
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-http-29

Published: 9 June 2020

Intended Status: Standards Track

Expires: 11 December 2020

Authors: M. Bishop, Ed.

Akamai

Hypertext Transfer Protocol Version 3 (HTTP/3)

Abstract

The QUIC transport protocol has several features that are desirable

in a transport for HTTP, such as stream multiplexing, per-stream

flow control, and low-latency connection establishment. This

document describes a mapping of HTTP semantics over QUIC. This

document also identifies HTTP/2 features that are subsumed by QUIC,

and describes how HTTP/2 extensions can be ported to HTTP/3.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-http.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 December 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

mailto:quic@ietf.org
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-http
https://github.com/quicwg/base-drafts/labels/-http
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Prior versions of HTTP

1.2. Delegation to QUIC

2. HTTP/3 Protocol Overview

2.1. Document Organization

2.2. Conventions and Terminology

3. Connection Setup and Management

3.1. Draft Version Identification

3.2. Discovering an HTTP/3 Endpoint

3.2.1. HTTP Alternative Services

3.2.2. Other Schemes

3.3. Connection Establishment

3.4. Connection Reuse

4. HTTP Request Lifecycle

4.1. HTTP Message Exchanges

4.1.1. Field Formatting and Compression

4.1.2. Request Cancellation and Rejection

4.1.3. Malformed Requests and Responses

4.2. The CONNECT Method

4.3. HTTP Upgrade

4.4. Server Push

5. Connection Closure

5.1. Idle Connections

5.2. Connection Shutdown

5.3. Immediate Application Closure

5.4. Transport Closure

6. Stream Mapping and Usage

6.1. Bidirectional Streams

6.2. Unidirectional Streams

6.2.1. Control Streams

6.2.2. Push Streams

6.2.3. Reserved Stream Types

7. HTTP Framing Layer

7.1. Frame Layout

7.2. Frame Definitions

7.2.1. DATA

7.2.2. HEADERS

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

7.2.3. CANCEL_PUSH

7.2.4. SETTINGS

7.2.5. PUSH_PROMISE

7.2.6. GOAWAY

7.2.7. MAX_PUSH_ID

7.2.8. Reserved Frame Types

8. Error Handling

8.1. HTTP/3 Error Codes

9. Extensions to HTTP/3

10. Security Considerations

10.1. Server Authority

10.2. Cross-Protocol Attacks

10.3. Intermediary Encapsulation Attacks

10.4. Cacheability of Pushed Responses

10.5. Denial-of-Service Considerations

10.5.1. Limits on Field Section Size

10.5.2. CONNECT Issues

10.6. Use of Compression

10.7. Padding and Traffic Analysis

10.8. Frame Parsing

10.9. Early Data

10.10. Migration

10.11. Privacy Considerations

11. IANA Considerations

11.1. Registration of HTTP/3 Identification String

11.2. New Registries

11.2.1. Frame Types

11.2.2. Settings Parameters

11.2.3. Error Codes

11.2.4. Stream Types

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Considerations for Transitioning from HTTP/2

A.1. Streams

A.2. HTTP Frame Types

A.2.1. Prioritization Differences

A.2.2. Field Compression Differences

A.2.3. Guidance for New Frame Type Definitions

A.2.4. Mapping Between HTTP/2 and HTTP/3 Frame Types

A.3. HTTP/2 SETTINGS Parameters

A.4. HTTP/2 Error Codes

A.4.1. Mapping Between HTTP/2 and HTTP/3 Errors

Appendix B. Change Log

B.1. Since draft-ietf-quic-http-28

B.2. Since draft-ietf-quic-http-27

B.3. Since draft-ietf-quic-http-26

B.4. Since draft-ietf-quic-http-25

B.5. Since draft-ietf-quic-http-24

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

B.6. Since draft-ietf-quic-http-23

B.7. Since draft-ietf-quic-http-22

B.8. Since draft-ietf-quic-http-21

B.9. Since draft-ietf-quic-http-20

B.10. Since draft-ietf-quic-http-19

B.11. Since draft-ietf-quic-http-18

B.12. Since draft-ietf-quic-http-17

B.13. Since draft-ietf-quic-http-16

B.14. Since draft-ietf-quic-http-15

B.15. Since draft-ietf-quic-http-14

B.16. Since draft-ietf-quic-http-13

B.17. Since draft-ietf-quic-http-12

B.18. Since draft-ietf-quic-http-11

B.19. Since draft-ietf-quic-http-10

B.20. Since draft-ietf-quic-http-09

B.21. Since draft-ietf-quic-http-08

B.22. Since draft-ietf-quic-http-07

B.23. Since draft-ietf-quic-http-06

B.24. Since draft-ietf-quic-http-05

B.25. Since draft-ietf-quic-http-04

B.26. Since draft-ietf-quic-http-03

B.27. Since draft-ietf-quic-http-02

B.28. Since draft-ietf-quic-http-01

B.29. Since draft-ietf-quic-http-00

B.30. Since draft-shade-quic-http2-mapping-00

Acknowledgements

Author's Address

1. Introduction

HTTP semantics [SEMANTICS] are used for a broad range of services on

the Internet. These semantics have most commonly been used with two

different TCP mappings, HTTP/1.1 and HTTP/2. HTTP/3 supports the

same semantics over a new transport protocol, QUIC.

1.1. Prior versions of HTTP

HTTP/1.1 [HTTP11] is a TCP mapping which uses whitespace-delimited

text fields to convey HTTP messages. While these exchanges are

human-readable, using whitespace for message formatting leads to

parsing complexity and motivates tolerance of variant behavior.

Because each connection can transfer only a single HTTP request or

response at a time in each direction, multiple parallel TCP

connections are often used, reducing the ability of the congestion

controller to effectively manage traffic between endpoints.

HTTP/2 [HTTP2] introduced a binary framing and multiplexing layer to

improve latency without modifying the transport layer. However,

because the parallel nature of HTTP/2's multiplexing is not visible

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

to TCP's loss recovery mechanisms, a lost or reordered packet causes

all active transactions to experience a stall regardless of whether

that transaction was directly impacted by the lost packet.

1.2. Delegation to QUIC

The QUIC transport protocol incorporates stream multiplexing and

per-stream flow control, similar to that provided by the HTTP/2

framing layer. By providing reliability at the stream level and

congestion control across the entire connection, it has the

capability to improve the performance of HTTP compared to a TCP

mapping. QUIC also incorporates TLS 1.3 [TLS13] at the transport

layer, offering comparable security to running TLS over TCP, with

the improved connection setup latency of TCP Fast Open [TFO].

This document defines a mapping of HTTP semantics over the QUIC

transport protocol, drawing heavily on the design of HTTP/2. While

delegating stream lifetime and flow control issues to QUIC, a

similar binary framing is used on each stream. Some HTTP/2 features

are subsumed by QUIC, while other features are implemented atop

QUIC.

QUIC is described in [QUIC-TRANSPORT]. For a full description of

HTTP/2, see [HTTP2].

2. HTTP/3 Protocol Overview

HTTP/3 provides a transport for HTTP semantics using the QUIC

transport protocol and an internal framing layer similar to HTTP/2.

Once a client knows that an HTTP/3 server exists at a certain

endpoint, it opens a QUIC connection. QUIC provides protocol

negotiation, stream-based multiplexing, and flow control. Discovery

of an HTTP/3 endpoint is described in Section 3.2.

Within each stream, the basic unit of HTTP/3 communication is a

frame (Section 7.2). Each frame type serves a different purpose. For

example, HEADERS and DATA frames form the basis of HTTP requests and

responses (Section 4.1).

Multiplexing of requests is performed using the QUIC stream

abstraction, described in Section 2 of [QUIC-TRANSPORT]. Each

request-response pair consumes a single QUIC stream. Streams are

independent of each other, so one stream that is blocked or suffers

packet loss does not prevent progress on other streams.

Server push is an interaction mode introduced in HTTP/2 [HTTP2]

which permits a server to push a request-response exchange to a

client in anticipation of the client making the indicated request.

This trades off network usage against a potential latency gain.

¶

¶

¶

¶

¶

¶

¶

¶

Several HTTP/3 frames are used to manage server push, such as

PUSH_PROMISE, MAX_PUSH_ID, and CANCEL_PUSH.

As in HTTP/2, request and response fields are compressed for

transmission. Because HPACK [HPACK] relies on in-order transmission

of compressed field sections (a guarantee not provided by QUIC),

HTTP/3 replaces HPACK with QPACK [QPACK]. QPACK uses separate

unidirectional streams to modify and track field table state, while

encoded field sections refer to the state of the table without

modifying it.

2.1. Document Organization

The following sections provide a detailed overview of the connection

lifecycle and key concepts:

Connection Setup and Management (Section 3) covers how an HTTP/3

endpoint is discovered and a connection is established.

HTTP Request Lifecycle (Section 4) describes how HTTP semantics

are expressed using frames.

Connection Closure (Section 5) describes how connections are

terminated, either gracefully or abruptly.

The details of the wire protocol and interactions with the transport

are described in subsequent sections:

Stream Mapping and Usage (Section 6) describes the way QUIC

streams are used.

HTTP Framing Layer (Section 7) describes the frames used on most

streams.

Error Handling (Section 8) describes how error conditions are

handled and expressed, either on a particular stream or for the

connection as a whole.

Additional resources are provided in the final sections:

Extensions to HTTP/3 (Section 9) describes how new capabilities

can be added in future documents.

A more detailed comparison between HTTP/2 and HTTP/3 can be found

in Appendix A.

2.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

abort:

client:

connection:

connection error:

endpoint:

frame:

peer:

receiver:

sender:

server:

stream:

stream error:

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Field definitions are given in Augmented Backus-Naur Form (ABNF), as

defined in [RFC5234].

This document uses the variable-length integer encoding from [QUIC-

TRANSPORT].

The following terms are used:

An abrupt termination of a connection or stream, possibly

due to an error condition.

The endpoint that initiates an HTTP/3 connection. Clients

send HTTP requests and receive HTTP responses.

A transport-layer connection between two endpoints,

using QUIC as the transport protocol.

An error that affects the entire HTTP/3

connection.

Either the client or server of the connection.

The smallest unit of communication on a stream in HTTP/3,

consisting of a header and a variable-length sequence of bytes

structured according to the frame type. Protocol elements called

"frames" exist in both this document and [QUIC-TRANSPORT]. Where

frames from [QUIC-TRANSPORT] are referenced, the frame name will

be prefaced with "QUIC." For example, "QUIC CONNECTION_CLOSE

frames." References without this preface refer to frames defined

in Section 7.2.

An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is remote to the primary subject of

discussion.

An endpoint that is receiving frames.

An endpoint that is transmitting frames.

The endpoint that accepts an HTTP/3 connection. Servers

receive HTTP requests and send HTTP responses.

A bidirectional or unidirectional bytestream provided by

the QUIC transport.

An error on the individual HTTP/3 stream.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The term "payload body" is defined in Section 6.3.3 of [SEMANTICS].

Finally, the terms "gateway", "intermediary", "proxy", and "tunnel"

are defined in Section 2.2 of [SEMANTICS]. Intermediaries act as

both client and server at different times.

3. Connection Setup and Management

3.1. Draft Version Identification

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

HTTP/3 uses the token "h3" to identify itself in ALPN and Alt-Svc.

Only implementations of the final, published RFC can identify

themselves as "h3". Until such an RFC exists, implementations MUST

NOT identify themselves using this string.

Implementations of draft versions of the protocol MUST add the

string "-" and the corresponding draft number to the identifier. For

example, draft-ietf-quic-http-01 is identified using the string

"h3-01".

Draft versions MUST use the corresponding draft transport version as

their transport. For example, the application protocol defined in

draft-ietf-quic-http-25 uses the transport defined in draft-ietf-

quic-transport-25.

Non-compatible experiments that are based on these draft versions

MUST append the string "-" and an experiment name to the identifier.

For example, an experimental implementation based on draft-ietf-

quic-http-09 which reserves an extra stream for unsolicited

transmission of 1980s pop music might identify itself as "h3-09-

rickroll". Note that any label MUST conform to the "token" syntax

defined in Section 4.4.1.1 of [SEMANTICS]. Experimenters are

encouraged to coordinate their experiments on the quic@ietf.org

mailing list.

3.2. Discovering an HTTP/3 Endpoint

HTTP relies on the notion of an authoritative response: a response

that has been determined to be the most appropriate response for

that request given the state of the target resource at the time of

response message origination by (or at the direction of) the origin

server identified within the target URI. Locating an authoritative

server for an HTTP URL is discussed in Section 5.4 of [SEMANTICS].

The "https" scheme associates authority with possession of a

certificate that the client considers to be trustworthy for the host

identified by the authority component of the URL. If a server

¶

¶

¶

¶

¶

¶

¶

¶

mailto:quic@ietf.org

presents a certificate and proof that it controls the corresponding

private key, then a client will accept a secured connection to that

server as being authoritative for all origins with the "https"

scheme and a host identified in the certificate.

A client MAY attempt access to a resource with an "https" URI by

resolving the host identifier to an IP address, establishing a QUIC

connection to that address on the indicated port, and sending an

HTTP/3 request message targeting the URI to the server over that

secured connection.

Connectivity problems (e.g., blocking UDP) can result in QUIC

connection establishment failure; clients SHOULD attempt to use TCP-

based versions of HTTP in this case.

Servers MAY serve HTTP/3 on any UDP port; an alternative service

advertisement always includes an explicit port, and URLs contain

either an explicit port or a default port associated with the

scheme.

3.2.1. HTTP Alternative Services

An HTTP origin advertises the availability of an equivalent HTTP/3

endpoint via the Alt-Svc HTTP response header field or the HTTP/2

ALTSVC frame ([ALTSVC]), using the ALPN token defined in Section

3.3.

For example, an origin could indicate in an HTTP response that HTTP/

3 was available on UDP port 50781 at the same hostname by including

the following header field:

On receipt of an Alt-Svc record indicating HTTP/3 support, a client

MAY attempt to establish a QUIC connection to the indicated host and

port and, if successful, send HTTP requests using the mapping

described in this document.

3.2.2. Other Schemes

Although HTTP is independent of the transport protocol, the "http"

scheme associates authority with the ability to receive TCP

connections on the indicated port of whatever host is identified

within the authority component. Because HTTP/3 does not use TCP,

HTTP/3 cannot be used for direct access to the authoritative server

for a resource identified by an "http" URI. However, protocol

extensions such as [ALTSVC] permit the authoritative server to

identify other services which are also authoritative and which might

be reachable over HTTP/3.

¶

¶

¶

¶

¶

¶

Alt-Svc: h3=":50781"¶

¶

¶

Prior to making requests for an origin whose scheme is not "https",

the client MUST ensure the server is willing to serve that scheme.

If the client intends to make requests for an origin whose scheme is

"http", this means that it MUST obtain a valid http-opportunistic

response for the origin as described in [RFC8164] prior to making

any such requests. Other schemes might define other mechanisms.

3.3. Connection Establishment

HTTP/3 relies on QUIC version 1 as the underlying transport. The use

of other QUIC transport versions with HTTP/3 MAY be defined by

future specifications.

QUIC version 1 uses TLS version 1.3 or greater as its handshake

protocol. HTTP/3 clients MUST support a mechanism to indicate the

target host to the server during the TLS handshake. If the server is

identified by a DNS name, clients MUST send the Server Name

Indication (SNI) [RFC6066] TLS extension unless an alternative

mechanism to indicate the target host is used.

QUIC connections are established as described in [QUIC-TRANSPORT].

During connection establishment, HTTP/3 support is indicated by

selecting the ALPN token "h3" in the TLS handshake. Support for

other application-layer protocols MAY be offered in the same

handshake.

While connection-level options pertaining to the core QUIC protocol

are set in the initial crypto handshake, HTTP/3-specific settings

are conveyed in the SETTINGS frame. After the QUIC connection is

established, a SETTINGS frame (Section 7.2.4) MUST be sent by each

endpoint as the initial frame of their respective HTTP control

stream; see Section 6.2.1.

3.4. Connection Reuse

HTTP/3 connections are persistent across multiple requests. For best

performance, it is expected that clients will not close connections

until it is determined that no further communication with a server

is necessary (for example, when a user navigates away from a

particular web page) or until the server closes the connection.

Once a connection exists to a server endpoint, this connection MAY

be reused for requests with multiple different URI authority

components. In general, a server is considered authoritative for all

URIs with the "https" scheme for which the hostname in the URI is

present in the authenticated certificate provided by the server,

either as the CN field of the certificate subject or as a dNSName in

the subjectAltName field of the certificate; see [RFC6125]. For a

host that is an IP address, the client MUST verify that the address

appears as an iPAddress in the subjectAltName field of the

¶

¶

¶

¶

¶

¶

certificate. If the hostname or address is not present in the

certificate, the client MUST NOT consider the server authoritative

for origins containing that hostname or address. See Section 5.4 of

[SEMANTICS] for more detail on authoritative access.

Clients SHOULD NOT open more than one HTTP/3 connection to a given

host and port pair, where the host is derived from a URI, a selected

alternative service [ALTSVC], or a configured proxy. A client MAY

open multiple connections to the same IP address and UDP port using

different transport or TLS configurations but SHOULD avoid creating

multiple connections with the same configuration.

Servers are encouraged to maintain open connections for as long as

possible but are permitted to terminate idle connections if

necessary. When either endpoint chooses to close the HTTP/3 session,

the terminating endpoint SHOULD first send a GOAWAY frame (Section

5.2) so that both endpoints can reliably determine whether

previously sent frames have been processed and gracefully complete

or terminate any necessary remaining tasks.

A server that does not wish clients to reuse connections for a

particular origin can indicate that it is not authoritative for a

request by sending a 421 (Misdirected Request) status code in

response to the request; see Section 9.1.2 of [HTTP2].

4. HTTP Request Lifecycle

4.1. HTTP Message Exchanges

A client sends an HTTP request on a client-initiated bidirectional

QUIC stream. A client MUST send only a single request on a given

stream. A server sends zero or more interim HTTP responses on the

same stream as the request, followed by a single final HTTP

response, as detailed below.

Pushed responses are sent on a server-initiated unidirectional QUIC

stream; see Section 6.2.2. A server sends zero or more interim HTTP

responses, followed by a single final HTTP response, in the same

manner as a standard response. Push is described in more detail in

Section 4.4.

On a given stream, receipt of multiple requests or receipt of an

additional HTTP response following a final HTTP response MUST be

treated as malformed (Section 4.1.3).

An HTTP message (request or response) consists of:

the header field section (see Section 4 of [SEMANTICS]), sent

as a single HEADERS frame (see Section 7.2.2),

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

optionally, the payload body, if present (see Section 6.3.3 of

[SEMANTICS]), sent as a series of DATA frames (see Section

7.2.1),

optionally, the trailer field section, if present (see Section

4.6 of [SEMANTICS]), sent as a single HEADERS frame.

Receipt of an invalid sequence of frames MUST be treated as a

connection error of type H3_FRAME_UNEXPECTED (Section 8). In

particular, a DATA frame before any HEADERS frame, or a HEADERS or

DATA frame after the trailing HEADERS frame is considered invalid.

A server MAY send one or more PUSH_PROMISE frames (see Section

7.2.5) before, after, or interleaved with the frames of a response

message. These PUSH_PROMISE frames are not part of the response; see

Section 4.4 for more details. These frames are not permitted in

pushed responses; a pushed response which includes PUSH_PROMISE

frames MUST be treated as a connection error of type

H3_FRAME_UNEXPECTED.

Frames of unknown types (Section 9), including reserved frames

(Section 7.2.8) MAY be sent on a request or push stream before,

after, or interleaved with other frames described in this section.

The HEADERS and PUSH_PROMISE frames might reference updates to the

QPACK dynamic table. While these updates are not directly part of

the message exchange, they must be received and processed before the

message can be consumed. See Section 4.1.1 for more details.

The "chunked" transfer encoding defined in Section 7.1 of [HTTP11]

MUST NOT be used.

A response MAY consist of multiple messages when and only when one

or more informational responses (1xx; see Section 9.2 of

[SEMANTICS]) precede a final response to the same request. Interim

responses do not contain a payload body or trailers.

An HTTP request/response exchange fully consumes a client-initiated

bidirectional QUIC stream. After sending a request, a client MUST

close the stream for sending. Unless using the CONNECT method (see

Section 4.2), clients MUST NOT make stream closure dependent on

receiving a response to their request. After sending a final

response, the server MUST close the stream for sending. At this

point, the QUIC stream is fully closed.

When a stream is closed, this indicates the end of an HTTP message.

Because some messages are large or unbounded, endpoints SHOULD begin

processing partial HTTP messages once enough of the message has been

received to make progress. If a client stream terminates without

enough of the HTTP message to provide a complete response, the

2.

¶

3.

¶

¶

¶

¶

¶

¶

¶

¶

server SHOULD abort its response with the error code

H3_REQUEST_INCOMPLETE.

A server can send a complete response prior to the client sending an

entire request if the response does not depend on any portion of the

request that has not been sent and received. When the server does

not need to receive the remainder of the request, it MAY abort

reading the request stream, send a complete response, and cleanly

close the sending part of the stream. The error code H3_NO_ERROR

SHOULD be used when requesting that the client stop sending on the

request stream. Clients MUST NOT discard complete responses as a

result of having their request terminated abruptly, though clients

can always discard responses at their discretion for other reasons.

If the server sends a partial or complete response but does not

abort reading, clients SHOULD continue sending the body of the

request and close the stream normally.

4.1.1. Field Formatting and Compression

HTTP messages carry metadata as a series of key-value pairs, called

HTTP fields. For a listing of registered HTTP fields, see the

"Hypertext Transfer Protocol (HTTP) Field Name Registry" maintained

at https://www.iana.org/assignments/http-fields/.

As in previous versions of HTTP, field names are strings containing

a subset of ASCII characters that are compared in a case-insensitive

fashion. Properties of HTTP field names and values are discussed in

more detail in Section 4.3 of [SEMANTICS]. As in HTTP/2, characters

in field names MUST be converted to lowercase prior to their

encoding. A request or response containing uppercase characters in

field names MUST be treated as malformed (Section 4.1.3).

Like HTTP/2, HTTP/3 does not use the Connection header field to

indicate connection-specific fields; in this protocol, connection-

specific metadata is conveyed by other means. An endpoint MUST NOT

generate an HTTP/3 field section containing connection-specific

fields; any message containing connection-specific fields MUST be

treated as malformed (Section 4.1.3).

The only exception to this is the TE header field, which MAY be

present in an HTTP/3 request header; when it is, it MUST NOT contain

any value other than "trailers".

This means that an intermediary transforming an HTTP/1.x message to

HTTP/3 will need to remove any fields nominated by the Connection

field, along with the Connection field itself. Such intermediaries

SHOULD also remove other connection-specific fields, such as Keep-

Alive, Proxy-Connection, Transfer-Encoding, and Upgrade, even if

they are not nominated by the Connection field.

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-fields/

":method":

":scheme":

":authority":

4.1.1.1. Pseudo-Header Fields

Like HTTP/2, HTTP/3 employs a series of pseudo-header fields where

the field name begins with the ':' character (ASCII 0x3a). These

pseudo-header fields convey the target URI, the method of the

request, and the status code for the response.

Pseudo-header fields are not HTTP fields. Endpoints MUST NOT

generate pseudo-header fields other than those defined in this

document, except as negotiated via an extension; see Section 9.

Pseudo-header fields are only valid in the context in which they are

defined. Pseudo-header fields defined for requests MUST NOT appear

in responses; pseudo-header fields defined for responses MUST NOT

appear in requests. Pseudo-header fields MUST NOT appear in

trailers. Endpoints MUST treat a request or response that contains

undefined or invalid pseudo-header fields as malformed (Section

4.1.3).

All pseudo-header fields MUST appear in the header field section

before regular header fields. Any request or response that contains

a pseudo-header field that appears in a header field section after a

regular header field MUST be treated as malformed (Section 4.1.3).

The following pseudo-header fields are defined for requests:

Contains the HTTP method (Section 7 of [SEMANTICS])

Contains the scheme portion of the target URI (Section

3.1 of [RFC3986])

":scheme" is not restricted to "http" and "https" schemed URIs. A

proxy or gateway can translate requests for non-HTTP schemes,

enabling the use of HTTP to interact with non-HTTP services.

Contains the authority portion of the target URI

(Section 3.2 of [RFC3986]). The authority MUST NOT include the

deprecated "userinfo" subcomponent for "http" or "https" schemed

URIs.

To ensure that the HTTP/1.1 request line can be reproduced

accurately, this pseudo-header field MUST be omitted when

translating from an HTTP/1.1 request that has a request target in

origin or asterisk form; see Section 3.2 of [HTTP11]. Clients

that generate HTTP/3 requests directly SHOULD use the

":authority" pseudo-header field instead of the Host field. An

intermediary that converts an HTTP/3 request to HTTP/1.1 MUST

create a Host field if one is not present in a request by copying

the value of the ":authority" pseudo-header field.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

":path":
Contains the path and query parts of the target URI (the

"path-absolute" production and optionally a '?' character

followed by the "query" production; see Sections 3.3 and 3.4 of

[URI]. A request in asterisk form includes the value '*' for the

":path" pseudo-header field.

This pseudo-header field MUST NOT be empty for "http" or "https"

URIs; "http" or "https" URIs that do not contain a path component

MUST include a value of '/'. The exception to this rule is an

OPTIONS request for an "http" or "https" URI that does not

include a path component; these MUST include a ":path" pseudo-

header field with a value of '*'; see Section 3.2.4 of [HTTP11].

All HTTP/3 requests MUST include exactly one value for the

":method", ":scheme", and ":path" pseudo-header fields, unless it is

a CONNECT request; see Section 4.2.

If the ":scheme" pseudo-header field identifies a scheme which has a

mandatory authority component (including "http" and "https"), the

request MUST contain either an ":authority" pseudo-header field or a

"Host" header field. If these fields are present, they MUST NOT be

empty. If both fields are present, they MUST contain the same value.

If the scheme does not have a mandatory authority component and none

is provided in the request target, the request MUST NOT contain the

":authority" pseudo-header and "Host" header fields.

An HTTP request that omits mandatory pseudo-header fields or

contains invalid values for those pseudo-header fields is malformed

(Section 4.1.3).

HTTP/3 does not define a way to carry the version identifier that is

included in the HTTP/1.1 request line.

For responses, a single ":status" pseudo-header field is defined

that carries the HTTP status code; see Section 9 of [SEMANTICS].

This pseudo-header field MUST be included in all responses;

otherwise, the response is malformed (Section 4.1.3).

HTTP/3 does not define a way to carry the version or reason phrase

that is included in an HTTP/1.1 status line.

4.1.1.2. Field Compression

HTTP/3 uses QPACK field compression as described in [QPACK], a

variation of HPACK which allows the flexibility to avoid

compression-induced head-of-line blocking. See that document for

additional details.

¶

¶

¶

¶

¶

¶

¶

¶

¶

To allow for better compression efficiency, the "Cookie" field

[RFC6265] MAY be split into separate field lines, each with one or

more cookie-pairs, before compression. If a decompressed field

section contains multiple cookie field lines, these MUST be

concatenated into a single octet string using the two-octet

delimiter of 0x3B, 0x20 (the ASCII string "; ") before being passed

into a context other than HTTP/2 or HTTP/3, such as an HTTP/1.1

connection, or a generic HTTP server application.

4.1.1.3. Header Size Constraints

An HTTP/3 implementation MAY impose a limit on the maximum size of

the message header it will accept on an individual HTTP message. A

server that receives a larger header section than it is willing to

handle can send an HTTP 431 (Request Header Fields Too Large) status

code ([RFC6585]). A client can discard responses that it cannot

process. The size of a field list is calculated based on the

uncompressed size of fields, including the length of the name and

value in bytes plus an overhead of 32 bytes for each field.

If an implementation wishes to advise its peer of this limit, it can

be conveyed as a number of bytes in the

SETTINGS_MAX_FIELD_SECTION_SIZE parameter. An implementation which

has received this parameter SHOULD NOT send an HTTP message header

which exceeds the indicated size, as the peer will likely refuse to

process it. However, because this limit is applied at each hop,

messages below this limit are not guaranteed to be accepted.

4.1.2. Request Cancellation and Rejection

Clients can cancel requests by resetting and aborting the request

stream with an error code of H3_REQUEST_CANCELLED (Section 8.1).

When the client aborts reading a response, it indicates that this

response is no longer of interest. Implementations SHOULD cancel

requests by abruptly terminating any directions of a stream that are

still open.

When the server rejects a request without performing any application

processing, it SHOULD abort its response stream with the error code

H3_REQUEST_REJECTED. In this context, "processed" means that some

data from the stream was passed to some higher layer of software

that might have taken some action as a result. The client can treat

requests rejected by the server as though they had never been sent

at all, thereby allowing them to be retried later on a new

connection. Servers MUST NOT use the H3_REQUEST_REJECTED error code

for requests which were partially or fully processed. When a server

abandons a response after partial processing, it SHOULD abort its

response stream with the error code H3_REQUEST_CANCELLED.

¶

¶

¶

¶

¶

When a client resets a request with the error code

H3_REQUEST_CANCELLED, a server MAY abruptly terminate the response

using the error code H3_REQUEST_REJECTED if no processing was

performed. Clients MUST NOT use the H3_REQUEST_REJECTED error code,

except when a server has requested closure of the request stream

with this error code.

If a stream is cancelled after receiving a complete response, the

client MAY ignore the cancellation and use the response. However, if

a stream is cancelled after receiving a partial response, the

response SHOULD NOT be used. Automatically retrying such requests is

not possible, unless this is otherwise permitted (e.g., idempotent

actions like GET, PUT, or DELETE).

4.1.3. Malformed Requests and Responses

A malformed request or response is one that is an otherwise valid

sequence of frames but is invalid due to:

the presence of prohibited fields or pseudo-header fields,

the absence of mandatory pseudo-header fields,

invalid values for pseudo-header fields,

pseudo-header fields after fields,

an invalid sequence of HTTP messages,

the inclusion of uppercase field names, or

the inclusion of invalid characters in field names or values

A request or response that includes a payload body can include a

Content-Length header field. A request or response is also malformed

if the value of a content-length header field does not equal the sum

of the DATA frame payload lengths that form the body. A response

that is defined to have no payload, as described in Section 6.3.3 of

[SEMANTICS] can have a non-zero content-length field, even though no

content is included in DATA frames.

Intermediaries that process HTTP requests or responses (i.e., any

intermediary not acting as a tunnel) MUST NOT forward a malformed

request or response. Malformed requests or responses that are

detected MUST be treated as a stream error (Section 8) of type

H3_GENERAL_PROTOCOL_ERROR.

For malformed requests, a server MAY send an HTTP response prior to

closing or resetting the stream. Clients MUST NOT accept a malformed

response. Note that these requirements are intended to protect

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

against several types of common attacks against HTTP; they are

deliberately strict because being permissive can expose

implementations to these vulnerabilities.

4.2. The CONNECT Method

The CONNECT method requests that the recipient establish a tunnel to

the destination origin server identified by the request-target

(Section 3.2 of [HTTP11]). It is primarily used with HTTP proxies to

establish a TLS session with an origin server for the purposes of

interacting with "https" resources.

In HTTP/1.x, CONNECT is used to convert an entire HTTP connection

into a tunnel to a remote host. In HTTP/2 and HTTP/3, the CONNECT

method is used to establish a tunnel over a single stream.

A CONNECT request MUST be constructed as follows:

The ":method" pseudo-header field is set to "CONNECT"

The ":scheme" and ":path" pseudo-header fields are omitted

The ":authority" pseudo-header field contains the host and port

to connect to (equivalent to the authority-form of the request-

target of CONNECT requests; see Section 3.2.3 of [HTTP11])

The request stream remains open at the end of the request to carry

the data to be transferred. A CONNECT request that does not conform

to these restrictions is malformed; see Section 4.1.3.

A proxy that supports CONNECT establishes a TCP connection

([RFC0793]) to the server identified in the ":authority" pseudo-

header field. Once this connection is successfully established, the

proxy sends a HEADERS frame containing a 2xx series status code to

the client, as defined in Section 9.3 of [SEMANTICS].

All DATA frames on the stream correspond to data sent or received on

the TCP connection. Any DATA frame sent by the client is transmitted

by the proxy to the TCP server; data received from the TCP server is

packaged into DATA frames by the proxy. Note that the size and

number of TCP segments is not guaranteed to map predictably to the

size and number of HTTP DATA or QUIC STREAM frames.

Once the CONNECT method has completed, only DATA frames are

permitted to be sent on the stream. Extension frames MAY be used if

specifically permitted by the definition of the extension. Receipt

of any other frame type MUST be treated as a connection error of

type H3_FRAME_UNEXPECTED.

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

The TCP connection can be closed by either peer. When the client

ends the request stream (that is, the receive stream at the proxy

enters the "Data Recvd" state), the proxy will set the FIN bit on

its connection to the TCP server. When the proxy receives a packet

with the FIN bit set, it will terminate the send stream that it

sends to the client. TCP connections which remain half-closed in a

single direction are not invalid, but are often handled poorly by

servers, so clients SHOULD NOT close a stream for sending while they

still expect to receive data from the target of the CONNECT.

A TCP connection error is signaled by abruptly terminating the

stream. A proxy treats any error in the TCP connection, which

includes receiving a TCP segment with the RST bit set, as a stream

error of type H3_CONNECT_ERROR (Section 8.1). Correspondingly, if a

proxy detects an error with the stream or the QUIC connection, it

MUST close the TCP connection. If the underlying TCP implementation

permits it, the proxy SHOULD send a TCP segment with the RST bit

set.

4.3. HTTP Upgrade

HTTP/3 does not support the HTTP Upgrade mechanism (Section 9.9 of

[HTTP11]) or 101 (Switching Protocols) informational status code

(Section 9.2.2 of [SEMANTICS]).

4.4. Server Push

Server push is an interaction mode which permits a server to push a

request-response exchange to a client in anticipation of the client

making the indicated request. This trades off network usage against

a potential latency gain. HTTP/3 server push is similar to what is

described in HTTP/2 [HTTP2], but uses different mechanisms.

Each server push is identified by a unique Push ID. This Push ID is

used in one or more PUSH_PROMISE frames (see Section 7.2.5) that

carry the request fields, then included with the push stream which

ultimately fulfills those promises. When the same Push ID is

promised on multiple request streams, the decompressed request field

sections MUST contain the same fields in the same order, and both

the name and the value in each field MUST be exact matches.

Server push is only enabled on a connection when a client sends a

MAX_PUSH_ID frame; see Section 7.2.7. A server cannot use server

push until it receives a MAX_PUSH_ID frame. A client sends

additional MAX_PUSH_ID frames to control the number of pushes that a

server can promise. A server SHOULD use Push IDs sequentially,

starting at 0. A client MUST treat receipt of a push stream with a

Push ID that is greater than the maximum Push ID as a connection

error of type H3_ID_ERROR.

¶

¶

¶

¶

¶

¶

The header section of the request message is carried by a

PUSH_PROMISE frame (see Section 7.2.5) on the request stream which

generated the push. This allows the server push to be associated

with a client request.

Not all requests can be pushed. A server MAY push requests which

have the following properties:

cacheable; see Section 7.2.3 of [SEMANTICS]

safe; see Section 7.2.1 of [SEMANTICS]

does not include a request body or trailer section

The server MUST include a value in the ":authority" pseudo-header

field for which the server is authoritative; see Section 3.4.

Clients SHOULD send a CANCEL_PUSH frame upon receipt of a

PUSH_PROMISE frame carrying a request which is not cacheable, is not

known to be safe, that indicates the presence of a request body, or

for which it does not consider the server authoritative.

Each pushed response is associated with one or more client requests.

The push is associated with the request stream on which the

PUSH_PROMISE frame was received. The same server push can be

associated with additional client requests using a PUSH_PROMISE

frame with the same Push ID on multiple request streams. These

associations do not affect the operation of the protocol, but MAY be

considered by user agents when deciding how to use pushed resources.

Ordering of a PUSH_PROMISE in relation to certain parts of the

response is important. The server SHOULD send PUSH_PROMISE frames

prior to sending HEADERS or DATA frames that reference the promised

responses. This reduces the chance that a client requests a resource

that will be pushed by the server.

When a server later fulfills a promise, the server push response is

conveyed on a push stream; see Section 6.2.2. The push stream

identifies the Push ID of the promise that it fulfills, then

contains a response to the promised request using the same format

described for responses in Section 4.1.

Due to reordering, push stream data can arrive before the

corresponding PUSH_PROMISE frame. When a client receives a new push

stream with an as-yet-unknown Push ID, both the associated client

request and the pushed request header fields are unknown. The client

can buffer the stream data in expectation of the matching

PUSH_PROMISE. The client can use stream flow control (see section

4.1 of [QUIC-TRANSPORT]) to limit the amount of data a server may

commit to the pushed stream.

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

If a promised server push is not needed by the client, the client

SHOULD send a CANCEL_PUSH frame. If the push stream is already open

or opens after sending the CANCEL_PUSH frame, the client can abort

reading the stream with an error code of H3_REQUEST_CANCELLED. This

asks the server not to transfer additional data and indicates that

it will be discarded upon receipt.

Pushed responses that are cacheable (see Section 3 of [CACHING]) can

be stored by the client, if it implements an HTTP cache. Pushed

responses are considered successfully validated on the origin server

(e.g., if the "no-cache" cache response directive is present

(Section 5.2.2.3 of [CACHING])) at the time the pushed response is

received.

Pushed responses that are not cacheable MUST NOT be stored by any

HTTP cache. They MAY be made available to the application

separately.

5. Connection Closure

Once established, an HTTP/3 connection can be used for many requests

and responses over time until the connection is closed. Connection

closure can happen in any of several different ways.

5.1. Idle Connections

Each QUIC endpoint declares an idle timeout during the handshake. If

the connection remains idle (no packets received) for longer than

this duration, the peer will assume that the connection has been

closed. HTTP/3 implementations will need to open a new connection

for new requests if the existing connection has been idle for longer

than the server's advertised idle timeout, and SHOULD do so if

approaching the idle timeout.

HTTP clients are expected to request that the transport keep

connections open while there are responses outstanding for requests

or server pushes, as described in Section 10.2.2 of [QUIC-

TRANSPORT]. If the client is not expecting a response from the

server, allowing an idle connection to time out is preferred over

expending effort maintaining a connection that might not be needed.

A gateway MAY maintain connections in anticipation of need rather

than incur the latency cost of connection establishment to servers.

Servers SHOULD NOT actively keep connections open.

5.2. Connection Shutdown

Even when a connection is not idle, either endpoint can decide to

stop using the connection and initiate a graceful connection close.

Endpoints initiate the graceful shutdown of a connection by sending

a GOAWAY frame (Section 7.2.6). The GOAWAY frame contains an

¶

¶

¶

¶

¶

¶

identifier that indicates to the receiver the range of requests or

pushes that were or might be processed in this connection. The

server sends a client-initiated bidirectional Stream ID; the client

sends a Push ID. Requests or pushes with the indicated identifier or

greater are rejected by the sender of the GOAWAY. This identifier

MAY be zero if no requests or pushes were processed.

The information in the GOAWAY frame enables a client and server to

agree on which requests or pushes were accepted prior to the

connection shutdown. Upon sending a GOAWAY frame, the endpoint

SHOULD explicitly cancel (see Section 4.1.2 and Section 7.2.3) any

requests or pushes that have identifiers greater than or equal to

that indicated, in order to clean up transport state for the

affected streams. The endpoint SHOULD continue to do so as more

requests or pushes arrive.

Endpoints MUST NOT initiate new requests or promise new pushes on

the connection after receipt of a GOAWAY frame from the peer.

Clients MAY establish a new connection to send additional requests.

Some requests or pushes might already be in transit:

Upon receipt of a GOAWAY frame, if the client has already sent

requests with a Stream ID greater than or equal to the identifier

received in a GOAWAY frame, those requests will not be processed.

Clients can safely retry unprocessed requests on a different

connection.

Requests on Stream IDs less than the Stream ID in a GOAWAY frame

from the server might have been processed; their status cannot be

known until a response is received, the stream is reset

individually, another GOAWAY is received, or the connection

terminates.

Servers MAY reject individual requests on streams below the

indicated ID if these requests were not processed.

If a server receives a GOAWAY frame after having promised pushes

with a Push ID greater than or equal to the identifier received

in a GOAWAY frame, those pushes will not be accepted.

Servers SHOULD send a GOAWAY frame when the closing of a connection

is known in advance, even if the advance notice is small, so that

the remote peer can know whether a request has been partially

processed or not. For example, if an HTTP client sends a POST at the

same time that a server closes a QUIC connection, the client cannot

know if the server started to process that POST request if the

server does not send a GOAWAY frame to indicate what streams it

might have acted on.

¶

¶

¶

¶

*

¶

¶

¶

*

¶

¶

A client that is unable to retry requests loses all requests that

are in flight when the server closes the connection. An endpoint MAY

send multiple GOAWAY frames indicating different identifiers, but

the identifier in each frame MUST NOT be greater than the identifier

in any previous frame, since clients might already have retried

unprocessed requests on another connection. Receiving a GOAWAY

containing a larger identifier than previously received MUST be

treated as a connection error of type H3_ID_ERROR.

An endpoint that is attempting to gracefully shut down a connection

can send a GOAWAY frame with a value set to the maximum possible

value (2^62-4 for servers, 2^62-1 for clients). This ensures that

the peer stops creating new requests or pushes. After allowing time

for any in-flight requests or pushes to arrive, the endpoint can

send another GOAWAY frame indicating which requests or pushes it

might accept before the end of the connection. This ensures that a

connection can be cleanly shut down without losing requests.

A client has more flexibility in the value it chooses for the Push

ID in a GOAWAY that it sends. A value of 2^62 - 1 indicates that the

server can continue fulfilling pushes which have already been

promised, and the client can continue granting push credit as

needed; see Section 7.2.7. A smaller value indicates the client will

reject pushes with Push IDs greater than or equal to this value.

Like the server, the client MAY send subsequent GOAWAY frames so

long as the specified Push ID is strictly smaller than all

previously sent values.

Even when a GOAWAY indicates that a given request or push will not

be processed or accepted upon receipt, the underlying transport

resources still exist. The endpoint that initiated these requests

can cancel them to clean up transport state.

Once all accepted requests and pushes have been processed, the

endpoint can permit the connection to become idle, or MAY initiate

an immediate closure of the connection. An endpoint that completes a

graceful shutdown SHOULD use the H3_NO_ERROR code when closing the

connection.

If a client has consumed all available bidirectional stream IDs with

requests, the server need not send a GOAWAY frame, since the client

is unable to make further requests.

5.3. Immediate Application Closure

An HTTP/3 implementation can immediately close the QUIC connection

at any time. This results in sending a QUIC CONNECTION_CLOSE frame

to the peer indicating that the application layer has terminated the

connection. The application error code in this frame indicates to

¶

¶

¶

¶

¶

¶

the peer why the connection is being closed. See Section 8 for error

codes which can be used when closing a connection in HTTP/3.

Before closing the connection, a GOAWAY frame MAY be sent to allow

the client to retry some requests. Including the GOAWAY frame in the

same packet as the QUIC CONNECTION_CLOSE frame improves the chances

of the frame being received by clients.

5.4. Transport Closure

For various reasons, the QUIC transport could indicate to the

application layer that the connection has terminated. This might be

due to an explicit closure by the peer, a transport-level error, or

a change in network topology which interrupts connectivity.

If a connection terminates without a GOAWAY frame, clients MUST

assume that any request which was sent, whether in whole or in part,

might have been processed.

6. Stream Mapping and Usage

A QUIC stream provides reliable in-order delivery of bytes, but

makes no guarantees about order of delivery with regard to bytes on

other streams. On the wire, data is framed into QUIC STREAM frames,

but this framing is invisible to the HTTP framing layer. The

transport layer buffers and orders received QUIC STREAM frames,

exposing the data contained within as a reliable byte stream to the

application. Although QUIC permits out-of-order delivery within a

stream, HTTP/3 does not make use of this feature.

QUIC streams can be either unidirectional, carrying data only from

initiator to receiver, or bidirectional. Streams can be initiated by

either the client or the server. For more detail on QUIC streams,

see Section 2 of [QUIC-TRANSPORT].

When HTTP fields and data are sent over QUIC, the QUIC layer handles

most of the stream management. HTTP does not need to do any separate

multiplexing when using QUIC - data sent over a QUIC stream always

maps to a particular HTTP transaction or connection context.

6.1. Bidirectional Streams

All client-initiated bidirectional streams are used for HTTP

requests and responses. A bidirectional stream ensures that the

response can be readily correlated with the request. This means that

the client's first request occurs on QUIC stream 0, with subsequent

requests on stream 4, 8, and so on. In order to permit these streams

to open, an HTTP/3 server SHOULD configure non-zero minimum values

for the number of permitted streams and the initial stream flow

¶

¶

¶

¶

¶

¶

¶

control window. So as to not unnecessarily limit parallelism, at

least 100 requests SHOULD be permitted at a time.

HTTP/3 does not use server-initiated bidirectional streams, though

an extension could define a use for these streams. Clients MUST

treat receipt of a server-initiated bidirectional stream as a

connection error of type H3_STREAM_CREATION_ERROR unless such an

extension has been negotiated.

6.2. Unidirectional Streams

Unidirectional streams, in either direction, are used for a range of

purposes. The purpose is indicated by a stream type, which is sent

as a variable-length integer at the start of the stream. The format

and structure of data that follows this integer is determined by the

stream type.

Figure 1: Unidirectional Stream Header

Some stream types are reserved (Section 6.2.3). Two stream types are

defined in this document: control streams (Section 6.2.1) and push

streams (Section 6.2.2). [QPACK] defines two additional stream

types. Other stream types can be defined by extensions to HTTP/3;

see Section 9 for more details.

The performance of HTTP/3 connections in the early phase of their

lifetime is sensitive to the creation and exchange of data on

unidirectional streams. Endpoints that excessively restrict the

number of streams or the flow control window of these streams will

increase the chance that the remote peer reaches the limit early and

becomes blocked. In particular, implementations should consider that

remote peers may wish to exercise reserved stream behavior (Section

6.2.3) with some of the unidirectional streams they are permitted to

use. To avoid blocking, the transport parameters sent by both

clients and servers MUST allow the peer to create at least one

unidirectional stream for the HTTP control stream plus the number of

unidirectional streams required by mandatory extensions (three being

the minimum number required for the base HTTP/3 protocol and QPACK),

and SHOULD provide at least 1,024 bytes of flow control credit to

each stream.

Note that an endpoint is not required to grant additional credits to

create more unidirectional streams if its peer consumes all the

initial credits before creating the critical unidirectional streams.

Endpoints SHOULD create the HTTP control stream as well as the

¶

¶

¶

Unidirectional Stream Header {

 Stream Type (i),

}

¶

¶

unidirectional streams required by mandatory extensions (such as the

QPACK encoder and decoder streams) first, and then create additional

streams as allowed by their peer.

If the stream header indicates a stream type which is not supported

by the recipient, the remainder of the stream cannot be consumed as

the semantics are unknown. Recipients of unknown stream types MAY

abort reading of the stream with an error code of

H3_STREAM_CREATION_ERROR, but MUST NOT consider such streams to be a

connection error of any kind.

Implementations MAY send stream types before knowing whether the

peer supports them. However, stream types which could modify the

state or semantics of existing protocol components, including QPACK

or other extensions, MUST NOT be sent until the peer is known to

support them.

A sender can close or reset a unidirectional stream unless otherwise

specified. A receiver MUST tolerate unidirectional streams being

closed or reset prior to the reception of the unidirectional stream

header.

6.2.1. Control Streams

A control stream is indicated by a stream type of 0x00. Data on this

stream consists of HTTP/3 frames, as defined in Section 7.2.

Each side MUST initiate a single control stream at the beginning of

the connection and send its SETTINGS frame as the first frame on

this stream. If the first frame of the control stream is any other

frame type, this MUST be treated as a connection error of type

H3_MISSING_SETTINGS. Only one control stream per peer is permitted;

receipt of a second stream which claims to be a control stream MUST

be treated as a connection error of type H3_STREAM_CREATION_ERROR.

The sender MUST NOT close the control stream, and the receiver MUST

NOT request that the sender close the control stream. If either

control stream is closed at any point, this MUST be treated as a

connection error of type H3_CLOSED_CRITICAL_STREAM.

A pair of unidirectional streams is used rather than a single

bidirectional stream. This allows either peer to send data as soon

as it is able. Depending on whether 0-RTT is enabled on the

connection, either client or server might be able to send stream

data first after the cryptographic handshake completes.

6.2.2. Push Streams

Server push is an optional feature introduced in HTTP/2 that allows

a server to initiate a response before a request has been made. See

Section 4.4 for more details.

¶

¶

¶

¶

¶

¶

¶

¶

A push stream is indicated by a stream type of 0x01, followed by the

Push ID of the promise that it fulfills, encoded as a variable-

length integer. The remaining data on this stream consists of HTTP/3

frames, as defined in Section 7.2, and fulfills a promised server

push by zero or more interim HTTP responses followed by a single

final HTTP response, as defined in Section 4.1. Server push and Push

IDs are described in Section 4.4.

Only servers can push; if a server receives a client-initiated push

stream, this MUST be treated as a connection error of type

H3_STREAM_CREATION_ERROR.

Figure 2: Push Stream Header

Each Push ID MUST only be used once in a push stream header. If a

push stream header includes a Push ID that was used in another push

stream header, the client MUST treat this as a connection error of

type H3_ID_ERROR.

6.2.3. Reserved Stream Types

Stream types of the format 0x1f * N + 0x21 for non-negative integer

values of N are reserved to exercise the requirement that unknown

types be ignored. These streams have no semantics, and can be sent

when application-layer padding is desired. They MAY also be sent on

connections where no data is currently being transferred. Endpoints

MUST NOT consider these streams to have any meaning upon receipt.

The payload and length of the stream are selected in any manner the

implementation chooses. Implementations MAY terminate these streams

cleanly, or MAY abruptly terminate them. When terminating abruptly,

the error code H3_NO_ERROR or a reserved error code (Section 8.1)

SHOULD be used.

7. HTTP Framing Layer

HTTP frames are carried on QUIC streams, as described in Section 6.

HTTP/3 defines three stream types: control stream, request stream,

and push stream. This section describes HTTP/3 frame formats and the

streams types on which they are permitted; see Table 1 for an

overview. A comparison between HTTP/2 and HTTP/3 frames is provided

in Appendix A.2.

¶

¶

Push Stream Header {

 Stream Type (i) = 0x01,

 Push ID (i),

}

¶

¶

¶

¶

Type:

Length:

Frame Payload:

Frame
Control

Stream

Request

Stream

Push

Stream
Section

DATA No Yes Yes
Section

7.2.1

HEADERS No Yes Yes
Section

7.2.2

CANCEL_PUSH Yes No No
Section

7.2.3

SETTINGS Yes (1) No No
Section

7.2.4

PUSH_PROMISE No Yes No
Section

7.2.5

GOAWAY Yes No No
Section

7.2.6

MAX_PUSH_ID Yes No No
Section

7.2.7

Reserved Yes Yes Yes
Section

7.2.8

Table 1: HTTP/3 Frames and Stream Type Overview

Certain frames can only occur as the first frame of a particular

stream type; these are indicated in Table 1 with a (1). Specific

guidance is provided in the relevant section.

Note that, unlike QUIC frames, HTTP/3 frames can span multiple

packets.

7.1. Frame Layout

All frames have the following format:

Figure 3: HTTP/3 Frame Format

A frame includes the following fields:

A variable-length integer that identifies the frame type.

A variable-length integer that describes the length in

bytes of the Frame Payload.

A payload, the semantics of which are determined by

the Type field.

¶

¶

¶

HTTP/3 Frame Format {

 Type (i),

 Length (i),

 Frame Payload (..),

}

¶

¶

¶

¶

Each frame's payload MUST contain exactly the fields identified in

its description. A frame payload that contains additional bytes

after the identified fields or a frame payload that terminates

before the end of the identified fields MUST be treated as a

connection error of type H3_FRAME_ERROR.

When a stream terminates cleanly, if the last frame on the stream

was truncated, this MUST be treated as a connection error (Section

8) of type H3_FRAME_ERROR. Streams which terminate abruptly may be

reset at any point in a frame.

7.2. Frame Definitions

7.2.1. DATA

DATA frames (type=0x0) convey arbitrary, variable-length sequences

of bytes associated with an HTTP request or response payload.

DATA frames MUST be associated with an HTTP request or response. If

a DATA frame is received on a control stream, the recipient MUST

respond with a connection error (Section 8) of type

H3_FRAME_UNEXPECTED.

Figure 4: DATA Frame

7.2.2. HEADERS

The HEADERS frame (type=0x1) is used to carry an HTTP field section,

encoded using QPACK. See [QPACK] for more details.

Figure 5: HEADERS Frame

HEADERS frames can only be sent on request / push streams. If a

HEADERS frame is received on a control stream, the recipient MUST

respond with a connection error (Section 8) of type

H3_FRAME_UNEXPECTED.

¶

¶

¶

¶

DATA Frame {

 Type (i) = 0x0,

 Length (i),

 Data (..),

}

¶

HEADERS Frame {

 Type (i) = 0x1,

 Length (i),

 Encoded Field Section (..),

}

¶

7.2.3. CANCEL_PUSH

The CANCEL_PUSH frame (type=0x3) is used to request cancellation of

a server push prior to the push stream being received. The

CANCEL_PUSH frame identifies a server push by Push ID (see Section

7.2.5), encoded as a variable-length integer.

When a client sends CANCEL_PUSH, it is indicating that it does not

wish to receive the promised resource. The server SHOULD abort

sending the resource, but the mechanism to do so depends on the

state of the corresponding push stream. If the server has not yet

created a push stream, it does not create one. If the push stream is

open, the server SHOULD abruptly terminate that stream. If the push

stream has already ended, the server MAY still abruptly terminate

the stream or MAY take no action.

When a server sends CANCEL_PUSH, it is indicating that it will not

be fulfilling a promise. The client cannot expect the corresponding

promise to be fulfilled, unless it has already received and

processed the promised response. A server SHOULD send a CANCEL_PUSH

even if it has opened the corresponding stream.

Sending CANCEL_PUSH has no direct effect on the state of existing

push streams. A client SHOULD NOT send a CANCEL_PUSH when it has

already received a corresponding push stream. A push stream could

arrive after a client has sent CANCEL_PUSH, because a server might

not have processed the CANCEL_PUSH. The client SHOULD abort reading

the stream with an error code of H3_REQUEST_CANCELLED.

A CANCEL_PUSH frame is sent on the control stream. Receiving a

CANCEL_PUSH frame on a stream other than the control stream MUST be

treated as a connection error of type H3_FRAME_UNEXPECTED.

Figure 6: CANCEL_PUSH Frame

The CANCEL_PUSH frame carries a Push ID encoded as a variable-length

integer. The Push ID identifies the server push that is being

cancelled; see Section 7.2.5. If a CANCEL_PUSH frame is received

which references a Push ID greater than currently allowed on the

connection, this MUST be treated as a connection error of type

H3_ID_ERROR.

¶

¶

¶

¶

¶

CANCEL_PUSH Frame {

 Type (i) = 0x3,

 Length (i),

 Push ID (..),

}

¶

If the client receives a CANCEL_PUSH frame, that frame might

identify a Push ID that has not yet been mentioned by a PUSH_PROMISE

frame due to reordering. If a server receives a CANCEL_PUSH frame

for a Push ID that has not yet been mentioned by a PUSH_PROMISE

frame, this MUST be treated as a connection error of type

H3_ID_ERROR.

7.2.4. SETTINGS

The SETTINGS frame (type=0x4) conveys configuration parameters that

affect how endpoints communicate, such as preferences and

constraints on peer behavior. Individually, a SETTINGS parameter can

also be referred to as a "setting"; the identifier and value of each

setting parameter can be referred to as a "setting identifier" and a

"setting value".

SETTINGS frames always apply to a connection, never a single stream.

A SETTINGS frame MUST be sent as the first frame of each control

stream (see Section 6.2.1) by each peer, and MUST NOT be sent

subsequently. If an endpoint receives a second SETTINGS frame on the

control stream, the endpoint MUST respond with a connection error of

type H3_FRAME_UNEXPECTED.

SETTINGS frames MUST NOT be sent on any stream other than the

control stream. If an endpoint receives a SETTINGS frame on a

different stream, the endpoint MUST respond with a connection error

of type H3_FRAME_UNEXPECTED.

SETTINGS parameters are not negotiated; they describe

characteristics of the sending peer, which can be used by the

receiving peer. However, a negotiation can be implied by the use of

SETTINGS - each peer uses SETTINGS to advertise a set of supported

values. The definition of the setting would describe how each peer

combines the two sets to conclude which choice will be used.

SETTINGS does not provide a mechanism to identify when the choice

takes effect.

Different values for the same parameter can be advertised by each

peer. For example, a client might be willing to consume a very large

response field section, while servers are more cautious about

request size.

The same setting identifier MUST NOT occur more than once in the

SETTINGS frame. A receiver MAY treat the presence of duplicate

setting identifiers as a connection error of type H3_SETTINGS_ERROR.

The payload of a SETTINGS frame consists of zero or more parameters.

Each parameter consists of a setting identifier and a value, both

encoded as QUIC variable-length integers.

¶

¶

¶

¶

¶

¶

¶

¶

SETTINGS_MAX_FIELD_SECTION_SIZE (0x6):

Figure 7: SETTINGS Frame

An implementation MUST ignore the contents for any SETTINGS

identifier it does not understand.

7.2.4.1. Defined SETTINGS Parameters

The following settings are defined in HTTP/3:

The default value is

unlimited. See Section 4.1.1 for usage.

Setting identifiers of the format 0x1f * N + 0x21 for non-negative

integer values of N are reserved to exercise the requirement that

unknown identifiers be ignored. Such settings have no defined

meaning. Endpoints SHOULD include at least one such setting in their

SETTINGS frame. Endpoints MUST NOT consider such settings to have

any meaning upon receipt.

Because the setting has no defined meaning, the value of the setting

can be any value the implementation selects.

Additional settings can be defined by extensions to HTTP/3; see

Section 9 for more details.

7.2.4.2. Initialization

An HTTP implementation MUST NOT send frames or requests which would

be invalid based on its current understanding of the peer's

settings.

All settings begin at an initial value. Each endpoint SHOULD use

these initial values to send messages before the peer's SETTINGS

frame has arrived, as packets carrying the settings can be lost or

delayed. When the SETTINGS frame arrives, any settings are changed

to their new values.

This removes the need to wait for the SETTINGS frame before sending

messages. Endpoints MUST NOT require any data to be received from

Setting {

 Identifier (i),

 Value (i),

}

SETTINGS Frame {

 Type (i) = 0x4,

 Length (i),

 Setting (..) ...,

}

¶

¶

¶

¶

¶

¶

¶

¶

the peer prior to sending the SETTINGS frame; settings MUST be sent

as soon as the transport is ready to send data.

For servers, the initial value of each client setting is the default

value.

For clients using a 1-RTT QUIC connection, the initial value of each

server setting is the default value. 1-RTT keys will always become

available prior to SETTINGS arriving, even if the server sends

SETTINGS immediately. Clients SHOULD NOT wait indefinitely for

SETTINGS to arrive before sending requests, but SHOULD process

received datagrams in order to increase the likelihood of processing

SETTINGS before sending the first request.

When a 0-RTT QUIC connection is being used, the initial value of

each server setting is the value used in the previous session.

Clients SHOULD store the settings the server provided in the

connection where resumption information was provided, but MAY opt

not to store settings in certain cases (e.g., if the session ticket

is received before the SETTINGS frame). A client MUST comply with

stored settings - or default values, if no values are stored - when

attempting 0-RTT. Once a server has provided new settings, clients

MUST comply with those values.

A server can remember the settings that it advertised, or store an

integrity-protected copy of the values in the ticket and recover the

information when accepting 0-RTT data. A server uses the HTTP/3

settings values in determining whether to accept 0-RTT data. If the

server cannot determine that the settings remembered by a client are

compatible with its current settings, it MUST NOT accept 0-RTT data.

Remembered settings are compatible if a client complying with those

settings would not violate the server's current settings.

A server MAY accept 0-RTT and subsequently provide different

settings in its SETTINGS frame. If 0-RTT data is accepted by the

server, its SETTINGS frame MUST NOT reduce any limits or alter any

values that might be violated by the client with its 0-RTT data. The

server MUST include all settings which differ from their default

values. If a server accepts 0-RTT but then sends settings that are

not compatible with the previously specified settings, this MUST be

treated as a connection error of type H3_SETTINGS_ERROR. If a server

accepts 0-RTT but then sends a SETTINGS frame that omits a setting

value that the client understands (apart from reserved setting

identifiers) that was previously specified to have a non-default

value, this MUST be treated as a connection error of type

H3_SETTINGS_ERROR.

¶

¶

¶

¶

¶

¶

Push ID:

Encoded Field Section:

7.2.5. PUSH_PROMISE

The PUSH_PROMISE frame (type=0x5) is used to carry a promised

request header field section from server to client on a request

stream, as in HTTP/2.

Figure 8: PUSH_PROMISE Frame

The payload consists of:

A variable-length integer that identifies the server push

operation. A Push ID is used in push stream headers (Section

4.4), CANCEL_PUSH frames (Section 7.2.3).

QPACK-encoded request header fields for the

promised response. See [QPACK] for more details.

A server MUST NOT use a Push ID that is larger than the client has

provided in a MAX_PUSH_ID frame (Section 7.2.7). A client MUST treat

receipt of a PUSH_PROMISE frame that contains a larger Push ID than

the client has advertised as a connection error of H3_ID_ERROR.

A server MAY use the same Push ID in multiple PUSH_PROMISE frames.

If so, the decompressed request header sets MUST contain the same

fields in the same order, and both the name and the value in each

field MUST be exact matches. Clients SHOULD compare the request

header sections for resources promised multiple times. If a client

receives a Push ID that has already been promised and detects a

mismatch, it MUST respond with a connection error of type

H3_GENERAL_PROTOCOL_ERROR. If the decompressed field sections match

exactly, the client SHOULD associate the pushed content with each

stream on which a PUSH_PROMISE was received.

Allowing duplicate references to the same Push ID is primarily to

reduce duplication caused by concurrent requests. A server SHOULD

avoid reusing a Push ID over a long period. Clients are likely to

consume server push responses and not retain them for reuse over

time. Clients that see a PUSH_PROMISE that uses a Push ID that they

have already consumed and discarded are forced to ignore the

PUSH_PROMISE.

¶

PUSH_PROMISE Frame {

 Type (i) = 0x5,

 Length (i),

 Push ID (i),

 Encoded Field Section (..),

}

¶

¶

¶

¶

¶

¶

If a PUSH_PROMISE frame is received on the control stream, the

client MUST respond with a connection error (Section 8) of type

H3_FRAME_UNEXPECTED.

A client MUST NOT send a PUSH_PROMISE frame. A server MUST treat the

receipt of a PUSH_PROMISE frame as a connection error of type

H3_FRAME_UNEXPECTED.

See Section 4.4 for a description of the overall server push

mechanism.

7.2.6. GOAWAY

The GOAWAY frame (type=0x7) is used to initiate graceful shutdown of

a connection by either endpoint. GOAWAY allows an endpoint to stop

accepting new requests or pushes while still finishing processing of

previously received requests and pushes. This enables administrative

actions, like server maintenance. GOAWAY by itself does not close a

connection.

Figure 9: GOAWAY Frame

The GOAWAY frame is always sent on the control stream. In the server

to client direction, it carries a QUIC Stream ID for a client-

initiated bidirectional stream encoded as a variable-length integer.

A client MUST treat receipt of a GOAWAY frame containing a Stream ID

of any other type as a connection error of type H3_ID_ERROR.

In the client to server direction, the GOAWAY frame carries a Push

ID encoded as a variable-length integer.

The GOAWAY frame applies to the connection, not a specific stream. A

client MUST treat a GOAWAY frame on a stream other than the control

stream as a connection error (Section 8) of type

H3_FRAME_UNEXPECTED.

See Section 5.2 for more information on the use of the GOAWAY frame.

7.2.7. MAX_PUSH_ID

The MAX_PUSH_ID frame (type=0xD) is used by clients to control the

number of server pushes that the server can initiate. This sets the

maximum value for a Push ID that the server can use in PUSH_PROMISE

¶

¶

¶

¶

GOAWAY Frame {

 Type (i) = 0x7,

 Length (i),

 Stream ID/Push ID (..),

}

¶

¶

¶

¶

and CANCEL_PUSH frames. Consequently, this also limits the number of

push streams that the server can initiate in addition to the limit

maintained by the QUIC transport.

The MAX_PUSH_ID frame is always sent on the control stream. Receipt

of a MAX_PUSH_ID frame on any other stream MUST be treated as a

connection error of type H3_FRAME_UNEXPECTED.

A server MUST NOT send a MAX_PUSH_ID frame. A client MUST treat the

receipt of a MAX_PUSH_ID frame as a connection error of type

H3_FRAME_UNEXPECTED.

The maximum Push ID is unset when a connection is created, meaning

that a server cannot push until it receives a MAX_PUSH_ID frame. A

client that wishes to manage the number of promised server pushes

can increase the maximum Push ID by sending MAX_PUSH_ID frames as

the server fulfills or cancels server pushes.

Figure 10: MAX_PUSH_ID Frame Payload

The MAX_PUSH_ID frame carries a single variable-length integer that

identifies the maximum value for a Push ID that the server can use;

see Section 7.2.5. A MAX_PUSH_ID frame cannot reduce the maximum

Push ID; receipt of a MAX_PUSH_ID that contains a smaller value than

previously received MUST be treated as a connection error of type

H3_ID_ERROR.

7.2.8. Reserved Frame Types

Frame types of the format 0x1f * N + 0x21 for non-negative integer

values of N are reserved to exercise the requirement that unknown

types be ignored (Section 9). These frames have no semantics, and

can be sent on any open stream when application-layer padding is

desired. They MAY also be sent on connections where no data is

currently being transferred. Endpoints MUST NOT consider these

frames to have any meaning upon receipt.

The payload and length of the frames are selected in any manner the

implementation chooses.

Frame types which were used in HTTP/2 where there is no

corresponding HTTP/3 frame have also been reserved (Section 11.2.1).

¶

¶

¶

¶

MAX_PUSH_ID Frame {

 Type (i) = 0x1,

 Length (i),

 Push ID (..),

}

¶

¶

¶

H3_NO_ERROR (0x100):

H3_GENERAL_PROTOCOL_ERROR (0x101):

H3_INTERNAL_ERROR (0x102):

H3_STREAM_CREATION_ERROR (0x103):

H3_CLOSED_CRITICAL_STREAM (0x104):

H3_FRAME_UNEXPECTED (0x105):

H3_FRAME_ERROR (0x106):

These frame types MUST NOT be sent, and receipt MAY be treated as an

error of type H3_FRAME_UNEXPECTED.

8. Error Handling

QUIC allows the application to abruptly terminate (reset) individual

streams or the entire connection when an error is encountered. These

are referred to as "stream errors" or "connection errors" and are

described in more detail in [QUIC-TRANSPORT].

An endpoint MAY choose to treat a stream error as a connection error

under certain circumstances. Implementations need to consider the

impact on outstanding requests before making this choice.

Because new error codes can be defined without negotiation (see

Section 9), use of an error code in an unexpected context or receipt

of an unknown error code MUST be treated as equivalent to

H3_NO_ERROR. However, closing a stream can have other effects

regardless of the error code; see Section 4.1.

This section describes HTTP/3-specific error codes which can be used

to express the cause of a connection or stream error.

8.1. HTTP/3 Error Codes

The following error codes are defined for use when abruptly

terminating streams, aborting reading of streams, or immediately

closing connections.

No error. This is used when the connection or

stream needs to be closed, but there is no error to signal.

Peer violated protocol

requirements in a way which doesn't match a more specific error

code, or endpoint declines to use the more specific error code.

An internal error has occurred in the

HTTP stack.

The endpoint detected that its

peer created a stream that it will not accept.

A stream required by the

connection was closed or reset.

A frame was received which was not

permitted in the current state or on the current stream.

A frame that fails to satisfy layout

requirements or with an invalid size was received.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

H3_EXCESSIVE_LOAD (0x107):

H3_ID_ERROR (0x108):

H3_SETTINGS_ERROR (0x109):

H3_MISSING_SETTINGS (0x10A):

H3_REQUEST_REJECTED (0x10B):

H3_REQUEST_CANCELLED (0x10C):

H3_REQUEST_INCOMPLETE (0x10D):

H3_CONNECT_ERROR (0x10F):

H3_VERSION_FALLBACK (0x110):

The endpoint detected that its peer is

exhibiting a behavior that might be generating excessive load.

A Stream ID or Push ID was used incorrectly,

such as exceeding a limit, reducing a limit, or being reused.

An endpoint detected an error in the

payload of a SETTINGS frame.

No SETTINGS frame was received at the

beginning of the control stream.

A server rejected a request without

performing any application processing.

The request or its response

(including pushed response) is cancelled.

The client's stream terminated

without containing a fully-formed request.

The connection established in response to

a CONNECT request was reset or abnormally closed.

The requested operation cannot be

served over HTTP/3. The peer should retry over HTTP/1.1.

Error codes of the format 0x1f * N + 0x21 for non-negative integer

values of N are reserved to exercise the requirement that unknown

error codes be treated as equivalent to H3_NO_ERROR (Section 9).

Implementations SHOULD select an error code from this space with

some probability when they would have sent H3_NO_ERROR.

9. Extensions to HTTP/3

HTTP/3 permits extension of the protocol. Within the limitations

described in this section, protocol extensions can be used to

provide additional services or alter any aspect of the protocol.

Extensions are effective only within the scope of a single HTTP/3

connection.

This applies to the protocol elements defined in this document. This

does not affect the existing options for extending HTTP, such as

defining new methods, status codes, or fields.

Extensions are permitted to use new frame types (Section 7.2), new

settings (Section 7.2.4.1), new error codes (Section 8), or new

unidirectional stream types (Section 6.2). Registries are

established for managing these extension points: frame types

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

(Section 11.2.1), settings (Section 11.2.2), error codes (Section

11.2.3), and stream types (Section 11.2.4).

Implementations MUST ignore unknown or unsupported values in all

extensible protocol elements. Implementations MUST discard frames

and unidirectional streams that have unknown or unsupported types.

This means that any of these extension points can be safely used by

extensions without prior arrangement or negotiation. However, where

a known frame type is required to be in a specific location, such as

the SETTINGS frame as the first frame of the control stream (see

Section 6.2.1), an unknown frame type does not satisfy that

requirement and SHOULD be treated as an error.

Extensions that could change the semantics of existing protocol

components MUST be negotiated before being used. For example, an

extension that changes the layout of the HEADERS frame cannot be

used until the peer has given a positive signal that this is

acceptable. Coordinating when such a revised layout comes into

effect could prove complex. As such, allocating new identifiers for

new definitions of existing protocol elements is likely to be more

effective.

This document doesn't mandate a specific method for negotiating the

use of an extension but notes that a setting (Section 7.2.4.1) could

be used for that purpose. If both peers set a value that indicates

willingness to use the extension, then the extension can be used. If

a setting is used for extension negotiation, the default value MUST

be defined in such a fashion that the extension is disabled if the

setting is omitted.

10. Security Considerations

The security considerations of HTTP/3 should be comparable to those

of HTTP/2 with TLS. However, many of the considerations from Section

10 of [HTTP2] apply to [QUIC-TRANSPORT] and are discussed in that

document.

10.1. Server Authority

HTTP/3 relies on the HTTP definition of authority. The security

considerations of establishing authority are discussed in Section

11.1 of [SEMANTICS].

10.2. Cross-Protocol Attacks

The use of ALPN in the TLS and QUIC handshakes establishes the

target application protocol before application-layer bytes are

processed. Because all QUIC packets are encrypted, it is difficult

for an attacker to control the plaintext bytes of an HTTP/3

¶

¶

¶

¶

¶

¶

connection which could be used in a cross-protocol attack on a

plaintext protocol.

10.3. Intermediary Encapsulation Attacks

The HTTP/3 field encoding allows the expression of names that are

not valid field names in the syntax used by HTTP (Section 4.3 of

[SEMANTICS]). Requests or responses containing invalid field names

MUST be treated as malformed (Section 4.1.3). An intermediary

therefore cannot translate an HTTP/3 request or response containing

an invalid field name into an HTTP/1.1 message.

Similarly, HTTP/3 allows field values that are not valid. While most

of the values that can be encoded will not alter field parsing,

carriage return (CR, ASCII 0xd), line feed (LF, ASCII 0xa), and the

zero character (NUL, ASCII 0x0) might be exploited by an attacker if

they are translated verbatim. Any request or response that contains

a character not permitted in a field value MUST be treated as

malformed (Section 4.1.3). Valid characters are defined by the

"field-content" ABNF rule in Section 4.4 of [SEMANTICS].

10.4. Cacheability of Pushed Responses

Pushed responses do not have an explicit request from the client;

the request is provided by the server in the PUSH_PROMISE frame.

Caching responses that are pushed is possible based on the guidance

provided by the origin server in the Cache-Control header field.

However, this can cause issues if a single server hosts more than

one tenant. For example, a server might offer multiple users each a

small portion of its URI space.

Where multiple tenants share space on the same server, that server

MUST ensure that tenants are not able to push representations of

resources that they do not have authority over. Failure to enforce

this would allow a tenant to provide a representation that would be

served out of cache, overriding the actual representation that the

authoritative tenant provides.

Pushed responses for which an origin server is not authoritative

(see Section 3.4) MUST NOT be used or cached.

10.5. Denial-of-Service Considerations

An HTTP/3 connection can demand a greater commitment of resources to

operate than an HTTP/1.1 or HTTP/2 connection. The use of field

compression and flow control depend on a commitment of resources for

storing a greater amount of state. Settings for these features

ensure that memory commitments for these features are strictly

bounded.

¶

¶

¶

¶

¶

¶

¶

¶

The number of PUSH_PROMISE frames is constrained in a similar

fashion. A client that accepts server push SHOULD limit the number

of Push IDs it issues at a time.

Processing capacity cannot be guarded as effectively as state

capacity.

The ability to send undefined protocol elements which the peer is

required to ignore can be abused to cause a peer to expend

additional processing time. This might be done by setting multiple

undefined SETTINGS parameters, unknown frame types, or unknown

stream types. Note, however, that some uses are entirely legitimate,

such as optional-to-understand extensions and padding to increase

resistance to traffic analysis.

Compression of field sections also offers some opportunities to

waste processing resources; see Section 7 of [QPACK] for more

details on potential abuses.

All these features - i.e., server push, unknown protocol elements,

field compression - have legitimate uses. These features become a

burden only when they are used unnecessarily or to excess.

An endpoint that doesn't monitor this behavior exposes itself to a

risk of denial-of-service attack. Implementations SHOULD track the

use of these features and set limits on their use. An endpoint MAY

treat activity that is suspicious as a connection error (Section 8)

of type H3_EXCESSIVE_LOAD, but false positives will result in

disrupting valid connections and requests.

10.5.1. Limits on Field Section Size

A large field section (Section 4.1) can cause an implementation to

commit a large amount of state. Header fields that are critical for

routing can appear toward the end of a header field section, which

prevents streaming of the header field section to its ultimate

destination. This ordering and other reasons, such as ensuring cache

correctness, mean that an endpoint likely needs to buffer the entire

header field section. Since there is no hard limit to the size of a

field section, some endpoints could be forced to commit a large

amount of available memory for header fields.

An endpoint can use the SETTINGS_MAX_HEADER_LIST_SIZE (Section

7.2.4.1) setting to advise peers of limits that might apply on the

size of field sections. This setting is only advisory, so endpoints

MAY choose to send field sections that exceed this limit and risk

having the request or response being treated as malformed. This

setting is specific to a connection, so any request or response

could encounter a hop with a lower, unknown limit. An intermediary

¶

¶

¶

¶

¶

¶

¶

can attempt to avoid this problem by passing on values presented by

different peers, but they are not obligated to do so.

A server that receives a larger field section than it is willing to

handle can send an HTTP 431 (Request Header Fields Too Large) status

code [RFC6585]. A client can discard responses that it cannot

process.

10.5.2. CONNECT Issues

The CONNECT method can be used to create disproportionate load on an

proxy, since stream creation is relatively inexpensive when compared

to the creation and maintenance of a TCP connection. A proxy might

also maintain some resources for a TCP connection beyond the closing

of the stream that carries the CONNECT request, since the outgoing

TCP connection remains in the TIME_WAIT state. Therefore, a proxy

cannot rely on QUIC stream limits alone to control the resources

consumed by CONNECT requests.

10.6. Use of Compression

Compression can allow an attacker to recover secret data when it is

compressed in the same context as data under attacker control. HTTP/

3 enables compression of fields (Section 4.1.1); the following

concerns also apply to the use of HTTP compressed content-codings;

see Section 6.1.2 of [SEMANTICS].

There are demonstrable attacks on compression that exploit the

characteristics of the web (e.g., [BREACH]). The attacker induces

multiple requests containing varying plaintext, observing the length

of the resulting ciphertext in each, which reveals a shorter length

when a guess about the secret is correct.

Implementations communicating on a secure channel MUST NOT compress

content that includes both confidential and attacker-controlled data

unless separate compression dictionaries are used for each source of

data. Compression MUST NOT be used if the source of data cannot be

reliably determined.

Further considerations regarding the compression of fields sections

are described in [QPACK].

10.7. Padding and Traffic Analysis

Padding can be used to obscure the exact size of frame content and

is provided to mitigate specific attacks within HTTP, for example,

attacks where compressed content includes both attacker-controlled

plaintext and secret data (e.g., [BREACH]).

¶

¶

¶

¶

¶

¶

¶

¶

Where HTTP/2 employs PADDING frames and Padding fields in other

frames to make a connection more resistant to traffic analysis,

HTTP/3 can either rely on transport-layer padding or employ the

reserved frame and stream types discussed in Section 7.2.8 and

Section 6.2.3. These methods of padding produce different results in

terms of the granularity of padding, how padding is arranged in

relation to the information that is being protected, whether padding

is applied in the case of packet loss, and how an implementation

might control padding. Redundant padding could even be

counterproductive.

To mitigate attacks that rely on compression, disabling or limiting

compression might be preferable to padding as a countermeasure.

Use of padding can result in less protection than might seem

immediately obvious. At best, padding only makes it more difficult

for an attacker to infer length information by increasing the number

of frames an attacker has to observe. Incorrectly implemented

padding schemes can be easily defeated. In particular, randomized

padding with a predictable distribution provides very little

protection; similarly, padding payloads to a fixed size exposes

information as payload sizes cross the fixed-sized boundary, which

could be possible if an attacker can control plaintext.

10.8. Frame Parsing

Several protocol elements contain nested length elements, typically

in the form of frames with an explicit length containing variable-

length integers. This could pose a security risk to an incautious

implementer. An implementation MUST ensure that the length of a

frame exactly matches the length of the fields it contains.

10.9. Early Data

The use of 0-RTT with HTTP/3 creates an exposure to replay attack.

The anti-replay mitigations in [HTTP-REPLAY] MUST be applied when

using HTTP/3 with 0-RTT.

10.10. Migration

Certain HTTP implementations use the client address for logging or

access-control purposes. Since a QUIC client's address might change

during a connection (and future versions might support simultaneous

use of multiple addresses), such implementations will need to either

actively retrieve the client's current address or addresses when

they are relevant or explicitly accept that the original address

might change.

¶

¶

¶

¶

¶

¶

Protocol:

Identification Sequence:

Specification:

10.11. Privacy Considerations

Several characteristics of HTTP/3 provide an observer an opportunity

to correlate actions of a single client or server over time. These

include the value of settings, the timing of reactions to stimulus,

and the handling of any features that are controlled by settings.

As far as these create observable differences in behavior, they

could be used as a basis for fingerprinting a specific client.

HTTP/3's preference for using a single QUIC connection allows

correlation of a user's activity on a site. Reusing connections for

different origins allows for correlation of activity across those

origins.

Several features of QUIC solicit immediate responses and can be used

by an endpoint to measure latency to their peer; this might have

privacy implications in certain scenarios.

11. IANA Considerations

This document registers a new ALPN protocol ID (Section 11.1) and

creates new registries that manage the assignment of codepoints in

HTTP/3.

11.1. Registration of HTTP/3 Identification String

This document creates a new registration for the identification of

HTTP/3 in the "Application Layer Protocol Negotiation (ALPN)

Protocol IDs" registry established in [RFC7301].

The "h3" string identifies HTTP/3:

HTTP/3

0x68 0x33 ("h3")

This document

11.2. New Registries

New registries created in this document operate under the QUIC

registration policy documented in Section 22.1 of [QUIC-TRANSPORT].

These registries all include the common set of fields listed in

Section 22.1.1 of [QUIC-TRANSPORT].

The initial allocations in these registries created in this document

are all assigned permanent status and list as contact both the IESG

(iesg@ietf.org) and the HTTP working group (ietf-http-wg@w3.org).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Frame Type:

11.2.1. Frame Types

This document establishes a registry for HTTP/3 frame type codes.

The "HTTP/3 Frame Type" registry governs a 62-bit space. This

registry follows the QUIC registry policy; see Section 11.2.

Permanent registrations in this registry are assigned using the

Specification Required policy [RFC8126], except for values between

0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using

Standards Action or IESG Approval as defined in Section 4.9 and 4.10

of [RFC8126].

While this registry is separate from the "HTTP/2 Frame Type"

registry defined in [HTTP2], it is preferable that the assignments

parallel each other where the code spaces overlap. If an entry is

present in only one registry, every effort SHOULD be made to avoid

assigning the corresponding value to an unrelated operation.

In addition to common fields as described in Section 11.2, permanent

registrations in this registry MUST include the following field:

A name or label for the frame type.

Specifications of frame types MUST include a description of the

frame layout and its semantics, including any parts of the frame

that are conditionally present.

The entries in Table 2 are registered by this document.

Frame Type Value Specification

DATA 0x0 Section 7.2.1

HEADERS 0x1 Section 7.2.2

Reserved 0x2 N/A

CANCEL_PUSH 0x3 Section 7.2.3

SETTINGS 0x4 Section 7.2.4

PUSH_PROMISE 0x5 Section 7.2.5

Reserved 0x6 N/A

GOAWAY 0x7 Section 7.2.6

Reserved 0x8 N/A

Reserved 0x9 N/A

MAX_PUSH_ID 0xD Section 7.2.7

Table 2: Initial HTTP/3 Frame Types

Additionally, each code of the format 0x1f * N + 0x21 for non-

negative integer values of N (that is, 0x21, 0x40, ..., through

0x3FFFFFFFFFFFFFFE) MUST NOT be assigned by IANA.

¶

¶

¶

¶

¶

¶

¶

Setting Name:

Default:

11.2.2. Settings Parameters

This document establishes a registry for HTTP/3 settings. The "HTTP/

3 Settings" registry governs a 62-bit space. This registry follows

the QUIC registry policy; see Section 11.2. Permanent registrations

in this registry are assigned using the Specification Required

policy [RFC8126], except for values between 0x00 and 0x3f (in

hexadecimal; inclusive), which are assigned using Standards Action

or IESG Approval as defined in Section 4.9 and 4.10 of [RFC8126].

While this registry is separate from the "HTTP/2 Settings" registry

defined in [HTTP2], it is preferable that the assignments parallel

each other. If an entry is present in only one registry, every

effort SHOULD be made to avoid assigning the corresponding value to

an unrelated operation.

In addition to common fields as described in Section 11.2, permanent

registrations in this registry MUST include the following fields:

A symbolic name for the setting. Specifying a setting

name is optional.

The value of the setting unless otherwise indicated. A

default SHOULD be the most restrictive possible value.

The entries in Table 3 are registered by this document.

Setting Name Value Specification Default

Reserved 0x2 N/A N/A

Reserved 0x3 N/A N/A

Reserved 0x4 N/A N/A

Reserved 0x5 N/A N/A

MAX_FIELD_SECTION_SIZE 0x6 Section 7.2.4.1 Unlimited

Table 3: Initial HTTP/3 Settings

Additionally, each code of the format 0x1f * N + 0x21 for non-

negative integer values of N (that is, 0x21, 0x40, ..., through

0x3FFFFFFFFFFFFFFE) MUST NOT be assigned by IANA.

11.2.3. Error Codes

This document establishes a registry for HTTP/3 error codes. The

"HTTP/3 Error Code" registry manages a 62-bit space. This registry

follows the QUIC registry policy; see Section 11.2. Permanent

registrations in this registry are assigned using the Specification

Required policy [RFC8126], except for values between 0x00 and 0x3f

(in hexadecimal; inclusive), which are assigned using Standards

¶

¶

¶

¶

¶

¶

¶

Name:

Description:

Action or IESG Approval as defined in Section 4.9 and 4.10 of

[RFC8126].

Registrations for error codes are required to include a description

of the error code. An expert reviewer is advised to examine new

registrations for possible duplication with existing error codes.

Use of existing registrations is to be encouraged, but not mandated.

In addition to common fields as described in Section 11.2, permanent

registrations in this registry MUST include the following fields:

A name for the error code. Specifying an error code name is

optional.

A brief description of the error code semantics.

The entries in the Table 4 are registered by this document.

Name Value Description Specification

H3_NO_ERROR 0x0100 No error Section 8.1

H3_GENERAL_PROTOCOL_ERROR 0x0101
General protocol

error
Section 8.1

H3_INTERNAL_ERROR 0x0102 Internal error Section 8.1

H3_STREAM_CREATION_ERROR 0x0103
Stream creation

error
Section 8.1

H3_CLOSED_CRITICAL_STREAM 0x0104
Critical stream was

closed
Section 8.1

H3_FRAME_UNEXPECTED 0x0105

Frame not permitted

in the current

state

Section 8.1

H3_FRAME_ERROR 0x0106

Frame violated

layout or size

rules

Section 8.1

H3_EXCESSIVE_LOAD 0x0107
Peer generating

excessive load
Section 8.1

H3_ID_ERROR 0x0108
An identifier was

used incorrectly
Section 8.1

H3_SETTINGS_ERROR 0x0109

SETTINGS frame

contained invalid

values

Section 8.1

H3_MISSING_SETTINGS 0x010A
No SETTINGS frame

received
Section 8.1

H3_REQUEST_REJECTED 0x010B
Request not

processed
Section 8.1

H3_REQUEST_CANCELLED 0x010C
Data no longer

needed
Section 8.1

H3_REQUEST_INCOMPLETE 0x010D
Stream terminated

early
Section 8.1

¶

¶

¶

¶

¶

¶

Stream Type:

Sender:

[ALTSVC]

Name Value Description Specification

H3_CONNECT_ERROR 0x010F
TCP reset or error

on CONNECT request
Section 8.1

H3_VERSION_FALLBACK 0x0110 Retry over HTTP/1.1 Section 8.1

Table 4: Initial HTTP/3 Error Codes

Additionally, each code of the format 0x1f * N + 0x21 for non-

negative integer values of N (that is, 0x21, 0x40, ..., through

0x3FFFFFFFFFFFFFFE) MUST NOT be assigned by IANA.

11.2.4. Stream Types

This document establishes a registry for HTTP/3 unidirectional

stream types. The "HTTP/3 Stream Type" registry governs a 62-bit

space. This registry follows the QUIC registry policy; see Section

11.2. Permanent registrations in this registry are assigned using

the Specification Required policy [RFC8126], except for values

between 0x00 and 0x3f (in hexadecimal; inclusive), which are

assigned using Standards Action or IESG Approval as defined in

Section 4.9 and 4.10 of [RFC8126].

In addition to common fields as described in Section 11.2, permanent

registrations in this registry MUST include the following fields:

A name or label for the stream type.

Which endpoint on a connection may initiate a stream of

this type. Values are "Client", "Server", or "Both".

Specifications for permanent registrations MUST include a

description of the stream type, including the layout semantics of

the stream contents.

The entries in the following table are registered by this document.

Stream Type Value Specification Sender

Control Stream 0x00 Section 6.2.1 Both

Push Stream 0x01 Section 4.4 Server

Table 5

Additionally, each code of the format 0x1f * N + 0x21 for non-

negative integer values of N (that is, 0x21, 0x40, ..., through

0x3FFFFFFFFFFFFFFE) MUST NOT be assigned by IANA.

12. References

12.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

[CACHING]

[HTTP-REPLAY]

[QPACK]

[QUIC-TRANSPORT]

[RFC0793]

[RFC2119]

[RFC3986]

[RFC5234]

[RFC6066]

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Fielding, R., Nottingham, M., and J. Reschke, "HTTP

Caching", Work in Progress, Internet-Draft, draft-ietf-

httpbis-cache-08, 26 May 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-httpbis-cache-08.txt>.

Thomson, M., Nottingham, M., and W. Tarreau, "Using

Early Data in HTTP", RFC 8470, DOI 10.17487/RFC8470,

September 2018, <https://www.rfc-editor.org/info/

rfc8470>.

Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:

Header Compression for HTTP over QUIC", Work in Progress,

Internet-Draft, draft-ietf-quic-qpack-16, 9 June 2020,

<https://tools.ietf.org/html/draft-ietf-quic-qpack-16>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-28, 9

June 2020, <https://tools.ietf.org/html/draft-ietf-quic-

transport-28>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

https://www.rfc-editor.org/info/rfc7838
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-08.txt
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://tools.ietf.org/html/draft-ietf-quic-qpack-16
https://tools.ietf.org/html/draft-ietf-quic-transport-28
https://tools.ietf.org/html/draft-ietf-quic-transport-28
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234

[RFC6125]

[RFC6265]

[RFC8126]

[RFC8164]

[RFC8174]

[SEMANTICS]

[BREACH]

[HPACK]

[HTTP11]

[HTTP2]

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Nottingham, M. and M. Thomson, "Opportunistic Security

for HTTP/2", RFC 8164, DOI 10.17487/RFC8164, May 2017,

<https://www.rfc-editor.org/info/rfc8164>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fielding, R., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-08, 26 May 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-httpbis-semantics-08.txt>.

12.2. Informative References

Gluck, Y., Harris, N., and A. Prado, "BREACH: Reviving

the CRIME Attack", July 2013, <http://breachattack.com/

resources/BREACH%20-%20SSL,

%20gone%20in%2030%20seconds.pdf>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/info/rfc7541>.

Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1

Messaging", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-08, 26 May 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-httpbis-messaging-08.txt>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8164
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-semantics-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-semantics-08.txt
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://www.rfc-editor.org/info/rfc7541
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-messaging-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-messaging-08.txt

[RFC6585]

[RFC7301]

[TFO]

[TLS13]

[URI]

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/info/rfc6585>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP

Fast Open", RFC 7413, DOI 10.17487/RFC7413, December

2014, <https://www.rfc-editor.org/info/rfc7413>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Appendix A. Considerations for Transitioning from HTTP/2

HTTP/3 is strongly informed by HTTP/2, and bears many similarities.

This section describes the approach taken to design HTTP/3, points

out important differences from HTTP/2, and describes how to map

HTTP/2 extensions into HTTP/3.

HTTP/3 begins from the premise that similarity to HTTP/2 is

preferable, but not a hard requirement. HTTP/3 departs from HTTP/2

where QUIC differs from TCP, either to take advantage of QUIC

features (like streams) or to accommodate important shortcomings

(such as a lack of total ordering). These differences make HTTP/3

similar to HTTP/2 in key aspects, such as the relationship of

requests and responses to streams. However, the details of the HTTP/

3 design are substantially different than HTTP/2.

These departures are noted in this section.

A.1. Streams

HTTP/3 permits use of a larger number of streams (2^62-1) than HTTP/

2. The considerations about exhaustion of stream identifier space

apply, though the space is significantly larger such that it is

¶

¶

¶

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc6585
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

likely that other limits in QUIC are reached first, such as the

limit on the connection flow control window.

In contrast to HTTP/2, stream concurrency in HTTP/3 is managed by

QUIC. QUIC considers a stream closed when all data has been received

and sent data has been acknowledged by the peer. HTTP/2 considers a

stream closed when the frame containing the END_STREAM bit has been

committed to the transport. As a result, the stream for an

equivalent exchange could remain "active" for a longer period of

time. HTTP/3 servers might choose to permit a larger number of

concurrent client-initiated bidirectional streams to achieve

equivalent concurrency to HTTP/2, depending on the expected usage

patterns.

Due to the presence of other unidirectional stream types, HTTP/3

does not rely exclusively on the number of concurrent unidirectional

streams to control the number of concurrent in-flight pushes.

Instead, HTTP/3 clients use the MAX_PUSH_ID frame to control the

number of pushes received from an HTTP/3 server.

A.2. HTTP Frame Types

Many framing concepts from HTTP/2 can be elided on QUIC, because the

transport deals with them. Because frames are already on a stream,

they can omit the stream number. Because frames do not block

multiplexing (QUIC's multiplexing occurs below this layer), the

support for variable-maximum-length packets can be removed. Because

stream termination is handled by QUIC, an END_STREAM flag is not

required. This permits the removal of the Flags field from the

generic frame layout.

Frame payloads are largely drawn from [HTTP2]. However, QUIC

includes many features (e.g., flow control) which are also present

in HTTP/2. In these cases, the HTTP mapping does not re-implement

them. As a result, several HTTP/2 frame types are not required in

HTTP/3. Where an HTTP/2-defined frame is no longer used, the frame

ID has been reserved in order to maximize portability between HTTP/2

and HTTP/3 implementations. However, even equivalent frames between

the two mappings are not identical.

Many of the differences arise from the fact that HTTP/2 provides an

absolute ordering between frames across all streams, while QUIC

provides this guarantee on each stream only. As a result, if a frame

type makes assumptions that frames from different streams will still

be received in the order sent, HTTP/3 will break them.

Some examples of feature adaptations are described below, as well as

general guidance to extension frame implementors converting an HTTP/

2 extension to HTTP/3.

¶

¶

¶

¶

¶

¶

¶

DATA (0x0):

A.2.1. Prioritization Differences

HTTP/2 specifies priority assignments in PRIORITY frames and

(optionally) in HEADERS frames. HTTP/3 does not provide a means of

signaling priority.

Note that while there is no explicit signaling for priority, this

does not mean that prioritization is not important for achieving

good performance.

A.2.2. Field Compression Differences

HPACK was designed with the assumption of in-order delivery. A

sequence of encoded field sections must arrive (and be decoded) at

an endpoint in the same order in which they were encoded. This

ensures that the dynamic state at the two endpoints remains in sync.

Because this total ordering is not provided by QUIC, HTTP/3 uses a

modified version of HPACK, called QPACK. QPACK uses a single

unidirectional stream to make all modifications to the dynamic

table, ensuring a total order of updates. All frames which contain

encoded fields merely reference the table state at a given time

without modifying it.

[QPACK] provides additional details.

A.2.3. Guidance for New Frame Type Definitions

Frame type definitions in HTTP/3 often use the QUIC variable-length

integer encoding. In particular, Stream IDs use this encoding, which

allows for a larger range of possible values than the encoding used

in HTTP/2. Some frames in HTTP/3 use an identifier rather than a

Stream ID (e.g., Push IDs). Redefinition of the encoding of

extension frame types might be necessary if the encoding includes a

Stream ID.

Because the Flags field is not present in generic HTTP/3 frames,

those frames which depend on the presence of flags need to allocate

space for flags as part of their frame payload.

Other than this issue, frame type HTTP/2 extensions are typically

portable to QUIC simply by replacing Stream 0 in HTTP/2 with a

control stream in HTTP/3. HTTP/3 extensions will not assume

ordering, but would not be harmed by ordering, and would be portable

to HTTP/2 in the same manner.

A.2.4. Mapping Between HTTP/2 and HTTP/3 Frame Types

Padding is not defined in HTTP/3 frames. See Section

7.2.1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

HEADERS (0x1):

PRIORITY (0x2):

RST_STREAM (0x3):

SETTINGS (0x4):

PUSH_PROMISE (0x5):

PING (0x6):

GOAWAY (0x7):

WINDOW_UPDATE (0x8):

CONTINUATION (0x9):

The PRIORITY region of HEADERS is not defined in

HTTP/3 frames. Padding is not defined in HTTP/3 frames. See

Section 7.2.2.

As described in Appendix A.2.1, HTTP/3 does not

provide a means of signaling priority.

RST_STREAM frames do not exist, since QUIC

provides stream lifecycle management. The same code point is used

for the CANCEL_PUSH frame (Section 7.2.3).

SETTINGS frames are sent only at the beginning of

the connection. See Section 7.2.4 and Appendix A.3.

The PUSH_PROMISE does not reference a stream;

instead the push stream references the PUSH_PROMISE frame using a

Push ID. See Section 7.2.5.

PING frames do not exist, since QUIC provides

equivalent functionality.

GOAWAY does not contain an error code. In the client

to server direction, it carries a Push ID instead of a server

initiated stream ID. See Section 7.2.6.

WINDOW_UPDATE frames do not exist, since QUIC

provides flow control.

CONTINUATION frames do not exist; instead,

larger HEADERS/PUSH_PROMISE frames than HTTP/2 are permitted.

Frame types defined by extensions to HTTP/2 need to be separately

registered for HTTP/3 if still applicable. The IDs of frames defined

in [HTTP2] have been reserved for simplicity. Note that the frame

type space in HTTP/3 is substantially larger (62 bits versus 8

bits), so many HTTP/3 frame types have no equivalent HTTP/2 code

points. See Section 11.2.1.

A.3. HTTP/2 SETTINGS Parameters

An important difference from HTTP/2 is that settings are sent once,

as the first frame of the control stream, and thereafter cannot

change. This eliminates many corner cases around synchronization of

changes.

Some transport-level options that HTTP/2 specifies via the SETTINGS

frame are superseded by QUIC transport parameters in HTTP/3. The

HTTP-level options that are retained in HTTP/3 have the same value

as in HTTP/2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

SETTINGS_HEADER_TABLE_SIZE:

SETTINGS_ENABLE_PUSH:

SETTINGS_MAX_CONCURRENT_STREAMS:

SETTINGS_INITIAL_WINDOW_SIZE:

SETTINGS_MAX_FRAME_SIZE:

SETTINGS_MAX_FIELD_SECTION_SIZE:

NO_ERROR (0x0):

Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

See [QPACK].

This is removed in favor of the MAX_PUSH_ID

which provides a more granular control over server push.

QUIC controls the largest open

Stream ID as part of its flow control logic. Specifying

SETTINGS_MAX_CONCURRENT_STREAMS in the SETTINGS frame is an

error.

QUIC requires both stream and

connection flow control window sizes to be specified in the

initial transport handshake. Specifying

SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame is an error.

This setting has no equivalent in HTTP/3.

Specifying it in the SETTINGS frame is an error.

See Section 7.2.4.1.

In HTTP/3, setting values are variable-length integers (6, 14, 30,

or 62 bits long) rather than fixed-length 32-bit fields as in HTTP/

2. This will often produce a shorter encoding, but can produce a

longer encoding for settings which use the full 32-bit space.

Settings ported from HTTP/2 might choose to redefine their value to

limit it to 30 bits for more efficient encoding, or to make use of

the 62-bit space if more than 30 bits are required.

Settings need to be defined separately for HTTP/2 and HTTP/3. The

IDs of settings defined in [HTTP2] have been reserved for

simplicity. Note that the settings identifier space in HTTP/3 is

substantially larger (62 bits versus 16 bits), so many HTTP/3

settings have no equivalent HTTP/2 code point. See Section 11.2.2.

As QUIC streams might arrive out-of-order, endpoints are advised to

not wait for the peers' settings to arrive before responding to

other streams. See Section 7.2.4.2.

A.4. HTTP/2 Error Codes

QUIC has the same concepts of "stream" and "connection" errors that

HTTP/2 provides. However, the differences between HTTP/2 and HTTP/3

mean that error codes are not directly portable between versions.

The HTTP/2 error codes defined in Section 7 of [HTTP2] logically map

to the HTTP/3 error codes as follows:

H3_NO_ERROR in Section 8.1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

PROTOCOL_ERROR (0x1):

INTERNAL_ERROR (0x2):

FLOW_CONTROL_ERROR (0x3):

SETTINGS_TIMEOUT (0x4):

STREAM_CLOSED (0x5):

FRAME_SIZE_ERROR (0x6):

REFUSED_STREAM (0x7):

CANCEL (0x8):

COMPRESSION_ERROR (0x9):

CONNECT_ERROR (0xa):

ENHANCE_YOUR_CALM (0xb):

INADEQUATE_SECURITY (0xc):

H3_1_1_REQUIRED (0xd):

This is mapped to H3_GENERAL_PROTOCOL_ERROR

except in cases where more specific error codes have been

defined. This includes H3_FRAME_UNEXPECTED and

H3_CLOSED_CRITICAL_STREAM defined in Section 8.1.

H3_INTERNAL_ERROR in Section 8.1.

Not applicable, since QUIC handles flow

control.

Not applicable, since no acknowledgement of

SETTINGS is defined.

Not applicable, since QUIC handles stream

management.

H3_FRAME_ERROR error code defined in

Section 8.1.

H3_REQUEST_REJECTED (in Section 8.1) is used

to indicate that a request was not processed. Otherwise, not

applicable because QUIC handles stream management.

H3_REQUEST_CANCELLED in Section 8.1.

Multiple error codes are defined in

[QPACK].

H3_CONNECT_ERROR in Section 8.1.

H3_EXCESSIVE_LOAD in Section 8.1.

Not applicable, since QUIC is assumed to

provide sufficient security on all connections.

H3_VERSION_FALLBACK in Section 8.1.

Error codes need to be defined for HTTP/2 and HTTP/3 separately. See

Section 11.2.3.

A.4.1. Mapping Between HTTP/2 and HTTP/3 Errors

An intermediary that converts between HTTP/2 and HTTP/3 may

encounter error conditions from either upstream. It is useful to

communicate the occurrence of error to the downstream but error

codes largely reflect connection-local problems that generally do

not make sense to propagate.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

An intermediary that encounters an error from an upstream origin can

indicate this by sending an HTTP status code such as 502, which is

suitable for a broad class of errors.

There are some rare cases where it is beneficial to propagate the

error by mapping it to the closest matching error type to the

receiver. For example, an intermediary that receives an HTTP/2

stream error of type REFUSED_STREAM from the origin has a clear

signal that the request was not processed and that the request is

safe to retry. Propagating this error condition to the client as an

HTTP/3 stream error of type H3_REQUEST_REJECTED allows the client to

take the action it deems most appropriate. In the reverse direction

the intermediary might deem it beneficial to pass on client request

cancellations that are indicated by terminating a stream with

H3_REQUEST_CANCELLED.

Conversion between errors is described in the logical mapping. The

error codes are defined in non-overlapping spaces in order to

protect against accidental conversion that could result in the use

of inappropriate or unknown error codes for the target version. An

intermediary is permitted to promote stream errors to connection

errors but they should be aware of the cost to the connection for

what might be a temporary or intermittent error.

Appendix B. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

B.1. Since draft-ietf-quic-http-28

CANCEL_PUSH is recommended even when the stream is reset (#3698,

#3700)

Use H3_ID_ERROR when GOAWAY contains a larger identifier (#3631,

#3634)

B.2. Since draft-ietf-quic-http-27

Updated text to refer to latest HTTP revisions

Use the HTTP definition of authority for establishing and

coalescing connections (#253, #2223, #3558)

Define use of GOAWAY from both endpoints (#2632, #3129)

Require either :authority or Host if the URI scheme has a

mandatory authority component (#3408, #3475)

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

B.3. Since draft-ietf-quic-http-26

No changes

B.4. Since draft-ietf-quic-http-25

Require QUICv1 for HTTP/3 (#3117, #3323)

Remove DUPLICATE_PUSH and allow duplicate PUSH_PROMISE (#3275,

#3309)

Clarify the definition of "malformed" (#3352, #3345)

B.5. Since draft-ietf-quic-http-24

Removed H3_EARLY_RESPONSE error code; H3_NO_ERROR is recommended

instead (#3130,#3208)

Unknown error codes are equivalent to H3_NO_ERROR (#3276,#3331)

Some error codes are reserved for greasing (#3325,#3360)

B.6. Since draft-ietf-quic-http-23

Removed quic Alt-Svc parameter (#3061,#3118)

Clients need not persist unknown settings for use in 0-RTT

(#3110,#3113)

Clarify error cases around CANCEL_PUSH (#2819,#3083)

B.7. Since draft-ietf-quic-http-22

Removed priority signaling (#2922,#2924)

Further changes to error codes (#2662,#2551):

Error codes renumbered

HTTP_MALFORMED_FRAME replaced by HTTP_FRAME_ERROR,

HTTP_ID_ERROR, and others

Clarify how unknown frame types interact with required frame

sequence (#2867,#2858)

Describe interactions with the transport in terms of defined

interface terms (#2857,#2805)

Require the use of the http-opportunistic resource (RFC 8164)

when scheme is http (#2439,#2973)

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

- ¶

-

¶

*

¶

*

¶

*

¶

Settings identifiers cannot be duplicated (#2979)

Changes to SETTINGS frames in 0-RTT (#2972,#2790,#2945):

Servers must send all settings with non-default values in

their SETTINGS frame, even when resuming

If a client doesn't have settings associated with a 0-RTT

ticket, it uses the defaults

Servers can't accept early data if they cannot recover the

settings the client will have remembered

Clarify that Upgrade and the 101 status code are prohibited

(#2898,#2889)

Clarify that frame types reserved for greasing can occur on any

stream, but frame types reserved due to HTTP/2 correspondence are

prohibited (#2997,#2692,#2693)

Unknown error codes cannot be treated as errors (#2998,#2816)

B.8. Since draft-ietf-quic-http-21

No changes

B.9. Since draft-ietf-quic-http-20

Prohibit closing the control stream (#2509, #2666)

Change default priority to use an orphan node (#2502, #2690)

Exclusive priorities are restored (#2754, #2781)

Restrict use of frames when using CONNECT (#2229, #2702)

Close and maybe reset streams if a connection error occurs for

CONNECT (#2228, #2703)

Encourage provision of sufficient unidirectional streams for

QPACK (#2100, #2529, #2762)

Allow extensions to use server-initiated bidirectional streams

(#2711, #2773)

Clarify use of maximum header list size setting (#2516, #2774)

Extensive changes to error codes and conditions of their sending

Require connection errors for more error conditions (#2511,

#2510)

* ¶

* ¶

-

¶

-

¶

-

¶

*

¶

*

¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

-

¶

Updated the error codes for illegal GOAWAY frames (#2714,

#2707)

Specified error code for HEADERS on control stream (#2708)

Specified error code for servers receiving PUSH_PROMISE

(#2709)

Specified error code for receiving DATA before HEADERS (#2715)

Describe malformed messages and their handling (#2410, #2764)

Remove HTTP_PUSH_ALREADY_IN_CACHE error (#2812, #2813)

Refactor Push ID related errors (#2818, #2820)

Rationalize HTTP/3 stream creation errors (#2821, #2822)

B.10. Since draft-ietf-quic-http-19

SETTINGS_NUM_PLACEHOLDERS is 0x9 (#2443,#2530)

Non-zero bits in the Empty field of the PRIORITY frame MAY be

treated as an error (#2501)

B.11. Since draft-ietf-quic-http-18

Resetting streams following a GOAWAY is recommended, but not

required (#2256,#2457)

Use variable-length integers throughout (#2437,#2233,#2253,#2275)

Variable-length frame types, stream types, and settings

identifiers

Renumbered stream type assignments

Modified associated reserved values

Frame layout switched from Length-Type-Value to Type-Length-Value

(#2395,#2235)

Specified error code for servers receiving DUPLICATE_PUSH (#2497)

Use connection error for invalid PRIORITY (#2507, #2508)

B.12. Since draft-ietf-quic-http-17

HTTP_REQUEST_REJECTED is used to indicate a request can be

retried (#2106, #2325)

-

¶

- ¶

-

¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

*

¶

*

¶

* ¶

-

¶

- ¶

- ¶

*

¶

* ¶

* ¶

*

¶

Changed error code for GOAWAY on the wrong stream (#2231, #2343)

B.13. Since draft-ietf-quic-http-16

Rename "HTTP/QUIC" to "HTTP/3" (#1973)

Changes to PRIORITY frame (#1865, #2075)

Permitted as first frame of request streams

Remove exclusive reprioritization

Changes to Prioritized Element Type bits

Define DUPLICATE_PUSH frame to refer to another PUSH_PROMISE

(#2072)

Set defaults for settings, allow request before receiving

SETTINGS (#1809, #1846, #2038)

Clarify message processing rules for streams that aren't closed

(#1972, #2003)

Removed reservation of error code 0 and moved HTTP_NO_ERROR to

this value (#1922)

Removed prohibition of zero-length DATA frames (#2098)

B.14. Since draft-ietf-quic-http-15

Substantial editorial reorganization; no technical changes.

B.15. Since draft-ietf-quic-http-14

Recommend sensible values for QUIC transport parameters

(#1720,#1806)

Define error for missing SETTINGS frame (#1697,#1808)

Setting values are variable-length integers (#1556,#1807) and do

not have separate maximum values (#1820)

Expanded discussion of connection closure (#1599,#1717,#1712)

HTTP_VERSION_FALLBACK falls back to HTTP/1.1 (#1677,#1685)

B.16. Since draft-ietf-quic-http-13

Reserved some frame types for grease (#1333, #1446)

* ¶

* ¶

* ¶

- ¶

- ¶

- ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

Unknown unidirectional stream types are tolerated, not errors;

some reserved for grease (#1490, #1525)

Require settings to be remembered for 0-RTT, prohibit reductions

(#1541, #1641)

Specify behavior for truncated requests (#1596, #1643)

B.17. Since draft-ietf-quic-http-12

TLS SNI extension isn't mandatory if an alternative method is

used (#1459, #1462, #1466)

Removed flags from HTTP/3 frames (#1388, #1398)

Reserved frame types and settings for use in preserving

extensibility (#1333, #1446)

Added general error code (#1391, #1397)

Unidirectional streams carry a type byte and are extensible

(#910,#1359)

Priority mechanism now uses explicit placeholders to enable

persistent structure in the tree (#441,#1421,#1422)

B.18. Since draft-ietf-quic-http-11

Moved QPACK table updates and acknowledgments to dedicated

streams (#1121, #1122, #1238)

B.19. Since draft-ietf-quic-http-10

Settings need to be remembered when attempting and accepting 0-

RTT (#1157, #1207)

B.20. Since draft-ietf-quic-http-09

Selected QCRAM for header compression (#228, #1117)

The server_name TLS extension is now mandatory (#296, #495)

Specified handling of unsupported versions in Alt-Svc (#1093,

#1097)

B.21. Since draft-ietf-quic-http-08

Clarified connection coalescing rules (#940, #1024)

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

B.22. Since draft-ietf-quic-http-07

Changes for integer encodings in QUIC (#595,#905)

Use unidirectional streams as appropriate (#515, #240, #281,

#886)

Improvement to the description of GOAWAY (#604, #898)

Improve description of server push usage (#947, #950, #957)

B.23. Since draft-ietf-quic-http-06

Track changes in QUIC error code usage (#485)

B.24. Since draft-ietf-quic-http-05

Made push ID sequential, add MAX_PUSH_ID, remove

SETTINGS_ENABLE_PUSH (#709)

Guidance about keep-alive and QUIC PINGs (#729)

Expanded text on GOAWAY and cancellation (#757)

B.25. Since draft-ietf-quic-http-04

Cite RFC 5234 (#404)

Return to a single stream per request (#245,#557)

Use separate frame type and settings registries from HTTP/2 (#81)

SETTINGS_ENABLE_PUSH instead of SETTINGS_DISABLE_PUSH (#477)

Restored GOAWAY (#696)

Identify server push using Push ID rather than a stream ID

(#702,#281)

DATA frames cannot be empty (#700)

B.26. Since draft-ietf-quic-http-03

None.

B.27. Since draft-ietf-quic-http-02

Track changes in transport draft

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

* ¶

B.28. Since draft-ietf-quic-http-01

SETTINGS changes (#181):

SETTINGS can be sent only once at the start of a connection;

no changes thereafter

SETTINGS_ACK removed

Settings can only occur in the SETTINGS frame a single time

Boolean format updated

Alt-Svc parameter changed from "v" to "quic"; format updated

(#229)

Closing the connection control stream or any message control

stream is a fatal error (#176)

HPACK Sequence counter can wrap (#173)

0-RTT guidance added

Guide to differences from HTTP/2 and porting HTTP/2 extensions

added (#127,#242)

B.29. Since draft-ietf-quic-http-00

Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

Changed from using HTTP/2 framing within Stream 3 to new framing

format and two-stream-per-request model (#71,#72,#73)

Adopted SETTINGS format from draft-bishop-httpbis-extended-

settings-01

Reworked SETTINGS_ACK to account for indeterminate inter-stream

order (#75)

Described CONNECT pseudo-method (#95)

Updated ALPN token and Alt-Svc guidance (#13,#87)

Application-layer-defined error codes (#19,#74)

B.30. Since draft-shade-quic-http2-mapping-00

Adopted as base for draft-ietf-quic-http

Updated authors/editors list

* ¶

-

¶

- ¶

- ¶

- ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Acknowledgements

The original authors of this specification were Robbie Shade and

Mike Warres.

The IETF QUIC Working Group received an enormous amount of support

from many people. Among others, the following people provided

substantial contributions to this document:

Bence Beky

Daan De Meyer

Martin Duke

Roy Fielding

Alan Frindell

Alessandro Ghedini

Nick Harper

Ryan Hamilton

Christian Huitema

Subodh Iyengar

Robin Marx

Patrick McManus

Luca Nicco

奥 (Kazuho Oku)

Lucas Pardue

Roberto Peon

Julian Reschke

Eric Rescorla

Martin Seemann

Ben Schwartz

Ian Swett

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Willy Taureau

Martin Thomson

Dmitri Tikhonov

Tatsuhiro Tsujikawa

A portion of Mike's contribution was supported by Microsoft during

his employment there.

Author's Address

Mike Bishop (editor)

Akamai

Email: mbishop@evequefou.be

* ¶

* ¶

* ¶

* ¶

¶

mailto:mbishop@evequefou.be

	Hypertext Transfer Protocol Version 3 (HTTP/3)
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Prior versions of HTTP
	1.2. Delegation to QUIC

	2. HTTP/3 Protocol Overview
	2.1. Document Organization
	2.2. Conventions and Terminology

	3. Connection Setup and Management
	3.1. Draft Version Identification
	3.2. Discovering an HTTP/3 Endpoint
	3.2.1. HTTP Alternative Services
	3.2.2. Other Schemes

	3.3. Connection Establishment
	3.4. Connection Reuse

	4. HTTP Request Lifecycle
	4.1. HTTP Message Exchanges
	4.1.1. Field Formatting and Compression
	4.1.1.1. Pseudo-Header Fields
	4.1.1.2. Field Compression
	4.1.1.3. Header Size Constraints

	4.1.2. Request Cancellation and Rejection
	4.1.3. Malformed Requests and Responses

	4.2. The CONNECT Method
	4.3. HTTP Upgrade
	4.4. Server Push

	5. Connection Closure
	5.1. Idle Connections
	5.2. Connection Shutdown
	5.3. Immediate Application Closure
	5.4. Transport Closure

	6. Stream Mapping and Usage
	6.1. Bidirectional Streams
	6.2. Unidirectional Streams
	6.2.1. Control Streams
	6.2.2. Push Streams
	6.2.3. Reserved Stream Types

	7. HTTP Framing Layer
	7.1. Frame Layout
	7.2. Frame Definitions
	7.2.1. DATA
	7.2.2. HEADERS
	7.2.3. CANCEL_PUSH
	7.2.4. SETTINGS
	7.2.4.1. Defined SETTINGS Parameters
	7.2.4.2. Initialization

	7.2.5. PUSH_PROMISE
	7.2.6. GOAWAY
	7.2.7. MAX_PUSH_ID
	7.2.8. Reserved Frame Types

	8. Error Handling
	8.1. HTTP/3 Error Codes

	9. Extensions to HTTP/3
	10. Security Considerations
	10.1. Server Authority
	10.2. Cross-Protocol Attacks
	10.3. Intermediary Encapsulation Attacks
	10.4. Cacheability of Pushed Responses
	10.5. Denial-of-Service Considerations
	10.5.1. Limits on Field Section Size
	10.5.2. CONNECT Issues

	10.6. Use of Compression
	10.7. Padding and Traffic Analysis
	10.8. Frame Parsing
	10.9. Early Data
	10.10. Migration
	10.11. Privacy Considerations

	11. IANA Considerations
	11.1. Registration of HTTP/3 Identification String
	11.2. New Registries
	11.2.1. Frame Types
	11.2.2. Settings Parameters
	11.2.3. Error Codes
	11.2.4. Stream Types

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Considerations for Transitioning from HTTP/2
	A.1. Streams
	A.2. HTTP Frame Types
	A.2.1. Prioritization Differences
	A.2.2. Field Compression Differences
	A.2.3. Guidance for New Frame Type Definitions
	A.2.4. Mapping Between HTTP/2 and HTTP/3 Frame Types

	A.3. HTTP/2 SETTINGS Parameters
	A.4. HTTP/2 Error Codes
	A.4.1. Mapping Between HTTP/2 and HTTP/3 Errors

	Appendix B. Change Log
	B.1. Since draft-ietf-quic-http-28
	B.2. Since draft-ietf-quic-http-27
	B.3. Since draft-ietf-quic-http-26
	B.4. Since draft-ietf-quic-http-25
	B.5. Since draft-ietf-quic-http-24
	B.6. Since draft-ietf-quic-http-23
	B.7. Since draft-ietf-quic-http-22
	B.8. Since draft-ietf-quic-http-21
	B.9. Since draft-ietf-quic-http-20
	B.10. Since draft-ietf-quic-http-19
	B.11. Since draft-ietf-quic-http-18
	B.12. Since draft-ietf-quic-http-17
	B.13. Since draft-ietf-quic-http-16
	B.14. Since draft-ietf-quic-http-15
	B.15. Since draft-ietf-quic-http-14
	B.16. Since draft-ietf-quic-http-13
	B.17. Since draft-ietf-quic-http-12
	B.18. Since draft-ietf-quic-http-11
	B.19. Since draft-ietf-quic-http-10
	B.20. Since draft-ietf-quic-http-09
	B.21. Since draft-ietf-quic-http-08
	B.22. Since draft-ietf-quic-http-07
	B.23. Since draft-ietf-quic-http-06
	B.24. Since draft-ietf-quic-http-05
	B.25. Since draft-ietf-quic-http-04
	B.26. Since draft-ietf-quic-http-03
	B.27. Since draft-ietf-quic-http-02
	B.28. Since draft-ietf-quic-http-01
	B.29. Since draft-ietf-quic-http-00
	B.30. Since draft-shade-quic-http2-mapping-00
	Acknowledgements
	Author's Address

