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1. Introduction

QUIC [QUIC] is a new transport protocol providing a number of

advanced features. While initially designed for the HTTP use case,

it provides capabilities that can be used with a much wider variety

of applications. QUIC is encapsulated in UDP. QUIC version 1

integrates TLS 1.3 [TLS13] to encrypt all payload data and most

control information. The version of HTTP that uses QUIC is known as

HTTP/3 [QUIC-HTTP].

This document provides guidance for application developers that want

to use the QUIC protocol without implementing it on their own. This
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includes general guidance for applications operating over HTTP/3 or

directly over QUIC.

In the following sections we discuss specific caveats to QUIC's

applicability, and issues that application developers must consider

when using QUIC as a transport for their application.

2. The Necessity of Fallback

QUIC uses UDP as a substrate. This enables userspace implementation

and permits traversal of network middleboxes (including NAT) without

requiring updates to existing network infrastructure.

While recent measurements have shown no evidence of a widespread,

systematic disadvantage of UDP traffic compared to TCP in the

Internet [Edeline16], somewhere between three [Trammell16] and five 

[Swett16] percent of networks block all UDP traffic. All

applications running on top of QUIC must therefore either be

prepared to accept connectivity failure on such networks or be

engineered to fall back to some other transport protocol. In the

case of HTTP, this fallback is TLS over TCP.

The IETF TAPS specifications [I-D.ietf-taps-arch] describe a system

with a common API for multiple protocols and some of the

implications of fallback between these different protocols,

specifically precluding fallback to insecure protocols or to weaker

versions of secure protocols.

An application that implements fallback needs to consider the

security consequences. A fallback to TCP and TLS exposes control

information to modification and manipulation in the network.

Further, downgrades to older TLS versions than 1.3, which is used in

QUIC version 1, might result in significantly weaker cryptographic

protection. For example, the results of protocol negotiation 

[RFC7301] only have confidentiality protection if TLS 1.3 is used.

These applications must operate, perhaps with impaired

functionality, in the absence of features provided by QUIC not

present in the fallback protocol. For fallback to TLS over TCP, the

most obvious difference is that TCP does not provide stream

multiplexing and therefore stream multiplexing would need to be

implemented in the application layer if needed. Further, TCP

implementations and network paths often do not support the Fast Open

option [RFC7413], which enables sending of payload data together

with the first control packet of a new connection as also provided

by 0-RTT session resumption in QUIC. Note that there is some

evidence of middleboxes blocking SYN data even if TFO was

successfully negotiated (see [PaaschNanog]). And even if Fast Open
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successfully operates end-to-end, it is limited to a single packet

of TLS handshake and application data, unlike QUIC 0-RTT.

Moreover, while encryption (in this case TLS) is inseparably

integrated with QUIC, TLS negotiation over TCP can be blocked. If

TLS over TCP cannot be supported, the connection should be aborted,

and the application then ought to present a suitable prompt to the

user that secure communication is unavailable.

In summary, any fallback mechanism is likely to impose a degradation

of performance and can degrade security; however, fallback must not

silently violate the application's expectation of confidentiality or

integrity of its payload data.

3. Zero RTT

QUIC provides for 0-RTT connection establishment. Though the same

facility exists in TLS 1.3 with TCP, 0-RTT presents opportunities

and challenges for applications using QUIC.

A transport protocol that provides 0-RTT connection establishment is

qualitatively different than one that does not from the point of

view of the application using it. Relative trade-offs between the

cost of closing and reopening a connection and trying to keep it

open are different; see Section 3.2.

An application needs to deliberately choose to use 0-RTT, as 0-RTT

carries a risk of replay attack. Application protocols that use 0-

RTT require a profile that describes the types of information that

can be safely sent. For HTTP, this profile is described in [HTTP-

REPLAY].

3.1. Replay Attacks

Retransmission or (malicious) replay of data contained in 0-RTT

packets could cause the server side to receive two copies of the

same data.

Application data sent by the client in 0-RTT packets could be

processed more than once if it is replayed. Applications need to be

aware of what is safe to send in 0-RTT. Application protocols that

seek to enable the use of 0-RTT need a careful analysis and a

description of what can be sent in 0-RTT; see Section 5.6 of [QUIC-

TLS].

In some cases, it might be sufficient to limit application data sent

in 0-RTT to that which only causes actions at a server that are

known to be free of lasting effect. Initiating data retrieval or

establishing configuration are examples of actions that could be

safe. Idempotent operations - those for which repetition has the
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same net effect as a single operation - might be safe. However, it

is also possible to combine individually idempotent operations into

a non-idempotent sequence of operations.

Once a server accepts 0-RTT data there is no means of selectively

discarding data that is received. However, protocols can define ways

to reject individual actions that might be unsafe if replayed.

Some TLS implementations and deployments might be able to provide

partial or even complete replay protection, which could be used to

manage replay risk.

3.2. Session resumption versus Keep-alive

Because QUIC is encapsulated in UDP, applications using QUIC must

deal with short network idle timeouts. Deployed stateful middleboxes

will generally establish state for UDP flows on the first packet

sent, and keep state for much shorter idle periods than for TCP. 

[RFC5382] suggests a TCP idle period of at least 124 minutes, though

there is no evidence of widespread implementation of this guideline

in the literature. Short network timeout for UDP, however, is well-

documented. According to a 2010 study ([Hatonen10]), UDP

applications can assume that any NAT binding or other state entry

can expire after just thirty seconds of inactivity. Section 3.5 of

[RFC8085] further discusses keep-alive intervals for UDP: it

requires a minimum value of 15 seconds, but recommends larger

values, or omitting keep-alive entirely.

By using a connection ID, QUIC is designed to be robust to NAT

address rebinding after a timeout. However, this only helps if one

endpoint maintains availability at the address its peer uses, and

the peer is the one to send after the timeout occurs.

Some QUIC connections might not be robust to NAT rebinding because

the routing infrastructure (in particular, load balancers) uses the

address/port four-tuple to direct traffic. Furthermore, middleboxes

with functions other than address translation could still affect the

path. In particular, some firewalls do not admit server traffic for

which the firewall has no recent state for a corresponding packet

sent from the client.

QUIC applications can adjust idle periods to manage the risk of

timeout. Idle periods and the network idle timeout are distinct from

the connection idle timeout, which is defined as the minimum of

either endpoint's idle timeout parameter; see Section 10.1 of

[QUIC]). There are three options:

Ignore the issue, if the application-layer protocol consists only

of interactions with no or very short idle periods, or the

protocol's resistance to NAT rebinding is sufficient.
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Ensure there are no long idle periods.

Resume the session after a long idle period, using 0-RTT

resumption when appropriate.

The first strategy is the easiest, but it only applies to certain

applications.

Either the server or the client in a QUIC application can send PING

frames as keep-alives, to prevent the connection and any on-path

state from timing out. Recommendations for the use of keep-alives

are application-specific, mainly depending on the latency

requirements and message frequency of the application. In this case,

the application mapping must specify whether the client or server is

responsible for keeping the application alive. While [Hatonen10]

suggests that 30 seconds might be a suitable value for the public

Internet when a NAT is on path, larger values are preferable if the

deployment can consistently survive NAT rebinding or is known to be

in a controlled environment (e.g. data centres) in order to lower

network and computational load.

Sending PING frames more frequently than every 30 seconds over long

idle periods may result in excessive unproductive traffic in some

situations, and to unacceptable power usage for power-constrained

(mobile) devices. Additionally, timeouts shorter than 30 seconds can

make it harder to handle transient network interruptions, such as VM

migration or coverage loss during mobilty. See [RFC8085], especially

Section 3.5.

Alternatively, the client (but not the server) can use session

resumption instead of sending keepalive traffic. In this case, a

client that wants to send data to a server over a connection that

has been idle longer than the server's idle timeout (available from

the idle_timeout transport parameter) can simply reconnect. When

possible, this reconnection can use 0-RTT session resumption,

reducing the latency involved with restarting the connection. Of

course, this approach is only valid in cases in which it is safe to

use 0-RTT and when the client is the restarting peer. It is also not

applicable when the application binds external state to the

connection, as this state cannot reliably be transferred to a

resumed connection.

The tradeoffs between resumption and keep-alives need to be

evaluated on a per-application basis. In general, applications

should use keep-alives only in circumstances where continued

communication is highly likely; [QUIC-HTTP], for instance,

recommends using keep-alives only when a request is outstanding.

* ¶
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4. Use of Streams

QUIC's stream multiplexing feature allows applications to run

multiple streams over a single connection, without head-of-line

blocking between streams. Stream data is carried within frames,

where one QUIC packet on the wire can carry one or multiple stream

frames.

Streams can be unidirectional or bidirectional, and a stream may be

initiated either by client or server. Only the initiator of a

unidirectional stream can send data on it.

Streams and connections can each carry a maximum of 2 -1 bytes in

each direction, due to encoding limitations on stream offsets and

connection flow control limits. In the presently unlikely event that

this limit is reached by an application, a new connection would need

to be established.

Streams can be independently opened and closed, gracefully or

abruptly. An application can gracefully close the egress direction

of a stream by instructing QUIC to send a FIN bit in a STREAM frame.

It cannot gracefully close the ingress direction without a peer-

generated FIN, much like in TCP. However, an endpoint can abruptly

close the egress direction or request that its peer abruptly close

the ingress direction; these actions are fully independent of each

other.

QUIC does not provide an interface for exceptional handling of any

stream. If a stream that is critical for an application is closed,

the application can generate error messages on the application layer

to inform the other end and/or the higher layer, which can

eventually terminate the QUIC connection.

Mapping of application data to streams is application-specific and

described for HTTP/3 in [QUIC-HTTP]. There are a few general

principles to apply when designing an application's use of streams:

A single stream provides ordering. If the application requires

certain data to be received in order, that data should be sent on

the same stream. There is no guarantee of transmission,

reception, or delivery order across streams.

Multiple streams provide concurrency. Data that can be processed

independently, and therefore would suffer from head of line

blocking if forced to be received in order, should be transmitted

over separate streams.

Streams can provide message orientation, and allow messages to be

cancelled. If one message is mapped to a single stream, resetting
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the stream to expire an unacknowledged message can be used to

emulate partial reliability for that message.

If a QUIC receiver has opened the maximum allowed concurrent

streams, and the sender indicates that more streams are needed, it

does not automatically lead to an increase of the maximum number of

streams by the receiver. Therefore, an application can use the

maximum number of allowed, currently open, and currently used

streams when determining how to map data to streams.

QUIC assigns a numerical identifier to each stream, called the

stream ID. While the relationship between these identifiers and

stream types is clearly defined in version 1 of QUIC, future

versions might change this relationship for various reasons. QUIC

implementations should expose the properties of each stream (which

endpoint initiated the stream, whether the stream is unidirectional

or bidirectional, the stream ID used for the stream); applications

should query for these properties rather than attempting to infer

them from the stream ID.

The method of allocating stream identifiers to streams opened by the

application might vary between transport implementations. Therefore,

an application should not assume a particular stream ID will be

assigned to a stream that has not yet been allocated. For example,

HTTP/3 uses stream IDs to refer to streams that have already been

opened, but makes no assumptions about future stream IDs or the way

in which they are assigned Section 6 of [QUIC-HTTP]).

4.1. Stream versus Flow Multiplexing

Streams are meaningful only to the application; since stream

information is carried inside QUIC's encryption boundary, a given

packet exposes no information about which stream(s) are carried

within the packet. Therefore, stream multiplexing is not intended to

be used for differentiating streams in terms of network treatment.

Application traffic requiring different network treatment should

therefore be carried over different five-tuples (i.e. multiple QUIC

connections). Given QUIC's ability to send application data in the

first RTT of a connection (if a previous connection to the same host

has been successfully established to provide the necessary

credentials), the cost of establishing another connection is

extremely low.

4.2. Prioritization

Stream prioritization is not exposed to either the network or the

receiver. Prioritization is managed by the sender, and the QUIC

transport should provide an interface for applications to prioritize

streams [QUIC]. Applications can implement their own prioritization
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scheme on top of QUIC: an application protocol that runs on top of

QUIC can define explicit messages for signaling priority, such as

those defined in [I-D.draft-ietf-httpbis-priority] for HTTP; it can

define rules that allow an endpoint to determine priority based on

context; or it can provide a higher level interface and leave the

determination to the application on top.

Priority handling of retransmissions can be implemented by the

sender in the transport layer. [QUIC] recommends retransmitting lost

data before new data, unless indicated differently by the

application. When a QUIC endpoint uses fully reliable streams for

transmission, prioritization of retransmissions will be beneficial

in most cases, filling in gaps and freeing up the flow control

window. For partially reliable or unreliable streams, priority

scheduling of retransmissions over data of higher-priority streams

might not be desirable. For such streams, QUIC could either provide

an explicit interface to control prioritization, or derive the

prioritization decision from the reliability level of the stream.

4.3. Ordered and Reliable Delivery

QUIC streams enable ordered and reliable delivery. Though it is

possible for an implementation to provide options that use streams

for partial reliability or out-of-order delivery, most

implementations will assume that data is reliably delivered in

order.

Under this assumption, an endpoint that receives stream data might

not make forward progress until data that is contiguous with the

start of a stream is available. In particular, a receiver might

withhold flow control credit until contiguous data is delivered to

the application; see Section 2.2 of [QUIC]. To support this receive

logic, an endpoint will send stream data until it is acknowledged,

ensuring that data at the start of the stream is sent and

acknowledged first.

An endpoint that uses a different sending behavior and does not

negotiate that change with its peer might encounter performance

issues or deadlocks.

4.4. Flow Control Deadlocks

QUIC flow control provides a means of managing access to the limited

buffers endpoints have for incoming data. This mechanism limits the

amount of data that can be in buffers in endpoints or in transit on

the network. However, there are several ways in which limits can

produce conditions that can cause a connection to either perform

suboptimally or deadlock.
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Deadlocks in flow control are possible for any protocol that uses

QUIC, though whether they become a problem depends on how

implementations consume data and provide flow control credit.

Understanding what causes deadlocking might help implementations

avoid deadlocks.

The size and rate of transport flow control credit updates can

affect performance. Applications that use QUIC often have a data

consumer that reads data from transport buffers. Some

implementations might have independent transport-layer and

application-layer receive buffers. Consuming data does not always

imply it is immediately processed. However, a common flow control

implementation technique is to extend credit to the sender, by

emitting MAX_DATA and/or MAX_STREAM_DATA frames, as data is

consumed. Delivery of these frames is affected by the latency of the

back channel from the receiver to the data sender. If credit is not

extended in a timely manner, the sending application can be blocked,

effectively throttling the sender.

Large application messages can produce deadlocking if the recipient

does not read data from the transport incrementally. If the message

is larger than the flow control credit available and the recipient

does not release additional flow control credit until the entire

message is received and delivered, a deadlock can occur. This is

possible even where stream flow control limits are not reached

because connection flow control limits can be consumed by other

streams.

A length-prefixed message format makes it easier for a data consumer

to leave data unread in the transport buffer and thereby withhold

flow control credit. If flow control limits prevent the remainder of

a message from being sent, a deadlock will result. A length prefix

might also enable the detection of this sort of deadlock. Where

application protocols have messages that might be processed as a

single unit, reserving flow control credit for the entire message

atomically makes this style of deadlock less likely.

A data consumer can eagerly read all data as it becomes available,

in order to make the receiver extend flow control credit and reduce

the chances of a deadlock. However, such a data consumer might need

other means for holding a peer accountable for the additional state

it keeps for partially processed messages.

Deadlocking can also occur if data on different streams is

interdependent. Suppose that data on one stream arrives before the

data on a second stream on which it depends. A deadlock can occur if

the first stream is left unread, preventing the receiver from

extending flow control credit for the second stream. To reduce the

likelihood of deadlock for interdependent data, the sender should
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ensure that dependent data is not sent until the data it depends on

has been accounted for in both stream- and connection- level flow

control credit.

Some deadlocking scenarios might be resolved by cancelling affected

streams with STOP_SENDING or RESET_STREAM. Cancelling some streams

results in the connection being terminated in some protocols.

4.5. Stream Limit Commitments

QUIC endpoints are responsible for communicating the cumulative

limit of streams they would allow to be opened by their peer.

Initial limits are advertised using the initial_max_streams_bidi and

initial_max_streams_uni transport parameters. As streams are opened

and closed they are consumed and the cumulative total is

incremented. Limits can be increased using the MAX_STREAMS frame but

there is no mechanism to reduce limits. Once stream limits are

reached, no more streams can be opened, which prevents applications

using QUIC from making further progress. At this stage connections

can be terminated via idle timeout or explicit close; see Section

10).

An application that uses QUIC and communicated a cumulative stream

limit might require the connection to be closed before the limit is

reached. For example, to stop the server to perform scheduled

maintenance. Immediate connection close causes abrupt closure of

actively used streams. Depending on how an application uses QUIC

streams, this could be undesirable or detrimental to behavior or

performance.

A more graceful closure technique is to stop sending increases to

stream limits and allow the connection to naturally terminate once

remaining streams are consumed. However, the period of time it takes

to do so is dependent on the peer and an unpredictable closing

period might not fit application or operational needs. Applications

using QUIC can be conservative with open stream limits in order to

reduce the commitment and indeterminism. However, being overly

conservative with stream limits affects stream concurrency.

Balancing these aspects can be specific to applications and their

deployments.

Instead of relying on stream limits to avoid abrupt closure, an

application-layer graceful close mechanism can be used to

communicate the intention to explicitly close the connection at some

future point. HTTP/3 provides such a mechanism using the GOAWAY

frame. In HTTP/3, when the GOAWAY frame is received by a client, it

stops opening new streams even if the cumulative stream limit would

allow. Instead, the client would create a new connection on which to

open further streams. Once all streams are closed on the old
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connection, it can be terminated safely by a connection close or

after expiration of the idle time out (see also Section 10).

5. Packetization and Latency

QUIC exposes an interface that provides multiple streams to the

application; however, the application usually cannot control how

data transmitted over those streams is mapped into frames or how

those frames are bundled into packets.

By default, many implementations will try to maximally pack QUIC

packets DATA frames from one or more streams to minimize bandwidth

consumption and computational costs (see Section 13 of [QUIC]). If

there is not enough data available to fill a packet, an

implementation might wait for a short time, to optimize bandwidth

efficiency instead of latency. This delay can either be pre-

configured or dynamically adjusted based on the observed sending

pattern of the application.

If the application requires low latency, with only small chunks of

data to send, it may be valuable to indicate to QUIC that all data

should be sent out immediately. Alternatively, if the application

expects to use a specific sending pattern, it can also provide a

suggested delay to QUIC for how long to wait before bundle frames

into a packet.

Similarly, an application has usually no control about the length of

a QUIC packet on the wire. QUIC provides the ability to add a

PADDING frame to arbitrarily increase the size of packets. Padding

is used by QUIC to ensure that the path is capable of transferring

datagrams of at least a certain size, during the handshake (see

Sections 8.1 and 14.1 of [QUIC]) and for path validation after

connection migration (see Section 8.2 of [QUIC]) as well as for

Datagram Packetization Layer PMTU Discovery (DPLMTUD) (see 

Section 14.3 of [QUIC]).

Padding can also be used by an application to reduce leakage of

information about the data that is sent. A QUIC implementation can

expose an interface that allows an application layer to specify how

to apply padding.

6. Error Handling

QUIC recommends that endpoints signal any detected errors to the

peer. Errors can occur at the transport level and the application

level. Transport errors, such as a protocol violation, affect the

entire connection. Applications that use QUIC can define their own

error detection and signaling (see, for example, Section 8 of [QUIC-

HTTP]). Application errors can affect an entire connection or a

single stream.
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QUIC defines an error code space that is used for error handling at

the transport layer. QUIC encourages endpoints to use the most

specific code, although any applicable code is permitted, including

generic ones.

Applications using QUIC define an error code space that is

independent from QUIC or other applications (see, for example, 

Section 8.1 of [QUIC-HTTP]). The values in an application error code

space can be reused across connection-level and stream-level errors.

Connection errors lead to connection termination. They are signaled

using a CONNECTION_CLOSE frame, which contains an error code and a

reason field that can be zero length. Different types of

CONNECTION_CLOSE frame are used to signal transport and application

errors.

Stream errors lead to stream termination. The are signaled using

STOP_SENDING or RESET_STREAM frames, which contain only an error

code.

7. Acknowledgment Efficiency

QUIC version 1 without extensions uses an acknowledgment strategy

adopted from TCP. That is, every other packet is acknowledged.

However, generating and processing QUIC acknowledgments can consume

significant resources, both in terms of processing costs and link

utilization, especially on constraint networks. Some applications

might be able to improve overall performance by using alternative

strategies that reduce the rate of acknowledgments.

8. Port Selection and Application Endpoint Discovery

In general, port numbers serve two purposes: "first, they provide a

demultiplexing identifier to differentiate transport sessions

between the same pair of endpoints, and second, they may also

identify the application protocol and associated service to which

processes connect" [RFC6335]. The assumption that an application can

be identified in the network based on the port number is less true

today due to encapsulation, mechanisms for dynamic port assignments,

and NATs.

As QUIC is a general-purpose transport protocol, there are no

requirements that servers use a particular UDP port for QUIC. For

applications with a fallback to TCP that do not already have an

alternate mapping to UDP, usually the registration (if necessary)

and use of the UDP port number corresponding to the TCP port already

registered for the application is appropriate. For example, the

default port for HTTP/3 [QUIC-HTTP] is UDP port 443, analogous to

HTTP/1.1 or HTTP/2 over TLS over TCP.
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Given the prevalence of the assumption in network management

practice that a port number maps unambiguously to an application,

the use of ports that cannot easily be mapped to a registered

service name might lead to blocking or other changes to the

forwarding behavior by network elements such as firewalls that use

the port number for application identification.

Applications could define an alternate endpoint discovery mechanism

to allow the usage of ports other than the default. For example,

HTTP/3 (Sections 3.2 and 3.3 of [QUIC-HTTP]) specifies the use of

HTTP Alternative Services [RFC7838] for an HTTP origin to advertise

the availability of an equivalent HTTP/3 endpoint on a certain UDP

port by using the "h3" Application-Layer Protocol Negotiation (ALPN)

[RFC7301] token.

ALPN permits the client and server to negotiate which of several

protocols will be used on a given connection. Therefore, multiple

applications might be supported on a single UDP port based on the

ALPN token offered. Applications using QUIC are required to register

an ALPN token for use in the TLS handshake.

As QUIC version 1 deferred defining a complete version negotiation

mechanism, HTTP/3 requires QUIC version 1 and defines the ALPN token

("h3") to only apply to that version. So far no single approach has

been selected for managing the use of different QUIC versions,

neither in HTTP/3 nor in general. Application protocols that use

QUIC need to consider how the protocol will manage different QUIC

versions. Decisions for those protocols might be informed by choices

made by other protocols, like HTTP/3.

9. Connection Migration

QUIC supports connection migration by the client. If an IP address

changes, a QUIC endpoint can still associate packets with an

existing transport connection using the Destination Connection ID

field (see also Section 11) in the QUIC header. This supports cases

where address information changes, such as NAT rebinding,

intentional change of the local interface, or based on an indication

in the handshake of the server for a preferred address to be used.

Use of a non-zero-length connection ID for the server is strongly

recommended if any clients are behind a NAT or could be. A non-zero-

length connection ID is also strongly recommended when migration is

supported.

The base specification of QUIC version 1 only supports the use of a

single network path at a time, which enables failover use cases.

Path validation is required so that endpoints validate paths before

use to avoid address spoofing attacks. Path validation takes at
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least one RTT and congestion control will also be reset after path

migration. Therefore, migration usually has a performance impact.

QUIC probing packets, which can be sent on multiple paths at once,

are used to perform address validation as well as measure path

characteristics. Probing packets cannot carry application data but

likely contain padding frames. Endpoints can use information about

their receipt as input to congestion control for that path.

Applications could use information learned from probing to inform a

decision to switch paths.

Only the client can actively migrate in version 1 of QUIC. However,

servers can indicate during the handshake that they prefer to

transfer the connection to a different address after the handshake.

For instance, this could be used to move from an address that is

shared by multiple servers to an address that is unique to the

server instance. The server can provide an IPv4 and an IPv6 address

in a transport parameter during the TLS handshake and the client can

select between the two if both are provided. See also Section 9.6 of

[QUIC].

10. Connection Termination

QUIC connections are terminated in one of three ways: implicit idle

timeout, explicit immediate close, or explicit stateless reset.

QUIC does not provide any mechanism for graceful connection

termination; applications using QUIC can define their own graceful

termination process (see, for example, Section 5.2 of [QUIC-HTTP]).

QUIC idle timeout is enabled via transport parameters. Client and

server announce a timeout period and the effective value for the

connection is the minimum of the two values. After the timeout

period elapses, the connection is silently closed. An application

therefore should be able to configure its own maximum value, as well

as have access to the computed minimum value for this connection. An

application may adjust the maximum idle timeout for new connections

based on the number of open or expected connections, since shorter

timeout values may free-up resources more quickly.

Application data exchanged on streams or in datagrams defers the

QUIC idle timeout. Applications that provide their own keep-alive

mechanisms will therefore keep a QUIC connection alive. Applications

that do not provide their own keep-alive can use transport-layer

mechanisms (see Section 10.1.2 of [QUIC], and Section 3.2). However,

QUIC implementation interfaces for controlling such transport

behavior can vary, affecting the robustness of such approaches.
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An immediate close is signaled by a CONNECTION_CLOSE frame (see 

Section 6). Immediate close causes all streams to become immediately

closed, which may affect applications; see Section 4.5.

A stateless reset is an option of last resort for an endpoint that

does not have access to connection state. Receiving a stateless

reset is an indication of an unrecoverable error distinct from

connection errors in that there is no application-layer information

provided.

11. Information Exposure and the Connection ID

QUIC exposes some information to the network in the unencrypted part

of the header, either before the encryption context is established

or because the information is intended to be used by the network.

For more information on manageability of QUIC see also [I-D.ietf-

quic-manageability]. QUIC has a long header that exposes some

additional information (the version and the source connection ID),

while the short header exposes only the destination connection ID.

In QUIC version 1, the long header is used during connection

establishment, while the short header is used for data transmission

in an established connection.

The connection ID can be zero length. Zero length connection IDs can

be chosen on each endpoint individually, on any packet except the

first packets sent by clients during connection establishment.

An endpoint that selects a zero-length connection ID will receive

packets with a zero-length destination connection ID. The endpoint

needs to use other information, such as the source and destination

IP address and port number to identify which connection is referred

to. This could mean that the endpoint is unable to match datagrams

to connections successfully if these values change, making the

connection effectively unable to survive NAT rebinding or migrate to

a new path.

11.1. Server-Generated Connection ID

QUIC supports a server-generated connection ID, transmitted to the

client during connection establishment (see Section 7.2 of [QUIC]).

Servers behind load balancers may need to change the connection ID

during the handshake, encoding the identity of the server or

information about its load balancing pool, in order to support

stateless load balancing.

Server deployments with load balancers and other routing

infrastructure need to ensure that this infrastructure consistently

routes packets to the server instance that has the connection state,

even if addresses, ports, and/or connection IDs change. This might

require coordination between servers and infrastructure. One method
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of achieving this involves encoding routing information into the

connection ID. For an example of this technique, see [QUIC-LB].

11.2. Mitigating Timing Linkability with Connection ID Migration

QUIC requires that endpoints generate fresh connection IDs for use

on new network paths. Choosing values that are unlinkable to an

outside observer ensures that activity on different paths cannot be

trivially correlated using the connection ID.

While sufficiently robust connection ID generation schemes will

mitigate linkability issues, they do not provide full protection.

Analysis of the lifetimes of six-tuples (source and destination

addresses as well as the migrated CID) may expose these links

anyway.

In the limit where connection migration in a server pool is rare, it

is trivial for an observer to associate two connection IDs.

Conversely, in the opposite limit where every server handles

multiple simultaneous migrations, even an exposed server mapping may

be insufficient information.

The most efficient mitigations for these attacks are through network

design and/or operational practice, by using a load balancing

architecture that loads more flows onto a single server-side

address, by coordinating the timing of migrations in an attempt to

increase the number of simultaneous migrations at a given time, or

through other means.

11.3. Using Server Retry for Redirection

QUIC provides a Retry packet that can be sent by a server in

response to the client Initial packet. The server may choose a new

connection ID in that packet and the client will retry by sending

another client Initial packet with the server-selected connection

ID. This mechanism can be used to redirect a connection to a

different server, e.g., due to performance reasons or when servers

in a server pool are upgraded gradually, and therefore may support

different versions of QUIC.

In this case, it is assumed that all servers belonging to a certain

pool are served in cooperation with load balancers that forward the

traffic based on the connection ID. A server can choose the

connection ID in the Retry packet such that the load balancer will

redirect the next Initial packet to a different server in that pool.

Alternatively the load balancer can directly offer a Retry service

as further described in [QUIC-LB].

Section 4 of [RFC5077] describes an example approach for

constructing TLS resumption tickets that can be also applied for
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validation tokens, however, the use of more modern cryptographic

algorithms is highly recommended.

12. Quality of Service (QoS) and DSCP

QUIC, as defined in [RFC9000], has a single congestion controller

and recovery handler. This design assumes that all packets of a QUIC

connection, or at least with the same 5-tuple {dest addr, source

addr, protocol, dest port, source port} that same the same DiffServ

Code Point (DSCP) [RFC2475], will receive similar network treatment

since feedback about loss or delay of each packet is used as input

to the congestion controller. Therefore, packets belonging to the

same connection should use a single DSCP. Section 5.1 of [RFC7657]

provides a discussion of DiffServ interactions with datagram

transport protocols [RFC7657] (in this respect the interactions with

QUIC resemble those of SCTP).

When multiplexing multiple flows over a single QUIC connection, the

selected DSCP value should be the one associated with the highest

priority requested for all multiplexed flows.

If differential network treatment is desired, e.g., by the use of

different DSCPs, multiple QUIC connections to the same server may be

used. However, in general it is recommended to minimize the number

of QUIC connections to the same server, to avoid increased overhead

and, more importantly, competing congestion control.

As in other uses of DiffServ, when a packet enters a network segment

that does not support the DSCP value, this could result in the

connection not receiving the network treatment it expects. The DSCP

value in this packet could also be remarked as the packet travels

along the network path, changing the requested treatment.

13. Use of Versions and Cryptographic Handshake

Versioning in QUIC may change the protocol's behavior completely,

except for the meaning of a few header fields that have been

declared to be invariant [QUIC-INVARIANTS]. A version of QUIC with a

higher version number will not necessarily provide a better service,

but might simply provide a different feature set. As such, an

application needs to be able to select which versions of QUIC it

wants to use.

A new version could use an encryption scheme other than TLS 1.3 or

higher. [QUIC] specifies requirements for the cryptographic

handshake as currently realized by TLS 1.3 and described in a

separate specification [QUIC-TLS]. This split is performed to enable

light-weight versioning with different cryptographic handshakes.
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14. Enabling New Versions

QUIC version 1 does not specify a version negotation mechanism in

the base spec but [I-D.draft-ietf-quic-version-negotiation] proposes

an extension. This process assumes that the set of versions that a

server supports is fixed. This complicates the process for deploying

new QUIC versions or disabling old versions when servers operate in

clusters.

A server that rolls out a new version of QUIC can do so in three

stages. Each stage is completed across all server instances before

moving to the next stage.

In the first stage of deployment, all server instances start

accepting new connections with the new version. The new version can

be enabled progressively across a deployment, which allows for

selective testing. This is especially useful when the new version is

compatible with an old version, because the new version is more

likely to be used.

While enabling the new version, servers do not advertise the new

version in any Version Negotiation packets they send. This prevents

clients that receive a Version Negotiation packet from attempting to

connect to server instances that might not have the new version

enabled.

During the initial deployment, some clients will have received

Version Negotiation packets that indicate that the server does not

support the new version. Other clients might have successfully

connected with the new version and so will believe that the server

supports the new version. Therefore, servers need to allow for this

ambiguity when validating the negotiated version.

The second stage of deployment commences once all server instances

are able to accept new connections with the new version. At this

point, all servers can start sending the new version in Version

Negotiation packets.

During the second stage, the server still allows for the possibility

that some clients believe the new version to be available and some

do not. This state will persist only for as long as any Version

Negotiation packets take to be transmitted and responded to. So the

third stage can follow after a relatively short delay.

The third stage completes the process by enabling authentication of

the negotiated version with the assumption that the new version is

fully available.

The process for disabling an old version or rolling back the

introduction of a new version uses the same process in reverse.
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Servers disable validation of the old version, stop sending the old

version in Version Negotiation packets, then the old version is no

longer accepted.

15. Unreliable Datagram Service over QUIC

[I-D.ietf-quic-datagram] specifies a QUIC extension to enable

sending and receiving unreliable datagrams over QUIC. Unlike

operating directly over UDP, applications that use the QUIC datagram

service do not need to implement their own congestion control, per 

[RFC8085], as QUIC datagrams are congestion controlled.

QUIC datagrams are not flow-controlled, and as such data chunks may

be dropped if the receiver is overloaded. While the reliable

transmission service of QUIC provides a stream-based interface to

send and receive data in order over multiple QUIC streams, the

datagram service has an unordered message-based interface. If

needed, an application layer framing can be used on top to allow

separate flows of unreliable datagrams to be multiplexed on one QUIC

connection.

16. IANA Considerations

This document has no actions for IANA; however, note that Section 8

recommends that application bindings to QUIC for applications using

TCP register UDP ports analogous to their existing TCP

registrations.

17. Security Considerations

See the security considerations in [QUIC] and [QUIC-TLS]; the

security considerations for the underlying transport protocol are

relevant for applications using QUIC, as well. Considerations on

linkability, replay attacks, and randomness discussed in [QUIC-TLS]

should be taken into account when deploying and using QUIC.

Application developers should note that any fallback they use when

QUIC cannot be used due to network blocking of UDP should guarantee

the same security properties as QUIC; if this is not possible, the

connection should fail to allow the application to explicitly handle

fallback to a less-secure alternative. See Section 2.

Further, [QUIC-HTTP] provides security considerations specific to

HTTP. However, discussions such as on cross-protocol attacks,

traffic analysis and padding, or migration might be relevant for

other applications using QUIC as well.
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