

The tradeoffs between resumption and keep-alives need to be

evaluated on a per-application basis. In general, applications

should use keep-alives only in circumstances where continued

communication is highly likely; [QUIC-HTTP], for instance,

recommends using keep-alives only when a request is outstanding.

*

¶

¶

¶

¶

¶

¶



4. Use of Streams

QUIC's stream multiplexing feature allows applications to run

multiple streams over a single connection, without head-of-line

blocking between streams, associated at a point in time with a

single five-tuple. Stream data is carried within frames, where one

QUIC packet on the wire can carry one or multiple stream frames.

Streams can be unidirectional or bidirectional, and a stream may be

initiated either by client or server. Only the initiator of a

unidirectional stream can send data on it.

Streams and connections can each carry a maximum of 2 -1 bytes in

each direction, due to encoding limitations on stream offsets and

connection flow control limits. In the presently unlikely event that

this limit is reached by an application, a new connection would need

to be established.

Streams can be independently opened and closed, gracefully or

abruptly. An application can gracefully close the egress direction

of a stream by instructing QUIC to send a FIN bit in a STREAM frame.

It cannot gracefully close the ingress direction without a peer-

generated FIN, much like in TCP. However, an endpoint can abruptly

close the egress direction or request that its peer abruptly close

the ingress direction; these actions are fully independent of each

other.

QUIC does not provide an interface for exceptional handling of any

stream. If a stream that is critical for an application is closed,

the application can generate error messages on the application layer

to inform the other end and/or the higher layer, which can

eventually reset the QUIC connection.

Mapping of application data to streams is application-specific and

described for HTTP/3 in [QUIC-HTTP]. There are a few general

principles to apply when designing an application's use of streams:

A single stream provides ordering. If the application requires

certain data to be received in order, that data should be sent on

the same stream.

Multiple streams provide concurrency. Data that can be processed

independently, and therefore would suffer from head of line

blocking if forced to be received in order, should be transmitted

over separate streams.

Streams can provide message orientation, and allow messages to be

cancelled. If one message is mapped to a single stream, resetting

the stream to expire an unacknowledged message can be used to

emulate partial reliability for that message.

¶

¶

62

¶

¶

¶

¶

*

¶

*

¶

*

¶



If a QUIC receiver has opened the maximum allowed concurrent

streams, and the sender indicates that more streams are needed, it

does not automatically lead to an increase of the maximum number of

streams by the receiver. Therefore it can be valuable to expose the

maximum number of allowed, currently open, and currently used

streams to the application to make the mapping of data to streams

dependent on this information.

QUIC assigns a numerical identifier to each stream, called the

Stream ID. While the relationship between these identifiers and

stream types is clearly defined in version 1 of QUIC, future

versions might change this relationship for various reasons. QUIC

implementations should expose the properties of each stream (which

endpoint initiated the stream, whether the stream is unidirectional

or bidirectional, the Stream ID used for the stream); applications

should query for these properties rather than attempting to infer

them from the Stream ID.

The method of allocating stream identifiers to streams opened by the

application might vary between transport implementations. Therefore,

an application should not assume a particular stream ID will be

assigned to a stream that has not yet been allocated. For example,

HTTP/3 uses Stream IDs to refer to streams that have already been

opened, but makes no assumptions about future Stream IDs or the way

in which they are assigned Section 6 of [QUIC-HTTP]).

4.1. Stream versus Flow Multiplexing

Streams are meaningful only to the application; since stream

information is carried inside QUIC's encryption boundary, no

information about the stream(s) whose frames are carried by a given

packet is visible to the network. Therefore stream multiplexing is

not intended to be used for differentiating streams in terms of

network treatment. Application traffic requiring different network

treatment should therefore be carried over different five-tuples

(i.e. multiple QUIC connections). Given QUIC's ability to send

application data in the first RTT of a connection (if a previous

connection to the same host has been successfully established to

provide the necessary credentials), the cost of establishing another

connection is extremely low.

4.2. Prioritization

Stream prioritization is not exposed to either the network or the

receiver. Prioritization is managed by the sender, and the QUIC

transport should provide an interface for applications to prioritize

streams [QUIC]. Applications can implement their own prioritization

scheme on top of QUIC: an application protocol that runs on top of

QUIC can define explicit messages for signaling priority, such as

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-http-34#section-6


those defined for HTTP/2; it can define rules that allow an endpoint

to determine priority based on context; or it can provide a higher

level interface and leave the determination to the application on

top.

Priority handling of retransmissions can be implemented by the

sender in the transport layer. [QUIC] recommends retransmitting lost

data before new data, unless indicated differently by the

application. Currently, QUIC only provides fully reliable stream

transmission, which means that prioritization of retransmissions

will be beneficial in most cases, by filling in gaps and freeing up

the flow control window. For partially reliable or unreliable

streams, priority scheduling of retransmissions over data of higher-

priority streams might not be desirable. For such streams, QUIC

could either provide an explicit interface to control

prioritization, or derive the prioritization decision from the

reliability level of the stream.

4.3. Ordered and Reliable Delivery

QUIC streams enable ordered and reliable delivery. Though it is

possible for an implementation to provide options that use streams

for partial reliability or out-of-order delivery, most

implementations will assume that data is reliably delivered in

order.

Under this assumption, an endpoint that receives stream data might

not make forward progress until data that is contiguous with the

start of a stream is available. In particular, a receiver might

withhold flow control credit until contiguous data is delivered to

the application; see Section 2.2 of [QUIC]. To support this receive

logic, an endpoint will send stream data until it is acknowledged,

ensuring that data at the start of the stream is sent and

acknowledged first.

An endpoint that uses a different sending behavior and does not

negotiate that change with its peer might encounter performance

issues or deadlocks.

4.4. Flow Control Deadlocks

Flow control provides a means of managing access to the limited

buffers endpoints have for incoming data. This mechanism limits the

amount of data that can be in buffers in endpoints or in transit on

the network. However, there are several ways in which limits can

produce conditions that can cause a connection to either perform

suboptimally or deadlock.

Deadlocks in flow control are possible for any protocol that uses

QUIC, though whether they become a problem depends on how

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-2.2


implementations consume data and provide flow control credit.

Understanding what causes deadlocking might help implementations

avoid deadlocks.

Large messages can produce deadlocking if the recipient does not

process the message incrementally. If the message is larger than the

flow control credit available and the recipient does not release

additional flow control credit until the entire message is received

and delivered, a deadlock can occur. This is possible even where

stream flow control limits are not reached because connection flow

control limits can be consumed by other streams.

A common flow control implementation technique is for a receiver to

extend credit to the sender as a the data consumer reads data. In

this setting, a length-prefixed message format makes it easier for

the data consumer to leave data unread in the receiver's buffers and

thereby withhold flow control credit. If flow control limits prevent

the remainder of a message from being sent, a deadlock will result.

A length prefix might also enable the detection of this sort of

deadlock. Where protocols have messages that might be processed as a

single unit, reserving flow control credit for the entire message

atomically makes this style of deadlock less likely.

A data consumer can read all data as it becomes available to cause

the receiver to extend flow control credit to the sender and reduce

the chances of a deadlock. However, releasing flow control credit

might mean that the data consumer might need other means for holding

a peer accountable for the state it keeps for partially processed

messages.

Deadlocking can also occur if data on different streams is

interdependent. Suppose that data on one stream arrives before the

data on a second stream on which it depends. A deadlock can occur if

the first stream is left unread, preventing the receiver from

extending flow control credit for the second stream. To reduce the

likelihood of deadlock for interdependent data, the sender should

ensure that dependent data is not sent until the data it depends on

has been accounted for in both stream- and connection- level flow

control credit.

Some deadlocking scenarios might be resolved by cancelling affected

streams with STOP_SENDING or RESET_STREAM. Cancelling some streams

results in the connection being terminated in some protocols.

5. Packetization and Latency

QUIC exposes an interface that provides multiple streams to the

application; however, the application usually cannot control how

¶

¶

¶

¶

¶

¶



data transmitted over those streams is mapped into frames or how

those frames are bundled into packets.

By default, many implementations will try to maximally pack QUIC

packets DATA frames from one or more streams to minimize bandwidth

consumption and computational costs (see Section 13 of [QUIC]). If

there is not enough data available to fill a packet, an

implementation might wait for a short time, to optimize bandwidth

efficiency instead of latency. This delay can either be pre-

configured or dynamically adjusted based on the observed sending

pattern of the application.

If the application requires low latency, with only small chunks of

data to send, it may be valuable to indicate to QUIC that all data

should be send out immediately. Alternatively, if the application

expects to use a specific sending pattern, it can also provide a

suggested delay to QUIC for how long to wait before bundle frames

into a packet.

Similarly, an application has usually no control about the length of

a QUIC packet on the wire. QUIC provides the ability to add a

PADDING frame to arbitrarily increase the size of packets. Padding

is used by QUIC to ensure that the path is capable of transferring

datagrams of at least a certain size, during the handshake (see

Sections 8.1 and 14.1 of [QUIC]) and for path validation after

connection migration (see Section 8.2 of [QUIC]) as well as for

Datagram Packetization Layer PMTU Discovery (DPLMTUD) (see Section

14.3 of [QUIC]).

Padding can also be used by an application to reduce leakage of

information about the data that is sent. A QUIC implementation can

expose an interface that allows an application layer to specify how

to apply padding.

6. Port Selection and Application Endpoint Discovery

In general, port numbers serve two purposes: "first, they provide a

demultiplexing identifier to differentiate transport sessions

between the same pair of endpoints, and second, they may also

identify the application protocol and associated service to which

processes connect" [RFC6335]. The assumption that an application can

be identified in the network based on the port number is less true

today due to encapsulation, mechanisms for dynamic port assignments,

and NATs.

As QUIC is a general-purpose transport protocol, there are no

requirements that servers use a particular UDP port for QUIC. For

applications with a fallback to TCP that do not already have an

alternate mapping to UDP, usually the registration (if necessary)

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-13
https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-8.2


and use of the UDP port number corresponding to the TCP port already

registered for the application is appropriate. For example, the

default port for HTTP/3 [QUIC-HTTP] is UDP port 443, analogous to

HTTP/1.1 or HTTP/2 over TLS over TCP.

Applications could define an alternate endpoint discovery mechanism

to allow the usage of ports other than the default. For example,

HTTP/3 (Sections 3.2 and 3.3 of [QUIC-HTTP]) specifies the use of

HTTP Alternative Services for an HTTP origin to advertise the

availability of an equivalent HTTP/3 endpoint on a certain UDP port

by using the "h3" ALPN token [RFC7301]. Note that HTTP/3's ALPN

token ("h3") identifies not only the version of the application

protocol, but also the version of QUIC itself; this approach allows

unambiguous agreement between the endpoints on the protocol stack in

use.

Given the prevalence of the assumption in network management

practice that a port number maps unambiguously to an application,

the use of ports that cannot easily be mapped to a registered

service name might lead to blocking or other changes to the

forwarding behavior by network elements such as firewalls that use

the port number for application identification.

7. Connection Migration

QUIC supports connection migration by the client. If an IP address

changes, a QUIC endpoint can still associate packets with an

existing transport connection using the destination connection ID

field (see also Section 9) in the QUIC header, unless a zero-length

value is used. This supports cases where address information

changes, such as NAT rebinding, intentional change of the local

interface, or based on an indication in the handshake of the server

for a preferred address to be used.

Use of a non-zero-length connection ID for the server is strongly

recommended if any clients are behind a NAT or could be. A non-zero-

length connection ID is also strongly recommended when migration is

supported.

Currently QUIC only supports failover cases. Only one "path" can be

used at a time, and only when the new path is validated all traffic

can be switched over to that new path. Path validation means that

the remote endpoint is required to validate the new path before use

in order to avoid address spoofing attacks. Path validation takes at

least one RTT and congestion control will also be reset after path

migration. Therefore migration usually has a performance impact.

QUIC probing packets, which cannot carry application data, can be

sent on multiple paths at once. Probing packets can be used to

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-http-34#section-3.2
https://tools.ietf.org/html/draft-ietf-quic-http-34#section-3.3


perform address validation, measure path characteristics as input

for the switching decision, or prime the congestion controller in

preparation for switching to the new path.

Only the client can actively migrate in version 1 of QUIC. However,

servers can indicate during the handshake that they prefer to

transfer the connection to a different address after the handshake.

For instance, this could be used to move from an address that is

shared by multiple servers to an address that is unique to the

server instance. The server can provide an IPv4 and an IPv6 address

in a transport parameter during the TLS handshake and the client can

select between the two if both are provided. See also Section 9.6 of

[QUIC].

8. Connection Closure

QUIC connections are closed either by expiration of an idle timeout,

as determined by transport parameters, or by an explicit indication

of the application that a connection should be closed (immediate

close). While data could still be received after the immediate close

has been initiated by one endpoint (for a limited time period), the

expectation is that an immediate close was negotiated at the

application layer and therefore no additional data is expected from

both sides.

An immediate close will emit an CONNECTION_CLOSE frame. This frame

has two sets of types: one for QUIC internal problems that might

lead to connection closure, and one for closures initiated by the

application. An application using QUIC can define application-

specific error codes (see, for example, Section 8.1 of [QUIC-HTTP]).

The CONNECTION_CLOSE frame provides an optional reason field, that

can be used to append human-readable information to an error code.

RESET_STREAM and STOP_SENDING frames also include an error code, but

no reason string.

Alternatively, a QUIC connection can be silently closed by each

endpoint separately after an idle timeout. If enabled as indicated

by a transport parameter in the handshake, the idle timeout is

announced for each endpoint during connection establishment and the

effective value for this connection is the minimum of the two values

advertised by client and server. An application therefore should be

able to configure its own maximum value as well as have access to

the computed minimum value for this connection. An application may

adjust the maximum idle timeout for new connections based on the

number of open or expected connections, since shorter timeout values

may free-up memory more quickly.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-9.6
https://tools.ietf.org/html/draft-ietf-quic-http-34#section-8.1


If an application desires to keep the connection open for longer

than the announced timeout, it can send keep-alive messages; a QUIC

implementation may provide an option to defer the time-out by

sending keep-alive messages at the transport layer to avoid

unnecessary load, as specified in Section 10.1.2 of [QUIC]. See 

Section 3.2 for further guidance on keep-alives.

9. Information Exposure and the Connection ID

QUIC exposes some information to the network in the unencrypted part

of the header, either before the encryption context is established

or because the information is intended to be used by the network.

QUIC has a long header that exposes some additional information (the

version and the source connection ID), while the short header

exposes only the destination connection ID. In QUIC version 1, the

long header is used during connection establishment, while the short

header is used for data transmission in an established connection.

The connection ID can be zero length. Zero length connection IDs can

be chosen on each endpoint individually, on any packet except the

first packets sent by clients during connection establishment.

An endpoint that selects a zero-length connection ID will receive

packets with a zero-length destination connection ID. The endpoint

needs to use other information, such as the source and destination

IP address and port number to identify which connection is referred

to. This could mean that the endpoint is unable to match datagrams

to connections successfully if these values change, making the

connection effectively unable to survive NAT rebinding or migrate to

a new path.

9.1. Server-Generated Connection ID

QUIC supports a server-generated connection ID, transmitted to the

client during connection establishment (see Section 7.2 of [QUIC]).

Servers behind load balancers may need to change the connection ID

during the handshake, encoding the identity of the server or

information about its load balancing pool, in order to support

stateless load balancing.

Server deployments with load balancers and other routing

infrastructure need to ensure that this infrastructure consistently

routes packets to the correct server instance. This might require

coordination between servers and infrastructure. One method of

achieving this involves encoding routing information into the

connection ID. This ensures that there is no need to for servers and

infrastructure to coordinate routing information for each

connection. See [QUIC-LB] for more information.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-10.1.2
https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-7.2


9.2. Mitigating Timing Linkability with Connection ID Migration

QUIC requires that endpoints generate fresh connection IDs for use

on new network paths. Choosing values that are unlinkable to an

outside observer ensures that activity on different paths cannot be

trivially correlated using the connection ID.

While sufficiently robust connection ID generation schemes will

mitigate linkability issues, they do not provide full protection.

Analysis of the lifetimes of six-tuples (source and destination

addresses as well as the migrated CID) may expose these links

anyway.

In the limit where connection migration in a server pool is rare, it

is trivial for an observer to associate two connection IDs.

Conversely, in the opposite limit where every server handles

multiple simultaneous migrations, even an exposed server mapping may

be insufficient information.

The most efficient mitigations for these attacks are through network

design and/or operational practice, by using a load balancing

architecture that loads more flows onto a single server-side

address, by coordinating the timing of migrations in an attempt to

increase the number of simultaneous migrations at a given time, or

through other means.

9.3. Using Server Retry for Redirection

QUIC provides a Server Retry packet that can be sent by a server in

response to the Client Initial packet. The server may choose a new

connection ID in that packet and the client will retry by sending

another Client Initial packet with the server-selected connection

ID. This mechanism can be used to redirect a connection to a

different server, e.g. due to performance reasons or when servers in

a server pool are upgraded gradually, and therefore may support

different versions of QUIC. In this case, it is assumed that all

servers belonging to a certain pool are served in cooperation with

load balancers that forward the traffic based on the connection ID.

A server can choose the connection ID in the Server Retry packet

such that the load balancer will redirect the next Client Initial

packet to a different server in that pool. Alternatively the load

balancer can directly offer a Retry service as further described in 

[QUIC-LB].

Section 4 of [RFC5077] describes an example approach for

constructing TLS resumption tickets that can be also applied for

validation tokens, however, the use of more modern cryptographic

algorithms is highly recommended.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5077#section-4


10. Quality of Service (QoS) and DSCP

QUIC assumes that all packets of a QUIC connection, or at least with

the same 5-tuple {dest addr, source addr, protocol, dest port,

source port}, will receive similar network treatment since feedback

about loss or delay of each packet is used as input to the

congestion controller. Therefore it is not recommended to use

different DiffServ Code Points (DSCPs) [RFC2475] for packets

belonging to the same connection. If differential network treatment,

e.g. by the use of different DSCPs, is desired, multiple QUIC

connections to the same server may be used. However, in general it

is recommended to minimize the number of QUIC connections to the

same server, to avoid increased overheads and, more importantly,

competing congestion control.

11. Use of Versions and Cryptographic Handshake

Versioning in QUIC may change the protocol's behavior completely,

except for the meaning of a few header fields that have been

declared to be invariant [QUIC-INVARIANTS]. A version of QUIC with a

higher version number will not necessarily provide a better service,

but might simply provide a different feature set. As such, an

application needs to be able to select which versions of QUIC it

wants to use.

A new version could use an encryption scheme other than TLS 1.3 or

higher. [QUIC] specifies requirements for the cryptographic

handshake as currently realized by TLS 1.3 and described in a

separate specification [QUIC-TLS]. This split is performed to enable

light-weight versioning with different cryptographic handshakes.

12. Enabling New Versions

QUIC provides integrity protection for its version negotiation

process. This process assumes that the set of versions that a server

supports is fixed. This complicates the process for deploying new

QUIC versions or disabling old versions when servers operate in

clusters.

A server that rolls out a new version of QUIC can do so in three

stages. Each stage is completed across all server instances before

moving to the next stage.

In the first stage of deployment, all server instances start

accepting new connections with the new version. The new version can

be enabled progressively across a deployment, which allows for

selective testing. This is especially useful when the new version is

compatible with an old version, because the new version is more

likely to be used.

¶

¶

¶

¶

¶

¶



While enabling the new version, servers do not advertise the new

version in any Version Negotiation packets they send. This prevents

clients that receive a Version Negotiation packet from attempting to

connect to server instances that might not have the new version

enabled.

During the initial deployment, some clients will have received

Version Negotiation packets that indicate that the server does not

support the new version. Other clients might have successfully

connected with the new version and so will believe that the server

supports the new version. Therefore, servers need to allow for this

ambiguity when validating the negotiated version.

The second stage of deployment commences once all server instances

are able accept new connections with the new version. At this point,

all servers can start sending the new version in Version Negotiation

packets.

During the second stage, the server still allows for the possibility

that some clients believe the new version to be available and some

do not. This state will persist only for as long as any Version

Negotiation packets take to be transmitted and responded to. So the

third stage can follow after a relatively short delay.

The third stage completes the process by enabling authentication of

the negotiated version with the assumption that the new version is

fully available.

The process for disabling an old version or rolling back the

introduction of a new version uses the same process in reverse.

Servers disable validation of the old version, stop sending the old

version in Version Negotiation packets, then the old version is no

longer accepted.

13. IANA Considerations

This document has no actions for IANA; however, note that Section 6

recommends that application bindings to QUIC for applications using

TCP register UDP ports analogous to their existing TCP

registrations.

14. Security Considerations

See the security considerations in [QUIC] and [QUIC-TLS]; the

security considerations for the underlying transport protocol are

relevant for applications using QUIC, as well. Considerations on

linkability, replay attacks, and randomness discussed in [QUIC-TLS]

should be taken into account when deploying and using QUIC.

¶

¶

¶

¶

¶

¶

¶

¶



[QUIC]

[QUIC-INVARIANTS]

[QUIC-TLS]

[RFC6335]

Application developers should note that any fallback they use when

QUIC cannot be used due to network blocking of UDP should guarantee

the same security properties as QUIC; if this is not possible, the

connection should fail to allow the application to explicitly handle

fallback to a less-secure alternative. See Section 2.

Further, [QUIC-HTTP] provides security considerations specific to

HTTP. However, discussions such as on cross-protocol attacks,

traffic analysis and padding, or migration might be relevant for

other applications using QUIC as well.

15. Contributors

Igor Lubashev contributed text to Section 9 on server-selected

connection IDs.

16. Acknowledgments

This work is partially supported by the European Commission under

Horizon 2020 grant agreement no. 688421 Measurement and Architecture

for a Middleboxed Internet (MAMI), and by the Swiss State

Secretariat for Education, Research, and Innovation under contract

no. 15.0268. This support does not imply endorsement.

17. References

17.1. Normative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress, 

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>. 

Thomson, M., "Version-Independent Properties of

QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

invariants-13, 14 January 2021, <https://tools.ietf.org/

html/draft-ietf-quic-invariants-13>. 

Thomson, M. and S. Turner, "Using TLS to Secure QUIC", 

Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,

14 January 2021, <https://tools.ietf.org/html/draft-ietf-

quic-tls-34>. 

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

Cheshire, "Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and

Transport Protocol Port Number Registry", BCP 165, RFC

6335, DOI 10.17487/RFC6335, August 2011, <https://

www.rfc-editor.org/rfc/rfc6335>. 

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-invariants-13
https://tools.ietf.org/html/draft-ietf-quic-invariants-13
https://tools.ietf.org/html/draft-ietf-quic-tls-34
https://tools.ietf.org/html/draft-ietf-quic-tls-34
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc6335


[TLS13]

[Edeline16]

[Hatonen10]

[HTTP-REPLAY]

[I-D.ietf-taps-arch]

[I-D.nottingham-httpbis-retry]

[PaaschNanog]

[QUIC-HTTP]

[QUIC-LB]

[RFC2475]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>. 

17.2. Informative References

Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and

B. Donnet, "Using UDP for Internet Transport Evolution

(arXiv preprint 1612.07816)", 22 December 2016, <https://

arxiv.org/abs/1612.07816>. 

Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S.,

Sarolahti, P., and M. Kojo, "An experimental study of

home gateway characteristics (Proc. ACM IMC 2010)", 

October 2010. 

Thomson, M., Nottingham, M., and W. Tarreau, "Using

Early Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, 

September 2018, <https://www.rfc-editor.org/rfc/rfc8470>.

Pauly, T., Trammell, B., Brunstrom, A.,

Fairhurst, G., Perkins, C., Tiesel, P. S., and C. A.

Wood, "An Architecture for Transport Services", Work in

Progress, Internet-Draft, draft-ietf-taps-arch-09, 2

November 2020, <https://tools.ietf.org/html/draft-ietf-

taps-arch-09>. 

Nottingham, M., "Retrying HTTP Requests", Work in

Progress, Internet-Draft, draft-nottingham-httpbis-

retry-01, 1 February 2017, <https://tools.ietf.org/html/

draft-nottingham-httpbis-retry-01>. 

Paasch, C., "Network Support for TCP Fast Open (NANOG

67 presentation)", 13 June 2016, <https://www.nanog.org/

sites/default/files/Paasch_Network_Support.pdf>. 

Bishop, M., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-34, 2 February 2021, <https://tools.ietf.org/

html/draft-ietf-quic-http-34>. 

Duke, M. and N. Banks, "QUIC-LB: Generating Routable QUIC

Connection IDs", Work in Progress, Internet-Draft, draft-

ietf-quic-load-balancers-06, 4 February 2021, <https://

tools.ietf.org/html/draft-ietf-quic-load-balancers-06>. 

Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,

and W. Weiss, "An Architecture for Differentiated

https://www.rfc-editor.org/rfc/rfc8446
https://arxiv.org/abs/1612.07816
https://arxiv.org/abs/1612.07816
https://www.rfc-editor.org/rfc/rfc8470
https://tools.ietf.org/html/draft-ietf-taps-arch-09
https://tools.ietf.org/html/draft-ietf-taps-arch-09
https://tools.ietf.org/html/draft-nottingham-httpbis-retry-01
https://tools.ietf.org/html/draft-nottingham-httpbis-retry-01
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-load-balancers-06
https://tools.ietf.org/html/draft-ietf-quic-load-balancers-06


[RFC5077]

[RFC5382]

[RFC7301]

[RFC8085]

[Swett16]

[Trammell16]

Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,

<https://www.rfc-editor.org/rfc/rfc2475>. 

Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, 

"Transport Layer Security (TLS) Session Resumption

without Server-Side State", RFC 5077, DOI 10.17487/

RFC5077, January 2008, <https://www.rfc-editor.org/rfc/

rfc5077>. 

Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and

P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP

142, RFC 5382, DOI 10.17487/RFC5382, October 2008, 

<https://www.rfc-editor.org/rfc/rfc5382>. 

Friedl, S., Popov, A., Langley, A., and E. Stephan, 

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/rfc/

rfc7301>. 

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085, 

March 2017, <https://www.rfc-editor.org/rfc/rfc8085>. 

Swett, I., "QUIC Deployment Experience at Google (IETF96

QUIC BoF presentation)", 20 July 2016, <https://

www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf>.

Trammell, B. and M. Kuehlewind, "Internet Path

Transparency Measurements using RIPE Atlas (RIPE72 MAT

presentation)", 25 May 2016, <https://ripe72.ripe.net/wp-

content/uploads/presentations/86-atlas-udpdiff.pdf>. 

Authors' Addresses

Mirja Kuehlewind

Ericsson

Email: mirja.kuehlewind@ericsson.com

Brian Trammell

Google

Gustav-Gull-Platz 1

CH- 8004 Zurich

Switzerland

Email: ietf@trammell.ch

https://www.rfc-editor.org/rfc/rfc2475
https://www.rfc-editor.org/rfc/rfc5077
https://www.rfc-editor.org/rfc/rfc5077
https://www.rfc-editor.org/rfc/rfc5382
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc8085
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
mailto:mirja.kuehlewind@ericsson.com
mailto:ietf@trammell.ch

	Applicability of the QUIC Transport Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. The Necessity of Fallback
	3. Zero RTT
	3.1. Replay Attacks
	3.2. Session resumption versus Keep-alive

	4. Use of Streams
	4.1. Stream versus Flow Multiplexing
	4.2. Prioritization
	4.3. Ordered and Reliable Delivery
	4.4. Flow Control Deadlocks

	5. Packetization and Latency
	6. Port Selection and Application Endpoint Discovery
	7. Connection Migration
	8. Connection Closure
	9. Information Exposure and the Connection ID
	9.1. Server-Generated Connection ID
	9.2. Mitigating Timing Linkability with Connection ID Migration
	9.3. Using Server Retry for Redirection

	10. Quality of Service (QoS) and DSCP
	11. Use of Versions and Cryptographic Handshake
	12. Enabling New Versions
	13. IANA Considerations
	14. Security Considerations
	15. Contributors
	16. Acknowledgments
	17. References
	17.1. Normative References
	17.2. Informative References

	Authors' Addresses


