
QUIC M. Bishop, Ed.
Internet-Draft Akamai
Intended status: Standards Track November 04, 2019
Expires: May 7, 2020

Hypertext Transfer Protocol Version 3 (HTTP/3)
draft-ietf-quic-http-24

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC. This document also
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how HTTP/2 extensions can be ported to HTTP/3.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-http [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Bishop Expires May 7, 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-http
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP/3 November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Prior versions of HTTP 4
1.2. Delegation to QUIC 5

2. HTTP/3 Protocol Overview 5
2.1. Document Organization 6
2.2. Conventions and Terminology 6

3. Connection Setup and Management 8
3.1. Draft Version Identification 8
3.2. Discovering an HTTP/3 Endpoint 8
3.3. Connection Establishment 9
3.4. Connection Reuse . 9

4. HTTP Request Lifecycle 10
4.1. HTTP Message Exchanges 10
4.1.1. Header Formatting and Compression 12
4.1.2. Request Cancellation and Rejection 13
4.1.3. Malformed Requests and Responses 13

4.2. The CONNECT Method 14
4.3. HTTP Upgrade . 15
4.4. Server Push . 15

5. Connection Closure . 17
5.1. Idle Connections . 17
5.2. Connection Shutdown 17
5.3. Immediate Application Closure 19
5.4. Transport Closure . 19

6. Stream Mapping and Usage 19
6.1. Bidirectional Streams 20
6.2. Unidirectional Streams 20
6.2.1. Control Streams 21
6.2.2. Push Streams . 22
6.2.3. Reserved Stream Types 23

7. HTTP Framing Layer . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bishop Expires May 7, 2020 [Page 2]

Internet-Draft HTTP/3 November 2019

7.1. Frame Layout . 24
7.2. Frame Definitions . 25
7.2.1. DATA . 25
7.2.2. HEADERS . 26
7.2.3. CANCEL_PUSH . 26
7.2.4. SETTINGS . 27
7.2.5. PUSH_PROMISE . 30
7.2.6. GOAWAY . 31
7.2.7. MAX_PUSH_ID . 32
7.2.8. DUPLICATE_PUSH 32
7.2.9. Reserved Frame Types 33

8. Error Handling . 34
8.1. HTTP/3 Error Codes 34

9. Extensions to HTTP/3 . 35
10. Security Considerations 36
10.1. Traffic Analysis . 36
10.2. Frame Parsing . 37
10.3. Early Data . 37
10.4. Migration . 37

11. IANA Considerations . 37
11.1. Registration of HTTP/3 Identification String 37
11.2. Frame Types . 37
11.3. Settings Parameters 39
11.4. Error Codes . 40
11.5. Stream Types . 42

12. References . 43
12.1. Normative References 43
12.2. Informative References 45
12.3. URIs . 45

Appendix A. Considerations for Transitioning from HTTP/2 45
A.1. Streams . 46
A.2. HTTP Frame Types . 46
A.2.1. Prioritization Differences 47
A.2.2. Header Compression Differences 47
A.2.3. Guidance for New Frame Type Definitions 48
A.2.4. Mapping Between HTTP/2 and HTTP/3 Frame Types 48

A.3. HTTP/2 SETTINGS Parameters 49
A.4. HTTP/2 Error Codes 50

Appendix B. Change Log . 51
B.1. Since draft-ietf-quic-http-23 51
B.2. Since draft-ietf-quic-http-22 51
B.3. Since draft-ietf-quic-http-21 52
B.4. Since draft-ietf-quic-http-20 52
B.5. Since draft-ietf-quic-http-19 53
B.6. Since draft-ietf-quic-http-18 53
B.7. Since draft-ietf-quic-http-17 54
B.8. Since draft-ietf-quic-http-16 54
B.9. Since draft-ietf-quic-http-15 54

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-22
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-19
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-15

Bishop Expires May 7, 2020 [Page 3]

Internet-Draft HTTP/3 November 2019

B.10. Since draft-ietf-quic-http-14 55
B.11. Since draft-ietf-quic-http-13 55
B.12. Since draft-ietf-quic-http-12 55
B.13. Since draft-ietf-quic-http-11 56
B.14. Since draft-ietf-quic-http-10 56
B.15. Since draft-ietf-quic-http-09 56
B.16. Since draft-ietf-quic-http-08 56
B.17. Since draft-ietf-quic-http-07 56
B.18. Since draft-ietf-quic-http-06 56
B.19. Since draft-ietf-quic-http-05 56
B.20. Since draft-ietf-quic-http-04 57
B.21. Since draft-ietf-quic-http-03 57
B.22. Since draft-ietf-quic-http-02 57
B.23. Since draft-ietf-quic-http-01 57
B.24. Since draft-ietf-quic-http-00 58
B.25. Since draft-shade-quic-http2-mapping-00 58

 Acknowledgements . 58
 Author's Address . 58

1. Introduction

 HTTP semantics are used for a broad range of services on the
 Internet. These semantics have commonly been used with two different
 TCP mappings, HTTP/1.1 and HTTP/2. HTTP/3 supports the same
 semantics over a new transport protocol, QUIC.

1.1. Prior versions of HTTP

 HTTP/1.1 is a TCP mapping which uses whitespace-delimited text fields
 to convey HTTP messages. While these exchanges are human-readable,
 using whitespace for message formatting leads to parsing difficulties
 and workarounds to be tolerant of variant behavior. Because each
 connection can transfer only a single HTTP request or response at a
 time in each direction, multiple parallel TCP connections are often
 used, reducing the ability of the congestion controller to accurately
 manage traffic between endpoints.

 HTTP/2 introduced a binary framing and multiplexing layer to improve
 latency without modifying the transport layer. However, because the
 parallel nature of HTTP/2's multiplexing is not visible to TCP's loss
 recovery mechanisms, a lost or reordered packet causes all active
 transactions to experience a stall regardless of whether that
 transaction was impacted by the lost packet.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00

Bishop Expires May 7, 2020 [Page 4]

Internet-Draft HTTP/3 November 2019

1.2. Delegation to QUIC

 The QUIC transport protocol incorporates stream multiplexing and per-
 stream flow control, similar to that provided by the HTTP/2 framing
 layer. By providing reliability at the stream level and congestion
 control across the entire connection, it has the capability to
 improve the performance of HTTP compared to a TCP mapping. QUIC also
 incorporates TLS 1.3 at the transport layer, offering comparable
 security to running TLS over TCP, with the improved connection setup
 latency of TCP Fast Open [RFC7413].

 This document defines a mapping of HTTP semantics over the QUIC
 transport protocol, drawing heavily on the design of HTTP/2. While
 delegating stream lifetime and flow control issues to QUIC, a similar
 binary framing is used on each stream. Some HTTP/2 features are
 subsumed by QUIC, while other features are implemented atop QUIC.

 QUIC is described in [QUIC-TRANSPORT]. For a full description of
 HTTP/2, see [HTTP2].

2. HTTP/3 Protocol Overview

 HTTP/3 provides a transport for HTTP semantics using the QUIC
 transport protocol and an internal framing layer similar to HTTP/2.

 Once a client knows that an HTTP/3 server exists at a certain
 endpoint, it opens a QUIC connection. QUIC provides protocol
 negotiation, stream-based multiplexing, and flow control. An HTTP/3
 endpoint can be discovered using HTTP Alternative Services; this
 process is described in greater detail in Section 3.2.

 Within each stream, the basic unit of HTTP/3 communication is a frame
 (Section 7.2). Each frame type serves a different purpose. For
 example, HEADERS and DATA frames form the basis of HTTP requests and
 responses (Section 4.1).

 Multiplexing of requests is performed using the QUIC stream
 abstraction, described in Section 2 of [QUIC-TRANSPORT]. Each
 request and response consumes a single QUIC stream. Streams are
 independent of each other, so one stream that is blocked or suffers
 packet loss does not prevent progress on other streams.

 Server push is an interaction mode introduced in HTTP/2 [HTTP2] which
 permits a server to push a request-response exchange to a client in
 anticipation of the client making the indicated request. This trades
 off network usage against a potential latency gain. Several HTTP/3
 frames are used to manage server push, such as PUSH_PROMISE,
 DUPLICATE_PUSH, MAX_PUSH_ID, and CANCEL_PUSH.

https://datatracker.ietf.org/doc/html/rfc7413

Bishop Expires May 7, 2020 [Page 5]

Internet-Draft HTTP/3 November 2019

 As in HTTP/2, request and response headers are compressed for
 transmission. Because HPACK [HPACK] relies on in-order transmission
 of compressed header blocks (a guarantee not provided by QUIC),
 HTTP/3 replaces HPACK with QPACK [QPACK]. QPACK uses separate
 unidirectional streams to modify and track header table state, while
 header blocks refer to the state of the table without modifying it.

2.1. Document Organization

 The HTTP/3 specification is split into seven parts. The document
 begins with a detailed overview of the connection lifecycle and key
 concepts:

 o Connection Setup and Management (Section 3) covers how an HTTP/3
 endpoint is discovered and a connection is established.

 o HTTP Request Lifecycle (Section 4) describes how HTTP semantics
 are expressed using frames.

 o Connection Closure (Section 5) describes how connections are
 terminated, either gracefully or abruptly.

 The details of the wire protocol and interactions with the transport
 are described in subsequent sections:

 o Stream Mapping and Usage (Section 6) describes the way QUIC
 streams are used.

 o HTTP Framing Layer (Section 7) describes the frames used on most
 streams.

 o Error Handling (Section 8) describes how error conditions are
 handled and expressed, either on a particular stream or for the
 connection as a whole.

 Additional resources are provided in the final sections:

 o Extensions to HTTP/3 (Section 9) describes how new capabilities
 can be added in future documents.

 o A more detailed comparison between HTTP/2 and HTTP/3 can be found
 in Appendix A.

2.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Bishop Expires May 7, 2020 [Page 6]

Internet-Draft HTTP/3 November 2019

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Field definitions are given in Augmented Backus-Naur Form (ABNF), as
 defined in [RFC5234].

 This document uses the variable-length integer encoding from
 [QUIC-TRANSPORT].

 The following terms are used:

 abort: An abrupt termination of a connection or stream, possibly due
 to an error condition.

 client: The endpoint that initiates an HTTP/3 connection. Clients
 send HTTP requests and receive HTTP responses.

 connection: A transport-layer connection between two endpoints,
 using QUIC as the transport protocol.

 connection error: An error that affects the entire HTTP/3
 connection.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication on a stream in HTTP/3,
 consisting of a header and a variable-length sequence of bytes
 structured according to the frame type. Protocol elements called
 "frames" exist in both this document and [QUIC-TRANSPORT]. Where
 frames from [QUIC-TRANSPORT] are referenced, the frame name will
 be prefaced with "QUIC." For example, "QUIC CONNECTION_CLOSE
 frames." References without this preface refer to frames defined
 in Section 7.2.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint that accepts an HTTP/3 connection. Servers
 receive HTTP requests and send HTTP responses.

 stream: A bidirectional or unidirectional bytestream provided by the
 QUIC transport.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234

Bishop Expires May 7, 2020 [Page 7]

Internet-Draft HTTP/3 November 2019

 stream error: An error on the individual HTTP/3 stream.

 The term "payload body" is defined in Section 3.3 of [RFC7230].

 Finally, the terms "gateway", "intermediary", "proxy", and "tunnel"
 are defined in Section 2.3 of [RFC7230]. Intermediaries act as both
 client and server at different times.

3. Connection Setup and Management

3.1. Draft Version Identification

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 HTTP/3 uses the token "h3" to identify itself in ALPN and Alt-Svc.
 Only implementations of the final, published RFC can identify
 themselves as "h3". Until such an RFC exists, implementations MUST
 NOT identify themselves using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-" and the corresponding draft number to the identifier. For
 example, draft-ietf-quic-http-01 is identified using the string
 "h3-01".

 Non-compatible experiments that are based on these draft versions
 MUST append the string "-" and an experiment name to the identifier.
 For example, an experimental implementation based on draft-ietf-quic-

http-09 which reserves an extra stream for unsolicited transmission
 of 1980s pop music might identify itself as "h3-09-rickroll". Note
 that any label MUST conform to the "token" syntax defined in

Section 3.2.6 of [RFC7230]. Experimenters are encouraged to
 coordinate their experiments on the quic@ietf.org mailing list.

3.2. Discovering an HTTP/3 Endpoint

 An HTTP origin advertises the availability of an equivalent HTTP/3
 endpoint via the Alt-Svc HTTP response header field or the HTTP/2
 ALTSVC frame ([ALTSVC]), using the ALPN token defined in Section 3.3.

 For example, an origin could indicate in an HTTP response that HTTP/3
 was available on UDP port 50781 at the same hostname by including the
 following header field:

 Alt-Svc: h3=":50781"

 On receipt of an Alt-Svc record indicating HTTP/3 support, a client
 MAY attempt to establish a QUIC connection to the indicated host and

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-2.3
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Bishop Expires May 7, 2020 [Page 8]

Internet-Draft HTTP/3 November 2019

 port and, if successful, send HTTP requests using the mapping
 described in this document.

 Connectivity problems (e.g. firewall blocking UDP) can result in QUIC
 connection establishment failure, in which case the client SHOULD
 continue using the existing connection or try another alternative
 endpoint offered by the origin.

 Servers MAY serve HTTP/3 on any UDP port, since an alternative always
 includes an explicit port.

3.3. Connection Establishment

 HTTP/3 relies on QUIC as the underlying transport. The QUIC version
 being used MUST use TLS version 1.3 or greater as its handshake
 protocol. HTTP/3 clients MUST indicate the target domain name during
 the TLS handshake. This may be done using the Server Name Indication
 (SNI) [RFC6066] extension to TLS or using some other mechanism.

 QUIC connections are established as described in [QUIC-TRANSPORT].
 During connection establishment, HTTP/3 support is indicated by
 selecting the ALPN token "h3" in the TLS handshake. Support for
 other application-layer protocols MAY be offered in the same
 handshake.

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake, HTTP/3-specific settings are
 conveyed in the SETTINGS frame. After the QUIC connection is
 established, a SETTINGS frame (Section 7.2.4) MUST be sent by each
 endpoint as the initial frame of their respective HTTP control stream
 (see Section 6.2.1).

3.4. Connection Reuse

 Once a connection exists to a server endpoint, this connection MAY be
 reused for requests with multiple different URI authority components.
 The client MAY send any requests for which the client considers the
 server authoritative.

 An authoritative HTTP/3 endpoint is typically discovered because the
 client has received an Alt-Svc record from the request's origin which
 nominates the endpoint as a valid HTTP Alternative Service for that
 origin. As required by [RFC7838], clients MUST check that the
 nominated server can present a valid certificate for the origin
 before considering it authoritative. Clients MUST NOT assume that an
 HTTP/3 endpoint is authoritative for other origins without an
 explicit signal.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7838

Bishop Expires May 7, 2020 [Page 9]

Internet-Draft HTTP/3 November 2019

 Prior to making requests for an origin whose scheme is not "https,"
 the client MUST ensure the server is willing to serve that scheme.
 If the client intends to make requests for an origin whose scheme is
 "http", this means that it MUST obtain a valid "http-opportunistic"
 response for the origin as described in [RFC8164] prior to making any
 such requests. Other schemes might define other mechanisms.

 A server that does not wish clients to reuse connections for a
 particular origin can indicate that it is not authoritative for a
 request by sending a 421 (Misdirected Request) status code in
 response to the request (see Section 9.1.2 of [HTTP2]).

 The considerations discussed in Section 9.1 of [HTTP2] also apply to
 the management of HTTP/3 connections.

4. HTTP Request Lifecycle

4.1. HTTP Message Exchanges

 A client sends an HTTP request on a client-initiated bidirectional
 QUIC stream. A client MUST send only a single request on a given
 stream. A server sends zero or more non-final HTTP responses on the
 same stream as the request, followed by a single final HTTP response,
 as detailed below.

 An HTTP message (request or response) consists of:

 1. the message header (see [RFC7230], Section 3.2), sent as a single
 HEADERS frame (see Section 7.2.2),

 2. optionally, the payload body, if present (see [RFC7230],
 Section 3.3), sent as a series of DATA frames (see

Section 7.2.1),

 3. optionally, trailing headers, if present (see [RFC7230],
 Section 4.1.2), sent as a single HEADERS frame.

 A server MAY send one or more PUSH_PROMISE frames (see Section 7.2.5)
 before, after, or interleaved with the frames of a response message.
 These PUSH_PROMISE frames are not part of the response; see

Section 4.4 for more details.

 Frames of unknown types (Section 9), including reserved frames
 (Section 7.2.9) MAY be sent on a request or push stream before,
 after, or interleaved with other frames described in this section.

 The HEADERS and PUSH_PROMISE frames might reference updates to the
 QPACK dynamic table. While these updates are not directly part of

https://datatracker.ietf.org/doc/html/rfc8164
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2

Bishop Expires May 7, 2020 [Page 10]

Internet-Draft HTTP/3 November 2019

 the message exchange, they must be received and processed before the
 message can be consumed. See Section 4.1.1 for more details.

 The "chunked" transfer encoding defined in Section 4.1 of [RFC7230]
 MUST NOT be used.

 A response MAY consist of multiple messages when and only when one or
 more informational responses (1xx; see [RFC7231], Section 6.2)
 precede a final response to the same request. Non-final responses do
 not contain a payload body or trailers.

 If an endpoint receives an invalid sequence of frames on either a
 request or a push stream, it MUST respond with a connection error of
 type H3_FRAME_UNEXPECTED (Section 8). In particular, a DATA frame
 before any HEADERS frame, or a HEADERS or DATA frame after the
 trailing HEADERS frame is considered invalid.

 An HTTP request/response exchange fully consumes a bidirectional QUIC
 stream. After sending a request, a client MUST close the stream for
 sending. Unless using the CONNECT method (see Section 4.2), clients
 MUST NOT make stream closure dependent on receiving a response to
 their request. After sending a final response, the server MUST close
 the stream for sending. At this point, the QUIC stream is fully
 closed.

 When a stream is closed, this indicates the end of an HTTP message.
 Because some messages are large or unbounded, endpoints SHOULD begin
 processing partial HTTP messages once enough of the message has been
 received to make progress. If a client stream terminates without
 enough of the HTTP message to provide a complete response, the server
 SHOULD abort its response with the error code H3_REQUEST_INCOMPLETE.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When the server does
 not need to receive the remainder of the request, it MAY abort
 reading the request stream with error code H3_EARLY_RESPONSE, send a
 complete response, and cleanly close the sending part of the stream.
 Clients MUST NOT discard complete responses as a result of having
 their request terminated abruptly, though clients can always discard
 responses at their discretion for other reasons. If the server sends
 a partial or complete response but does not abort reading, clients
 SHOULD continue sending the body of the request and close the stream
 normally.

https://datatracker.ietf.org/doc/html/rfc7230#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2

Bishop Expires May 7, 2020 [Page 11]

Internet-Draft HTTP/3 November 2019

4.1.1. Header Formatting and Compression

 HTTP message headers carry information as a series of key-value
 pairs, called header fields. For a listing of registered HTTP header
 fields, see the "Message Header Field" registry maintained at

https://www.iana.org/assignments/message-headers [4].

 Just as in previous versions of HTTP, header field names are strings
 of ASCII characters that are compared in a case-insensitive fashion.
 Properties of HTTP header field names and values are discussed in
 more detail in Section 3.2 of [RFC7230], though the wire rendering in
 HTTP/3 differs. As in HTTP/2, header field names MUST be converted
 to lowercase prior to their encoding. A request or response
 containing uppercase header field names MUST be treated as malformed
 (Section 4.1.3).

 As in HTTP/2, HTTP/3 uses special pseudo-header fields beginning with
 the ':' character (ASCII 0x3a) to convey the target URI, the method
 of the request, and the status code for the response. These pseudo-
 header fields are defined in Section 8.1.2.3 and 8.1.2.4 of [HTTP2].
 Pseudo-header fields are not HTTP header fields. Endpoints MUST NOT
 generate pseudo-header fields other than those defined in [HTTP2].
 The restrictions on the use of pseudo-header fields in Section 8.1.2
 of [HTTP2] also apply to HTTP/3. Messages which are considered
 malformed under these restrictions are handled as described in

Section 4.1.3.

 HTTP/3 uses QPACK header compression as described in [QPACK], a
 variation of HPACK which allows the flexibility to avoid header-
 compression-induced head-of-line blocking. See that document for
 additional details.

 To allow for better compression efficiency, the cookie header field
 [RFC6265] MAY be split into separate header fields, each with one or
 more cookie-pairs, before compression. If a decompressed header list
 contains multiple cookie header fields, these MUST be concatenated
 before being passed into a non-HTTP/2, non-HTTP/3 context, as
 described in [HTTP2], Section 8.1.2.5.

 An HTTP/3 implementation MAY impose a limit on the maximum size of
 the message header it will accept on an individual HTTP message. A
 server that receives a larger header field list than it is willing to
 handle can send an HTTP 431 (Request Header Fields Too Large) status
 code [RFC6585]. A client can discard responses that it cannot
 process. The size of a header field list is calculated based on the
 uncompressed size of header fields, including the length of the name
 and value in bytes plus an overhead of 32 bytes for each header
 field.

https://www.iana.org/assignments/message-headers
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6585

Bishop Expires May 7, 2020 [Page 12]

Internet-Draft HTTP/3 November 2019

 If an implementation wishes to advise its peer of this limit, it can
 be conveyed as a number of bytes in the
 "SETTINGS_MAX_HEADER_LIST_SIZE" parameter. An implementation which
 has received this parameter SHOULD NOT send an HTTP message header
 which exceeds the indicated size, as the peer will likely refuse to
 process it. However, because this limit is applied at each hop,
 messages below this limit are not guaranteed to be accepted.

4.1.2. Request Cancellation and Rejection

 Clients can cancel requests by resetting and aborting the request
 stream with an error code of H3_REQUEST_CANCELLED (Section 8.1).
 When the client aborts reading a response, it indicates that this
 response is no longer of interest. Implementations SHOULD cancel
 requests by abruptly terminating any directions of a stream that are
 still open.

 When the server rejects a request without performing any application
 processing, it SHOULD abort its response stream with the error code
 H3_REQUEST_REJECTED. In this context, "processed" means that some
 data from the stream was passed to some higher layer of software that
 might have taken some action as a result. The client can treat
 requests rejected by the server as though they had never been sent at
 all, thereby allowing them to be retried later on a new connection.
 Servers MUST NOT use the H3_REQUEST_REJECTED error code for requests
 which were partially or fully processed. When a server abandons a
 response after partial processing, it SHOULD abort its response
 stream with the error code H3_REQUEST_CANCELLED.

 When a client resets a request with the error code
 H3_REQUEST_CANCELLED, a server MAY abruptly terminate the response
 using the error code H3_REQUEST_REJECTED if no processing was
 performed. Clients MUST NOT use the H3_REQUEST_REJECTED error code,
 except when a server has requested closure of the request stream with
 this error code.

 If a stream is cancelled after receiving a complete response, the
 client MAY ignore the cancellation and use the response. However, if
 a stream is cancelled after receiving a partial response, the
 response SHOULD NOT be used. Automatically retrying such requests is
 not possible, unless this is otherwise permitted (e.g., idempotent
 actions like GET, PUT, or DELETE).

4.1.3. Malformed Requests and Responses

 A malformed request or response is one that is an otherwise valid
 sequence of frames but is invalid due to the presence of extraneous

Bishop Expires May 7, 2020 [Page 13]

Internet-Draft HTTP/3 November 2019

 frames, prohibited header fields, the absence of mandatory header
 fields, or the inclusion of uppercase header field names.

 A request or response that includes a payload body can include a
 "content-length" header field. A request or response is also
 malformed if the value of a content-length header field does not
 equal the sum of the DATA frame payload lengths that form the body.
 A response that is defined to have no payload, as described in

Section 3.3.2 of [RFC7230] can have a non-zero content-length header
 field, even though no content is included in DATA frames.

 Intermediaries that process HTTP requests or responses (i.e., any
 intermediary not acting as a tunnel) MUST NOT forward a malformed
 request or response. Malformed requests or responses that are
 detected MUST be treated as a stream error (Section 8) of type
 H3_GENERAL_PROTOCOL_ERROR.

 For malformed requests, a server MAY send an HTTP response prior to
 closing or resetting the stream. Clients MUST NOT accept a malformed
 response. Note that these requirements are intended to protect
 against several types of common attacks against HTTP; they are
 deliberately strict because being permissive can expose
 implementations to these vulnerabilities.

4.2. The CONNECT Method

 The pseudo-method CONNECT ([RFC7231], Section 4.3.6) is primarily
 used with HTTP proxies to establish a TLS session with an origin
 server for the purposes of interacting with "https" resources. In
 HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a
 tunnel to a remote host. In HTTP/2, the CONNECT method is used to
 establish a tunnel over a single HTTP/2 stream to a remote host for
 similar purposes.

 A CONNECT request in HTTP/3 functions in the same manner as in
 HTTP/2. The request MUST be formatted as described in [HTTP2],
 Section 8.3. A CONNECT request that does not conform to these
 restrictions is malformed (see Section 4.1.3). The request stream
 MUST NOT be closed at the end of the request.

 A proxy that supports CONNECT establishes a TCP connection
 ([RFC0793]) to the server identified in the ":authority" pseudo-
 header field. Once this connection is successfully established, the
 proxy sends a HEADERS frame containing a 2xx series status code to
 the client, as defined in [RFC7231], Section 4.3.6.

 All DATA frames on the stream correspond to data sent or received on
 the TCP connection. Any DATA frame sent by the client is transmitted

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6

Bishop Expires May 7, 2020 [Page 14]

Internet-Draft HTTP/3 November 2019

 by the proxy to the TCP server; data received from the TCP server is
 packaged into DATA frames by the proxy. Note that the size and
 number of TCP segments is not guaranteed to map predictably to the
 size and number of HTTP DATA or QUIC STREAM frames.

 Once the CONNECT method has completed, only DATA frames are permitted
 to be sent on the stream. Extension frames MAY be used if
 specifically permitted by the definition of the extension. Receipt
 of any other frame type MUST be treated as a connection error of type
 H3_FRAME_UNEXPECTED.

 The TCP connection can be closed by either peer. When the client
 ends the request stream (that is, the receive stream at the proxy
 enters the "Data Recvd" state), the proxy will set the FIN bit on its
 connection to the TCP server. When the proxy receives a packet with
 the FIN bit set, it will terminate the send stream that it sends to
 the client. TCP connections which remain half-closed in a single
 direction are not invalid, but are often handled poorly by servers,
 so clients SHOULD NOT close a stream for sending while they still
 expect to receive data from the target of the CONNECT.

 A TCP connection error is signaled by abruptly terminating the
 stream. A proxy treats any error in the TCP connection, which
 includes receiving a TCP segment with the RST bit set, as a stream
 error of type H3_CONNECT_ERROR (Section 8.1). Correspondingly, if a
 proxy detects an error with the stream or the QUIC connection, it
 MUST close the TCP connection. If the underlying TCP implementation
 permits it, the proxy SHOULD send a TCP segment with the RST bit set.

4.3. HTTP Upgrade

 HTTP/3 does not support the HTTP Upgrade mechanism ([RFC7230],
 Section 6.7) or 101 (Switching Protocols) informational status code
 ([RFC7231], Section 6.2.2).

4.4. Server Push

 Server push is an interaction mode introduced in HTTP/2 [HTTP2] which
 permits a server to push a request-response exchange to a client in
 anticipation of the client making the indicated request. This trades
 off network usage against a potential latency gain. HTTP/3 server
 push is similar to what is described in HTTP/2 [HTTP2], but uses
 different mechanisms.

 Each server push is identified by a unique Push ID. This Push ID is
 used in a single PUSH_PROMISE frame (see Section 7.2.5) which carries
 the request headers, possibly included in one or more DUPLICATE_PUSH

https://datatracker.ietf.org/doc/html/rfc7230#section-6.7
https://datatracker.ietf.org/doc/html/rfc7230#section-6.7
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2.2

Bishop Expires May 7, 2020 [Page 15]

Internet-Draft HTTP/3 November 2019

 frames (see Section 7.2.8), then included with the push stream which
 ultimately fulfills those promises.

 Server push is only enabled on a connection when a client sends a
 MAX_PUSH_ID frame (see Section 7.2.7). A server cannot use server
 push until it receives a MAX_PUSH_ID frame. A client sends
 additional MAX_PUSH_ID frames to control the number of pushes that a
 server can promise. A server SHOULD use Push IDs sequentially,
 starting at 0. A client MUST treat receipt of a push stream with a
 Push ID that is greater than the maximum Push ID as a connection
 error of type H3_ID_ERROR.

 The header of the request message is carried by a PUSH_PROMISE frame
 (see Section 7.2.5) on the request stream which generated the push.
 This allows the server push to be associated with a client request.
 Promised requests MUST conform to the requirements in Section 8.2 of
 [HTTP2].

 The same server push can be associated with additional client
 requests using a DUPLICATE_PUSH frame (see Section 7.2.8).

 Ordering of a PUSH_PROMISE or DUPLICATE_PUSH in relation to certain
 parts of the response is important. The server SHOULD send
 PUSH_PROMISE or DUPLICATE_PUSH frames prior to sending HEADERS or
 DATA frames that reference the promised responses. This reduces the
 chance that a client requests a resource that will be pushed by the
 server.

 When a server later fulfills a promise, the server push response is
 conveyed on a push stream (see Section 6.2.2). The push stream
 identifies the Push ID of the promise that it fulfills, then contains
 a response to the promised request using the same format described
 for responses in Section 4.1.

 Due to reordering, DUPLICATE_PUSH frames or push stream data can
 arrive before the corresponding PUSH_PROMISE frame. When a client
 receives a DUPLICATE_PUSH frame for an as-yet-unknown Push ID, the
 request headers of the push are not immediately available. The
 client can either delay generating new requests for content
 referenced following the DUPLICATE_PUSH frame until the request
 headers become available, or can initiate requests for discovered
 resources and cancel the requests if the requested resource is
 already being pushed. When a client receives a new push stream with
 an as-yet-unknown Push ID, both the associated client request and the
 pushed request headers are unknown. The client can buffer the stream
 data in expectation of the matching PUSH_PROMISE. The client can use
 stream flow control (see section 4.1 of [QUIC-TRANSPORT]) to limit
 the amount of data a server may commit to the pushed stream.

Bishop Expires May 7, 2020 [Page 16]

Internet-Draft HTTP/3 November 2019

 If a promised server push is not needed by the client, the client
 SHOULD send a CANCEL_PUSH frame. If the push stream is already open
 or opens after sending the CANCEL_PUSH frame, the client can abort
 reading the stream with an error code of H3_REQUEST_CANCELLED. This
 asks the server not to transfer additional data and indicates that it
 will be discarded upon receipt.

5. Connection Closure

 Once established, an HTTP/3 connection can be used for many requests
 and responses over time until the connection is closed. Connection
 closure can happen in any of several different ways.

5.1. Idle Connections

 Each QUIC endpoint declares an idle timeout during the handshake. If
 the connection remains idle (no packets received) for longer than
 this duration, the peer will assume that the connection has been
 closed. HTTP/3 implementations will need to open a new connection
 for new requests if the existing connection has been idle for longer
 than the server's advertised idle timeout, and SHOULD do so if
 approaching the idle timeout.

 HTTP clients are expected to request that the transport keep
 connections open while there are responses outstanding for requests
 or server pushes, as described in Section 19.2 of [QUIC-TRANSPORT].
 If the client is not expecting a response from the server, allowing
 an idle connection to time out is preferred over expending effort
 maintaining a connection that might not be needed. A gateway MAY
 maintain connections in anticipation of need rather than incur the
 latency cost of connection establishment to servers. Servers SHOULD
 NOT actively keep connections open.

5.2. Connection Shutdown

 Even when a connection is not idle, either endpoint can decide to
 stop using the connection and let the connection close gracefully.
 Since clients drive request generation, clients perform a connection
 shutdown by not sending additional requests on the connection;
 responses and pushed responses associated to previous requests will
 continue to completion. Servers perform the same function by
 communicating with clients.

 Servers initiate the shutdown of a connection by sending a GOAWAY
 frame (Section 7.2.6). The GOAWAY frame indicates that client-
 initiated requests on lower stream IDs were or might be processed in
 this connection, while requests on the indicated stream ID and
 greater were rejected. This enables client and server to agree on

Bishop Expires May 7, 2020 [Page 17]

Internet-Draft HTTP/3 November 2019

 which requests were accepted prior to the connection shutdown. This
 identifier MAY be zero if no requests were processed. Servers SHOULD
 NOT permit additional QUIC streams after sending a GOAWAY frame.

 Clients MUST NOT send new requests on the connection after receiving
 GOAWAY; a new connection MAY be established to send additional
 requests.

 Some requests might already be in transit. If the client has already
 sent requests on streams with a Stream ID greater than or equal to
 that indicated in the GOAWAY frame, those requests will not be
 processed and MAY be retried by the client on a different connection.
 The client MAY cancel these requests. It is RECOMMENDED that the
 server explicitly reject such requests (see Section 4.1.2) in order
 to clean up transport state for the affected streams.

 Requests on Stream IDs less than the Stream ID in the GOAWAY frame
 might have been processed; their status cannot be known until a
 response is received, the stream is reset individually, or the
 connection terminates. Servers MAY reject individual requests on
 streams below the indicated ID if these requests were not processed.

 Servers SHOULD send a GOAWAY frame when the closing of a connection
 is known in advance, even if the advance notice is small, so that the
 remote peer can know whether a request has been partially processed
 or not. For example, if an HTTP client sends a POST at the same time
 that a server closes a QUIC connection, the client cannot know if the
 server started to process that POST request if the server does not
 send a GOAWAY frame to indicate what streams it might have acted on.

 A client that is unable to retry requests loses all requests that are
 in flight when the server closes the connection. A server MAY send
 multiple GOAWAY frames indicating different stream IDs, but MUST NOT
 increase the value they send in the last Stream ID, since clients
 might already have retried unprocessed requests on another
 connection. A server that is attempting to gracefully shut down a
 connection SHOULD send an initial GOAWAY frame with the last Stream
 ID set to the maximum value allowed by QUIC's MAX_STREAMS and SHOULD
 NOT increase the MAX_STREAMS limit thereafter. This signals to the
 client that a shutdown is imminent and that initiating further
 requests is prohibited. After allowing time for any in-flight
 requests (at least one round-trip time), the server MAY send another
 GOAWAY frame with an updated last Stream ID. This ensures that a
 connection can be cleanly shut down without losing requests.

 Once all accepted requests have been processed, the server can permit
 the connection to become idle, or MAY initiate an immediate closure

Bishop Expires May 7, 2020 [Page 18]

Internet-Draft HTTP/3 November 2019

 of the connection. An endpoint that completes a graceful shutdown
 SHOULD use the H3_NO_ERROR code when closing the connection.

 If a client has consumed all available bidirectional stream IDs with
 requests, the server need not send a GOAWAY frame, since the client
 is unable to make further requests.

5.3. Immediate Application Closure

 An HTTP/3 implementation can immediately close the QUIC connection at
 any time. This results in sending a QUIC CONNECTION_CLOSE frame to
 the peer; the error code in this frame indicates to the peer why the
 connection is being closed. See Section 8 for error codes which can
 be used when closing a connection.

 Before closing the connection, a GOAWAY MAY be sent to allow the
 client to retry some requests. Including the GOAWAY frame in the
 same packet as the QUIC CONNECTION_CLOSE frame improves the chances
 of the frame being received by clients.

5.4. Transport Closure

 For various reasons, the QUIC transport could indicate to the
 application layer that the connection has terminated. This might be
 due to an explicit closure by the peer, a transport-level error, or a
 change in network topology which interrupts connectivity.

 If a connection terminates without a GOAWAY frame, clients MUST
 assume that any request which was sent, whether in whole or in part,
 might have been processed.

6. Stream Mapping and Usage

 A QUIC stream provides reliable in-order delivery of bytes, but makes
 no guarantees about order of delivery with regard to bytes on other
 streams. On the wire, data is framed into QUIC STREAM frames, but
 this framing is invisible to the HTTP framing layer. The transport
 layer buffers and orders received QUIC STREAM frames, exposing the
 data contained within as a reliable byte stream to the application.
 Although QUIC permits out-of-order delivery within a stream, HTTP/3
 does not make use of this feature.

 QUIC streams can be either unidirectional, carrying data only from
 initiator to receiver, or bidirectional. Streams can be initiated by
 either the client or the server. For more detail on QUIC streams,
 see Section 2 of [QUIC-TRANSPORT].

Bishop Expires May 7, 2020 [Page 19]

Internet-Draft HTTP/3 November 2019

 When HTTP headers and data are sent over QUIC, the QUIC layer handles
 most of the stream management. HTTP does not need to do any separate
 multiplexing when using QUIC - data sent over a QUIC stream always
 maps to a particular HTTP transaction or connection context.

6.1. Bidirectional Streams

 All client-initiated bidirectional streams are used for HTTP requests
 and responses. A bidirectional stream ensures that the response can
 be readily correlated with the request. This means that the client's
 first request occurs on QUIC stream 0, with subsequent requests on
 stream 4, 8, and so on. In order to permit these streams to open, an
 HTTP/3 server SHOULD configure non-zero minimum values for the number
 of permitted streams and the initial stream flow control window. So
 as to not unnecessarily limit parallelism, at least 100 requests
 SHOULD be permitted at a time.

 HTTP/3 does not use server-initiated bidirectional streams, though an
 extension could define a use for these streams. Clients MUST treat
 receipt of a server-initiated bidirectional stream as a connection
 error of type H3_STREAM_CREATION_ERROR unless such an extension has
 been negotiated.

6.2. Unidirectional Streams

 Unidirectional streams, in either direction, are used for a range of
 purposes. The purpose is indicated by a stream type, which is sent
 as a variable-length integer at the start of the stream. The format
 and structure of data that follows this integer is determined by the
 stream type.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream Type (i) ...
 +-+

 Figure 1: Unidirectional Stream Header

 Some stream types are reserved (Section 6.2.3). Two stream types are
 defined in this document: control streams (Section 6.2.1) and push
 streams (Section 6.2.2). [QPACK] defines two additional stream
 types. Other stream types can be defined by extensions to HTTP/3;
 see Section 9 for more details.

 The performance of HTTP/3 connections in the early phase of their
 lifetime is sensitive to the creation and exchange of data on
 unidirectional streams. Endpoints that excessively restrict the

Bishop Expires May 7, 2020 [Page 20]

Internet-Draft HTTP/3 November 2019

 number of streams or the flow control window of these streams will
 increase the chance that the remote peer reaches the limit early and
 becomes blocked. In particular, implementations should consider that
 remote peers may wish to exercise reserved stream behavior
 (Section 6.2.3) with some of the unidirectional streams they are
 permitted to use. To avoid blocking, the transport parameters sent
 by both clients and servers MUST allow the peer to create at least
 one unidirectional stream for the HTTP control stream plus the number
 of unidirectional streams required by mandatory extensions (three
 being the minimum number required for the base HTTP/3 protocol and
 QPACK), and SHOULD provide at least 1,024 bytes of flow control
 credit to each stream.

 Note that an endpoint is not required to grant additional credits to
 create more unidirectional streams if its peer consumes all the
 initial credits before creating the critical unidirectional streams.
 Endpoints SHOULD create the HTTP control stream as well as the
 unidirectional streams required by mandatory extensions (such as the
 QPACK encoder and decoder streams) first, and then create additional
 streams as allowed by their peer.

 If the stream header indicates a stream type which is not supported
 by the recipient, the remainder of the stream cannot be consumed as
 the semantics are unknown. Recipients of unknown stream types MAY
 abort reading of the stream with an error code of
 H3_STREAM_CREATION_ERROR, but MUST NOT consider such streams to be a
 connection error of any kind.

 Implementations MAY send stream types before knowing whether the peer
 supports them. However, stream types which could modify the state or
 semantics of existing protocol components, including QPACK or other
 extensions, MUST NOT be sent until the peer is known to support them.

 A sender can close or reset a unidirectional stream unless otherwise
 specified. A receiver MUST tolerate unidirectional streams being
 closed or reset prior to the reception of the unidirectional stream
 header.

6.2.1. Control Streams

 A control stream is indicated by a stream type of "0x00". Data on
 this stream consists of HTTP/3 frames, as defined in Section 7.2.

 Each side MUST initiate a single control stream at the beginning of
 the connection and send its SETTINGS frame as the first frame on this
 stream. If the first frame of the control stream is any other frame
 type, this MUST be treated as a connection error of type
 H3_MISSING_SETTINGS. Only one control stream per peer is permitted;

Bishop Expires May 7, 2020 [Page 21]

Internet-Draft HTTP/3 November 2019

 receipt of a second stream which claims to be a control stream MUST
 be treated as a connection error of type H3_STREAM_CREATION_ERROR.
 The sender MUST NOT close the control stream, and the receiver MUST
 NOT request that the sender close the control stream. If either
 control stream is closed at any point, this MUST be treated as a
 connection error of type H3_CLOSED_CRITICAL_STREAM.

 A pair of unidirectional streams is used rather than a single
 bidirectional stream. This allows either peer to send data as soon
 as it is able. Depending on whether 0-RTT is enabled on the
 connection, either client or server might be able to send stream data
 first after the cryptographic handshake completes.

6.2.2. Push Streams

 Server push is an optional feature introduced in HTTP/2 that allows a
 server to initiate a response before a request has been made. See

Section 4.4 for more details.

 A push stream is indicated by a stream type of "0x01", followed by
 the Push ID of the promise that it fulfills, encoded as a variable-
 length integer. The remaining data on this stream consists of HTTP/3
 frames, as defined in Section 7.2, and fulfills a promised server
 push by zero or more non-final HTTP responses followed by a single
 final HTTP response, as defined in Section 4.1. Server push and Push
 IDs are described in Section 4.4.

 Only servers can push; if a server receives a client-initiated push
 stream, this MUST be treated as a connection error of type
 H3_STREAM_CREATION_ERROR.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x01 (i) ...
 +-+
 | Push ID (i) ...
 +-+

 Figure 2: Push Stream Header

 Each Push ID MUST only be used once in a push stream header. If a
 push stream header includes a Push ID that was used in another push
 stream header, the client MUST treat this as a connection error of
 type H3_ID_ERROR.

Bishop Expires May 7, 2020 [Page 22]

Internet-Draft HTTP/3 November 2019

6.2.3. Reserved Stream Types

 Stream types of the format "0x1f * N + 0x21" for integer values of N
 are reserved to exercise the requirement that unknown types be
 ignored. These streams have no semantics, and can be sent when
 application-layer padding is desired. They MAY also be sent on
 connections where no data is currently being transferred. Endpoints
 MUST NOT consider these streams to have any meaning upon receipt.

 The payload and length of the stream are selected in any manner the
 implementation chooses.

7. HTTP Framing Layer

 HTTP frames are carried on QUIC streams, as described in Section 6.
 HTTP/3 defines three stream types: control stream, request stream,
 and push stream. This section describes HTTP/3 frame formats and the
 streams types on which they are permitted; see Table 1 for an
 overview. A comparison between HTTP/2 and HTTP/3 frames is provided
 in Appendix A.2.

Bishop Expires May 7, 2020 [Page 23]

Internet-Draft HTTP/3 November 2019

 +----------------+------------+------------+-----------+------------+
 | Frame | Control | Request | Push | Section |
 | | Stream | Stream | Stream | |
 +----------------+------------+------------+-----------+------------+
DATA	No	Yes	Yes	Section
				7.2.1
HEADERS	No	Yes	Yes	Section
				7.2.2
CANCEL_PUSH	Yes	No	No	Section
				7.2.3
SETTINGS	Yes (1)	No	No	Section
				7.2.4
PUSH_PROMISE	No	Yes	No	Section
				7.2.5
GOAWAY	Yes	No	No	Section
				7.2.6
MAX_PUSH_ID	Yes	No	No	Section
				7.2.7
DUPLICATE_PUSH	No	Yes	No	Section
				7.2.8
Reserved	Yes	Yes	Yes	Section
				7.2.9
 +----------------+------------+------------+-----------+------------+

 Table 1: HTTP/3 frames and stream type overview

 Certain frames can only occur as the first frame of a particular
 stream type; these are indicated in Table 1 with a (1). Specific
 guidance is provided in the relevant section.

 Note that, unlike QUIC frames, HTTP/3 frames can span multiple
 packets.

7.1. Frame Layout

 All frames have the following format:

Bishop Expires May 7, 2020 [Page 24]

Internet-Draft HTTP/3 November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (i) ...
 +-+
 | Length (i) ...
 +-+
 | Frame Payload (*) ...
 +-+

 Figure 3: HTTP/3 frame format

 A frame includes the following fields:

 Type: A variable-length integer that identifies the frame type.

 Length: A variable-length integer that describes the length in bytes
 of the Frame Payload.

 Frame Payload: A payload, the semantics of which are determined by
 the Type field.

 Each frame's payload MUST contain exactly the fields identified in
 its description. A frame payload that contains additional bytes
 after the identified fields or a frame payload that terminates before
 the end of the identified fields MUST be treated as a connection
 error of type H3_FRAME_ERROR.

 When a stream terminates cleanly, if the last frame on the stream was
 truncated, this MUST be treated as a connection error (Section 8) of
 type H3_FRAME_ERROR. Streams which terminate abruptly may be reset
 at any point in a frame.

7.2. Frame Definitions

7.2.1. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 bytes associated with an HTTP request or response payload.

 DATA frames MUST be associated with an HTTP request or response. If
 a DATA frame is received on a control stream, the recipient MUST
 respond with a connection error (Section 8) of type
 H3_FRAME_UNEXPECTED.

Bishop Expires May 7, 2020 [Page 25]

Internet-Draft HTTP/3 November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Payload (*) ...
 +-+

 Figure 4: DATA frame payload

7.2.2. HEADERS

 The HEADERS frame (type=0x1) is used to carry a header block,
 compressed using QPACK. See [QPACK] for more details.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Header Block (*) ...
 +-+

 Figure 5: HEADERS frame payload

 HEADERS frames can only be sent on request / push streams. If a
 HEADERS frame is received on a control stream, the recipient MUST
 respond with a connection error (Section 8) of type
 H3_FRAME_UNEXPECTED.

7.2.3. CANCEL_PUSH

 The CANCEL_PUSH frame (type=0x3) is used to request cancellation of a
 server push prior to the push stream being received. The CANCEL_PUSH
 frame identifies a server push by Push ID (see Section 7.2.5),
 encoded as a variable-length integer.

 When a client sends CANCEL_PUSH, it is indicating that it does not
 wish to receive the promised resource. The server SHOULD abort
 sending the resource, but the mechanism to do so depends on the state
 of the corresponding push stream. If the server has not yet created
 a push stream, it does not create one. If the push stream is open,
 the server SHOULD abruptly terminate that stream. If the push stream
 has already ended, the server MAY still abruptly terminate the stream
 or MAY take no action.

 When a server sends CANCEL_PUSH, it is indicating that it will not be
 fulfilling a promise and has not created a push stream. The client
 should not expect the corresponding promise to be fulfilled.

 Sending CANCEL_PUSH has no direct effect on the state of existing
 push streams. A server SHOULD NOT send a CANCEL_PUSH when it has

Bishop Expires May 7, 2020 [Page 26]

Internet-Draft HTTP/3 November 2019

 already created a corresponding push stream, and a client SHOULD NOT
 send a CANCEL_PUSH when it has already received a corresponding push
 stream.

 A CANCEL_PUSH frame is sent on the control stream. Receiving a
 CANCEL_PUSH frame on a stream other than the control stream MUST be
 treated as a connection error of type H3_FRAME_UNEXPECTED.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+

 Figure 6: CANCEL_PUSH frame payload

 The CANCEL_PUSH frame carries a Push ID encoded as a variable-length
 integer. The Push ID identifies the server push that is being
 cancelled (see Section 7.2.5). If a CANCEL_PUSH frame is received
 which references a Push ID greater than currently allowed on the
 connection, this MUST be treated as a connection error of type
 H3_ID_ERROR.

 If the client receives a CANCEL_PUSH frame, that frame might identify
 a Push ID that has not yet been mentioned by a PUSH_PROMISE frame due
 to reordering. If a server receives a CANCEL_PUSH frame for a Push
 ID that has not yet been mentioned by a PUSH_PROMISE frame, this MUST
 be treated as a connection error of type H3_ID_ERROR.

7.2.4. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior. Individually, a SETTINGS parameter can also be
 referred to as a "setting"; the identifier and value of each setting
 parameter can be referred to as a "setting identifier" and a "setting
 value".

 SETTINGS frames always apply to a connection, never a single stream.
 A SETTINGS frame MUST be sent as the first frame of each control
 stream (see Section 6.2.1) by each peer, and MUST NOT be sent
 subsequently. If an endpoint receives a second SETTINGS frame on the
 control stream, the endpoint MUST respond with a connection error of
 type H3_FRAME_UNEXPECTED.

 SETTINGS frames MUST NOT be sent on any stream other than the control
 stream. If an endpoint receives a SETTINGS frame on a different

Bishop Expires May 7, 2020 [Page 27]

Internet-Draft HTTP/3 November 2019

 stream, the endpoint MUST respond with a connection error of type
 H3_FRAME_UNEXPECTED.

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer, which can be used by the receiving peer.
 However, a negotiation can be implied by the use of SETTINGS - each
 peer uses SETTINGS to advertise a set of supported values. The
 definition of the setting would describe how each peer combines the
 two sets to conclude which choice will be used. SETTINGS does not
 provide a mechanism to identify when the choice takes effect.

 Different values for the same parameter can be advertised by each
 peer. For example, a client might be willing to consume a very large
 response header, while servers are more cautious about request size.

 The same setting identifier MUST NOT occur more than once in the
 SETTINGS frame. A receiver MAY treat the presence of duplicate
 setting identifiers as a connection error of type H3_SETTINGS_ERROR.

 The payload of a SETTINGS frame consists of zero or more parameters.
 Each parameter consists of a setting identifier and a value, both
 encoded as QUIC variable-length integers.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (i) ...
 +-+
 | Value (i) ...
 +-+

 Figure 7: SETTINGS parameter format

 An implementation MUST ignore the contents for any SETTINGS
 identifier it does not understand.

7.2.4.1. Defined SETTINGS Parameters

 The following settings are defined in HTTP/3:

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6): The default value is unlimited.
 See Section 4.1.1 for usage.

 Setting identifiers of the format "0x1f * N + 0x21" for integer
 values of N are reserved to exercise the requirement that unknown
 identifiers be ignored. Such settings have no defined meaning.
 Endpoints SHOULD include at least one such setting in their SETTINGS

Bishop Expires May 7, 2020 [Page 28]

Internet-Draft HTTP/3 November 2019

 frame. Endpoints MUST NOT consider such settings to have any meaning
 upon receipt.

 Because the setting has no defined meaning, the value of the setting
 can be any value the implementation selects.

 Additional settings can be defined by extensions to HTTP/3; see
Section 9 for more details.

7.2.4.2. Initialization

 An HTTP implementation MUST NOT send frames or requests which would
 be invalid based on its current understanding of the peer's settings.

 All settings begin at an initial value. Each endpoint SHOULD use
 these initial values to send messages before the peer's SETTINGS
 frame has arrived, as packets carrying the settings can be lost or
 delayed. When the SETTINGS frame arrives, any settings are changed
 to their new values.

 This removes the need to wait for the SETTINGS frame before sending
 messages. Endpoints MUST NOT require any data to be received from
 the peer prior to sending the SETTINGS frame; settings MUST be sent
 as soon as the transport is ready to send data.

 For servers, the initial value of each client setting is the default
 value.

 For clients using a 1-RTT QUIC connection, the initial value of each
 server setting is the default value. 1-RTT keys will always become
 available prior to SETTINGS arriving, even if the server sends
 SETTINGS immediately. Clients SHOULD NOT wait indefinitely for
 SETTINGS to arrive before sending requests, but SHOULD process
 received datagrams in order to increase the likelihood of processing
 SETTINGS before sending the first request.

 When a 0-RTT QUIC connection is being used, the initial value of each
 server setting is the value used in the previous session. Clients
 SHOULD store the settings the server provided in the connection where
 resumption information was provided, but MAY opt not to store
 settings in certain cases (e.g., if the session ticket is received
 before the SETTINGS frame). A client MUST comply with stored
 settings - or default values, if no values are stored - when
 attempting 0-RTT. Once a server has provided new settings, clients
 MUST comply with those values.

 A server can remember the settings that it advertised, or store an
 integrity-protected copy of the values in the ticket and recover the

Bishop Expires May 7, 2020 [Page 29]

Internet-Draft HTTP/3 November 2019

 information when accepting 0-RTT data. A server uses the HTTP/3
 settings values in determining whether to accept 0-RTT data. If the
 server cannot determine that the settings remembered by a client are
 compatible with its current settings, it MUST NOT accept 0-RTT data.
 Remembered settings are compatible if a client complying with those
 settings would not violate the server's current settings.

 A server MAY accept 0-RTT and subsequently provide different settings
 in its SETTINGS frame. If 0-RTT data is accepted by the server, its
 SETTINGS frame MUST NOT reduce any limits or alter any values that
 might be violated by the client with its 0-RTT data. The server MUST
 include all settings which differ from their default values. If a
 server accepts 0-RTT but then sends settings that are not compatible
 with the previously specified settings, this MUST be treated as a
 connection error of type H3_SETTINGS_ERROR. If a server accepts
 0-RTT but then sends a SETTINGS frame that omits a setting value that
 the client understands (apart from reserved setting identifiers) that
 was previously specified to have a non-default value, this MUST be
 treated as a connection error of type H3_SETTINGS_ERROR.

7.2.5. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x5) is used to carry a promised request
 header set from server to client on a request stream, as in HTTP/2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+
 | Header Block (*) ...
 +-+

 Figure 8: PUSH_PROMISE frame payload

 The payload consists of:

 Push ID: A variable-length integer that identifies the server push
 operation. A Push ID is used in push stream headers
 (Section 4.4), CANCEL_PUSH frames (Section 7.2.3), and
 DUPLICATE_PUSH frames (Section 7.2.8).

 Header Block: QPACK-compressed request header fields for the
 promised response. See [QPACK] for more details.

 A server MUST NOT use a Push ID that is larger than the client has
 provided in a MAX_PUSH_ID frame (Section 7.2.7). A client MUST treat

Bishop Expires May 7, 2020 [Page 30]

Internet-Draft HTTP/3 November 2019

 receipt of a PUSH_PROMISE frame that contains a larger Push ID than
 the client has advertised as a connection error of H3_ID_ERROR.

 A server MUST NOT use the same Push ID in multiple PUSH_PROMISE
 frames. A client MUST treat receipt of a Push ID which has already
 been promised as a connection error of type H3_ID_ERROR.

 If a PUSH_PROMISE frame is received on the control stream, the client
 MUST respond with a connection error (Section 8) of type
 H3_FRAME_UNEXPECTED.

 A client MUST NOT send a PUSH_PROMISE frame. A server MUST treat the
 receipt of a PUSH_PROMISE frame as a connection error of type
 H3_FRAME_UNEXPECTED.

 See Section 4.4 for a description of the overall server push
 mechanism.

7.2.6. GOAWAY

 The GOAWAY frame (type=0x7) is used to initiate graceful shutdown of
 a connection by a server. GOAWAY allows a server to stop accepting
 new requests while still finishing processing of previously received
 requests. This enables administrative actions, like server
 maintenance. GOAWAY by itself does not close a connection.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+

 Figure 9: GOAWAY frame payload

 The GOAWAY frame is always sent on the control stream. It carries a
 QUIC Stream ID for a client-initiated bidirectional stream encoded as
 a variable-length integer. A client MUST treat receipt of a GOAWAY
 frame containing a Stream ID of any other type as a connection error
 of type H3_ID_ERROR.

 Clients do not need to send GOAWAY to initiate a graceful shutdown;
 they simply stop making new requests. A server MUST treat receipt of
 a GOAWAY frame on any stream as a connection error (Section 8) of
 type H3_FRAME_UNEXPECTED.

 The GOAWAY frame applies to the connection, not a specific stream. A
 client MUST treat a GOAWAY frame on a stream other than the control
 stream as a connection error (Section 8) of type H3_FRAME_UNEXPECTED.

Bishop Expires May 7, 2020 [Page 31]

Internet-Draft HTTP/3 November 2019

 See Section 5.2 for more information on the use of the GOAWAY frame.

7.2.7. MAX_PUSH_ID

 The MAX_PUSH_ID frame (type=0xD) is used by clients to control the
 number of server pushes that the server can initiate. This sets the
 maximum value for a Push ID that the server can use in PUSH_PROMISE
 and CANCEL_PUSH frames. Consequently, this also limits the number of
 push streams that the server can initiate in addition to the limit
 maintained by the QUIC transport.

 The MAX_PUSH_ID frame is always sent on the control stream. Receipt
 of a MAX_PUSH_ID frame on any other stream MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

 A server MUST NOT send a MAX_PUSH_ID frame. A client MUST treat the
 receipt of a MAX_PUSH_ID frame as a connection error of type
 H3_FRAME_UNEXPECTED.

 The maximum Push ID is unset when a connection is created, meaning
 that a server cannot push until it receives a MAX_PUSH_ID frame. A
 client that wishes to manage the number of promised server pushes can
 increase the maximum Push ID by sending MAX_PUSH_ID frames as the
 server fulfills or cancels server pushes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+

 Figure 10: MAX_PUSH_ID frame payload

 The MAX_PUSH_ID frame carries a single variable-length integer that
 identifies the maximum value for a Push ID that the server can use
 (see Section 7.2.5). A MAX_PUSH_ID frame cannot reduce the maximum
 Push ID; receipt of a MAX_PUSH_ID that contains a smaller value than
 previously received MUST be treated as a connection error of type
 H3_ID_ERROR.

7.2.8. DUPLICATE_PUSH

 The DUPLICATE_PUSH frame (type=0xE) is used by servers to indicate
 that an existing pushed resource is related to multiple client
 requests.

Bishop Expires May 7, 2020 [Page 32]

Internet-Draft HTTP/3 November 2019

 The DUPLICATE_PUSH frame is always sent on a request stream. Receipt
 of a DUPLICATE_PUSH frame on any other stream MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

 A client MUST NOT send a DUPLICATE_PUSH frame. A server MUST treat
 the receipt of a DUPLICATE_PUSH frame as a connection error of type
 H3_FRAME_UNEXPECTED.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (i) ...
 +-+

 Figure 11: DUPLICATE_PUSH frame payload

 The DUPLICATE_PUSH frame carries a single variable-length integer
 that identifies the Push ID of a resource that the server has
 previously promised (see Section 7.2.5), though that promise might
 not be received before this frame. A server MUST NOT use a Push ID
 that is larger than the client has provided in a MAX_PUSH_ID frame
 (Section 7.2.7). A client MUST treat receipt of a DUPLICATE_PUSH
 that contains a larger Push ID than the client has advertised as a
 connection error of type H3_ID_ERROR.

 This frame allows the server to use the same server push in response
 to multiple concurrent requests. Referencing the same server push
 ensures that a promise can be made in relation to every response in
 which server push might be needed without duplicating request headers
 or pushed responses.

 Allowing duplicate references to the same Push ID is primarily to
 reduce duplication caused by concurrent requests. A server SHOULD
 avoid reusing a Push ID over a long period. Clients are likely to
 consume server push responses and not retain them for reuse over
 time. Clients that see a DUPLICATE_PUSH that uses a Push ID that
 they have since consumed and discarded are forced to ignore the
 DUPLICATE_PUSH.

7.2.9. Reserved Frame Types

 Frame types of the format "0x1f * N + 0x21" for integer values of N
 are reserved to exercise the requirement that unknown types be
 ignored (Section 9). These frames have no semantics, and can be sent
 on any open stream when application-layer padding is desired. They
 MAY also be sent on connections where no data is currently being
 transferred. Endpoints MUST NOT consider these frames to have any
 meaning upon receipt.

Bishop Expires May 7, 2020 [Page 33]

Internet-Draft HTTP/3 November 2019

 The payload and length of the frames are selected in any manner the
 implementation chooses.

 Frame types which were used in HTTP/2 where there is no corresponding
 HTTP/3 frame have also been reserved (Section 11.2). These frame
 types MUST NOT be sent, and receipt MAY be treated as an error of
 type H3_FRAME_UNEXPECTED.

8. Error Handling

 QUIC allows the application to abruptly terminate (reset) individual
 streams or the entire connection when an error is encountered. These
 are referred to as "stream errors" or "connection errors" and are
 described in more detail in [QUIC-TRANSPORT]. An endpoint MAY choose
 to treat a stream error as a connection error.

 Because new error codes can be defined without negotiation (see
Section 9), receipt of an unknown error code or use of an error code

 in an unexpected context MUST NOT be treated as an error. However,
 closing a stream can constitute an error regardless of the error code
 (see Section 4.1).

 This section describes HTTP/3-specific error codes which can be used
 to express the cause of a connection or stream error.

8.1. HTTP/3 Error Codes

 The following error codes are defined for use when abruptly
 terminating streams, aborting reading of streams, or immediately
 closing connections.

 H3_NO_ERROR (0x100): No error. This is used when the connection or
 stream needs to be closed, but there is no error to signal.

 H3_GENERAL_PROTOCOL_ERROR (0x101): Peer violated protocol
 requirements in a way which doesn't match a more specific error
 code, or endpoint declines to use the more specific error code.

 H3_INTERNAL_ERROR (0x102): An internal error has occurred in the
 HTTP stack.

 H3_STREAM_CREATION_ERROR (0x103): The endpoint detected that its
 peer created a stream that it will not accept.

 H3_CLOSED_CRITICAL_STREAM (0x104): A stream required by the
 connection was closed or reset.

Bishop Expires May 7, 2020 [Page 34]

Internet-Draft HTTP/3 November 2019

 H3_FRAME_UNEXPECTED (0x105): A frame was received which was not
 permitted in the current state or on the current stream.

 H3_FRAME_ERROR (0x106): A frame that fails to satisfy layout
 requirements or with an invalid size was received.

 H3_EXCESSIVE_LOAD (0x107): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 H3_ID_ERROR (0x108): A Stream ID or Push ID was used incorrectly,
 such as exceeding a limit, reducing a limit, or being reused.

 H3_SETTINGS_ERROR (0x109): An endpoint detected an error in the
 payload of a SETTINGS frame.

 H3_MISSING_SETTINGS (0x10A): No SETTINGS frame was received at the
 beginning of the control stream.

 H3_REQUEST_REJECTED (0x10B): A server rejected a request without
 performing any application processing.

 H3_REQUEST_CANCELLED (0x10C): The request or its response (including
 pushed response) is cancelled.

 H3_REQUEST_INCOMPLETE (0x10D): The client's stream terminated
 without containing a fully-formed request.

 H3_EARLY_RESPONSE (0x10E): The remainder of the client's request is
 not needed to produce a response. For use in STOP_SENDING only.

 H3_CONNECT_ERROR (0x10F): The connection established in response to
 a CONNECT request was reset or abnormally closed.

 H3_VERSION_FALLBACK (0x110): The requested operation cannot be
 served over HTTP/3. The peer should retry over HTTP/1.1.

9. Extensions to HTTP/3

 HTTP/3 permits extension of the protocol. Within the limitations
 described in this section, protocol extensions can be used to provide
 additional services or alter any aspect of the protocol. Extensions
 are effective only within the scope of a single HTTP/3 connection.

 This applies to the protocol elements defined in this document. This
 does not affect the existing options for extending HTTP, such as
 defining new methods, status codes, or header fields.

Bishop Expires May 7, 2020 [Page 35]

Internet-Draft HTTP/3 November 2019

 Extensions are permitted to use new frame types (Section 7.2), new
 settings (Section 7.2.4.1), new error codes (Section 8), or new
 unidirectional stream types (Section 6.2). Registries are
 established for managing these extension points: frame types
 (Section 11.2), settings (Section 11.3), error codes (Section 11.4),
 and stream types (Section 11.5).

 Implementations MUST ignore unknown or unsupported values in all
 extensible protocol elements. Implementations MUST discard frames
 and unidirectional streams that have unknown or unsupported types.
 This means that any of these extension points can be safely used by
 extensions without prior arrangement or negotiation. However, where
 a known frame type is required to be in a specific location, such as
 the SETTINGS frame as the first frame of the control stream (see

Section 6.2.1), an unknown frame type does not satisfy that
 requirement and SHOULD be treated as an error.

 Extensions that could change the semantics of existing protocol
 components MUST be negotiated before being used. For example, an
 extension that changes the layout of the HEADERS frame cannot be used
 until the peer has given a positive signal that this is acceptable.
 In this case, it could also be necessary to coordinate when the
 revised layout comes into effect.

 This document doesn't mandate a specific method for negotiating the
 use of an extension but notes that a setting (Section 7.2.4.1) could
 be used for that purpose. If both peers set a value that indicates
 willingness to use the extension, then the extension can be used. If
 a setting is used for extension negotiation, the default value MUST
 be defined in such a fashion that the extension is disabled if the
 setting is omitted.

10. Security Considerations

 The security considerations of HTTP/3 should be comparable to those
 of HTTP/2 with TLS; the considerations from Section 10 of [HTTP2]
 apply in addition to those listed here.

 When HTTP Alternative Services is used for discovery for HTTP/3
 endpoints, the security considerations of [ALTSVC] also apply.

10.1. Traffic Analysis

 Where HTTP/2 employs PADDING frames and Padding fields in other
 frames to make a connection more resistant to traffic analysis,
 HTTP/3 can either rely on transport-layer padding or employ the
 reserved frame and stream types discussed in Section 7.2.9 and

Section 6.2.3. These methods of padding produce different results in

Bishop Expires May 7, 2020 [Page 36]

Internet-Draft HTTP/3 November 2019

 terms of the granularity of padding, the effect of packet loss and
 recovery, and how an implementation might control padding.

10.2. Frame Parsing

 Several protocol elements contain nested length elements, typically
 in the form of frames with an explicit length containing variable-
 length integers. This could pose a security risk to an incautious
 implementer. An implementation MUST ensure that the length of a
 frame exactly matches the length of the fields it contains.

10.3. Early Data

 The use of 0-RTT with HTTP/3 creates an exposure to replay attack.
 The anti-replay mitigations in [HTTP-REPLAY] MUST be applied when
 using HTTP/3 with 0-RTT.

10.4. Migration

 Certain HTTP implementations use the client address for logging or
 access-control purposes. Since a QUIC client's address might change
 during a connection (and future versions might support simultaneous
 use of multiple addresses), such implementations will need to either
 actively retrieve the client's current address or addresses when they
 are relevant or explicitly accept that the original address might
 change.

11. IANA Considerations

11.1. Registration of HTTP/3 Identification String

 This document creates a new registration for the identification of
 HTTP/3 in the "Application Layer Protocol Negotiation (ALPN) Protocol
 IDs" registry established in [RFC7301].

 The "h3" string identifies HTTP/3:

 Protocol: HTTP/3

 Identification Sequence: 0x68 0x33 ("h3")

 Specification: This document

11.2. Frame Types

 This document establishes a registry for HTTP/3 frame type codes.
 The "HTTP/3 Frame Type" registry governs a 62-bit space. This space
 is split into three spaces that are governed by different policies.

https://datatracker.ietf.org/doc/html/rfc7301

Bishop Expires May 7, 2020 [Page 37]

Internet-Draft HTTP/3 November 2019

 Values between "0x00" and "0x3f" (in hexadecimal) are assigned via
 the Standards Action or IESG Review policies [RFC8126]. Values from
 "0x40" to "0x3fff" operate on the Specification Required policy
 [RFC8126]. All other values are assigned to Private Use [RFC8126].

 While this registry is separate from the "HTTP/2 Frame Type" registry
 defined in [HTTP2], it is preferable that the assignments parallel
 each other where the code spaces overlap. If an entry is present in
 only one registry, every effort SHOULD be made to avoid assigning the
 corresponding value to an unrelated operation.

 New entries in this registry require the following information:

 Frame Type: A name or label for the frame type.

 Code: The 62-bit code assigned to the frame type.

 Specification: A reference to a specification that includes a
 description of the frame layout and its semantics, including any
 parts of the frame that are conditionally present.

 The entries in the following table are registered by this document.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires May 7, 2020 [Page 38]

Internet-Draft HTTP/3 November 2019

 +----------------+------+---------------+
 | Frame Type | Code | Specification |
 +----------------+------+---------------+
 | DATA | 0x0 | Section 7.2.1 |
 | | | |
 | HEADERS | 0x1 | Section 7.2.2 |
 | | | |
 | Reserved | 0x2 | N/A |
 | | | |
 | CANCEL_PUSH | 0x3 | Section 7.2.3 |
 | | | |
 | SETTINGS | 0x4 | Section 7.2.4 |
 | | | |
 | PUSH_PROMISE | 0x5 | Section 7.2.5 |
 | | | |
 | Reserved | 0x6 | N/A |
 | | | |
 | GOAWAY | 0x7 | Section 7.2.6 |
 | | | |
 | Reserved | 0x8 | N/A |
 | | | |
 | Reserved | 0x9 | N/A |
 | | | |
 | MAX_PUSH_ID | 0xD | Section 7.2.7 |
 | | | |
 | DUPLICATE_PUSH | 0xE | Section 7.2.8 |
 +----------------+------+---------------+

 Additionally, each code of the format "0x1f * N + 0x21" for integer
 values of N (that is, "0x21", "0x40", ..., through
 "0x3FFFFFFFFFFFFFFE") MUST NOT be assigned by IANA.

11.3. Settings Parameters

 This document establishes a registry for HTTP/3 settings. The
 "HTTP/3 Settings" registry governs a 62-bit space. This space is
 split into three spaces that are governed by different policies.
 Values between "0x00" and "0x3f" (in hexadecimal) are assigned via
 the Standards Action or IESG Review policies [RFC8126]. Values from
 "0x40" to "0x3fff" operate on the Specification Required policy
 [RFC8126]. All other values are assigned to Private Use [RFC8126].
 The designated experts are the same as those for the "HTTP/2
 Settings" registry defined in [HTTP2].

 While this registry is separate from the "HTTP/2 Settings" registry
 defined in [HTTP2], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires May 7, 2020 [Page 39]

Internet-Draft HTTP/3 November 2019

 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation.

 New registrations are advised to provide the following information:

 Name: A symbolic name for the setting. Specifying a setting name is
 optional.

 Code: The 62-bit code assigned to the setting.

 Specification: An optional reference to a specification that
 describes the use of the setting.

 Default: The value of the setting unless otherwise indicated.
 SHOULD be the most restrictive possible value.

 The entries in the following table are registered by this document.

 +----------------------+------+-----------------+-----------+
 | Setting Name | Code | Specification | Default |
 +----------------------+------+-----------------+-----------+
 | Reserved | 0x2 | N/A | N/A |
 | | | | |
 | Reserved | 0x3 | N/A | N/A |
 | | | | |
 | Reserved | 0x4 | N/A | N/A |
 | | | | |
 | Reserved | 0x5 | N/A | N/A |
 | | | | |
 | MAX_HEADER_LIST_SIZE | 0x6 | Section 7.2.4.1 | Unlimited |
 +----------------------+------+-----------------+-----------+

 Additionally, each code of the format "0x1f * N + 0x21" for integer
 values of N (that is, "0x21", "0x40", ..., through
 "0x3FFFFFFFFFFFFFFE") MUST NOT be assigned by IANA.

11.4. Error Codes

 This document establishes a registry for HTTP/3 error codes. The
 "HTTP/3 Error Code" registry manages a 62-bit space. The "HTTP/3
 Error Code" registry operates under the "Expert Review" policy
 [RFC8126].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires May 7, 2020 [Page 40]

Internet-Draft HTTP/3 November 2019

 New registrations are advised to provide the following information:

 Name: A name for the error code. Specifying an error code name is
 optional.

 Code: The 62-bit error code value.

 Description: A brief description of the error code semantics, longer
 if no detailed specification is provided.

 Specification: An optional reference for a specification that
 defines the error code.

 The entries in the following table are registered by this document.

 +---------------------------+--------+--------------+---------------+
 | Name | Code | Description | Specification |
 +---------------------------+--------+--------------+---------------+
H3_NO_ERROR	0x0100	No error	Section 8.1
H3_GENERAL_PROTOCOL_ERROR	0x0101	General	Section 8.1
		protocol	
		error	
H3_INTERNAL_ERROR	0x0102	Internal	Section 8.1
		error	
H3_STREAM_CREATION_ERROR	0x0103	Stream	Section 8.1
		creation	
		error	
H3_CLOSED_CRITICAL_STREAM	0x0104	Critical	Section 8.1
		stream was	
		closed	
H3_FRAME_UNEXPECTED	0x0105	Frame not	Section 8.1
		permitted in	
		the current	
		state	
H3_FRAME_ERROR	0x0106	Frame	Section 8.1
		violated	
		layout or	
		size rules	
H3_EXCESSIVE_LOAD	0x0107	Peer	Section 8.1
		generating	
		excessive	

Bishop Expires May 7, 2020 [Page 41]

Internet-Draft HTTP/3 November 2019

		load	
H3_ID_ERROR	0x0108	An	Section 8.1
		identifier	
		was used	
		incorrectly	
H3_SETTINGS_ERROR	0x0109	SETTINGS	Section 8.1
		frame	
		contained	
		invalid	
		values	
H3_MISSING_SETTINGS	0x010A	No SETTINGS	Section 8.1
		frame	
		received	
H3_REQUEST_REJECTED	0x010B	Request not	Section 8.1
		processed	
H3_REQUEST_CANCELLED	0x010C	Data no	Section 8.1
		longer	
		needed	
H3_REQUEST_INCOMPLETE	0x010D	Stream	Section 8.1
		terminated	
		early	
H3_EARLY_RESPONSE	0x010E	Remainder of	Section 8.1
		request not	
		needed	
H3_CONNECT_ERROR	0x010F	TCP reset or	Section 8.1
		error on	
		CONNECT	
		request	
H3_VERSION_FALLBACK	0x0110	Retry over	Section 8.1
		HTTP/1.1	
 +---------------------------+--------+--------------+---------------+

11.5. Stream Types

 This document establishes a registry for HTTP/3 unidirectional stream
 types. The "HTTP/3 Stream Type" registry governs a 62-bit space.
 This space is split into three spaces that are governed by different
 policies. Values between "0x00" and 0x3f (in hexadecimal) are
 assigned via the Standards Action or IESG Review policies [RFC8126].

https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires May 7, 2020 [Page 42]

Internet-Draft HTTP/3 November 2019

 Values from "0x40" to "0x3fff" operate on the Specification Required
 policy [RFC8126]. All other values are assigned to Private Use
 [RFC8126].

 New entries in this registry require the following information:

 Stream Type: A name or label for the stream type.

 Code: The 62-bit code assigned to the stream type.

 Specification: A reference to a specification that includes a
 description of the stream type, including the layout semantics of
 its payload.

 Sender: Which endpoint on a connection may initiate a stream of this
 type. Values are "Client", "Server", or "Both".

 The entries in the following table are registered by this document.

 +----------------+------+---------------+--------+
 | Stream Type | Code | Specification | Sender |
 +----------------+------+---------------+--------+
 | Control Stream | 0x00 | Section 6.2.1 | Both |
 | | | | |
 | Push Stream | 0x01 | Section 4.4 | Server |
 +----------------+------+---------------+--------+

 Additionally, each code of the format "0x1f * N + 0x21" for integer
 values of N (that is, "0x21", "0x40", ..., through
 "0x3FFFFFFFFFFFFFFE") MUST NOT be assigned by IANA.

12. References

12.1. Normative References

 [ALTSVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [HTTP-REPLAY]
 Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/info/rfc8470>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540

Bishop Expires May 7, 2020 [Page 43]

Internet-Draft HTTP/3 November 2019

 [QPACK] Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:
 Header Compression for HTTP over QUIC", draft-ietf-quic-

qpack-11 (work in progress), November 2019.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-24 (work in progress), November 2019.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838

Bishop Expires May 7, 2020 [Page 44]

Internet-Draft HTTP/3 November 2019

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8164] Nottingham, M. and M. Thomson, "Opportunistic Security for
 HTTP/2", RFC 8164, DOI 10.17487/RFC8164, May 2017,
 <https://www.rfc-editor.org/info/rfc8164>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [HPACK] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <https://www.rfc-editor.org/info/rfc6585>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

12.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-http

 [4] https://www.iana.org/assignments/message-headers

Appendix A. Considerations for Transitioning from HTTP/2

 HTTP/3 is strongly informed by HTTP/2, and bears many similarities.
 This section describes the approach taken to design HTTP/3, points
 out important differences from HTTP/2, and describes how to map
 HTTP/2 extensions into HTTP/3.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8164
https://www.rfc-editor.org/info/rfc8164
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc6585
https://www.rfc-editor.org/info/rfc6585
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-http
https://www.iana.org/assignments/message-headers

Bishop Expires May 7, 2020 [Page 45]

Internet-Draft HTTP/3 November 2019

 HTTP/3 begins from the premise that similarity to HTTP/2 is
 preferable, but not a hard requirement. HTTP/3 departs from HTTP/2
 where QUIC differs from TCP, either to take advantage of QUIC
 features (like streams) or to accommodate important shortcomings
 (such as a lack of total ordering). These differences make HTTP/3
 similar to HTTP/2 in key aspects, such as the relationship of
 requests and responses to streams. However, the details of the
 HTTP/3 design are substantially different than HTTP/2.

 These departures are noted in this section.

A.1. Streams

 HTTP/3 permits use of a larger number of streams (2^62-1) than
 HTTP/2. The considerations about exhaustion of stream identifier
 space apply, though the space is significantly larger such that it is
 likely that other limits in QUIC are reached first, such as the limit
 on the connection flow control window.

 In contrast to HTTP/2, stream concurrency in HTTP/3 is managed by
 QUIC. QUIC considers a stream closed when all data has been received
 and sent data has been acknowledged by the peer. HTTP/2 considers a
 stream closed when the frame containing the END_STREAM bit has been
 committed to the transport. As a result, the stream for an
 equivalent exchange could remain "active" for a longer period of
 time. HTTP/3 servers might choose to permit a larger number of
 concurrent client-initiated bidirectional streams to achieve
 equivalent concurrency to HTTP/2, depending on the expected usage
 patterns.

 Due to the presence of other unidirectional stream types, HTTP/3 does
 not rely exclusively on the number of concurrent unidirectional
 streams to control the number of concurrent in-flight pushes.
 Instead, HTTP/3 clients use the MAX_PUSH_ID frame to control the
 number of pushes received from an HTTP/3 server.

A.2. HTTP Frame Types

 Many framing concepts from HTTP/2 can be elided on QUIC, because the
 transport deals with them. Because frames are already on a stream,
 they can omit the stream number. Because frames do not block
 multiplexing (QUIC's multiplexing occurs below this layer), the
 support for variable-maximum-length packets can be removed. Because
 stream termination is handled by QUIC, an END_STREAM flag is not
 required. This permits the removal of the Flags field from the
 generic frame layout.

Bishop Expires May 7, 2020 [Page 46]

Internet-Draft HTTP/3 November 2019

 Frame payloads are largely drawn from [HTTP2]. However, QUIC
 includes many features (e.g., flow control) which are also present in
 HTTP/2. In these cases, the HTTP mapping does not re-implement them.
 As a result, several HTTP/2 frame types are not required in HTTP/3.
 Where an HTTP/2-defined frame is no longer used, the frame ID has
 been reserved in order to maximize portability between HTTP/2 and
 HTTP/3 implementations. However, even equivalent frames between the
 two mappings are not identical.

 Many of the differences arise from the fact that HTTP/2 provides an
 absolute ordering between frames across all streams, while QUIC
 provides this guarantee on each stream only. As a result, if a frame
 type makes assumptions that frames from different streams will still
 be received in the order sent, HTTP/3 will break them.

 Some examples of feature adaptations are described below, as well as
 general guidance to extension frame implementors converting an HTTP/2
 extension to HTTP/3.

A.2.1. Prioritization Differences

 HTTP/2 specifies priority assignments in PRIORITY frames and
 (optionally) in HEADERS frames. HTTP/3 does not provide a means of
 signaling priority.

 Note that while there is no explicit signaling for priority, this
 does not mean that prioritization is not important for achieving good
 performance.

A.2.2. Header Compression Differences

 HPACK was designed with the assumption of in-order delivery. A
 sequence of encoded header blocks must arrive (and be decoded) at an
 endpoint in the same order in which they were encoded. This ensures
 that the dynamic state at the two endpoints remains in sync.

 Because this total ordering is not provided by QUIC, HTTP/3 uses a
 modified version of HPACK, called QPACK. QPACK uses a single
 unidirectional stream to make all modifications to the dynamic table,
 ensuring a total order of updates. All frames which contain encoded
 headers merely reference the table state at a given time without
 modifying it.

 [QPACK] provides additional details.

Bishop Expires May 7, 2020 [Page 47]

Internet-Draft HTTP/3 November 2019

A.2.3. Guidance for New Frame Type Definitions

 Frame type definitions in HTTP/3 often use the QUIC variable-length
 integer encoding. In particular, Stream IDs use this encoding, which
 allows for a larger range of possible values than the encoding used
 in HTTP/2. Some frames in HTTP/3 use an identifier rather than a
 Stream ID (e.g., Push IDs). Redefinition of the encoding of
 extension frame types might be necessary if the encoding includes a
 Stream ID.

 Because the Flags field is not present in generic HTTP/3 frames,
 those frames which depend on the presence of flags need to allocate
 space for flags as part of their frame payload.

 Other than this issue, frame type HTTP/2 extensions are typically
 portable to QUIC simply by replacing Stream 0 in HTTP/2 with a
 control stream in HTTP/3. HTTP/3 extensions will not assume
 ordering, but would not be harmed by ordering, and would be portable
 to HTTP/2 in the same manner.

A.2.4. Mapping Between HTTP/2 and HTTP/3 Frame Types

 DATA (0x0): Padding is not defined in HTTP/3 frames. See
Section 7.2.1.

 HEADERS (0x1): The PRIORITY region of HEADERS is not defined in
 HTTP/3 frames. Padding is not defined in HTTP/3 frames. See

Section 7.2.2.

 PRIORITY (0x2): As described in Appendix A.2.1, HTTP/3 does not
 provide a means of signaling priority.

 RST_STREAM (0x3): RST_STREAM frames do not exist, since QUIC
 provides stream lifecycle management. The same code point is used
 for the CANCEL_PUSH frame (Section 7.2.3).

 SETTINGS (0x4): SETTINGS frames are sent only at the beginning of
 the connection. See Section 7.2.4 and Appendix A.3.

 PUSH_PROMISE (0x5): The PUSH_PROMISE does not reference a stream;
 instead the push stream references the PUSH_PROMISE frame using a
 Push ID. See Section 7.2.5.

 PING (0x6): PING frames do not exist, since QUIC provides equivalent
 functionality.

 GOAWAY (0x7): GOAWAY is sent only from server to client and does not
 contain an error code. See Section 7.2.6.

Bishop Expires May 7, 2020 [Page 48]

Internet-Draft HTTP/3 November 2019

 WINDOW_UPDATE (0x8): WINDOW_UPDATE frames do not exist, since QUIC
 provides flow control.

 CONTINUATION (0x9): CONTINUATION frames do not exist; instead,
 larger HEADERS/PUSH_PROMISE frames than HTTP/2 are permitted.

 Frame types defined by extensions to HTTP/2 need to be separately
 registered for HTTP/3 if still applicable. The IDs of frames defined
 in [HTTP2] have been reserved for simplicity. Note that the frame
 type space in HTTP/3 is substantially larger (62 bits versus 8 bits),
 so many HTTP/3 frame types have no equivalent HTTP/2 code points.
 See Section 11.2.

A.3. HTTP/2 SETTINGS Parameters

 An important difference from HTTP/2 is that settings are sent once,
 as the first frame of the control stream, and thereafter cannot
 change. This eliminates many corner cases around synchronization of
 changes.

 Some transport-level options that HTTP/2 specifies via the SETTINGS
 frame are superseded by QUIC transport parameters in HTTP/3. The
 HTTP-level options that are retained in HTTP/3 have the same value as
 in HTTP/2.

 Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

 SETTINGS_HEADER_TABLE_SIZE: See [QPACK].

 SETTINGS_ENABLE_PUSH: This is removed in favor of the MAX_PUSH_ID
 which provides a more granular control over server push.

 SETTINGS_MAX_CONCURRENT_STREAMS: QUIC controls the largest open
 Stream ID as part of its flow control logic. Specifying
 SETTINGS_MAX_CONCURRENT_STREAMS in the SETTINGS frame is an error.

 SETTINGS_INITIAL_WINDOW_SIZE: QUIC requires both stream and
 connection flow control window sizes to be specified in the
 initial transport handshake. Specifying
 SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame is an error.

 SETTINGS_MAX_FRAME_SIZE: This setting has no equivalent in HTTP/3.
 Specifying it in the SETTINGS frame is an error.

 SETTINGS_MAX_HEADER_LIST_SIZE: See Section 7.2.4.1.

 In HTTP/3, setting values are variable-length integers (6, 14, 30, or
 62 bits long) rather than fixed-length 32-bit fields as in HTTP/2.

Bishop Expires May 7, 2020 [Page 49]

Internet-Draft HTTP/3 November 2019

 This will often produce a shorter encoding, but can produce a longer
 encoding for settings which use the full 32-bit space. Settings
 ported from HTTP/2 might choose to redefine the format of their
 settings to avoid using the 62-bit encoding.

 Settings need to be defined separately for HTTP/2 and HTTP/3. The
 IDs of settings defined in [HTTP2] have been reserved for simplicity.
 Note that the settings identifier space in HTTP/3 is substantially
 larger (62 bits versus 16 bits), so many HTTP/3 settings have no
 equivalent HTTP/2 code point. See Section 11.3.

 As QUIC streams might arrive out-of-order, endpoints are advised to
 not wait for the peers' settings to arrive before responding to other
 streams. See Section 7.2.4.2.

A.4. HTTP/2 Error Codes

 QUIC has the same concepts of "stream" and "connection" errors that
 HTTP/2 provides. However, there is no direct portability of HTTP/2
 error codes to HTTP/3 error codes; the values are shifted in order to
 prevent accidental or implicit conversion.

 The HTTP/2 error codes defined in Section 7 of [HTTP2] logically map
 to the HTTP/3 error codes as follows:

 NO_ERROR (0x0): H3_NO_ERROR in Section 8.1.

 PROTOCOL_ERROR (0x1): This is mapped to H3_GENERAL_PROTOCOL_ERROR
 except in cases where more specific error codes have been defined.
 This includes H3_FRAME_UNEXPECTED and H3_CLOSED_CRITICAL_STREAM
 defined in Section 8.1.

 INTERNAL_ERROR (0x2): H3_INTERNAL_ERROR in Section 8.1.

 FLOW_CONTROL_ERROR (0x3): Not applicable, since QUIC handles flow
 control.

 SETTINGS_TIMEOUT (0x4): Not applicable, since no acknowledgement of
 SETTINGS is defined.

 STREAM_CLOSED (0x5): Not applicable, since QUIC handles stream
 management.

 FRAME_SIZE_ERROR (0x6): H3_FRAME_ERROR error code defined in
Section 8.1.

Bishop Expires May 7, 2020 [Page 50]

Internet-Draft HTTP/3 November 2019

 REFUSED_STREAM (0x7): H3_REQUEST_REJECTED (in Section 8.1) is used
 to indicate that a request was not processed. Otherwise, not
 applicable because QUIC handles stream management.

 CANCEL (0x8): H3_REQUEST_CANCELLED in Section 8.1.

 COMPRESSION_ERROR (0x9): Multiple error codes are defined in
 [QPACK].

 CONNECT_ERROR (0xa): H3_CONNECT_ERROR in Section 8.1.

 ENHANCE_YOUR_CALM (0xb): H3_EXCESSIVE_LOAD in Section 8.1.

 INADEQUATE_SECURITY (0xc): Not applicable, since QUIC is assumed to
 provide sufficient security on all connections.

 H3_1_1_REQUIRED (0xd): H3_VERSION_FALLBACK in Section 8.1.

 Error codes need to be defined for HTTP/2 and HTTP/3 separately. See
Section 11.4.

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-http-23

 o Removed "quic" Alt-Svc parameter (#3061,#3118)

 o Clients need not persist unknown settings for use in 0-RTT
 (#3110,#3113)

 o Clarify error cases around CANCEL_PUSH (#2819,#3083)

B.2. Since draft-ietf-quic-http-22

 o Removed priority signaling (#2922,#2924)

 o Further changes to error codes (#2662,#2551):

 * Error codes renumbered

 * HTTP_MALFORMED_FRAME replaced by HTTP_FRAME_ERROR,
 HTTP_ID_ERROR, and others

 o Clarify how unknown frame types interact with required frame
 sequence (#2867,#2858)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-22

Bishop Expires May 7, 2020 [Page 51]

Internet-Draft HTTP/3 November 2019

 o Describe interactions with the transport in terms of defined
 interface terms (#2857,#2805)

 o Require the use of the "http-opportunistic" resource (RFC 8164)
 when scheme is "http" (#2439,#2973)

 o Settings identifiers cannot be duplicated (#2979)

 o Changes to SETTINGS frames in 0-RTT (#2972,#2790,#2945):

 * Servers must send all settings with non-default values in their
 SETTINGS frame, even when resuming

 * If a client doesn't have settings associated with a 0-RTT
 ticket, it uses the defaults

 * Servers can't accept early data if they cannot recover the
 settings the client will have remembered

 o Clarify that Upgrade and the 101 status code are prohibited
 (#2898,#2889)

 o Clarify that frame types reserved for greasing can occur on any
 stream, but frame types reserved due to HTTP/2 correspondence are
 prohibited (#2997,#2692,#2693)

 o Unknown error codes cannot be treated as errors (#2998,#2816)

B.3. Since draft-ietf-quic-http-21

 No changes

B.4. Since draft-ietf-quic-http-20

 o Prohibit closing the control stream (#2509, #2666)

 o Change default priority to use an orphan node (#2502, #2690)

 o Exclusive priorities are restored (#2754, #2781)

 o Restrict use of frames when using CONNECT (#2229, #2702)

 o Close and maybe reset streams if a connection error occurs for
 CONNECT (#2228, #2703)

 o Encourage provision of sufficient unidirectional streams for QPACK
 (#2100, #2529, #2762)

https://datatracker.ietf.org/doc/html/rfc8164
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-20

Bishop Expires May 7, 2020 [Page 52]

Internet-Draft HTTP/3 November 2019

 o Allow extensions to use server-initiated bidirectional streams
 (#2711, #2773)

 o Clarify use of maximum header list size setting (#2516, #2774)

 o Extensive changes to error codes and conditions of their sending

 * Require connection errors for more error conditions (#2511,
 #2510)

 * Updated the error codes for illegal GOAWAY frames (#2714,
 #2707)

 * Specified error code for HEADERS on control stream (#2708)

 * Specified error code for servers receiving PUSH_PROMISE (#2709)

 * Specified error code for receiving DATA before HEADERS (#2715)

 * Describe malformed messages and their handling (#2410, #2764)

 * Remove HTTP_PUSH_ALREADY_IN_CACHE error (#2812, #2813)

 * Refactor Push ID related errors (#2818, #2820)

 * Rationalize HTTP/3 stream creation errors (#2821, #2822)

B.5. Since draft-ietf-quic-http-19

 o SETTINGS_NUM_PLACEHOLDERS is 0x9 (#2443,#2530)

 o Non-zero bits in the Empty field of the PRIORITY frame MAY be
 treated as an error (#2501)

B.6. Since draft-ietf-quic-http-18

 o Resetting streams following a GOAWAY is recommended, but not
 required (#2256,#2457)

 o Use variable-length integers throughout (#2437,#2233,#2253,#2275)

 * Variable-length frame types, stream types, and settings
 identifiers

 * Renumbered stream type assignments

 * Modified associated reserved values

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-19
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-18

Bishop Expires May 7, 2020 [Page 53]

Internet-Draft HTTP/3 November 2019

 o Frame layout switched from Length-Type-Value to Type-Length-Value
 (#2395,#2235)

 o Specified error code for servers receiving DUPLICATE_PUSH (#2497)

 o Use connection error for invalid PRIORITY (#2507, #2508)

B.7. Since draft-ietf-quic-http-17

 o HTTP_REQUEST_REJECTED is used to indicate a request can be retried
 (#2106, #2325)

 o Changed error code for GOAWAY on the wrong stream (#2231, #2343)

B.8. Since draft-ietf-quic-http-16

 o Rename "HTTP/QUIC" to "HTTP/3" (#1973)

 o Changes to PRIORITY frame (#1865, #2075)

 * Permitted as first frame of request streams

 * Remove exclusive reprioritization

 * Changes to Prioritized Element Type bits

 o Define DUPLICATE_PUSH frame to refer to another PUSH_PROMISE
 (#2072)

 o Set defaults for settings, allow request before receiving SETTINGS
 (#1809, #1846, #2038)

 o Clarify message processing rules for streams that aren't closed
 (#1972, #2003)

 o Removed reservation of error code 0 and moved HTTP_NO_ERROR to
 this value (#1922)

 o Removed prohibition of zero-length DATA frames (#2098)

B.9. Since draft-ietf-quic-http-15

 Substantial editorial reorganization; no technical changes.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-15

Bishop Expires May 7, 2020 [Page 54]

Internet-Draft HTTP/3 November 2019

B.10. Since draft-ietf-quic-http-14

 o Recommend sensible values for QUIC transport parameters
 (#1720,#1806)

 o Define error for missing SETTINGS frame (#1697,#1808)

 o Setting values are variable-length integers (#1556,#1807) and do
 not have separate maximum values (#1820)

 o Expanded discussion of connection closure (#1599,#1717,#1712)

 o HTTP_VERSION_FALLBACK falls back to HTTP/1.1 (#1677,#1685)

B.11. Since draft-ietf-quic-http-13

 o Reserved some frame types for grease (#1333, #1446)

 o Unknown unidirectional stream types are tolerated, not errors;
 some reserved for grease (#1490, #1525)

 o Require settings to be remembered for 0-RTT, prohibit reductions
 (#1541, #1641)

 o Specify behavior for truncated requests (#1596, #1643)

B.12. Since draft-ietf-quic-http-12

 o TLS SNI extension isn't mandatory if an alternative method is used
 (#1459, #1462, #1466)

 o Removed flags from HTTP/3 frames (#1388, #1398)

 o Reserved frame types and settings for use in preserving
 extensibility (#1333, #1446)

 o Added general error code (#1391, #1397)

 o Unidirectional streams carry a type byte and are extensible
 (#910,#1359)

 o Priority mechanism now uses explicit placeholders to enable
 persistent structure in the tree (#441,#1421,#1422)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-12

Bishop Expires May 7, 2020 [Page 55]

Internet-Draft HTTP/3 November 2019

B.13. Since draft-ietf-quic-http-11

 o Moved QPACK table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

B.14. Since draft-ietf-quic-http-10

 o Settings need to be remembered when attempting and accepting 0-RTT
 (#1157, #1207)

B.15. Since draft-ietf-quic-http-09

 o Selected QCRAM for header compression (#228, #1117)

 o The server_name TLS extension is now mandatory (#296, #495)

 o Specified handling of unsupported versions in Alt-Svc (#1093,
 #1097)

B.16. Since draft-ietf-quic-http-08

 o Clarified connection coalescing rules (#940, #1024)

B.17. Since draft-ietf-quic-http-07

 o Changes for integer encodings in QUIC (#595,#905)

 o Use unidirectional streams as appropriate (#515, #240, #281, #886)

 o Improvement to the description of GOAWAY (#604, #898)

 o Improve description of server push usage (#947, #950, #957)

B.18. Since draft-ietf-quic-http-06

 o Track changes in QUIC error code usage (#485)

B.19. Since draft-ietf-quic-http-05

 o Made push ID sequential, add MAX_PUSH_ID, remove
 SETTINGS_ENABLE_PUSH (#709)

 o Guidance about keep-alive and QUIC PINGs (#729)

 o Expanded text on GOAWAY and cancellation (#757)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05

Bishop Expires May 7, 2020 [Page 56]

Internet-Draft HTTP/3 November 2019

B.20. Since draft-ietf-quic-http-04

 o Cite RFC 5234 (#404)

 o Return to a single stream per request (#245,#557)

 o Use separate frame type and settings registries from HTTP/2 (#81)

 o SETTINGS_ENABLE_PUSH instead of SETTINGS_DISABLE_PUSH (#477)

 o Restored GOAWAY (#696)

 o Identify server push using Push ID rather than a stream ID
 (#702,#281)

 o DATA frames cannot be empty (#700)

B.21. Since draft-ietf-quic-http-03

 None.

B.22. Since draft-ietf-quic-http-02

 o Track changes in transport draft

B.23. Since draft-ietf-quic-http-01

 o SETTINGS changes (#181):

 * SETTINGS can be sent only once at the start of a connection; no
 changes thereafter

 * SETTINGS_ACK removed

 * Settings can only occur in the SETTINGS frame a single time

 * Boolean format updated

 o Alt-Svc parameter changed from "v" to "quic"; format updated
 (#229)

 o Closing the connection control stream or any message control
 stream is a fatal error (#176)

 o HPACK Sequence counter can wrap (#173)

 o 0-RTT guidance added

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01

Bishop Expires May 7, 2020 [Page 57]

Internet-Draft HTTP/3 November 2019

 o Guide to differences from HTTP/2 and porting HTTP/2 extensions
 added (#127,#242)

B.24. Since draft-ietf-quic-http-00

 o Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

 o Changed from using HTTP/2 framing within Stream 3 to new framing
 format and two-stream-per-request model (#71,#72,#73)

 o Adopted SETTINGS format from draft-bishop-httpbis-extended-
settings-01

 o Reworked SETTINGS_ACK to account for indeterminate inter-stream
 order (#75)

 o Described CONNECT pseudo-method (#95)

 o Updated ALPN token and Alt-Svc guidance (#13,#87)

 o Application-layer-defined error codes (#19,#74)

B.25. Since draft-shade-quic-http2-mapping-00

 o Adopted as base for draft-ietf-quic-http

 o Updated authors/editors list

Acknowledgements

 The original authors of this specification were Robbie Shade and Mike
 Warres.

 A substantial portion of Mike's contribution was supported by
 Microsoft during his employment there.

Author's Address

 Mike Bishop (editor)
 Akamai

 Email: mbishop@evequefou.be

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http

Bishop Expires May 7, 2020 [Page 58]

