
QUIC M. Bishop, Ed.
Internet-Draft Akamai
Intended status: Standards Track August 15, 2018
Expires: February 16, 2019

Hypertext Transfer Protocol (HTTP) over QUIC
draft-ietf-quic-http-14

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC. This document also
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how HTTP/2 extensions can be ported to QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-http [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 16, 2019.

Bishop Expires February 16, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-http
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP over QUIC August 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 4

2. Connection Setup and Management 4
2.1. Draft Version Identification 4
2.2. Discovering an HTTP/QUIC Endpoint 5
2.2.1. QUIC Version Hints 5

2.3. Connection Establishment 6
2.4. Connection Reuse . 6

3. Stream Mapping and Usage 7
3.1. HTTP Message Exchanges 7
3.1.1. Header Formatting and Compression 9
3.1.2. The CONNECT Method 9
3.1.3. Request Cancellation 10

3.2. Request Prioritization 11
3.2.1. Placeholders . 11
3.2.2. Priority Tree Maintenance 12

3.3. Unidirectional Streams 13
3.3.1. Reserved Stream Types 13
3.3.2. Control Streams 14
3.3.3. Server Push . 14

4. HTTP Framing Layer . 15
4.1. Frame Layout . 16
4.2. Frame Definitions . 16
4.2.1. Reserved Frame Types 16
4.2.2. DATA . 16
4.2.3. HEADERS . 17
4.2.4. PRIORITY . 17
4.2.5. CANCEL_PUSH . 19
4.2.6. SETTINGS . 20
4.2.7. PUSH_PROMISE . 23
4.2.8. GOAWAY . 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bishop Expires February 16, 2019 [Page 2]

Internet-Draft HTTP over QUIC August 2018

4.2.9. MAX_PUSH_ID . 26
5. Connection Management . 27
6. Error Handling . 27
6.1. HTTP/QUIC Error Codes 27

7. Extensions to HTTP/QUIC 29
8. Considerations for Transitioning from HTTP/2 30
8.1. Streams . 30
8.2. HTTP Frame Types . 30
8.3. HTTP/2 SETTINGS Parameters 32
8.4. HTTP/2 Error Codes 33

9. Security Considerations 34
10. IANA Considerations . 34
10.1. Registration of HTTP/QUIC Identification String 34
10.2. Registration of QUIC Version Hint Alt-Svc Parameter . . 35
10.3. Frame Types . 35
10.4. Settings Parameters 36
10.5. Error Codes . 37
10.6. Stream Types . 40

11. References . 40
11.1. Normative References 41
11.2. Informative References 42
11.3. URIs . 42

Appendix A. Change Log . 42
A.1. Since draft-ietf-quic-http-13 42
A.2. Since draft-ietf-quic-http-12 42
A.3. Since draft-ietf-quic-http-11 43
A.4. Since draft-ietf-quic-http-10 43
A.5. Since draft-ietf-quic-http-09 43
A.6. Since draft-ietf-quic-http-08 43
A.7. Since draft-ietf-quic-http-07 43
A.8. Since draft-ietf-quic-http-06 44
A.9. Since draft-ietf-quic-http-05 44
A.10. Since draft-ietf-quic-http-04 44
A.11. Since draft-ietf-quic-http-03 44
A.12. Since draft-ietf-quic-http-02 44
A.13. Since draft-ietf-quic-http-01 44
A.14. Since draft-ietf-quic-http-00 45
A.15. Since draft-shade-quic-http2-mapping-00 45

 Acknowledgements . 45
 Author's Address . 46

1. Introduction

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC, drawing heavily on
 the existing TCP mapping, HTTP/2. Specifically, this document

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00

Bishop Expires February 16, 2019 [Page 3]

Internet-Draft HTTP over QUIC August 2018

 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how the other features can be implemented atop QUIC.

 QUIC is described in [QUIC-TRANSPORT]. For a full description of
 HTTP/2, see [RFC7540].

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Field definitions are given in Augmented Backus-Naur Form (ABNF), as
 defined in [RFC5234].

 This document uses the variable-length integer encoding from
 [QUIC-TRANSPORT].

 Protocol elements called "frames" exist in both this document and
 [QUIC-TRANSPORT]. Where frames from [QUIC-TRANSPORT] are referenced,
 the frame name will be prefaced with "QUIC." For example, "QUIC
 APPLICATION_CLOSE frames." References without this preface refer to
 frames defined in Section 4.2.

2. Connection Setup and Management

2.1. Draft Version Identification

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 HTTP/QUIC uses the token "hq" to identify itself in ALPN and Alt-Svc.
 Only implementations of the final, published RFC can identify
 themselves as "hq". Until such an RFC exists, implementations MUST
 NOT identify themselves using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-" and the corresponding draft number to the identifier. For
 example, draft-ietf-quic-http-01 is identified using the string "hq-
 01".

 Non-compatible experiments that are based on these draft versions
 MUST append the string "-" and an experiment name to the identifier.
 For example, an experimental implementation based on draft-ietf-quic-

http-09 which reserves an extra stream for unsolicited transmission
 of 1980s pop music might identify itself as "hq-09-rickroll". Note

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09

Bishop Expires February 16, 2019 [Page 4]

Internet-Draft HTTP over QUIC August 2018

 that any label MUST conform to the "token" syntax defined in
Section 3.2.6 of [RFC7230]. Experimenters are encouraged to

 coordinate their experiments on the quic@ietf.org mailing list.

2.2. Discovering an HTTP/QUIC Endpoint

 An HTTP origin advertises the availability of an equivalent HTTP/QUIC
 endpoint via the Alt-Svc HTTP response header or the HTTP/2 ALTSVC
 frame ([RFC7838]), using the ALPN token defined in Section 2.3.

 For example, an origin could indicate in an HTTP/1.1 or HTTP/2
 response that HTTP/QUIC was available on UDP port 50781 at the same
 hostname by including the following header in any response:

 Alt-Svc: hq=":50781"

 On receipt of an Alt-Svc record indicating HTTP/QUIC support, a
 client MAY attempt to establish a QUIC connection to the indicated
 host and port and, if successful, send HTTP requests using the
 mapping described in this document.

 Connectivity problems (e.g. firewall blocking UDP) can result in QUIC
 connection establishment failure, in which case the client SHOULD
 continue using the existing connection or try another alternative
 endpoint offered by the origin.

 Servers MAY serve HTTP/QUIC on any UDP port, since an alternative
 always includes an explicit port.

2.2.1. QUIC Version Hints

 This document defines the "quic" parameter for Alt-Svc, which MAY be
 used to provide version-negotiation hints to HTTP/QUIC clients. QUIC
 versions are four-octet sequences with no additional constraints on
 format. Leading zeros SHOULD be omitted for brevity.

 Syntax:

 quic = DQUOTE version-number ["," version-number] * DQUOTE
 version-number = 1*8HEXDIG; hex-encoded QUIC version

 Where multiple versions are listed, the order of the values reflects
 the server's preference (with the first value being the most
 preferred version). Reserved versions MAY be listed, but unreserved
 versions which are not supported by the alternative SHOULD NOT be
 present in the list. Origins MAY omit supported versions for any
 reason.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6
https://datatracker.ietf.org/doc/html/rfc7838

Bishop Expires February 16, 2019 [Page 5]

Internet-Draft HTTP over QUIC August 2018

 Clients MUST ignore any included versions which they do not support.
 The "quic" parameter MUST NOT occur more than once; clients SHOULD
 process only the first occurrence.

 For example, suppose a server supported both version 0x00000001 and
 the version rendered in ASCII as "Q034". If it opted to include the
 reserved versions (from Section 4 of [QUIC-TRANSPORT]) 0x0 and
 0x1abadaba, it could specify the following header:

 Alt-Svc: hq=":49288";quic="1,1abadaba,51303334,0"

 A client acting on this header would drop the reserved versions
 (because it does not support them), then attempt to connect to the
 alternative using the first version in the list which it does
 support.

2.3. Connection Establishment

 HTTP/QUIC relies on QUIC as the underlying transport. The QUIC
 version being used MUST use TLS version 1.3 or greater as its
 handshake protocol. HTTP/QUIC clients MUST indicate the target
 domain name during the TLS handshake. This may be done using the
 Server Name Indication (SNI) [RFC6066] extension to TLS or using some
 other mechanism.

 QUIC connections are established as described in [QUIC-TRANSPORT].
 During connection establishment, HTTP/QUIC support is indicated by
 selecting the ALPN token "hq" in the TLS handshake. Support for
 other application-layer protocols MAY be offered in the same
 handshake.

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake, HTTP/QUIC-specific settings
 are conveyed in the SETTINGS frame. After the QUIC connection is
 established, a SETTINGS frame (Section 4.2.6) MUST be sent by each
 endpoint as the initial frame of their respective HTTP control stream
 (see Section 3.3.2). The server MUST NOT send data on any other
 stream until the client's SETTINGS frame has been received.

2.4. Connection Reuse

 Once a connection exists to a server endpoint, this connection MAY be
 reused for requests with multiple different URI authority components.
 The client MAY send any requests for which the client considers the
 server authoritative.

 An authoritative HTTP/QUIC endpoint is typically discovered because
 the client has received an Alt-Svc record from the request's origin

https://datatracker.ietf.org/doc/html/rfc6066

Bishop Expires February 16, 2019 [Page 6]

Internet-Draft HTTP over QUIC August 2018

 which nominates the endpoint as a valid HTTP Alternative Service for
 that origin. As required by [RFC7838], clients MUST check that the
 nominated server can present a valid certificate for the origin
 before considering it authoritative. Clients MUST NOT assume that an
 HTTP/QUIC endpoint is authoritative for other origins without an
 explicit signal.

 A server that does not wish clients to reuse connections for a
 particular origin can indicate that it is not authoritative for a
 request by sending a 421 (Misdirected Request) status code in
 response to the request (see Section 9.1.2 of [RFC7540]).

3. Stream Mapping and Usage

 A QUIC stream provides reliable in-order delivery of bytes, but makes
 no guarantees about order of delivery with regard to bytes on other
 streams. On the wire, data is framed into QUIC STREAM frames, but
 this framing is invisible to the HTTP framing layer. A QUIC receiver
 buffers and orders received STREAM frames, exposing the data
 contained within as a reliable byte stream to the application.

 When HTTP headers and data are sent over QUIC, the QUIC layer handles
 most of the stream management.

 All client-initiated bidirectional streams are used for HTTP requests
 and responses. A bidirectional stream ensures that the response can
 be readily correlated with the request. This means that the client's
 first request occurs on QUIC stream 0, with subsequent requests on
 stream 4, 8, and so on. HTTP/QUIC does not use server-initiated
 bidirectional streams. The use of unidirectional streams is
 discussed in Section 3.3.

 These streams carry frames related to the request/response (see
Section 4.2). When a stream terminates cleanly, if the last frame on

 the stream was truncated, this MUST be treated as a connection error
 (see HTTP_MALFORMED_FRAME in Section 6.1). Streams which terminate
 abruptly may be reset at any point in the frame.

 HTTP does not need to do any separate multiplexing when using QUIC -
 data sent over a QUIC stream always maps to a particular HTTP
 transaction. Requests and responses are considered complete when the
 corresponding QUIC stream is closed in the appropriate direction.

3.1. HTTP Message Exchanges

 A client sends an HTTP request on a client-initiated bidirectional
 QUIC stream. A server sends an HTTP response on the same stream as
 the request.

https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc7540#section-9.1.2

Bishop Expires February 16, 2019 [Page 7]

Internet-Draft HTTP over QUIC August 2018

 An HTTP message (request or response) consists of:

 1. one header block (see Section 4.2.3) containing the message
 headers (see [RFC7230], Section 3.2),

 2. the payload body (see [RFC7230], Section 3.3), sent as a series
 of DATA frames (see Section 4.2.2),

 3. optionally, one header block containing the trailer-part, if
 present (see [RFC7230], Section 4.1.2).

 In addition, prior to sending the message header block indicated
 above, a response may contain zero or more header blocks containing
 the message headers of informational (1xx) HTTP responses (see

[RFC7230], Section 3.2 and [RFC7231], Section 6.2).

 PUSH_PROMISE frames (see Section 4.2.7) MAY be interleaved with the
 frames of a response message indicating a pushed resource related to
 the response. These PUSH_PROMISE frames are not part of the
 response, but carry the headers of a separate HTTP request message.
 See Section 3.3.3 for more details.

 The "chunked" transfer encoding defined in Section 4.1 of [RFC7230]
 MUST NOT be used.

 Trailing header fields are carried in an additional header block
 following the body. Senders MUST send only one header block in the
 trailers section; receivers MUST discard any subsequent header
 blocks.

 An HTTP request/response exchange fully consumes a bidirectional QUIC
 stream. After sending a request, a client closes the stream for
 sending; after sending a response, the server closes the stream for
 sending and the QUIC stream is fully closed.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When this is true, a
 server MAY request that the client abort transmission of a request
 without error by triggering a QUIC STOP_SENDING with error code
 HTTP_EARLY_RESPONSE, sending a complete response, and cleanly closing
 its streams. Clients MUST NOT discard complete responses as a result
 of having their request terminated abruptly, though clients can
 always discard responses at their discretion for other reasons.

 Changes to the state of a request stream, including receiving a
 RST_STREAM with any error code, do not affect the state of the
 server's response. Servers do not abort a response in progress

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1

Bishop Expires February 16, 2019 [Page 8]

Internet-Draft HTTP over QUIC August 2018

 solely due to a state change on the request stream. However, if the
 request stream terminates without containing a usable HTTP request,
 the server SHOULD abort its response with the error code
 HTTP_INCOMPLETE_REQUEST.

3.1.1. Header Formatting and Compression

 HTTP header fields carry information as a series of key-value pairs.
 For a listing of registered HTTP headers, see the "Message Header
 Field" registry maintained at https://www.iana.org/assignments/

message-headers [4].

 Just as in previous versions of HTTP, header field names are strings
 of ASCII characters that are compared in a case-insensitive fashion.
 Properties of HTTP header names and values are discussed in more
 detail in Section 3.2 of [RFC7230], though the wire rendering in
 HTTP/QUIC differs. As in HTTP/2, header field names MUST be
 converted to lowercase prior to their encoding. A request or
 response containing uppercase header field names MUST be treated as
 malformed.

 As in HTTP/2, HTTP/QUIC uses special pseudo-header fields beginning
 with ':' character (ASCII 0x3a) to convey the target URI, the method
 of the request, and the status code for the response. These pseudo-
 header fields are defined in Section 8.1.2.3 and 8.1.2.4 of
 [RFC7540]. Pseudo-header fields are not HTTP header fields.
 Endpoints MUST NOT generate pseudo-header fields other than those
 defined in [RFC7540]. The restrictions on the use of pseudo-header
 fields in Section 8.1.2.1 of [RFC7540] also apply to HTTP/QUIC.

 HTTP/QUIC uses QPACK header compression as described in [QPACK], a
 variation of HPACK which allows the flexibility to avoid header-
 compression-induced head-of-line blocking. See that document for
 additional details.

3.1.2. The CONNECT Method

 The pseudo-method CONNECT ([RFC7231], Section 4.3.6) is primarily
 used with HTTP proxies to establish a TLS session with an origin
 server for the purposes of interacting with "https" resources. In
 HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a
 tunnel to a remote host. In HTTP/2, the CONNECT method is used to
 establish a tunnel over a single HTTP/2 stream to a remote host for
 similar purposes.

 A CONNECT request in HTTP/QUIC functions in the same manner as in
 HTTP/2. The request MUST be formatted as described in [RFC7540],
 Section 8.3. A CONNECT request that does not conform to these

https://www.iana.org/assignments/message-headers
https://www.iana.org/assignments/message-headers
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6
https://datatracker.ietf.org/doc/html/rfc7540#section-8.3
https://datatracker.ietf.org/doc/html/rfc7540#section-8.3

Bishop Expires February 16, 2019 [Page 9]

Internet-Draft HTTP over QUIC August 2018

 restrictions is malformed. The request stream MUST NOT be half-
 closed at the end of the request.

 A proxy that supports CONNECT establishes a TCP connection
 ([RFC0793]) to the server identified in the ":authority" pseudo-
 header field. Once this connection is successfully established, the
 proxy sends a HEADERS frame containing a 2xx series status code to
 the client, as defined in [RFC7231], Section 4.3.6.

 All DATA frames on the request stream correspond to data sent on the
 TCP connection. Any DATA frame sent by the client is transmitted by
 the proxy to the TCP server; data received from the TCP server is
 packaged into DATA frames by the proxy. Note that the size and
 number of TCP segments is not guaranteed to map predictably to the
 size and number of HTTP DATA or QUIC STREAM frames.

 The TCP connection can be closed by either peer. When the client
 ends the request stream (that is, the receive stream at the proxy
 enters the "Data Recvd" state), the proxy will set the FIN bit on its
 connection to the TCP server. When the proxy receives a packet with
 the FIN bit set, it will terminate the send stream that it sends to
 client. TCP connections which remain half-closed in a single
 direction are not invalid, but are often handled poorly by servers,
 so clients SHOULD NOT cause send a STREAM frame with a FIN bit for
 connections on which they are still expecting data.

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error of type
 HTTP_CONNECT_ERROR (Section 6.1). Correspondingly, a proxy MUST send
 a TCP segment with the RST bit set if it detects an error with the
 stream or the QUIC connection.

3.1.3. Request Cancellation

 Either client or server can cancel requests by aborting the stream
 (QUIC RST_STREAM or STOP_SENDING frames, as appropriate) with an
 error code of HTTP_REQUEST_CANCELLED (Section 6.1). When the client
 cancels a response, it indicates that this response is no longer of
 interest. Clients SHOULD cancel requests by aborting both directions
 of a stream.

 When the server cancels its response stream using
 HTTP_REQUEST_CANCELLED, it indicates that no application processing
 was performed. The client can treat requests cancelled by the server
 as though they had never been sent at all, thereby allowing them to
 be retried later on a new connection. Servers MUST NOT use the

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6

Bishop Expires February 16, 2019 [Page 10]

Internet-Draft HTTP over QUIC August 2018

 HTTP_REQUEST_CANCELLED status for requests which were partially or
 fully processed.

 Note: In this context, "processed" means that some data from the
 stream was passed to some higher layer of software that might have
 taken some action as a result.

 If a stream is cancelled after receiving a complete response, the
 client MAY ignore the cancellation and use the response. However, if
 a stream is cancelled after receiving a partial response, the
 response SHOULD NOT be used. Automatically retrying such requests is
 not possible, unless this is otherwise permitted (e.g., idempotent
 actions like GET, PUT, or DELETE).

3.2. Request Prioritization

 HTTP/QUIC uses a priority scheme similar to that described in
[RFC7540], Section 5.3. In this priority scheme, a given stream can

 be designated as dependent upon another request, which expresses the
 preference that the latter stream (the "parent" request) be allocated
 resources before the former stream (the "dependent" request). Taken
 together, the dependencies across all requests in a connection form a
 dependency tree. The structure of the dependency tree changes as
 PRIORITY frames add, remove, or change the dependency links between
 requests.

 The PRIORITY frame Section 4.2.4 identifies a prioritized element.
 The elements which can be prioritized are:

 o Requests, identified by the ID of the request stream

 o Pushes, identified by the Push ID of the promised resource
 (Section 4.2.7)

 o Placeholders, identified by a Placeholder ID

 An element can depend on another element or on the root of the tree.
 A reference to an element which is no longer in the tree is treated
 as a reference to the root of the tree.

 Only a client can send PRIORITY frames. A server MUST NOT send a
 PRIORITY frame.

3.2.1. Placeholders

 In HTTP/2, certain implementations used closed or unused streams as
 placeholders in describing the relative priority of requests.
 However, this created confusion as servers could not reliably

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3

Bishop Expires February 16, 2019 [Page 11]

Internet-Draft HTTP over QUIC August 2018

 identify which elements of the priority tree could safely be
 discarded. Clients could potentially reference closed streams long
 after the server had discarded state, leading to disparate views of
 the prioritization the client had attempted to express.

 In HTTP/QUIC, a number of placeholders are explicitly permitted by
 the server using the "SETTINGS_NUM_PLACEHOLDERS" setting. Because
 the server commits to maintain these IDs in the tree, clients can use
 them with confidence that the server will not have discarded the
 state.

 Placeholders are identified by an ID between zero and one less than
 the number of placeholders the server has permitted.

3.2.2. Priority Tree Maintenance

 Servers can aggressively prune inactive regions from the priority
 tree, because placeholders will be used to "root" any persistent
 structure of the tree which the client cares about retaining. For
 prioritization purposes, a node in the tree is considered "inactive"
 when the corresponding stream has been closed for at least two round-
 trip times (using any reasonable estimate available on the server).
 This delay helps mitigate race conditions where the server has pruned
 a node the client believed was still active and used as a Stream
 Dependency.

 Specifically, the server MAY at any time:

 o Identify and discard branches of the tree containing only inactive
 nodes (i.e. a node with only other inactive nodes as descendants,
 along with those descendants)

 o Identify and condense interior regions of the tree containing only
 inactive nodes, allocating weight appropriately

 x x x
 | | |
 P P P
 / \ | |
 I I ==> I ==> A
 / \ | |
 A I A A
 | |
 A A

 Figure 1: Example of Priority Tree Pruning

Bishop Expires February 16, 2019 [Page 12]

Internet-Draft HTTP over QUIC August 2018

 In the example in Figure 1, "P" represents a Placeholder, "A"
 represents an active node, and "I" represents an inactive node. In
 the first step, the server discards two inactive branches (each a
 single node). In the second step, the server condenses an interior
 inactive node. Note that these transformations will result in no
 change in the resources allocated to a particular active stream.

 Clients SHOULD assume the server is actively performing such pruning
 and SHOULD NOT declare a dependency on a stream it knows to have been
 closed.

3.3. Unidirectional Streams

 Unidirectional streams, in either direction, are used for a range of
 purposes. The purpose is indicated by a stream type, which is sent
 as a single octet header at the start of the stream. The format and
 structure of data that follows this header is determined by the
 stream type.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Stream Type (8)|
 +-+-+-+-+-+-+-+-+

 Figure 2: Unidirectional Stream Header

 Some stream types are reserved (Section 3.3.1). Two stream types are
 defined in this document: control streams (Section 3.3.2) and push
 streams (Section 3.3.3). Other stream types can be defined by
 extensions to HTTP/QUIC.

 If the stream header indicates a stream type which is not supported
 by the recipient, the remainder of the stream cannot be consumed as
 the semantics are unknown. Recipients of unknown stream types MAY
 trigger a QUIC STOP_SENDING frame with an error code of
 HTTP_UNKNOWN_STREAM_TYPE, but MUST NOT consider such streams to be an
 error of any kind.

 Implementations MAY send stream types before knowing whether the peer
 supports them. However, stream types which could modify the state or
 semantics of existing protocol components, including QPACK or other
 extensions, MUST NOT be sent until the peer is known to support them.

3.3.1. Reserved Stream Types

 Stream types of the format "0x1f * N" are reserved to exercise the
 requirement that unknown types be ignored. These streams have no
 semantic meaning, and can be sent when application-layer padding is

Bishop Expires February 16, 2019 [Page 13]

Internet-Draft HTTP over QUIC August 2018

 desired. They MAY also be sent on connections where no request data
 is currently being transferred. Endpoints MUST NOT consider these
 streams to have any meaning upon receipt.

 The payload and length of the stream are selected in any manner the
 implementation chooses.

3.3.2. Control Streams

 The control stream is indicated by a stream type of "0x43" (ASCII
 'C'). Data on this stream consists of HTTP/QUIC frames, as defined
 in Section 4.2.

 Each side MUST initiate a single control stream at the beginning of
 the connection and send its SETTINGS frame as the first frame on this
 stream. Only one control stream per peer is permitted; receipt of a
 second stream which claims to be a control stream MUST be treated as
 a connection error of type HTTP_WRONG_STREAM_COUNT. If the control
 stream is closed at any point, this MUST be treated as a connection
 error of type HTTP_CLOSED_CRITICAL_STREAM.

 A pair of unidirectional streams is used rather than a single
 bidirectional stream. This allows either peer to send data as soon
 they are able. Depending on whether 0-RTT is enabled on the
 connection, either client or server might be able to send stream data
 first after the cryptographic handshake completes.

3.3.3. Server Push

 HTTP/QUIC server push is similar to what is described in HTTP/2
 [RFC7540], but uses different mechanisms.

 The PUSH_PROMISE frame (Section 4.2.7) is sent on the client-
 initiated bidirectional stream that carried the request that
 generated the push. This allows the server push to be associated
 with a request. Ordering of a PUSH_PROMISE in relation to certain
 parts of the response is important (see Section 8.2.1 of [RFC7540]).

 The PUSH_PROMISE frame does not reference a stream; it contains a
 Push ID that uniquely identifies a server push. This allows a server
 to fulfill promises in the order that best suits its needs. The same
 Push ID can be used in multiple PUSH_PROMISE frames (see

Section 4.2.7). When a server later fulfills a promise, the server
 push response is conveyed on a push stream.

 A push stream is indicated by a stream type of "0x50" (ASCII 'P'),
 followed by the Push ID of the promise that it fulfills, encoded as a
 variable-length integer. The remaining data on this stream consists

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2.1

Bishop Expires February 16, 2019 [Page 14]

Internet-Draft HTTP over QUIC August 2018

 of HTTP/QUIC frames, as defined in Section 4.2, and carries the
 response side of an HTTP message exchange as described in

Section 3.1. The request headers of the exchange are carried by a
 PUSH_PROMISE frame (see Section 4.2.7) on the request stream which
 generated the push. Promised requests MUST conform to the
 requirements in Section 8.2 of [RFC7540].

 Only servers can push; if a server receives a client-initiated push
 stream, this MUST be treated as a stream error of type
 HTTP_WRONG_STREAM_DIRECTION.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Stream Type (8)| Push ID (i) ...
 +-+

 Figure 3: Push Stream Header

 Server push is only enabled on a connection when a client sends a
 MAX_PUSH_ID frame (see Section 4.2.9). A server cannot use server
 push until it receives a MAX_PUSH_ID frame. A client sends
 additional MAX_PUSH_ID frames to control the number of pushes that a
 server can promise. A server SHOULD use Push IDs sequentially,
 starting at 0. A client MUST treat receipt of a push stream with a
 Push ID that is greater than the maximum Push ID as a connection
 error of type HTTP_PUSH_LIMIT_EXCEEDED.

 Each Push ID MUST only be used once in a push stream header. If a
 push stream header includes a Push ID that was used in another push
 stream header, the client MUST treat this as a connection error of
 type HTTP_DUPLICATE_PUSH.

 If a promised server push is not needed by the client, the client
 SHOULD send a CANCEL_PUSH frame. If the push stream is already open,
 a QUIC STOP_SENDING frame with an appropriate error code can be used
 instead (e.g., HTTP_PUSH_REFUSED, HTTP_PUSH_ALREADY_IN_CACHE; see

Section 6). This asks the server not to transfer the data and
 indicates that it will be discarded upon receipt.

4. HTTP Framing Layer

 Frames are used on the control stream, request streams, and push
 streams. This section describes HTTP framing in QUIC and highlights
 some differences from HTTP/2 framing. For more detail on differences
 from HTTP/2, see Section 8.2.

https://datatracker.ietf.org/doc/html/rfc7540#section-8.2

Bishop Expires February 16, 2019 [Page 15]

Internet-Draft HTTP over QUIC August 2018

4.1. Frame Layout

 All frames have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (i) ...
 +-+
 | Type (8) | Frame Payload (*) ...
 +-+

 Figure 4: HTTP/QUIC frame format

 A frame includes the following fields:

 Length: A variable-length integer that describes the length of the
 Frame Payload. This length does not include the frame header.

 Type: An 8-bit type for the frame.

 Frame Payload: A payload, the semantics of which are determined by
 the Type field.

4.2. Frame Definitions

4.2.1. Reserved Frame Types

 Frame types of the format "0xb + (0x1f * N)" are reserved to exercise
 the requirement that unknown types be ignored. These frames have no
 semantic meaning, and can be sent when application-layer padding is
 desired. They MAY also be sent on connections where no request data
 is currently being transferred. Endpoints MUST NOT consider these
 frames to have any meaning upon receipt.

 The payload and length of the frames are selected in any manner the
 implementation chooses.

4.2.2. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 octets associated with an HTTP request or response payload.

 DATA frames MUST be associated with an HTTP request or response. If
 a DATA frame is received on either control stream, the recipient MUST
 respond with a connection error (Section 6) of type
 HTTP_WRONG_STREAM.

Bishop Expires February 16, 2019 [Page 16]

Internet-Draft HTTP over QUIC August 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Payload (*) ...
 +-+

 Figure 5: DATA frame payload

 DATA frames MUST contain a non-zero-length payload. If a DATA frame
 is received with a payload length of zero, the recipient MUST respond
 with a stream error (Section 6) of type HTTP_MALFORMED_FRAME.

4.2.3. HEADERS

 The HEADERS frame (type=0x1) is used to carry a header block,
 compressed using QPACK. See [QPACK] for more details.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Header Block (*) ...
 +-+

 Figure 6: HEADERS frame payload

 HEADERS frames can only be sent on request / push streams.

4.2.4. PRIORITY

 The PRIORITY (type=0x02) frame specifies the sender-advised priority
 of a stream and is substantially different in format from [RFC7540].
 In order to ensure that prioritization is processed in a consistent
 order, PRIORITY frames MUST be sent on the control stream. A
 PRIORITY frame sent on any other stream MUST be treated as a
 HTTP_WRONG_STREAM error.

 The format has been modified to accommodate not being sent on a
 request stream, to allow for identification of server pushes, and the
 larger stream ID space of QUIC. The semantics of the Stream
 Dependency, Weight, and E flag are otherwise the same as in HTTP/2.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 17]

Internet-Draft HTTP over QUIC August 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |PT |DT |Empty|E|
 +-+
 | Prioritized Element ID (i) ...
 +-+
 | Element Dependency ID (i) ...
 +-+
 | Weight (8) |
 +-+-+-+-+-+-+-+-+

 Figure 7: PRIORITY frame payload

 The PRIORITY frame payload has the following fields:

 Prioritized Type: A two-bit field indicating the type of element
 being prioritized.

 Dependency Type: A two-bit field indicating the type of element
 being depended on.

 Empty: A three-bit field which MUST be zero when sent and MUST be
 ignored on receipt.

 Exclusive: A flag which indicates that the stream dependency is
 exclusive (see [RFC7540], Section 5.3).

 Prioritized Element ID: A variable-length integer that identifies
 the element being prioritized. Depending on the value of
 Prioritized Type, this contains the Stream ID of a request stream,
 the Push ID of a promised resource, or a Placeholder ID of a
 placeholder.

 Element Dependency ID: A variable-length integer that identifies the
 element on which a dependency is being expressed. Depending on
 the value of Dependency Type, this contains the Stream ID of a
 request stream, the Push ID of a promised resource, or a
 Placeholder ID of a placeholder. For details of dependencies, see

Section 3.2 and [RFC7540], Section 5.3.

 Weight: An unsigned 8-bit integer representing a priority weight for
 the stream (see [RFC7540], Section 5.3). Add one to the value to
 obtain a weight between 1 and 256.

 A PRIORITY frame identifies an element to prioritize, and an element
 upon which it depends. A Prioritized ID or Dependency ID identifies
 a client-initiated request using the corresponding stream ID, a

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3

Bishop Expires February 16, 2019 [Page 18]

Internet-Draft HTTP over QUIC August 2018

 server push using a Push ID (see Section 4.2.7), or a placeholder
 using a Placeholder ID (see Section 3.2.1).

 The values for the Prioritized Element Type and Element Dependency
 Type imply the interpretation of the associated Element ID fields.

 +-----------+------------------+---------------------+
 | Type Bits | Type Description | Element ID Contents |
 +-----------+------------------+---------------------+
 | 00 | Request stream | Stream ID |
 | | | |
 | 01 | Push stream | Push ID |
 | | | |
 | 10 | Placeholder | Placeholder ID |
 | | | |
 | 11 | Root of the tree | Ignored |
 +-----------+------------------+---------------------+

 Note that the root of the tree cannot be referenced using a Stream ID
 of 0, as in [RFC7540]; QUIC stream 0 carries a valid HTTP request.
 The root of the tree cannot be reprioritized. A PRIORITY frame that
 prioritizes the root of the tree MUST be treated as a connection
 error of type HTTP_MALFORMED_FRAME.

 When a PRIORITY frame claims to reference a request, the associated
 ID MUST identify a client-initiated bidirectional stream. A server
 MUST treat receipt of PRIORITY frame with a Stream ID of any other
 type as a connection error of type HTTP_MALFORMED_FRAME.

 A PRIORITY frame that references a non-existent Push ID or a
 Placeholder ID greater than the server's limit MUST be treated as a
 HTTP_MALFORMED_FRAME error.

 A PRIORITY frame MUST contain only the identified fields. A PRIORITY
 frame that contains more or fewer fields, or a PRIORITY frame that
 includes a truncated integer encoding MUST be treated as a connection
 error of type HTTP_MALFORMED_FRAME.

4.2.5. CANCEL_PUSH

 The CANCEL_PUSH frame (type=0x3) is used to request cancellation of
 server push prior to the push stream being created. The CANCEL_PUSH
 frame identifies a server push request by Push ID (see Section 4.2.7)
 using a variable-length integer.

 When a server receives this frame, it aborts sending the response for
 the identified server push. If the server has not yet started to
 send the server push, it can use the receipt of a CANCEL_PUSH frame

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 19]

Internet-Draft HTTP over QUIC August 2018

 to avoid opening a stream. If the push stream has been opened by the
 server, the server SHOULD sent a QUIC RST_STREAM frame on those
 streams and cease transmission of the response.

 A server can send this frame to indicate that it won't be sending a
 response prior to creation of a push stream. Once the push stream
 has been created, sending CANCEL_PUSH has no effect on the state of
 the push stream. A QUIC RST_STREAM frame SHOULD be used instead to
 cancel transmission of the server push response.

 A CANCEL_PUSH frame is sent on the control stream. Sending a
 CANCEL_PUSH frame on a stream other than the control stream MUST be
 treated as a stream error of type HTTP_WRONG_STREAM.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+

 Figure 8: CANCEL_PUSH frame payload

 The CANCEL_PUSH frame carries a Push ID encoded as a variable-length
 integer. The Push ID identifies the server push that is being
 cancelled (see Section 4.2.7).

 If the client receives a CANCEL_PUSH frame, that frame might identify
 a Push ID that has not yet been mentioned by a PUSH_PROMISE frame.

 An endpoint MUST treat a CANCEL_PUSH frame which does not contain
 exactly one properly-formatted variable-length integer as a
 connection error of type HTTP_MALFORMED_FRAME.

4.2.6. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior, and is different from [RFC7540]. Individually, a
 SETTINGS parameter can also be referred to as a "setting".

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer, which can be used by the receiving peer.
 However, a negotiation can be implied by the use of SETTINGS - a peer
 uses SETTINGS to advertise a set of supported values. The recipient
 can then choose which entries from this list are also acceptable and
 proceed with the value it has chosen. (This choice could be
 announced in a field of an extension frame, or in its own value in
 SETTINGS.)

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 20]

Internet-Draft HTTP over QUIC August 2018

 Different values for the same parameter can be advertised by each
 peer. For example, a client might be willing to consume very large
 response headers, while servers are more cautious about request size.

 Parameters MUST NOT occur more than once. A receiver MAY treat the
 presence of the same parameter more than once as a connection error
 of type HTTP_MALFORMED_FRAME.

 The payload of a SETTINGS frame consists of zero or more parameters,
 each consisting of an unsigned 16-bit setting identifier and a
 length-prefixed binary value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (16) | Length (i) ...
 +-+
 | Contents (?) ...
 +-+

 Figure 9: SETTINGS value format

 A zero-length content indicates that the setting value is a Boolean
 and true. False is indicated by the absence of the setting.

 Non-zero-length values MUST be compared against the remaining length
 of the SETTINGS frame. Any value which purports to cross the end of
 the frame MUST cause the SETTINGS frame to be considered malformed
 and trigger a connection error of type HTTP_MALFORMED_FRAME.

 An implementation MUST ignore the contents for any SETTINGS
 identifier it does not understand.

 SETTINGS frames always apply to a connection, never a single stream.
 A SETTINGS frame MUST be sent as the first frame of either control
 stream (see Section 3) by each peer, and MUST NOT be sent
 subsequently or on any other stream. If an endpoint receives an
 SETTINGS frame on a different stream, the endpoint MUST respond with
 a connection error of type HTTP_WRONG_STREAM. If an endpoint
 receives a second SETTINGS frame, the endpoint MUST respond with a
 connection error of type HTTP_MALFORMED_FRAME.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 6) of type HTTP_MALFORMED_FRAME.

Bishop Expires February 16, 2019 [Page 21]

Internet-Draft HTTP over QUIC August 2018

4.2.6.1. Integer encoding

 Settings which are integers use the QUIC variable-length integer
 encoding.

4.2.6.2. Defined SETTINGS Parameters

 The following settings are defined in HTTP/QUIC:

 SETTINGS_NUM_PLACEHOLDERS (0x3): An integer with a maximum value of
 2^16 - 1. The value SHOULD be non-zero. The default value is 16.

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6): An integer with a maximum value
 of 2^30 - 1. The default value is unlimited.

 Settings values of the format "0x?a?a" are reserved to exercise the
 requirement that unknown parameters be ignored. Such settings have
 no defined meaning. Endpoints SHOULD include at least one such
 setting in their SETTINGS frame. Endpoints MUST NOT consider such
 settings to have any meaning upon receipt.

 Because the setting has no defined meaning, the value of the setting
 can be any value the implementation selects.

 Additional settings MAY be defined by extensions to HTTP/QUIC.

4.2.6.3. Initial SETTINGS Values

 When a 0-RTT QUIC connection is being used, the client's initial
 requests will be sent before the arrival of the server's SETTINGS
 frame. Clients MUST store the settings the server provided in the
 session being resumed and MUST comply with stored settings until the
 server's current settings are received. Remembered settings apply to
 the new connection until the server's SETTINGS frame is received.

 A server can remember the settings that it advertised, or store an
 integrity-protected copy of the values in the ticket and recover the
 information when accepting 0-RTT data. A server uses the HTTP/QUIC
 settings values in determining whether to accept 0-RTT data.

 A server MAY accept 0-RTT and subsequently provide different settings
 in its SETTINGS frame. If 0-RTT data is accepted by the server, its
 SETTINGS frame MUST NOT reduce any limits or alter any values that
 might be violated by the client with its 0-RTT data.

 When a 1-RTT QUIC connection is being used, the client MUST NOT send
 requests prior to receiving and processing the server's SETTINGS
 frame.

Bishop Expires February 16, 2019 [Page 22]

Internet-Draft HTTP over QUIC August 2018

4.2.7. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x05) is used to carry a request header
 set from server to client, as in HTTP/2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+
 | Header Block (*) ...
 +-+

 Figure 10: PUSH_PROMISE frame payload

 The payload consists of:

 Push ID: A variable-length integer that identifies the server push
 request. A push ID is used in push stream header (Section 3.3.3),
 CANCEL_PUSH frames (Section 4.2.5), and PRIORITY frames
 (Section 4.2.4).

 Header Block: QPACK-compressed request headers for the promised
 response. See [QPACK] for more details.

 A server MUST NOT use a Push ID that is larger than the client has
 provided in a MAX_PUSH_ID frame (Section 4.2.9). A client MUST treat
 receipt of a PUSH_PROMISE that contains a larger Push ID than the
 client has advertised as a connection error of type
 HTTP_MALFORMED_FRAME.

 A server MAY use the same Push ID in multiple PUSH_PROMISE frames.
 This allows the server to use the same server push in response to
 multiple concurrent requests. Referencing the same server push
 ensures that a PUSH_PROMISE can be made in relation to every response
 in which server push might be needed without duplicating pushes.

 A server that uses the same Push ID in multiple PUSH_PROMISE frames
 MUST include the same header fields each time. The octets of the
 header block MAY be different due to differing encoding, but the
 header fields and their values MUST be identical. Note that ordering
 of header fields is significant. A client MUST treat receipt of a
 PUSH_PROMISE with conflicting header field values for the same Push
 ID as a connection error of type HTTP_MALFORMED_FRAME.

 Allowing duplicate references to the same Push ID is primarily to
 reduce duplication caused by concurrent requests. A server SHOULD
 avoid reusing a Push ID over a long period. Clients are likely to

Bishop Expires February 16, 2019 [Page 23]

Internet-Draft HTTP over QUIC August 2018

 consume server push responses and not retain them for reuse over
 time. Clients that see a PUSH_PROMISE that uses a Push ID that they
 have since consumed and discarded are forced to ignore the
 PUSH_PROMISE.

4.2.8. GOAWAY

 The GOAWAY frame (type=0x7) is used to initiate graceful shutdown of
 a connection by a server. GOAWAY allows a server to stop accepting
 new requests while still finishing processing of previously received
 requests. This enables administrative actions, like server
 maintenance. GOAWAY by itself does not close a connection.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+

 Figure 11: GOAWAY frame payload

 The GOAWAY frame carries a QUIC Stream ID for a client-initiated
 bidirectional stream encoded as a variable-length integer. A client
 MUST treat receipt of a GOAWAY frame containing a Stream ID of any
 other type as a connection error of type HTTP_MALFORMED_FRAME.

 Clients do not need to send GOAWAY to initiate a graceful shutdown;
 they simply stop making new requests. A server MUST treat receipt of
 a GOAWAY frame as a connection error (Section 6) of type
 HTTP_UNEXPECTED_GOAWAY.

 The GOAWAY frame applies to the connection, not a specific stream.
 An endpoint MUST treat a GOAWAY frame on a stream other than the
 control stream as a connection error (Section 6) of type
 HTTP_WRONG_STREAM.

 New client requests might already have been sent before the client
 receives the server's GOAWAY frame. The GOAWAY frame contains the
 Stream ID of the last client-initiated request that was or might be
 processed in this connection, which enables client and server to
 agree on which requests were accepted prior to the connection
 shutdown. This identifier MAY be lower than the stream limit
 identified by a QUIC MAX_STREAM_ID frame, and MAY be zero if no
 requests were processed. Servers SHOULD NOT increase the
 MAX_STREAM_ID limit after sending a GOAWAY frame.

 Once sent, the server MUST cancel requests sent on streams with an
 identifier higher than the included last Stream ID. Clients MUST NOT

Bishop Expires February 16, 2019 [Page 24]

Internet-Draft HTTP over QUIC August 2018

 send new requests on the connection after receiving GOAWAY, although
 requests might already be in transit. A new connection can be
 established for new requests.

 If the client has sent requests on streams with a higher Stream ID
 than indicated in the GOAWAY frame, those requests are considered
 cancelled (Section 3.1.3). Clients SHOULD reset any streams above
 this ID with the error code HTTP_REQUEST_CANCELLED. Servers MAY also
 cancel requests on streams below the indicated ID if these requests
 were not processed.

 Requests on Stream IDs less than or equal to the Stream ID in the
 GOAWAY frame might have been processed; their status cannot be known
 until they are completed successfully, reset individually, or the
 connection terminates.

 Servers SHOULD send a GOAWAY frame when the closing of a connection
 is known in advance, even if the advance notice is small, so that the
 remote peer can know whether a stream has been partially processed or
 not. For example, if an HTTP client sends a POST at the same time
 that a server closes a QUIC connection, the client cannot know if the
 server started to process that POST request if the server does not
 send a GOAWAY frame to indicate what streams it might have acted on.

 For unexpected closures caused by error conditions, a QUIC
 APPLICATION_CLOSE frame MUST be used. However, a GOAWAY MAY be sent
 first to provide additional detail to clients and to allow the client
 to retry requests. Including the GOAWAY frame in the same packet as
 the QUIC APPLICATION_CLOSE frame improves the chances of the frame
 being received by clients.

 If a connection terminates without a GOAWAY frame, the last Stream ID
 is effectively the highest possible Stream ID (as determined by
 QUIC's MAX_STREAM_ID).

 An endpoint MAY send multiple GOAWAY frames if circumstances change.
 For instance, an endpoint that sends GOAWAY without an error code
 during graceful shutdown could subsequently encounter an error
 condition. The last stream identifier from the last GOAWAY frame
 received indicates which streams could have been acted upon. A
 server MUST NOT increase the value they send in the last Stream ID,
 since clients might already have retried unprocessed requests on
 another connection.

 A client that is unable to retry requests loses all requests that are
 in flight when the server closes the connection. A server that is
 attempting to gracefully shut down a connection SHOULD send an
 initial GOAWAY frame with the last Stream ID set to the current value

Bishop Expires February 16, 2019 [Page 25]

Internet-Draft HTTP over QUIC August 2018

 of QUIC's MAX_STREAM_ID and SHOULD NOT increase the MAX_STREAM_ID
 thereafter. This signals to the client that a shutdown is imminent
 and that initiating further requests is prohibited. After allowing
 time for any in-flight requests (at least one round-trip time), the
 server MAY send another GOAWAY frame with an updated last Stream ID.
 This ensures that a connection can be cleanly shut down without
 losing requests.

 Once all requests on streams at or below the identified stream number
 have been completed or cancelled, and all promised server push
 responses associated with those requests have been completed or
 cancelled, the connection can be closed using an Immediate Close (see
 [QUIC-TRANSPORT]). An endpoint that completes a graceful shutdown
 SHOULD use the QUIC APPLICATION_CLOSE frame with the HTTP_NO_ERROR
 code.

4.2.9. MAX_PUSH_ID

 The MAX_PUSH_ID frame (type=0xD) is used by clients to control the
 number of server pushes that the server can initiate. This sets the
 maximum value for a Push ID that the server can use in a PUSH_PROMISE
 frame. Consequently, this also limits the number of push streams
 that the server can initiate in addition to the limit set by the QUIC
 MAX_STREAM_ID frame.

 The MAX_PUSH_ID frame is always sent on a control stream. Receipt of
 a MAX_PUSH_ID frame on any other stream MUST be treated as a
 connection error of type HTTP_WRONG_STREAM.

 A server MUST NOT send a MAX_PUSH_ID frame. A client MUST treat the
 receipt of a MAX_PUSH_ID frame as a connection error of type
 HTTP_MALFORMED_FRAME.

 The maximum Push ID is unset when a connection is created, meaning
 that a server cannot push until it receives a MAX_PUSH_ID frame. A
 client that wishes to manage the number of promised server pushes can
 increase the maximum Push ID by sending a MAX_PUSH_ID frame as the
 server fulfills or cancels server pushes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+

 Figure 12: MAX_PUSH_ID frame payload

Bishop Expires February 16, 2019 [Page 26]

Internet-Draft HTTP over QUIC August 2018

 The MAX_PUSH_ID frame carries a single variable-length integer that
 identifies the maximum value for a Push ID that the server can use
 (see Section 4.2.7). A MAX_PUSH_ID frame cannot reduce the maximum
 Push ID; receipt of a MAX_PUSH_ID that contains a smaller value than
 previously received MUST be treated as a connection error of type
 HTTP_MALFORMED_FRAME.

 A server MUST treat a MAX_PUSH_ID frame payload that does not contain
 a single variable-length integer as a connection error of type
 HTTP_MALFORMED_FRAME.

5. Connection Management

 QUIC connections are persistent. All of the considerations in
Section 9.1 of [RFC7540] apply to the management of QUIC connections.

 HTTP clients are expected to use QUIC PING frames to keep connections
 open. Servers SHOULD NOT use PING frames to keep a connection open.
 A client SHOULD NOT use PING frames for this purpose unless there are
 responses outstanding for requests or server pushes. If the client
 is not expecting a response from the server, allowing an idle
 connection to time out (based on the idle_timeout transport
 parameter) is preferred over expending effort maintaining a
 connection that might not be needed. A gateway MAY use PING to
 maintain connections in anticipation of need rather than incur the
 latency cost of connection establishment to servers.

6. Error Handling

 QUIC allows the application to abruptly terminate (reset) individual
 streams or the entire connection when an error is encountered. These
 are referred to as "stream errors" or "connection errors" and are
 described in more detail in [QUIC-TRANSPORT].

 This section describes HTTP/QUIC-specific error codes which can be
 used to express the cause of a connection or stream error.

6.1. HTTP/QUIC Error Codes

 The following error codes are defined for use in QUIC RST_STREAM,
 STOP_SENDING, and APPLICATION_CLOSE frames when using HTTP/QUIC.

 STOPPING (0x00): This value is reserved by the transport to be used
 in response to QUIC STOP_SENDING frames.

 HTTP_NO_ERROR (0x01): No error. This is used when the connection or
 stream needs to be closed, but there is no error to signal.

https://datatracker.ietf.org/doc/html/rfc7540#section-9.1

Bishop Expires February 16, 2019 [Page 27]

Internet-Draft HTTP over QUIC August 2018

 HTTP_PUSH_REFUSED (0x02): The server has attempted to push content
 which the client will not accept on this connection.

 HTTP_INTERNAL_ERROR (0x03): An internal error has occurred in the
 HTTP stack.

 HTTP_PUSH_ALREADY_IN_CACHE (0x04): The server has attempted to push
 content which the client has cached.

 HTTP_REQUEST_CANCELLED (0x05): The client no longer needs the
 requested data.

 HTTP_INCOMPLETE_REQUEST (0x06): The client's stream terminated
 without containing a fully-formed request.

 HTTP_CONNECT_ERROR (0x07): The connection established in response to
 a CONNECT request was reset or abnormally closed.

 HTTP_EXCESSIVE_LOAD (0x08): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 HTTP_VERSION_FALLBACK (0x09): The requested operation cannot be
 served over HTTP/QUIC. The peer should retry over HTTP/2.

 HTTP_WRONG_STREAM (0x0A): A frame was received on a stream where it
 is not permitted.

 HTTP_PUSH_LIMIT_EXCEEDED (0x0B): A Push ID greater than the current
 maximum Push ID was referenced.

 HTTP_DUPLICATE_PUSH (0x0C): A Push ID was referenced in two
 different stream headers.

 HTTP_UNKNOWN_STREAM_TYPE (0x0D): A unidirectional stream header
 contained an unknown stream type.

 HTTP_WRONG_STREAM_COUNT (0x0E): A unidirectional stream type was
 used more times than is permitted by that type.

 HTTP_CLOSED_CRITICAL_STREAM (0x0F): A stream required by the
 connection was closed or reset.

 HTTP_WRONG_STREAM_DIRECTION (0x0010): A unidirectional stream type
 was used by a peer which is not permitted to do so.

 HTTP_EARLY_RESPONSE (0x0011): The remainder of the client's request
 is not needed to produce a response. For use in STOP_SENDING
 only.

Bishop Expires February 16, 2019 [Page 28]

Internet-Draft HTTP over QUIC August 2018

 HTTP_GENERAL_PROTOCOL_ERROR (0x00FF): Peer violated protocol
 requirements in a way which doesn't match a more specific error
 code, or endpoint declines to use the more specific error code.

 HTTP_MALFORMED_FRAME (0x01XX): An error in a specific frame type.
 The frame type is included as the last octet of the error code.
 For example, an error in a MAX_PUSH_ID frame would be indicated
 with the code (0x10D).

7. Extensions to HTTP/QUIC

 HTTP/QUIC permits extension of the protocol. Within the limitations
 described in this section, protocol extensions can be used to provide
 additional services or alter any aspect of the protocol. Extensions
 are effective only within the scope of a single HTTP/QUIC connection.

 This applies to the protocol elements defined in this document. This
 does not affect the existing options for extending HTTP, such as
 defining new methods, status codes, or header fields.

 Extensions are permitted to use new frame types (Section 4.2), new
 settings (Section 4.2.6.2), new error codes (Section 6), or new
 unidirectional stream types (Section 3.3). Registries are
 established for managing these extension points: frame types
 (Section 10.3), settings (Section 10.4), error codes (Section 10.5),
 and stream types (Section 10.6).

 Implementations MUST ignore unknown or unsupported values in all
 extensible protocol elements. Implementations MUST discard frames
 and unidirectional streams that have unknown or unsupported types.
 This means that any of these extension points can be safely used by
 extensions without prior arrangement or negotiation.

 Extensions that could change the semantics of existing protocol
 components MUST be negotiated before being used. For example, an
 extension that changes the layout of the HEADERS frame cannot be used
 until the peer has given a positive signal that this is acceptable.
 In this case, it could also be necessary to coordinate when the
 revised layout comes into effect.

 This document doesn't mandate a specific method for negotiating the
 use of an extension but notes that a setting (Section 4.2.6.2) could
 be used for that purpose. If both peers set a value that indicates
 willingness to use the extension, then the extension can be used. If
 a setting is used for extension negotiation, the default value MUST
 be defined in such a fashion that the extension is disabled if the
 setting is omitted.

Bishop Expires February 16, 2019 [Page 29]

Internet-Draft HTTP over QUIC August 2018

8. Considerations for Transitioning from HTTP/2

 HTTP/QUIC is strongly informed by HTTP/2, and bears many
 similarities. This section describes the approach taken to design
 HTTP/QUIC, points out important differences from HTTP/2, and
 describes how to map HTTP/2 extensions into HTTP/QUIC.

 HTTP/QUIC begins from the premise that HTTP/2 code reuse is a useful
 feature, but not a hard requirement. HTTP/QUIC departs from HTTP/2
 primarily where necessary to accommodate the differences in behavior
 between QUIC and TCP (lack of ordering, support for streams). We
 intend to avoid gratuitous changes which make it difficult or
 impossible to build extensions with the same semantics applicable to
 both protocols at once.

 These departures are noted in this section.

8.1. Streams

 HTTP/QUIC permits use of a larger number of streams (2^62-1) than
 HTTP/2. The considerations about exhaustion of stream identifier
 space apply, though the space is significantly larger such that it is
 likely that other limits in QUIC are reached first, such as the limit
 on the connection flow control window.

8.2. HTTP Frame Types

 Many framing concepts from HTTP/2 can be elided away on QUIC, because
 the transport deals with them. Because frames are already on a
 stream, they can omit the stream number. Because frames do not block
 multiplexing (QUIC's multiplexing occurs below this layer), the
 support for variable-maximum-length packets can be removed. Because
 stream termination is handled by QUIC, an END_STREAM flag is not
 required. This permits the removal of the Flags field from the
 generic frame layout.

 Frame payloads are largely drawn from [RFC7540]. However, QUIC
 includes many features (e.g. flow control) which are also present in
 HTTP/2. In these cases, the HTTP mapping does not re-implement them.
 As a result, several HTTP/2 frame types are not required in HTTP/
 QUIC. Where an HTTP/2-defined frame is no longer used, the frame ID
 has been reserved in order to maximize portability between HTTP/2 and
 HTTP/QUIC implementations. However, even equivalent frames between
 the two mappings are not identical.

 Many of the differences arise from the fact that HTTP/2 provides an
 absolute ordering between frames across all streams, while QUIC
 provides this guarantee on each stream only. As a result, if a frame

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 30]

Internet-Draft HTTP over QUIC August 2018

 type makes assumptions that frames from different streams will still
 be received in the order sent, HTTP/QUIC will break them.

 For example, implicit in the HTTP/2 prioritization scheme is the
 notion of in-order delivery of priority changes (i.e., dependency
 tree mutations): since operations on the dependency tree such as
 reparenting a subtree are not commutative, both sender and receiver
 must apply them in the same order to ensure that both sides have a
 consistent view of the stream dependency tree. HTTP/2 specifies
 priority assignments in PRIORITY frames and (optionally) in HEADERS
 frames. To achieve in-order delivery of priority changes in HTTP/
 QUIC, PRIORITY frames are sent on the control stream and the PRIORITY
 section is removed from the HEADERS frame.

 Likewise, HPACK was designed with the assumption of in-order
 delivery. A sequence of encoded header blocks must arrive (and be
 decoded) at an endpoint in the same order in which they were encoded.
 This ensures that the dynamic state at the two endpoints remains in
 sync. As a result, HTTP/QUIC uses a modified version of HPACK,
 described in [QPACK].

 Frame type definitions in HTTP/QUIC often use the QUIC variable-
 length integer encoding. In particular, Stream IDs use this
 encoding, which allow for a larger range of possible values than the
 encoding used in HTTP/2. Some frames in HTTP/QUIC use an identifier
 rather than a Stream ID (e.g. Push IDs in PRIORITY frames).
 Redefinition of the encoding of extension frame types might be
 necessary if the encoding includes a Stream ID.

 Because the Flags field is not present in generic HTTP/QUIC frames,
 those frames which depend on the presence of flags need to allocate
 space for flags as part of their frame payload.

 Other than this issue, frame type HTTP/2 extensions are typically
 portable to QUIC simply by replacing Stream 0 in HTTP/2 with a
 control stream in HTTP/QUIC. HTTP/QUIC extensions will not assume
 ordering, but would not be harmed by ordering, and would be portable
 to HTTP/2 in the same manner.

 Below is a listing of how each HTTP/2 frame type is mapped:

 DATA (0x0): Padding is not defined in HTTP/QUIC frames. See
Section 4.2.2.

 HEADERS (0x1): As described above, the PRIORITY region of HEADERS is
 not supported. A separate PRIORITY frame MUST be used. Padding
 is not defined in HTTP/QUIC frames. See Section 4.2.3.

Bishop Expires February 16, 2019 [Page 31]

Internet-Draft HTTP over QUIC August 2018

 PRIORITY (0x2): As described above, the PRIORITY frame is sent on
 the control stream and can reference either a Stream ID or a Push
 ID. See Section 4.2.4.

 RST_STREAM (0x3): RST_STREAM frames do not exist, since QUIC
 provides stream lifecycle management. The same code point is used
 for the CANCEL_PUSH frame (Section 4.2.5).

 SETTINGS (0x4): SETTINGS frames are sent only at the beginning of
 the connection. See Section 4.2.6 and Section 8.3.

 PUSH_PROMISE (0x5): The PUSH_PROMISE does not reference a stream;
 instead the push stream references the PUSH_PROMISE frame using a
 Push ID. See Section 4.2.7.

 PING (0x6): PING frames do not exist, since QUIC provides equivalent
 functionality.

 GOAWAY (0x7): GOAWAY is sent only from server to client and does not
 contain an error code. See Section 4.2.8.

 WINDOW_UPDATE (0x8): WINDOW_UPDATE frames do not exist, since QUIC
 provides flow control.

 CONTINUATION (0x9): CONTINUATION frames do not exist; instead,
 larger HEADERS/PUSH_PROMISE frames than HTTP/2 are permitted, and
 HEADERS frames can be used in series.

 Frame types defined by extensions to HTTP/2 need to be separately
 registered for HTTP/QUIC if still applicable. The IDs of frames
 defined in [RFC7540] have been reserved for simplicity. See

Section 10.3.

8.3. HTTP/2 SETTINGS Parameters

 An important difference from HTTP/2 is that settings are sent once,
 at the beginning of the connection, and thereafter cannot change.
 This eliminates many corner cases around synchronization of changes.

 Some transport-level options that HTTP/2 specifies via the SETTINGS
 frame are superseded by QUIC transport parameters in HTTP/QUIC. The
 HTTP-level options that are retained in HTTP/QUIC have the same value
 as in HTTP/2.

 Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

 SETTINGS_HEADER_TABLE_SIZE: See Section 4.2.6.2.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 32]

Internet-Draft HTTP over QUIC August 2018

 SETTINGS_ENABLE_PUSH: This is removed in favor of the MAX_PUSH_ID
 which provides a more granular control over server push.

 SETTINGS_MAX_CONCURRENT_STREAMS: QUIC controls the largest open
 Stream ID as part of its flow control logic. Specifying
 SETTINGS_MAX_CONCURRENT_STREAMS in the SETTINGS frame is an error.

 SETTINGS_INITIAL_WINDOW_SIZE: QUIC requires both stream and
 connection flow control window sizes to be specified in the
 initial transport handshake. Specifying
 SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame is an error.

 SETTINGS_MAX_FRAME_SIZE: This setting has no equivalent in HTTP/
 QUIC. Specifying it in the SETTINGS frame is an error.

 SETTINGS_MAX_HEADER_LIST_SIZE: See Section 4.2.6.2.

 Settings need to be defined separately for HTTP/2 and HTTP/QUIC. The
 IDs of settings defined in [RFC7540] have been reserved for
 simplicity. See Section 10.4.

8.4. HTTP/2 Error Codes

 QUIC has the same concepts of "stream" and "connection" errors that
 HTTP/2 provides. However, because the error code space is shared
 between multiple components, there is no direct portability of HTTP/2
 error codes.

 The HTTP/2 error codes defined in Section 7 of [RFC7540] map to the
 HTTP over QUIC error codes as follows:

 NO_ERROR (0x0): HTTP_NO_ERROR in Section 6.1.

 PROTOCOL_ERROR (0x1): No single mapping. See new
 HTTP_MALFORMED_FRAME error codes defined in Section 6.1.

 INTERNAL_ERROR (0x2): HTTP_INTERNAL_ERROR in Section 6.1.

 FLOW_CONTROL_ERROR (0x3): Not applicable, since QUIC handles flow
 control. Would provoke a QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA
 from the QUIC layer.

 SETTINGS_TIMEOUT (0x4): Not applicable, since no acknowledgement of
 SETTINGS is defined.

 STREAM_CLOSED (0x5): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_STREAM_DATA_AFTER_TERMINATION
 from the QUIC layer.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-7

Bishop Expires February 16, 2019 [Page 33]

Internet-Draft HTTP over QUIC August 2018

 FRAME_SIZE_ERROR (0x6): No single mapping. See new error codes
 defined in Section 6.1.

 REFUSED_STREAM (0x7): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_TOO_MANY_OPEN_STREAMS from the
 QUIC layer.

 CANCEL (0x8): HTTP_REQUEST_CANCELLED in Section 6.1.

 COMPRESSION_ERROR (0x9): HTTP_QPACK_DECOMPRESSION_FAILED in [QPACK].

 CONNECT_ERROR (0xa): HTTP_CONNECT_ERROR in Section 6.1.

 ENHANCE_YOUR_CALM (0xb): HTTP_EXCESSIVE_LOAD in Section 6.1.

 INADEQUATE_SECURITY (0xc): Not applicable, since QUIC is assumed to
 provide sufficient security on all connections.

 HTTP_1_1_REQUIRED (0xd): HTTP_VERSION_FALLBACK in Section 6.1.

 Error codes need to be defined for HTTP/2 and HTTP/QUIC separately.
 See Section 10.5.

9. Security Considerations

 The security considerations of HTTP over QUIC should be comparable to
 those of HTTP/2 with TLS. Note that where HTTP/2 employs PADDING
 frames to make a connection more resistant to traffic analysis, HTTP/
 QUIC can rely on QUIC's own PADDING frames or employ the reserved
 frame and stream types discussed in Section 4.2.1 and Section 3.3.1.

 The modified SETTINGS format contains nested length elements, which
 could pose a security risk to an incautious implementer. A SETTINGS
 frame parser MUST ensure that the length of the frame exactly matches
 the length of the settings it contains.

10. IANA Considerations

10.1. Registration of HTTP/QUIC Identification String

 This document creates a new registration for the identification of
 HTTP/QUIC in the "Application Layer Protocol Negotiation (ALPN)
 Protocol IDs" registry established in [RFC7301].

 The "hq" string identifies HTTP/QUIC:

 Protocol: HTTP over QUIC

https://datatracker.ietf.org/doc/html/rfc7301

Bishop Expires February 16, 2019 [Page 34]

Internet-Draft HTTP over QUIC August 2018

 Identification Sequence: 0x68 0x71 ("hq")

 Specification: This document

10.2. Registration of QUIC Version Hint Alt-Svc Parameter

 This document creates a new registration for version-negotiation
 hints in the "Hypertext Transfer Protocol (HTTP) Alt-Svc Parameter"
 registry established in [RFC7838].

 Parameter: "quic"

 Specification: This document, Section 2.2.1

10.3. Frame Types

 This document establishes a registry for HTTP/QUIC frame type codes.
 The "HTTP/QUIC Frame Type" registry manages an 8-bit space. The
 "HTTP/QUIC Frame Type" registry operates under either of the "IETF
 Review" or "IESG Approval" policies [RFC8126] for values from 0x00 up
 to and including 0xef, with values from 0xf0 up to and including 0xff
 being reserved for Experimental Use.

 While this registry is separate from the "HTTP/2 Frame Type" registry
 defined in [RFC7540], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every
 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation.

 New entries in this registry require the following information:

 Frame Type: A name or label for the frame type.

 Code: The 8-bit code assigned to the frame type.

 Specification: A reference to a specification that includes a
 description of the frame layout and its semantics, including any
 parts of the frame that are conditionally present.

 The entries in the following table are registered by this document.

https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 35]

Internet-Draft HTTP over QUIC August 2018

 +--------------+------+---------------+
 | Frame Type | Code | Specification |
 +--------------+------+---------------+
 | DATA | 0x0 | Section 4.2.2 |
 | | | |
 | HEADERS | 0x1 | Section 4.2.3 |
 | | | |
 | PRIORITY | 0x2 | Section 4.2.4 |
 | | | |
 | CANCEL_PUSH | 0x3 | Section 4.2.5 |
 | | | |
 | SETTINGS | 0x4 | Section 4.2.6 |
 | | | |
 | PUSH_PROMISE | 0x5 | Section 4.2.7 |
 | | | |
 | Reserved | 0x6 | N/A |
 | | | |
 | GOAWAY | 0x7 | Section 4.2.8 |
 | | | |
 | Reserved | 0x8 | N/A |
 | | | |
 | Reserved | 0x9 | N/A |
 | | | |
 | MAX_PUSH_ID | 0xD | Section 4.2.9 |
 +--------------+------+---------------+

 Additionally, each code of the format "0xb + (0x1f * N)" for values
 of N in the range (0..7) (that is, "0xb", "0x2a", "0x49", "0x68",
 "0x87", "0xa6", "0xc5", and "0xe4"), the following values should be
 registered:

 Frame Type: Reserved - GREASE

 Specification: Section 4.2.1

10.4. Settings Parameters

 This document establishes a registry for HTTP/QUIC settings. The
 "HTTP/QUIC Settings" registry manages a 16-bit space. The "HTTP/QUIC
 Settings" registry operates under the "Expert Review" policy
 [RFC8126] for values in the range from 0x0000 to 0xefff, with values
 between and 0xf000 and 0xffff being reserved for Experimental Use.
 The designated experts are the same as those for the "HTTP/2
 Settings" registry defined in [RFC7540].

 While this registry is separate from the "HTTP/2 Settings" registry
 defined in [RFC7540], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires February 16, 2019 [Page 36]

Internet-Draft HTTP over QUIC August 2018

 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation.

 New registrations are advised to provide the following information:

 Name: A symbolic name for the setting. Specifying a setting name is
 optional.

 Code: The 16-bit code assigned to the setting.

 Specification: An optional reference to a specification that
 describes the use of the setting.

 The entries in the following table are registered by this document.

 +----------------------+------+-----------------+
 | Setting Name | Code | Specification |
 +----------------------+------+-----------------+
 | Reserved | 0x2 | N/A |
 | | | |
 | NUM_PLACEHOLDERS | 0x3 | Section 4.2.6.2 |
 | | | |
 | Reserved | 0x4 | N/A |
 | | | |
 | Reserved | 0x5 | N/A |
 | | | |
 | MAX_HEADER_LIST_SIZE | 0x6 | Section 4.2.6.2 |
 +----------------------+------+-----------------+

 Additionally, each code of the format "0x?a?a" where each "?" is any
 four bits (that is, "0x0a0a", "0x0a1a", etc. through "0xfafa"), the
 following values should be registered:

 Name: Reserved - GREASE

 Specification: Section 4.2.6.2

10.5. Error Codes

 This document establishes a registry for HTTP/QUIC error codes. The
 "HTTP/QUIC Error Code" registry manages a 16-bit space. The "HTTP/
 QUIC Error Code" registry operates under the "Expert Review" policy
 [RFC8126].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires February 16, 2019 [Page 37]

Internet-Draft HTTP over QUIC August 2018

 New registrations are advised to provide the following information:

 Name: A name for the error code. Specifying an error code name is
 optional.

 Code: The 16-bit error code value.

 Description: A brief description of the error code semantics, longer
 if no detailed specification is provided.

 Specification: An optional reference for a specification that
 defines the error code.

 The entries in the following table are registered by this document.

 +-------------------------+-------+---------------+-----------------+
 | Name | Code | Description | Specification |
 +-------------------------+-------+---------------+-----------------+
STOPPING	0x000	Reserved by	[QUIC-TRANSPORT
	0	QUIC]
HTTP_NO_ERROR	0x000	No error	Section 6.1
	1		
HTTP_PUSH_REFUSED	0x000	Client	Section 6.1
	2	refused	
		pushed	
		content	
HTTP_INTERNAL_ERROR	0x000	Internal	Section 6.1
	3	error	
HTTP_PUSH_ALREADY_IN_CA	0x000	Pushed	Section 6.1
CHE	4	content	
		already	
		cached	
HTTP_REQUEST_CANCELLED	0x000	Data no	Section 6.1
	5	longer needed	
HTTP_INCOMPLETE_REQUEST	0x000	Stream	Section 6.1
	6	terminated	
		early	
HTTP_CONNECT_ERROR	0x000	TCP reset or	Section 6.1
	7	error on	
		CONNECT	
		request	

Bishop Expires February 16, 2019 [Page 38]

Internet-Draft HTTP over QUIC August 2018

HTTP_EXCESSIVE_LOAD	0x000	Peer	Section 6.1
	8	generating	
		excessive	
		load	
HTTP_VERSION_FALLBACK	0x000	Retry over	Section 6.1
	9	HTTP/2	
HTTP_WRONG_STREAM	0x000	A frame was	Section 6.1
	A	sent on the	
		wrong stream	
HTTP_PUSH_LIMIT_EXCEEDE	0x000	Maximum Push	Section 6.1
D	B	ID exceeded	
HTTP_DUPLICATE_PUSH	0x000	Push ID was	Section 6.1
	C	fulfilled	
		multiple	
		times	
HTTP_UNKNOWN_STREAM_TYP	0x000	Unknown unidi	Section 6.1
E	D	rectional	
		stream type	
HTTP_WRONG_STREAM_COUNT	0x000	Too many unid	Section 6.1
	E	irectional	
		streams	
HTTP_CLOSED_CRITICAL_ST	0x000	Critical	Section 6.1
REAM	F	stream was	
		closed	
HTTP_WRONG_STREAM_DIREC	0x001	Unidirectiona	Section 6.1
TION	0	l stream in	
		wrong	
		direction	
HTTP_EARLY_RESPONSE	0x001	Remainder of	Section 6.1
	1	request not	
		needed	
HTTP_MALFORMED_FRAME	0x01X	Error in	Section 6.1
	X	frame	
		formatting or	
		use	
 +-------------------------+-------+---------------+-----------------+

Bishop Expires February 16, 2019 [Page 39]

Internet-Draft HTTP over QUIC August 2018

10.6. Stream Types

 This document establishes a registry for HTTP/QUIC unidirectional
 stream types. The "HTTP/QUIC Stream Type" registry manages an 8-bit
 space. The "HTTP/QUIC Stream Type" registry operates under either of
 the "IETF Review" or "IESG Approval" policies [RFC8126] for values
 from 0x00 up to and including 0xef, with values from 0xf0 up to and
 including 0xff being reserved for Experimental Use.

 New entries in this registry require the following information:

 Stream Type: A name or label for the stream type.

 Code: The 8-bit code assigned to the stream type.

 Specification: A reference to a specification that includes a
 description of the stream type, including the layout semantics of
 its payload.

 Sender: Which endpoint on a connection may initiate a stream of this
 type. Values are "Client", "Server", or "Both".

 The entries in the following table are registered by this document.

 +----------------+------+---------------+--------+
 | Stream Type | Code | Specification | Sender |
 +----------------+------+---------------+--------+
 | Control Stream | 0x43 | Section 3.3.2 | Both |
 | | | | |
 | Push Stream | 0x50 | Section 3.3.3 | Server |
 +----------------+------+---------------+--------+

 Additionally, for each code of the format "0x1f * N" for values of N
 in the range (0..8) (that is, "0x00", "0x1f", "0x3e", "0x5d", "0x7c",
 "0x9b", "0xba", "0xd9", "0xf8"), the following values should be
 registered:

 Stream Type: Reserved - GREASE

 Specification: Section 3.3.1

 Sender: Both

11. References

https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires February 16, 2019 [Page 40]

Internet-Draft HTTP over QUIC August 2018

11.1. Normative References

 [QPACK] Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:
 Header Compression for HTTP over QUIC", draft-ietf-quic-

qpack-02 (work in progress), August 2018.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-13 (work in progress), August 2018.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838

Bishop Expires February 16, 2019 [Page 41]

Internet-Draft HTTP over QUIC August 2018

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

11.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-http

 [4] https://www.iana.org/assignments/message-headers

Appendix A. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

A.1. Since draft-ietf-quic-http-13

 o Reserved some frame types for grease (#1333, #1446)

 o Unknown unidirectional stream types are tolerated, not errors;
 some reserved for grease (#1490, #1525)

 o Require settings to be remembered for 0-RTT, prohibit reductions
 (#1541, #1641)

 o Specify behavior for truncated requests (#1596, #1643)

A.2. Since draft-ietf-quic-http-12

 o TLS SNI extension isn't mandatory if an alternative method is used
 (#1459, #1462, #1466)

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-http
https://www.iana.org/assignments/message-headers
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-12

Bishop Expires February 16, 2019 [Page 42]

Internet-Draft HTTP over QUIC August 2018

 o Removed flags from HTTP/QUIC frames (#1388, #1398)

 o Reserved frame types and settings for use in preserving
 extensibility (#1333, #1446)

 o Added general error code (#1391, #1397)

 o Unidirectional streams carry a type byte and are extensible
 (#910,#1359)

 o Priority mechanism now uses explicit placeholders to enable
 persistent structure in the tree (#441,#1421,#1422)

A.3. Since draft-ietf-quic-http-11

 o Moved QPACK table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

A.4. Since draft-ietf-quic-http-10

 o Settings need to be remembered when attempting and accepting 0-RTT
 (#1157, #1207)

A.5. Since draft-ietf-quic-http-09

 o Selected QCRAM for header compression (#228, #1117)

 o The server_name TLS extension is now mandatory (#296, #495)

 o Specified handling of unsupported versions in Alt-Svc (#1093,
 #1097)

A.6. Since draft-ietf-quic-http-08

 o Clarified connection coalescing rules (#940, #1024)

A.7. Since draft-ietf-quic-http-07

 o Changes for integer encodings in QUIC (#595,#905)

 o Use unidirectional streams as appropriate (#515, #240, #281, #886)

 o Improvement to the description of GOAWAY (#604, #898)

 o Improve description of server push usage (#947, #950, #957)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-07

Bishop Expires February 16, 2019 [Page 43]

Internet-Draft HTTP over QUIC August 2018

A.8. Since draft-ietf-quic-http-06

 o Track changes in QUIC error code usage (#485)

A.9. Since draft-ietf-quic-http-05

 o Made push ID sequential, add MAX_PUSH_ID, remove
 SETTINGS_ENABLE_PUSH (#709)

 o Guidance about keep-alive and QUIC PINGs (#729)

 o Expanded text on GOAWAY and cancellation (#757)

A.10. Since draft-ietf-quic-http-04

 o Cite RFC 5234 (#404)

 o Return to a single stream per request (#245,#557)

 o Use separate frame type and settings registries from HTTP/2 (#81)

 o SETTINGS_ENABLE_PUSH instead of SETTINGS_DISABLE_PUSH (#477)

 o Restored GOAWAY (#696)

 o Identify server push using Push ID rather than a stream ID
 (#702,#281)

 o DATA frames cannot be empty (#700)

A.11. Since draft-ietf-quic-http-03

 None.

A.12. Since draft-ietf-quic-http-02

 o Track changes in transport draft

A.13. Since draft-ietf-quic-http-01

 o SETTINGS changes (#181):

 * SETTINGS can be sent only once at the start of a connection; no
 changes thereafter

 * SETTINGS_ACK removed

 * Settings can only occur in the SETTINGS frame a single time

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01

Bishop Expires February 16, 2019 [Page 44]

Internet-Draft HTTP over QUIC August 2018

 * Boolean format updated

 o Alt-Svc parameter changed from "v" to "quic"; format updated
 (#229)

 o Closing the connection control stream or any message control
 stream is a fatal error (#176)

 o HPACK Sequence counter can wrap (#173)

 o 0-RTT guidance added

 o Guide to differences from HTTP/2 and porting HTTP/2 extensions
 added (#127,#242)

A.14. Since draft-ietf-quic-http-00

 o Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

 o Changed from using HTTP/2 framing within Stream 3 to new framing
 format and two-stream-per-request model (#71,#72,#73)

 o Adopted SETTINGS format from draft-bishop-httpbis-extended-
settings-01

 o Reworked SETTINGS_ACK to account for indeterminate inter-stream
 order (#75)

 o Described CONNECT pseudo-method (#95)

 o Updated ALPN token and Alt-Svc guidance (#13,#87)

 o Application-layer-defined error codes (#19,#74)

A.15. Since draft-shade-quic-http2-mapping-00

 o Adopted as base for draft-ietf-quic-http

 o Updated authors/editors list

Acknowledgements

 The original authors of this specification were Robbie Shade and Mike
 Warres.

 A substantial portion of Mike's contribution was supported by
 Microsoft during his employment there.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http

Bishop Expires February 16, 2019 [Page 45]

Internet-Draft HTTP over QUIC August 2018

Author's Address

 Mike Bishop (editor)
 Akamai

 Email: mbishop@evequefou.be

Bishop Expires February 16, 2019 [Page 46]

