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Abstract

QUIC connection IDs allow continuation of connections across

address/port 4-tuple changes, and can store routing information for

stateless or low-state load balancers. They also can prevent

linkability of connections across deliberate address migration

through the use of protected communications between client and

server. This creates issues for load-balancing intermediaries. This

specification standardizes methods for encoding routing information

given a small set of configuration parameters. This framework also

enables offload of other QUIC functions to trusted intermediaries,

given the explicit cooperation of the QUIC server.
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1. Introduction

QUIC packets [QUIC-TRANSPORT] usually contain a connection ID to

allow endpoints to associate packets with different address/port 4-

tuples to the same connection context. This feature makes

connections robust in the event of NAT rebinding. QUIC endpoints

usually designate the connection ID which peers use to address

packets. Server-generated connection IDs create a potential need for

out-of-band communication to support QUIC.

QUIC allows servers (or load balancers) to designate an initial

connection ID to encode useful routing information for load

balancers. It also encourages servers, in packets protected by

cryptography, to provide additional connection IDs to the client.

This allows clients that know they are going to change IP address or

port to use a separate connection ID on the new path, thus reducing

linkability as clients move through the world.

There is a tension between the requirements to provide routing

information and mitigate linkability. Ultimately, because new

connection IDs are in protected packets, they must be generated at

the server if the load balancer does not have access to the
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connection keys. However, it is the load balancer that has the

context necessary to generate a connection ID that encodes useful

routing information. In the absence of any shared state between load

balancer and server, the load balancer must maintain a relatively

expensive table of server-generated connection IDs, and will not

route packets correctly if they use a connection ID that was

originally communicated in a protected NEW_CONNECTION_ID frame.

This specification provides common algorithms for encoding the

server mapping in a connection ID given some shared parameters. The

mapping is generally only discoverable by observers that have the

parameters, preserving unlinkability as much as possible.

Aside from load balancing, a QUIC server may also desire to offload

other protocol functions to trusted intermediaries. These

intermediaries might include hardware assist on the server host

itself, without access to fully decrypted QUIC packets. For example,

this document specifies a means of offloading stateless retry to

counter Denial of Service attacks. It also proposes a system for

self-encoding connection ID length in all packets, so that crypto

offload can consistently look up key information.

While this document describes a small set of configuration

parameters to make the server mapping intelligible, the means of

distributing these parameters between load balancers, servers, and

other trusted intermediaries is out of its scope. There are numerous

well-known infrastructures for distribution of configuration.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

In this document, "client" and "server" refer to the endpoints of a

QUIC connection unless otherwise indicated. A "load balancer" is an

intermediary for that connection that does not possess QUIC

connection keys, but it may rewrite IP addresses or conduct other IP

or UDP processing. A "configuration agent" is the entity that

determines the QUIC-LB configuration parameters for the network and

leverages some system to distribute that configuration.

Note that stateful load balancers that act as proxies, by

terminating a QUIC connection with the client and then retrieving

data from the server using QUIC or another protocol, are treated as

a server with respect to this specification.
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For brevity, "Connection ID" will often be abbreviated as "CID".

2. Protocol Objectives

2.1. Simplicity

QUIC is intended to provide unlinkability across connection

migration, but servers are not required to provide additional

connection IDs that effectively prevent linkability. If the

coordination scheme is too difficult to implement, servers behind

load balancers using connection IDs for routing will use trivially

linkable connection IDs. Clients will therefore be forced to choose

between terminating the connection during migration or remaining

linkable, subverting a design objective of QUIC.

The solution should be both simple to implement and require little

additional infrastructure for cryptographic keys, etc.

2.2. Security

In the limit where there are very few connections to a pool of

servers, no scheme can prevent the linking of two connection IDs

with high probability. In the opposite limit, where all servers have

many connections that start and end frequently, it will be difficult

to associate two connection IDs even if they are known to map to the

same server.

QUIC-LB is relevant in the region between these extremes: when the

information that two connection IDs map to the same server is

helpful to linking two connection IDs. Obviously, any scheme that

transparently communicates this mapping to outside observers

compromises QUIC's defenses against linkability.

Though not an explicit goal of the QUIC-LB design, concealing the

server mapping also complicates attempts to focus attacks on a

specific server in the pool.

3. First CID octet

The first octet of a Connection ID is reserved for two special

purposes, one mandatory (config rotation) and one optional (length

self-description).

Subsequent sections of this document refer to the contents of this

octet as the "first octet."
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3.1. Config Rotation

The first two bits of any connection ID MUST encode an identifier

for the configuration that the connection ID uses. This enables

incremental deployment of new QUIC-LB settings (e.g., keys).

When new configuration is distributed to servers, there will be a

transition period when connection IDs reflecting old and new

configuration coexist in the network. The rotation bits allow load

balancers to apply the correct routing algorithm and parameters to

incoming packets.

Configuration Agents SHOULD deliver new configurations to load

balancers before doing so to servers, so that load balancers are

ready to process CIDs using the new parameters when they arrive.

A Configuration Agent SHOULD NOT use a codepoint to represent a new

configuration until it takes precautions to make sure that all

connections using CIDs with an old configuration at that codepoint

have closed or transitioned.

Servers MUST NOT generate new connection IDs using an old

configuration after receiving a new one from the configuration

agent. Servers MUST send NEW_CONNECTION_ID frames that provide CIDs

using the new configuration, and retire CIDs using the old

configuration using the "Retire Prior To" field of that frame.

It also possible to use these bits for more long-lived distinction

of different configurations, but this has privacy implications (see 

Section 10.3).

3.2. Configuration Failover

If a server has not received a valid QUIC-LB configuration, and

believes that low-state, Connection-ID aware load balancers are in

the path, it SHOULD generate connection IDs with the config rotation

bits set to '11' and SHOULD use the "disable_active_migration"

transport parameter in all new QUIC connections. It SHOULD NOT send

NEW_CONNECTION_ID frames with new values.

A load balancer that sees a connection ID with config rotation bits

set to '11' MUST revert to 5-tuple routing.

3.3. Length Self-Description

Local hardware cryptographic offload devices may accelerate QUIC

servers by receiving keys from the QUIC implementation indexed to

the connection ID. However, on physical devices operating multiple

QUIC servers, it is impractical to efficiently lookup these keys if

the connection ID does not self-encode its own length.
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Note that this is a function of particular server devices and is

irrelevant to load balancers. As such, load balancers MAY omit this

from their configuration. However, the remaining 6 bits in the first

octet of the Connection ID are reserved to express the length of the

following connection ID, not including the first octet.

A server not using this functionality SHOULD make the six bits

appear to be random.

3.4. Format

Figure 1: First Octet Format

The first octet has the following fields:

CR: Config Rotation bits.

CID Len: Length Self-Description (if applicable). Encodes the length

of the Connection ID following the First Octet.

4. Routing Algorithms

In QUIC-LB, load balancers do not generate individual connection IDs

to servers. Instead, they communicate the parameters of an algorithm

to generate routable connection IDs.

The algorithms differ in the complexity of configuration at both

load balancer and server. Increasing complexity improves obfuscation

of the server mapping.

As clients sometimes generate the DCIDs in long headers, these might

not conform to the expectations of the routing algorithm. These are

called "non-compliant DCIDs":

The DCID might not be long enough for the routing algorithm to

process.

The extracted server mapping might not correspond to an active

server.

Load balancers MUST forward packets with long headers with non-

compliant DCIDs to an active server using an algorithm of its own

choosing. It need not coordinate this algorithm with the servers.
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The algorithm SHOULD be deterministic over short time scales so that

related packets go to the same server. The design of this algorithm

SHOULD consider the version-invariant properties of QUIC described

in [QUIC-INVARIANTS] to maximize its robustness to future versions

of QUIC. For example, a non-compliant DCID might be converted to an

integer and divided by the number of servers, with the modulus used

to forward the packet. The number of servers is usually consistent

on the time scale of a QUIC connection handshake. See also Section

9.

As a partial exception to the above, load balancers MAY drop packets

with long headers and non-compliant DCIDs if and only if it knows

that the encoded QUIC version does not allow a non-compliant DCID in

a packet with that signature. For example, a load balancer can

safely drop a QUIC version 1 Handshake packet with a non-compliant

DCIDs. The prohibition against dropping packets with long headers

remains for unknown QUIC versions.

Load balancers SHOULD drop packets with non-compliant DCIDs in a

short header.

A QUIC-LB configuration MAY significantly over-provision the server

ID space (i.e., provide far more codepoints than there are servers)

to increase the probability that a randomly generated Destination

Connection ID is non- compliant.

Load balancers MUST forward packets with compliant DCIDs to a server

in accordance with the chosen routing algorithm.

The load balancer MUST NOT make the routing behavior dependent on

any bits in the first octet of the QUIC packet header, except the

first bit, which indicates a long header. All other bits are QUIC

version-dependent and intermediaries would cannot build their design

on version-specific templates.

There are situations where a server pool might be operating two or

more routing algorithms or parameter sets simultaneously. The load

balancer uses the first two bits of the connection ID to multiplex

incoming DCIDs over these schemes.

This section describes three participants: the configuration agent,

the load balancer, and the server.

4.1. Plaintext CID Algorithm

The Plaintext CID Algorithm makes no attempt to obscure the mapping

of connections to servers, significantly increasing linkability. The

format is depicted in the figure below.
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Figure 2: Plaintext CID Format

4.1.1. Configuration Agent Actions

The configuration agent selects a number of bytes of the server

connection ID to encode individual server IDs, called the "routing

bytes". The number of bytes MUST have enough entropy to have a

different code point for each server.

It also assigns a server ID to each server.

4.1.2. Load Balancer Actions

On each incoming packet, the load balancer extracts consecutive

octets, beginning with the second octet. These bytes represent the

server ID.

4.1.3. Server Actions

The server chooses a connection ID length. This MUST be at least one

byte longer than the routing bytes.

When a server needs a new connection ID, it encodes its assigned

server ID in consecutive octets beginning with the second. All other

bits in the connection ID, except for the first octet, MAY be set to

any other value. These other bits SHOULD appear random to observers.

4.2. Stream Cipher CID Algorithm

The Stream Cipher CID algorithm provides cryptographic protection at

the cost of additional per-packet processing at the load balancer to

decrypt every incoming connection ID. The CID format is depicted

below.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  First octet  |             Server ID (X=8..152)              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                        Any (0..152-X)                         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Figure 3: Stream Cipher CID Format

4.2.1. Configuration Agent Actions

The configuration agent assigns a server ID to every server in its

pool, and determines a server ID length (in octets) sufficiently

large to encode all server IDs, including potential future servers.

The configuration agent also selects a nonce length and an 16-octet

AES-ECB key to use for connection ID decryption. The nonce length

MUST be at least 8 octets and no more than 16 octets. The nonce

length and server ID length MUST sum to 19 or fewer octets.

4.2.2. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer extracts as many of

the earliest octets from the destination connection ID as necessary

to match the nonce length. The server ID immediately follows.

The load balancer decrypts the nonce and the server ID using the

following three pass algorithm:

Pass 1: The load balancer decrypts the server ID using 128-bit

AES Electronic Codebook (ECB) mode, much like QUIC header

protection. The encrypted nonce octets are zero-padded to 16

octets. AES-ECB encrypts this encrypted nonce using its key to

generate a mask which it applies to the encrypted server id. This

provides an intermediate value of the server ID, referred to as

server-id intermediate.

server_id_intermediate = encrypted_server_id ^ AES-ECB(key, padded-

encrypted-nonce)

Pass 2: The load balancer decrypts the nonce octets using 128-bit

AES ECB mode, using the server-id intermediate as "nonce" for

this pass. The server-id intermediate octets are zero-padded to

16 octets. AES-ECB encrypts this padded server-id intermediate

using its key to generate a mask which it applies to the

encrypted nonce. This provides the decrypted nonce value.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  First Octet  |            Nonce (X=64..128)                  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                 Encrypted Server ID (Y=8..152-X)              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                   For server use (0..152-X-Y)                 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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nonce = encrypted_nonce ^ AES-ECB(key, padded-

server_id_intermediate)

Pass 3: The load balancer decrypts the server ID using 128-bit

AES ECB mode. The nonce octets are zero-padded to 16 octets. AES-

ECB encrypts this nonce using its key to generate a mask which it

applies to the intermediate server id. This provides the

decrypted server ID.

server_id = server_id_intermediate ^ AES-ECB(key, padded-nonce)

For example, if the nonce length is 10 octets and the server ID

length is 2 octets, the connection ID can be as small as 13 octets.

The load balancer uses the the second through eleventh octets of the

connection ID for the nonce, zero-pads it to 16 octets, uses xors

the result with the twelfth and thirteenth octet. The result is

padded with 14 octets of zeros and encrypted to obtain a mask that

is xored with the nonce octets. Finally, the nonce octets are padded

with six octets of zeros, encrypted, and the first two octets xored

with the server ID octets to obtain the actual server ID.

This three-pass algorithm is a simplified version of the FFX

algorithm, with the property that each encrypted nonce value depends

on all server ID bits, and each encrypted server ID bit depends on

all nonce bits and all server ID bits. This mitigates attacks

against stream ciphers in which attackers simply flip encrypted

server-ID bits.

The output of the decryption is the server ID that the load balancer

uses for routing.

4.2.3. Server Actions

When generating a routable connection ID, the server writes

arbitrary bits into its nonce octets, and its provided server ID

into the server ID octets. Servers MAY opt to have a longer

connection ID beyond the nonce and server ID. The additional bits

MAY encode additional information, but SHOULD appear essentially

random to observers.

If the decrypted nonce bits increase monotonically, that guarantees

that nonces are not reused between connection IDs from the same

server.

The server encrypts the server ID using exactly the algorithm as

described in Section 4.2.2, performing the three passes in reverse

order.
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4.3. Block Cipher CID Algorithm

The Block Cipher CID Algorithm, by using a full 16 octets of

plaintext and a 128-bit cipher, provides higher cryptographic

protection and detection of non-compliant connection IDs. However,

it also requires connection IDs of at least 17 octets, increasing

overhead of client-to-server packets.

Figure 4: Block Cipher CID Format

4.3.1. Configuration Agent Actions

The configuration agent assigns a server ID to every server in its

pool, and determines a server ID length (in octets) sufficiently

large to encode all server IDs, including potential future servers.

The server ID will start in the second octet of the decrypted

connection ID and occupy continuous octets beyond that.

They server ID length MUST be no more than 16 octets and SHOULD sum

to no more than 12 octets, to provide servers adequate space to

encode their own opaque data.

The configuration agent also selects an 16-octet AES-ECB key to use

for connection ID decryption.

4.3.2. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer reads the first

octet to obtain the config rotation bits. It then decrypts the

subsequent 16 octets using AES-ECB decryption and the chosen key.

The decrypted plaintext contains the server id and opaque server

data in that order. The load balancer uses the server ID octets for

routing.

4.3.3. Server Actions

When generating a routable connection ID, the server MUST choose a

connection ID length between 17 and 20 octets. The server writes its

¶
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  First octet  |       Encrypted server ID (X=8..128)          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|           Encrypted bits for server use (128-X)               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|           Unencrypted bits for server use (0..24)             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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provided server ID into the server ID octets and arbitrary bits into

the remaining bits. These arbitrary bits MAY encode additional

information. Bits in the eighteenth, nineteenth, and twentieth

octets SHOULD appear essentially random to observers. The first

octet is reserved as described in Section 3.

The server then encrypts the second through seventeenth octets using

the 128-bit AES-ECB cipher.

5. ICMP Processing

For protocols where 4-tuple load balancing is sufficient, it is

straightforward to deliver ICMP packets from the network to the

correct server, by reading the IP and transport-layer headers to

obtain the 4-tuple. When routing is based on connection ID, further

measures are required, as most QUIC packets that trigger ICMP

responses will only contain a client-generated connection ID that

contains no routing information.

To solve this problem, load balancers MAY maintain a mapping of

Client IP and port to server ID based on recently observed packets.

Alternatively, servers MAY implement the technique described in

Section 14.4.1 of [QUIC-TRANSPORT] to increase the likelihood a

Source Connection ID is included in ICMP responses to Path Maximum

Transmission Unit (PMTU) probes. Load balancers MAY parse the echoed

packet to extract the Source Connection ID, if it contains a QUIC

long header, and extract the Server ID as if it were in a

Destination CID.

6. Retry Service

When a server is under load, QUICv1 allows it to defer storage of

connection state until the client proves it can receive packets at

its advertised IP address. Through the use of a Retry packet, a

token in subsequent client Initial packets, and the

original_destination_connection_id transport parameter, servers

verify address ownership and clients verify that there is no "man in

the middle" generating Retry packets.

As a trusted Retry Service is literally a "man in the middle," the

service must communicate the original_destination_connection_id back

to the server so that it can pass client verification. It also must

either verify the address itself (with the server trusting this

verification) or make sure there is common context for the server to

verify the address using a service-generated token.

The service must also communicate the source connection ID of the

Retry packet to the server so that it can include it in a transport

parameter for client verification.
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There are two different mechanisms to allow offload of DoS

mitigation to a trusted network service. One requires no shared

state; the server need only be configured to trust a retry service,

though this imposes other operational constraints. The other

requires shared key, but has no such constraints.

Retry services MUST forward all QUIC packets that are not of type

Initial or 0-RTT. Other packets types might involve changed IP

addresses or connection IDs, so it is not practical for Retry

Services to identify such packets as valid or invalid.

6.1. Common Requirements

Regardless of mechanism, a retry service has an active mode, where

it is generating Retry packets, and an inactive mode, where it is

not, based on its assessment of server load and the likelihood an

attack is underway. The choice of mode MAY be made on a per-packet

or per-connection basis, through a stochastic process or based on

client address.

A retry service MUST forward all packets for a QUIC version it does

not understand. Note that if servers support versions the retry

service does not, this may increase load on the servers. However,

dropping these packets would introduce chokepoints to block

deployment of new QUIC versions. Note that future versions of QUIC

might not have Retry packets, require different information in

Retry, or use different packet type indicators.

6.2. No-Shared-State Retry Service

The no-shared-state retry service requires no coordination, except

that the server must be configured to accept this service and know

which QUIC versions the retry service supports. The scheme uses the

first bit of the token to distinguish between tokens from Retry

packets (codepoint '0') and tokens from NEW_TOKEN frames (codepoint

'1').

6.2.1. Configuration Agent Actions

The configuration agent distributes a list of QUIC versions to be

served by the Retry Service.

6.2.2. Service Requirements

A no-shared-state retry service MUST be present on all paths from

potential clients to the server. These paths MUST fail to pass QUIC

traffic should the service fail for any reason. That is, if the

service is not operational, the server MUST NOT be exposed to client

traffic. Otherwise, servers that have already disabled their Retry

capability would be vulnerable to attack.
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The path between service and server MUST be free of any potential

attackers. Note that this and other requirements above severely

restrict the operational conditions in which a no-shared-state retry

service can safely operate.

Retry tokens generated by the service MUST have the format below.

Figure 5: Format of non-shared-state retry service tokens

The first bit of retry tokens generated by the service MUST be zero.

The token has the following additional fields:

ODCIL: The length of the original destination connection ID from the

triggering Initial packet. This is in cleartext to be readable for

the server, but authenticated later in the token.

RSCIL: The retry source connection ID length.

Original Destination Connection ID: This also in cleartext and

authenticated later.

Retry Source Connection ID: This also in cleartext and authenticated

later.

Opaque Data: This data MUST contain encrypted information that

allows the retry service to validate the client's IP address, in

accordance with the QUIC specification. It MUST also provide a

cryptographically secure means to validate the integrity of the

entire token.

Upon receipt of an Initial packet with a token that begins with '0',

the retry service MUST validate the token in accordance with the

QUIC specification.

¶
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0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|0| ODCIL (7) |   RSCIL (8)   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|        Original Destination Connection ID (0..160)            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             ...                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|              Retry Source Connection ID (0..160)              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             ...                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                     Opaque Data (variable)                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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In active mode, the service MUST issue Retry packets for all Client

initial packets that contain no token, or a token that has the first

bit set to '1'. It MUST NOT forward the packet to the server. The

service MUST validate all tokens with the first bit set to '0'. If

successful, the service MUST forward the packet with the token

intact. If unsuccessful, it MUST drop the packet. The Retry Service

MAY send an Initial Packet containing a CONNECTION_CLOSE frame with

the INVALID_TOKEN error code when dropping the packet.

Note that this scheme has a performance drawback. When the retry

service is in active mode, clients with a token from a NEW_TOKEN

frame will suffer a 1-RTT penalty even though it has proof of

address with its token.

In inactive mode, the service MUST forward all packets that have no

token or a token with the first bit set to '1'. It MUST validate all

tokens with the first bit set to '0'. If successful, the service

MUST forward the packet with the token intact. If unsuccessful, it

MUST either drop the packet or forward it with the token removed.

The latter requires decryption and re-encryption of the entire

Initial packet to avoid authentication failure. Forwarding the

packet causes the server to respond without the

original_destination_connection_id transport parameter, which

preserves the normal QUIC signal to the client that there is an

unauthorized man in the middle.

6.2.3. Server Requirements

A server behind a non-shared-state retry service MUST NOT send Retry

packets for a QUIC version the retry service understands. It MAY

send Retry for QUIC versions the Retry Service does not understand.

Tokens sent in NEW_TOKEN frames MUST have the first bit be set to

'1'.

If a server receives an Initial Packet with the first bit set to

'1', it could be from a server-generated NEW_TOKEN frame and should

be processed in accordance with the QUIC specification. If a server

receives an Initial Packet with the first bit to '0', it is a Retry

token and the server MUST NOT attempt to validate it. Instead, it

MUST assume the address is validated and MUST extract the Original

Destination Connection ID and Retry Source Connection ID, assuming

the format described in Section 6.2.2.

6.3. Shared-State Retry Service

A shared-state retry service uses a shared key, so that the server

can decode the service's retry tokens. It does not require that all

traffic pass through the Retry service, so servers MAY send Retry
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packets in response to Initial packets that don't include a valid

token.

Both server and service must have access to Universal time, though

tight synchronization is not necessary.

All tokens, generated by either the server or retry service, MUST

use the following format. This format is the cleartext version. On

the wire, these fields are encrypted using an AES-ECB cipher and the

token key. If the token is not a multiple of 16 octets, the last

block is padded with zeroes.

Figure 6: Cleartext format of shared-state retry tokens

¶

¶

¶

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|    ODCIL    |      RSCIL    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|        Original Destination Connection ID (0..160)            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             ...                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|              Retry Source Connection ID (0..160)              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             ...                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                                                               +

|                                                               |

+                    Client IP Address (128)                    +

|                                                               |

+                                                               +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                                                               +

|                                                               |

+                                                               +

|                         date-time (160)                       |

+                                                               +

|                                                               |

+                                                               +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                      Opaque Data (optional)                   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



The tokens have the following fields:

ODCIL: The original destination connection ID length. Tokens in

NEW_TOKEN frames MUST set this field to zero.

RSCIL: The retry source connection ID length. Tokens in NEW_TOKEN

frames MUST set this field to zero.

Original Destination Connection ID: The server or Retry Service

copies this from the field in the client Initial packet.

Retry Source Connection ID: The server or Retry service copies this

from the Source Connection ID of the Retry packet.

Client IP Address: The source IP address from the triggering Initial

packet. The client IP address is 16 octets. If an IPv4 address, the

last 12 octets are zeroes.

date-time: The date-time string is a total of 20 octets and encodes

the time the token was generated. The format of date-time is

described in Section 5.6 of [RFC3339]. This ASCII field MUST use the

"Z" character for time-offset.

Opaque Data: The server may use this field to encode additional

information, such as congestion window, RTT, or MTU. Opaque data

SHOULD also allow servers to distinguish between retry tokens (which

trigger use of the original_destination_connection_id transport

parameter) and NEW_TOKEN frame tokens.

6.3.1. Configuration Agent Actions

The configuration agent generates and distributes a "token key."

6.3.2. Service Requirements

When in active mode, the service MUST generate Retry tokens with the

format described above when it receives a client Initial packet with

no token.

In active mode, the service SHOULD decrypt incoming tokens. The

service SHOULD drop packets with an IP address that does not match,

and SHOULD forward packets that do, regardless of the other fields.

In inactive mode, the service SHOULD forward all packets to the

server so that the server can issue an up-to-date token to the

client.
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6.3.3. Server Requirements

The server MUST validate all tokens that arrive in Initial packets,

as they may have bypassed the Retry service. It SHOULD use the date-

time field to apply its expiration limits for tokens. This need not

be synchronized with the retry service. However, servers MAY allow

retry tokens marked as being a few seconds in the future, due to

possible clock synchronization issues.

After decrypting the token, the server uses the corresponding fields

to populate the original_destination_connection_id transport

parameter, with a length equal to ODCIL, and the

retry_source_connection_id transport parameter, with length equal to

RSCIL.

As discussed in [QUIC-TRANSPORT], a server MUST NOT send a Retry

packet in response to an Initial packet that contains a retry token.

7. Configuration Requirements

QUIC-LB requires common configuration to synchronize understanding

of encodings and guarantee explicit consent of the server.

The load balancer and server MUST agree on a routing algorithm and

the relevant parameters for that algorithm.

For Plaintext CID Routing, this consists of the Server ID and the

routing bytes. The Server ID is unique to each server, and the

routing bytes are global.

For Stream Cipher CID Routing, this consists of the Server ID,

Server ID Length, Key, and Nonce Length. The Server ID is unique to

each server, but the others MUST be global. The authentication token

MUST be distributed out of band for this algorithm to operate.

For Block Cipher CID Routing, this consists of the Server ID, Server

ID Length, Key, and Zero-Padding Length. The Server ID is unique to

each server, but the others MUST be global.

A full QUIC-LB configuration MUST also specify the information

content of the first CID octet and the presence and mode of any

Retry Service.

The following pseudocode describes the data items necessary to store

a full QUIC-LB configuration at the server. It is meant to describe

the conceptual range and not specify the presentation of such

configuration in an internet packet. The comments signify the range

of acceptable values where applicable.
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8. Additional Use Cases

This section discusses considerations for some deployment scenarios

not implied by the specification above.

8.1. Load balancer chains

Some network architectures may have multiple tiers of low-state load

balancers, where a first tier of devices makes a routing decision to

the next tier, and so on until packets reach the server. Although

QUIC-LB is not explicitly designed for this use case, it is possible

to support it.

If each load balancer is assigned a range of server IDs that is a

subset of the range of IDs assigned to devices that are closer to

the client, then the first devices to process an incoming packet can

extract the server ID and then map it to the correct forwrading

address. Note that this solution is extensible to arbitrarily large

numbers of load-balancing tiers, as the maximum server ID space is

quite large.

 uint2    config_rotation_bits;

 boolean  first_octet_encodes_cid_length;

 enum     { none, non_shared_state, shared_state } retry_service;

 select (retry_service) {

     case none: null;

     case non_shared_state: uint32 list_of_quic_versions[];

     case shared_state:     uint8 key[16];

 } retry_service_config;

 enum     { none, plaintext, stream_cipher, block_cipher }

                   routing_algorithm;

 select (routing_algorithm) {

     case none: null;

     case plaintext: struct {

         uint8 server_id_length; /* 1..19 */

         uint8 server_id[server_id_length];

     } plaintext_config;

     case stream_cipher: struct {

         uint8  nonce_length; /* 8..16 */

         uint8  server_id_length; /* 1..(19 - nonce_length) */

         uint8  server_id[server_id_length];

         uint8  key[16];

     } stream_cipher_config;

     case block_cipher: struct {

         uint8  server_id_length;

         uint8  server_id[server_id_length];

         uint8  key[16];

     } block_cipher_config;

} routing_algorithm_config;
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8.2. Moving connections between servers

Some deployments may transparently move a connection from one server

to another. The means of transferring connection state between

servers is out of scope of this document.

To support a handover, a server involved in the transition could

issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,

and retire CIDs associated with the new server using the "Retire

Prior To" field in that frame.

Alternately, if the old server is going offline, the load balancer

could simply map its server ID to the new server's address.

9. Version Invariance of QUIC-LB

Retry Services are inherently dependent on the format (and

existence) of Retry Packets in each version of QUIC, and so Retry

Service configuration explicitly includes the supported QUIC

versions.

The server ID encodings, and requirements for their handling, are

designed to be QUIC version independent (see [QUIC-INVARIANTS]). A

QUIC-LB load balancer will generally not require changes as servers

deploy new versions of QUIC. However, there are several unlikely

future design decisions that could impact the operation of QUIC-LB.

The maximum Connection ID length could be below the minimum

necessary for one or more encoding algorithms.

Section 4 provides guidance about how load balancers should handle

non-compliant DCIDs. This guidance, and the implementation of an

algorithm to handle these DCIDs, rests on some assumptions:

Incoming short headers do not contain DCIDs that are client-

generated.

The use of client-generated incoming DCIDs does not persist

beyond a few round trips in the connection.

While the client is using DCIDs it generated, some exposed fields

(IP address, UDP port, client-generated destination Connection

ID) remain constant for all packets sent on the same connection.

While this document does not update the commitments in [QUIC-

INVARIANTS], the additional assumptions are minimal and narrowly

scoped, and provide a likely set of constants that load balancers

can use with minimal risk of version- dependence.
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If these assumptions are invalid, this specification is likely to

lead to loss of packets that contain non-compliant DCIDs, and in

extreme cases connection failure.

10. Security Considerations

QUIC-LB is intended to prevent linkability. Attacks would therefore

attempt to subvert this purpose.

Note that the Plaintext CID algorithm makes no attempt to obscure

the server mapping, and therefore does not address these concerns.

It exists to allow consistent CID encoding for compatibility across

a network infrastructure, which makes QUIC robust to NAT rebinding.

Servers that are running the Plaintext CID algorithm SHOULD only use

it to generate new CIDs for the Server Initial Packet and SHOULD NOT

send CIDs in QUIC NEW_CONNECTION_ID frames, except that it sends one

new Connection ID in the event of config rotation Section 3.1. Doing

so might falsely suggest to the client that said CIDs were generated

in a secure fashion.

A linkability attack would find some means of determining that two

connection IDs route to the same server. As described above, there

is no scheme that strictly prevents linkability for all traffic

patterns, and therefore efforts to frustrate any analysis of server

ID encoding have diminishing returns.

10.1. Attackers not between the load balancer and server

Any attacker might open a connection to the server infrastructure

and aggressively simulate migration to obtain a large sample of IDs

that map to the same server. It could then apply analytical

techniques to try to obtain the server encoding.

The Stream and Block Cipher CID algorithms provide robust protection

against any sort of linkage. The Plaintext CID algorithm makes no

attempt to protect this encoding.

Were this analysis to obtain the server encoding, then on-path

observers might apply this analysis to correlating different client

IP addresses.

10.2. Attackers between the load balancer and server

Attackers in this privileged position are intrinsically able to map

two connection IDs to the same server. The QUIC-LB algorithms do

prevent the linkage of two connection IDs to the same individual

connection if servers make reasonable selections when generating new

IDs for that connection.
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[QUIC-INVARIANTS]

10.3. Multiple Configuration IDs

During the period in which there are multiple deployed configuration

IDs (see Section 3.1), there is a slight increase in linkability.

The server space is effectively divided into segments with CIDs that

have different config rotation bits. Entities that manage servers

SHOULD strive to minimize these periods by quickly deploying new

configurations across the server pool.

10.4. Limited configuration scope

A simple deployment of QUIC-LB in a cloud provider might use the

same global QUIC-LB configuration across all its load balancers that

route to customer servers. An attacker could then simply become a

customer, obtain the configuration, and then extract server IDs of

other customers' connections at will.

To avoid this, the configuration agent SHOULD issue QUIC-LB

configurations to mutually distrustful servers that have different

keys for encryption algorithms. The load balancers can distinguish

these configurations by external IP address, or by assigning

different values to the config rotation bits (Section 3.1). Note

that either solution has a privacy impact; see Section 10.3.

These techniques are not necessary for the plaintext algorithm, as

it does not attempt to conceal the server ID.

10.5. Stateless Reset Oracle

Section 21.9 of [QUIC-TRANSPORT] discusses the Stateless Reset

Oracle attack. For a server deployment to be vulnerable, an

attacking client must be able to cause two packets with the same

Destination CID to arrive at two different servers that share the

same cryptographic context for Stateless Reset tokens. As QUIC-LB

requires deterministic routing of DCIDs over the life of a

connection, it is a sufficient means of avoiding an Oracle without

additional measures.

11. IANA Considerations

There are no IANA requirements.
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Appendix A. Load Balancer Test Vectors

Because any connection ID encoding in this specification includes

many bits for server use without affecting extraction of the server

ID, there are many possible connection IDs for any given set of

parameters. However, every connection ID should result in a unique

server ID. The following connection IDs can be used to verify that a

load balancer implementation extracts the correct server ID.

A.1. Plaintext Connection ID Algorithm

TBD

A.2. Stream Cipher Connection ID Algorithm

cr_bits 0x0 length_self_encoding: y nonce_len 10 sid_len 1 key

9c46142f1597511357cf437841721d4b

cid 0b05be7bf896ed26cb4cc59a sid ab cid 0b43909398577dd7df1597d4 sid

37 cid 0bf85fa27034785803747464 sid 0e cid 0bc630c588fdecbfbdb62e61

sid 44 cid 0b8788901684f5d4e4dc6aeb sid 83

cr_bits 0x0 length_self_encoding: n nonce_len 9 sid_len 2 key

434ae6fbf36aca0773a6a75f10e3f747

cid 08644a29067622f363d4c83e sid 846a cid 234b2899f9b213a70abfe193

sid 4417 cid 3ff4ef53bbaad327c1e18fa5 sid 7554 cid

08a0eaf4cc08f184e6cf7743 sid b78a cid 3fb2f5cf1b3e08bf97709c42 sid

ed7e

cr_bits 0x0 length_self_encoding: y nonce_len 12 sid_len 3 key

02e895bf84f6a80c3c7156da88a96755
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cid 0f7405813570b8f9a6a10564d7b92834 sid 49023c cid

0f3bb656319c6af210239dcaef77d3b9 sid b0a8ce cid

0f3ae6d54ee97fc6907b5e2d60436caf sid 21f035 cid

0f4774918a6576c88f85829306f6450f sid 9e46ea cid

0f7467db6ca1eb4c185e642b0c9f8f44 sid c33db0

cr_bits 0x0 length_self_encoding: n nonce_len 11 sid_len 4 key

ccb612da03f5dc205faf9b0b1d5429cb

cid 0c4b23e27639aef72f861ad2dce39d96 sid 125fdba1 cid

063ed9a173d22be11818b77a3bd5ec37 sid 0f3f82bc cid

1a14e39b0f6ca6a3a48f6fdd2083fa09 sid 05950af2 cid

36cb4df5a7776edb21ec87c35c24e988 sid 3cb80d59 cid

05749809112a91327fef4b3152335298 sid 4746cb79

cr_bits 0x0 length_self_encoding: y nonce_len 8 sid_len 5 key

625696d413ea1a352401afce6eec2432

cid 0d2a7b43eeaac8b36fce2c14ac96 sid 4b00da143a cid

0ddd6cdb6685e75b91f4a1bb0dde sid f9aa795663 cid

0d870ea4d173d29484e41ea4a189 sid e430dcfb3f cid

0df12abe175241b5ab035d23910f sid 8bc66a2596 cid

0d390df5de76903ca94b2e9daa49 sid 7637d0c172

A.3. Block Cipher Connection ID Algorithm

Like the previous section, the text below lists a set of load

balancer configuration and 5 CIDs generated with that configuration.

cr_bits 0x0 length_self_encoding: y sid_len 1 zp_len 11 key

8c24cb9b9c3289b4ee63c3f3d7f93a9a

cid: 1378e44f874642624fa69e7b4aec15a2a678b8b5 sid: 48

cid: 13772c82fe8ce6a00813f76a211b730eb4b20363 sid: 66

cid: 135ccf507b1c209457f80df0217b9a1df439c4b2 sid: 30

cid: 13898459900426c073c66b1001c867f9098a7aab sid: fe

cid: 1397a18da00bf912f20049d9f0a007444f8b6699 sid: 30

cr_bits 0x0 length_self_encoding: n sid_len 2 zp_len 10 key

cc7ec42794664a8428250c12a7fb16fa

cid: 0cb28bfc1f65c3de14752bc0fc734ef824ce8f78 sid: 33fa

cid: 2345e9fc7a7be55b4ba1ff6ffa04f3f5f8c67009 sid: ee47

cid: 0d32102be441600f608c95841fd40ce978aa7a02 sid: 0c8b

cid: 2e6bfc53c91c275019cd809200fa8e23836565ab sid: feca

cid: 29b87a902ed129c26f7e4e918a68703dc71a6e0a sid: 8941

cr_bits 0x1 length_self_encoding: y sid_len 3 zp_len 9 key

42e657946b96b7052ab8e6eeb863ee24
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cid: 53c48f7884d73fd9016f63e50453bfd9bcfc637d sid: b46b68

cid: 53f45532f6a4f0e1757fa15c35f9a2ab0fcce621 sid: 2147b4

cid: 5361fd4bbcee881a637210f4fffc02134772cc76 sid: e4bf4b

cid: 53881ffde14e613ef151e50ba875769d6392809b sid: c2afee

cid: 53ad0d60204d88343492334e6c4c4be88d4a3add sid: ae0331

cr_bits 0x0 length_self_encoding: n sid_len 4 zp_len 8 key

ee2dc6a3359a94b0043ca0c82715ce71

cid: 058b9da37f436868cca3cef40c7f98001797c611 sid: eaf846c7

cid: 1259fc97439adaf87f61250afea059e5ddf66e44 sid: 4cc5e84a

cid: 202f424376f234d5f014f41cebc38de2619c6c71 sid: f94ff800

cid: 146ac3e4bbb750d3bfb617ef4b0cb51a1cae5868 sid: c2071b1b

cid: 36dfe886538af7eb16a196935b3705c9d741479f sid: 26359dbb

cr_bits 0x2 length_self_encoding: y sid_len 5 zp_len 7 key

700837da8834840afe7720186ec610c9

cid: 931ef3cc07e2eaf08d4c1902cd564d907cc3377c sid: 759b1d419a

cid: 9398c3d0203ab15f1dfeb5aa8f81e52888c32008 sid: 77cc0d3310

cid: 93f4ba09ab08a9ef997db4fa37a97dbf2b4c5481 sid: f7db9dce32

cid: 93744f4bedf95e04dd6607592ecf775825403093 sid: e264d714d2

cid: 93256308e3d349f8839dec840b0a90c7e7a1fc20 sid: 618b07791f
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Editorial changes

Made load balancer behavior independent of QUIC version

Got rid of token in stream cipher encoding, because server might

not have it

Defined "non-compliant DCID" and specified rules for handling

them.

Added psuedocode for config schema
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Added standard for retry services
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Updated to allow 20B CIDs

Added self-encoding of CID length
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Added failover mode

Tweaks to existing CID algorithms

Added Block Cipher CID algorithm

Reformatted QUIC-LB packets
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Complete rewrite

Supports multiple security levels

Lightweight messages
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Converted to markdown
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