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Abstract

The QUIC protocol design is resistant to transparent packet

inspection, injection, and modification by intermediaries. However,

the server can explicitly cooperate with network services by

agreeing to certain conventions and/or sharing state with those

services. This specification provides a standardized means of

solving three problems: (1) maintaining routability to servers via a

low-state load balancer even when the connection IDs in use change;

(2) explicit encoding of the connection ID length in all packets to

assist hardware accelerators; and (3) injection of QUIC Retry

packets by an anti-Denial-of-Service agent on behalf of the server.

Note to Readers

Discussion of this document takes place on the QUIC Working Group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/quicwg/load-balancers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 January 2022.
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1. Introduction

QUIC packets [RFC9000] usually contain a connection ID to allow

endpoints to associate packets with different address/port 4-tuples

to the same connection context. This feature makes connections

robust in the event of NAT rebinding. QUIC endpoints usually

designate the connection ID which peers use to address packets.

Server-generated connection IDs create a potential need for out-of-

band communication to support QUIC.

QUIC allows servers (or load balancers) to designate an initial

connection ID to encode useful routing information for load

balancers. It also encourages servers, in packets protected by

cryptography, to provide additional connection IDs to the client.

This allows clients that know they are going to change IP address or

port to use a separate connection ID on the new path, thus reducing

linkability as clients move through the world.

There is a tension between the requirements to provide routing

information and mitigate linkability. Ultimately, because new

connection IDs are in protected packets, they must be generated at

the server if the load balancer does not have access to the

connection keys. However, it is the load balancer that has the

context necessary to generate a connection ID that encodes useful

routing information. In the absence of any shared state between load

balancer and server, the load balancer must maintain a relatively

expensive table of server-generated connection IDs, and will not

route packets correctly if they use a connection ID that was

originally communicated in a protected NEW_CONNECTION_ID frame.

This specification provides common algorithms for encoding the

server mapping in a connection ID given some shared parameters. The

mapping is generally only discoverable by observers that have the

parameters, preserving unlinkability as much as possible.

Aside from load balancing, a QUIC server may also desire to offload

other protocol functions to trusted intermediaries. These

intermediaries might include hardware assist on the server host

itself, without access to fully decrypted QUIC packets. For example,

this document specifies a means of offloading stateless retry to
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counter Denial of Service attacks. It also proposes a system for

self-encoding connection ID length in all packets, so that crypto

offload can consistently look up key information.

While this document describes a small set of configuration

parameters to make the server mapping intelligible, the means of

distributing these parameters between load balancers, servers, and

other trusted intermediaries is out of its scope. There are numerous

well-known infrastructures for distribution of configuration.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

In this document, "client" and "server" refer to the endpoints of a

QUIC connection unless otherwise indicated. A "load balancer" is an

intermediary for that connection that does not possess QUIC

connection keys, but it may rewrite IP addresses or conduct other IP

or UDP processing. A "configuration agent" is the entity that

determines the QUIC-LB configuration parameters for the network and

leverages some system to distribute that configuration.

Note that stateful load balancers that act as proxies, by

terminating a QUIC connection with the client and then retrieving

data from the server using QUIC or another protocol, are treated as

a server with respect to this specification.

For brevity, "Connection ID" will often be abbreviated as "CID".

1.2. Notation

All wire formats will be depicted using the notation defined in

Section 1.3 of [RFC9000]. There is one addition: the function len()

refers to the length of a field which can serve as a limit on a

different field, so that the lengths of two fields can be concisely

defined as limited to a sum, for example:

x(A..B) y(C..B-len(x))

indicates that x can be of any length between A and B, and y can be

of any length between C and B provided that (len(x) + len(y)) does

not exceed B.

The example below illustrates the basic framework:
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Figure 1: Example Format

2. Protocol Objectives

2.1. Simplicity

QUIC is intended to provide unlinkability across connection

migration, but servers are not required to provide additional

connection IDs that effectively prevent linkability. If the

coordination scheme is too difficult to implement, servers behind

load balancers using connection IDs for routing will use trivially

linkable connection IDs. Clients will therefore be forced to choose

between terminating the connection during migration or remaining

linkable, subverting a design objective of QUIC.

The solution should be both simple to implement and require little

additional infrastructure for cryptographic keys, etc.

2.2. Security

In the limit where there are very few connections to a pool of

servers, no scheme can prevent the linking of two connection IDs

with high probability. In the opposite limit, where all servers have

many connections that start and end frequently, it will be difficult

to associate two connection IDs even if they are known to map to the

same server.

QUIC-LB is relevant in the region between these extremes: when the

information that two connection IDs map to the same server is

helpful to linking two connection IDs. Obviously, any scheme that

transparently communicates this mapping to outside observers

compromises QUIC's defenses against linkability.

Though not an explicit goal of the QUIC-LB design, concealing the

server mapping also complicates attempts to focus attacks on a

specific server in the pool.

Example Structure {

  One-bit Field (1),

  7-bit Field with Fixed Value (7) = 61,

  Field with Variable-Length Integer (i),

  Arbitrary-Length Field (..),

  Variable-Length Field (8..24),

  Variable-Length Field with Dynamic Limit (8..24-len(Variable-Length Field)),

  Field With Minimum Length (16..),

  Field With Maximum Length (..128),

  [Optional Field (64)],

  Repeated Field (8) ...,

}
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3. First CID octet

The first octet of a Connection ID is reserved for two special

purposes, one mandatory (config rotation) and one optional (length

self-description).

Subsequent sections of this document refer to the contents of this

octet as the "first octet."

3.1. Config Rotation

The first two bits of any connection ID MUST encode an identifier

for the configuration that the connection ID uses. This enables

incremental deployment of new QUIC-LB settings (e.g., keys).

When new configuration is distributed to servers, there will be a

transition period when connection IDs reflecting old and new

configuration coexist in the network. The rotation bits allow load

balancers to apply the correct routing algorithm and parameters to

incoming packets.

Configuration Agents SHOULD deliver new configurations to load

balancers before doing so to servers, so that load balancers are

ready to process CIDs using the new parameters when they arrive.

A Configuration Agent SHOULD NOT use a codepoint to represent a new

configuration until it takes precautions to make sure that all

connections using CIDs with an old configuration at that codepoint

have closed or transitioned.

Servers MUST NOT generate new connection IDs using an old

configuration after receiving a new one from the configuration

agent. Servers MUST send NEW_CONNECTION_ID frames that provide CIDs

using the new configuration, and retire CIDs using the old

configuration using the "Retire Prior To" field of that frame.

It also possible to use these bits for more long-lived distinction

of different configurations, but this has privacy implications (see 

Section 11.3).

3.2. Configuration Failover

If a server has not received a valid QUIC-LB configuration, and

believes that low-state, Connection-ID aware load balancers are in

the path, it SHOULD generate connection IDs with the config rotation

bits set to '11' and SHOULD use the "disable_active_migration"

transport parameter in all new QUIC connections. It SHOULD NOT send

NEW_CONNECTION_ID frames with new values.
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A load balancer that sees a connection ID with config rotation bits

set to '11' MUST revert to 5-tuple routing.

3.3. Length Self-Description

Local hardware cryptographic offload devices may accelerate QUIC

servers by receiving keys from the QUIC implementation indexed to

the connection ID. However, on physical devices operating multiple

QUIC servers, it is impractical to efficiently lookup these keys if

the connection ID does not self-encode its own length.

Note that this is a function of particular server devices and is

irrelevant to load balancers. As such, load balancers MAY omit this

from their configuration. However, the remaining 6 bits in the first

octet of the Connection ID are reserved to express the length of the

following connection ID, not including the first octet.

A server not using this functionality SHOULD make the six bits

appear to be random.

3.4. Format

Figure 2: First Octet Format

The first octet has the following fields:

Config Rotation: Indicates the configuration used to interpret the

CID.

CID Len or Random Bits: Length Self-Description (if applicable), or

random bits otherwise. Encodes the length of the Connection ID

following the First Octet.

4. Load Balancing Preliminaries

In QUIC-LB, load balancers do not generate individual connection IDs

for servers. Instead, they communicate the parameters of an

algorithm to generate routable connection IDs.

The algorithms differ in the complexity of configuration at both

load balancer and server. Increasing complexity improves obfuscation

of the server mapping.
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First Octet {

  Config Rotation (2),

  CID Len or Random Bits (6),

}
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This section describes three participants: the configuration agent,

the load balancer, and the server. For any given QUIC-LB

configuration that enables connection-ID-aware load balancing, there

must be a choice of (1) routing algorithm, (2) server ID allocation

strategy, and (3) algorithm parameters.

Fundamentally, servers generate connection IDs that encode their

server ID. Load balancers decode the server ID from the CID in

incoming packets to route to the correct server.

There are situations where a server pool might be operating two or

more routing algorithms or parameter sets simultaneously. The load

balancer uses the first two bits of the connection ID to multiplex

incoming DCIDs over these schemes (see Section 3.1).

4.1. Unroutable Connection IDs

QUIC-LB servers will generate Connection IDs that are decodable to

extract a server ID in accordance with a specified algorithm and

parameters. However, QUIC often uses client-generated Connection IDs

prior to receiving a packet from the server.

These client-generated CIDs might not conform to the expectations of

the routing algorithm and therefore not be routable by the load

balancer. Those that are not routable are "unroutable DCIDs" and

receive similar treatment regardless of why they're unroutable:

The config rotation bits (Section 3.1) may not correspond to an

active configuration. Note: a packet with a DCID that indicates

5-tuple routing (see Section 3.2) is always routable.

The DCID might not be long enough for the decoder to process.

The extracted server mapping might not correspond to an active

server.

All other DCIDs are routable.

Load balancers MUST forward packets with routable DCIDs to a server

in accordance with the chosen routing algorithm.

Load balancers SHOULD drop short header packets with unroutable

DCIDs.

The routing of long headers with unroutable DCIDs depends on the

server ID allocation strategy, described in Section 4.3. However,

the load balancer MUST NOT drop these packets, with one exception.

Load balancers MAY drop packets with long headers and unroutable

DCIDs if and only if it knows that the encoded QUIC version does not
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allow an unroutable DCID in a packet with that signature. For

example, a load balancer can safely drop a QUIC version 1 Handshake

packet with an unroutable DCID, as a version 1 Handshake packet sent

to a QUIC-LB routable server will always have a server-generated

routable CID. The prohibition against dropping packets with long

headers remains for unknown QUIC versions.

Furthermore, while the load balancer function MUST NOT drop packets,

the device might implement other security policies, outside the

scope of this specification, that might force a drop.

Servers that receive packets with unroutable CIDs MUST use the

available mechanisms to induce the client to use a routable CID in

future packets. In QUIC version 1, this requires using a routable

CID in the Source CID field of server-generated long headers.

4.2. Fallback Algorithms

There are conditions described below where a load balancer routes a

packet using a "fallback algorithm." It can choose any algorithm,

without coordination with the servers, but the algorithm SHOULD be

deterministic over short time scales so that related packets go to

the same server. The design of this algorithm SHOULD consider the

version-invariant properties of QUIC described in [RFC8999] to

maximize its robustness to future versions of QUIC.

A fallback algorithm MUST NOT make the routing behavior dependent on

any bits in the first octet of the QUIC packet header, except the

first bit, which indicates a long header. All other bits are QUIC

version-dependent and intermediaries SHOULD NOT base their design on

version-specific templates.

For example, one fallback algorithm might convert a unroutable DCID

to an integer and divided by the number of servers, with the modulus

used to forward the packet. The number of servers is usually

consistent on the time scale of a QUIC connection handshake. Another

might simply hash the address/port 4-tuple. See also Section 10.

4.3. Server ID Allocation

For any given configuration, the configuration agent must specify if

server IDs will be statically or dynamically allocated. Load

Balancer configurations with statically allocated server IDs

explicitly include a mapping of server IDs to forwarding addresses.

The corresponding server configurations contain one or more unique

server IDs.

A dynamically allocated configuration does not have a pre-defined

assignment, reducing configuration complexity. However, it places

limits on the maximum server ID length and requires more state at
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the load balancer. In certain edge cases, it can force parts of the

system to fail over to 5-tuple routing for a short time.

In either case, the configuration agent chooses a server ID length

for each configuration that MUST be at least one octet. For Static

Allocation, the maximum length depends on the algorithm. For dynamic

allocation, the maximum length is 7 octets.

A QUIC-LB configuration MAY significantly over-provision the server

ID space (i.e., provide far more codepoints than there are servers)

to increase the probability that a randomly generated Destination

Connection ID is unroutable.

Conceptually, each configuration has its own set of server ID

allocations, though two static configurations with identical server

ID lengths MAY use a common allocation between them.

A server encodes one of its assigned server IDs in any CID it

generates using the relevant configuration.

4.3.1. Static Allocation

In the static allocation method, the configuration agent assigns at

least one server ID to each server.

When forwarding a packet with a long header and unroutable DCID,

load balancers MUST forward packets with long headers and unroutable

DCIDs using an fallback algorithm as specified in Section 4.2.

4.3.2. Dynamic Allocation

In the dynamic allocation method, the load balancer assigns server

IDs dynamically so that configuration does not require fixed server

ID assignment. This reduces linkability. However, it requires state

at the load balancer that roughly scales with the number of

connections, until the server ID codespace is exhausted.

4.3.2.1. Configuration Agent Actions

The configuration agent does not assign server IDs, but does

configure a server ID length and an "LB timeout". The server ID MUST

be at least one and no more than seven octets.

4.3.2.2. Load Balancer Actions

The load balancer maintains a table of all assigned server IDs and

corresponding routing information, which is initialized empty. These

tables are independent for each operating configuration.
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The load balancer MUST keep track of the most recent observation of

each server ID, in any sort of packet it forwards, in the table and

delete the entries when the time since that observation exceeds the

LB Timeout.

Note that when the load balancer's table for a configuration is

empty, all incoming DCIDs corresponding to that configuration are

unroutable by definition.

The handling of an unroutable long-header packet depends on the

reason for unroutability. The load balancer MUST applyt this logic:

If the config rotation bits do not match a known configuration,

the load balancer routes the packet using a fallback algorithm

(see Section 4.2).

If there is a matching configuration, but the CID is not long

enough to apply the algorithm, the load balancer skips the first

octet of the CID and then reads a server ID from the following

octets, up to the server ID length. If this server ID matches a

known server ID for that configuration, it forwards the packet

accordingly and takes no further action. If it does not match, it

routes using a fallback algorithm and adds the new server ID to

that server's table entry.

If the sole reason for unroutability is that the server ID is not

in the load balancer's table, the load balancer routes the packet

with a fallback algorithm. It adds the decoded server ID to table

entry for the server the algorithm chooses and forwards the

packet accordingly.

4.3.2.3. Server actions

Each server maintains a list of server IDs assigned to it,

initialized empty. For each SID, it records the last time it

received any packet with an CID that encoded that SID.

Upon receipt of a packet with a client-generated DCID, the server

MUST follow these steps in order:

If the config rotation bits do not correspond to a known

configuration, do not attempt to extract a server ID.

If the DCID is not long enough to decode using the configured

algorithm, extract a number of octets equal to the server ID

length, beginning with the second octet. If the extracted value

does not match a server ID in the server's list, add it to the

list.
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If the DCID is long enough to decode but the server ID is not in

the server's list, add it to the list.

After any possible SID is extracted, the server processes the packet

normally.

When a server needs a new connection ID, it uses one of the server

IDs in its list to populate the server ID field of that CID. It

SHOULD vary this selection to reduce linkability within a

connection.

After loading a new configuration or long periods of idleness, a

server may not have any available SIDs. This is because an incoming

packet may not the config rotation bits necessary to extract a

server ID in accordance with the algorithm above. When required to

generate a CID under these conditions, the server MUST generate CIDs

using the 5-tuple routing codepoint (see Section 3.2. Note that

these connections will not be robust to client address changes while

they use this connection ID. For this reason, a server SHOULD retire

these connection IDs and replace them with routable ones once it

receives a client-generated CID that allows it to acquire a server

ID. As, statistically, one in every four such CIDs can provide a

server ID, this is typically a short interval.

If a server has not received a connection ID encoding a particular

server ID within the LB timeout, it MUST retire any outstanding CIDs

that use that server ID and cease generating any new ones.

A server SHOULD have a mechanism to stop using some server IDs if

the list gets large relative to its share of the codepoint space, so

that these allocations time out and are freed for reuse by servers

that have recently joined the pool.

5. Routing Algorithms

Encryption in the algorithms below uses the AES-128-ECB cipher.

Future standards could add new algorithms that use other ciphers to

provide cryptographic agility in accordance with [RFC7696]. QUIC-LB

implementations SHOULD be extensible to support new algorithms.

5.1. Plaintext CID Algorithm

The Plaintext CID Algorithm makes no attempt to obscure the mapping

of connections to servers, significantly increasing linkability. The

format is depicted in the figure below.
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Figure 3: Plaintext CID Format

5.1.1. Configuration Agent Actions

For static SID allocation, the server ID length is limited to 16

octets. There are no parameters specific to this algorithm.

5.1.2. Load Balancer Actions

On each incoming packet, the load balancer extracts consecutive

octets, beginning with the second octet. These bytes represent the

server ID.

5.1.3. Server Actions

The server chooses how many octets to reserve for its own use, which

MUST be at least one octet.

When a server needs a new connection ID, it encodes one of its

assigned server IDs in consecutive octets beginning with the second.

All other bits in the connection ID, except for the first octet, MAY

be set to any other value. These other bits SHOULD appear random to

observers.

5.2. Stream Cipher CID Algorithm

The Stream Cipher CID algorithm provides cryptographic protection at

the cost of additional per-packet processing at the load balancer to

decrypt every incoming connection ID. The CID format is depicted

below.

Figure 4: Stream Cipher CID Format

Plaintext CID {

  First Octet (8),

  Server ID (8..128),

  For Server Use (8..152-len(Server ID)),

}

¶
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Stream Cipher CID {

  First Octet (8),

  Nonce (64..120),

  Encrypted Server ID (8..128-len(Nonce)),

  For Server Use (0..152-len(Nonce)-len(Encrypted Server ID)),

}



5.2.1. Configuration Agent Actions

The configuration agent assigns a server ID to every server in its

pool, and determines a server ID length (in octets) sufficiently

large to encode all server IDs, including potential future servers.

The configuration agent also selects a nonce length and an 16-octet

AES-ECB key to use for connection ID decryption. The nonce length

MUST be at least 8 octets and no more than 16 octets. The nonce

length and server ID length MUST sum to 19 or fewer octets, but

SHOULD sum to 15 or fewer to allow space for server use.

5.2.2. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer extracts as many of

the earliest octets from the destination connection ID as necessary

to match the nonce length. The server ID immediately follows.

The load balancer decrypts the nonce and the server ID using the

following three pass algorithm:

Pass 1: The load balancer decrypts the server ID using 128-bit

AES Electronic Codebook (ECB) mode, much like QUIC header

protection. The encrypted nonce octets are zero-padded to 16

octets. AES-ECB encrypts this encrypted nonce using its key to

generate a mask which it applies to the encrypted server id. This

provides an intermediate value of the server ID, referred to as

server-id intermediate.

server_id_intermediate = encrypted_server_id ^ AES-ECB(key, padded-

encrypted-nonce)

Pass 2: The load balancer decrypts the nonce octets using 128-bit

AES ECB mode, using the server-id intermediate as "nonce" for

this pass. The server-id intermediate octets are zero-padded to

16 octets. AES-ECB encrypts this padded server-id intermediate

using its key to generate a mask which it applies to the

encrypted nonce. This provides the decrypted nonce value.

nonce = encrypted_nonce ^ AES-ECB(key, padded-

server_id_intermediate)

Pass 3: The load balancer decrypts the server ID using 128-bit

AES ECB mode. The nonce octets are zero-padded to 16 octets. AES-

ECB encrypts this nonce using its key to generate a mask which it

applies to the intermediate server id. This provides the

decrypted server ID.

server_id = server_id_intermediate ^ AES-ECB(key, padded-nonce)
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For example, if the nonce length is 10 octets and the server ID

length is 2 octets, the connection ID can be as small as 13 octets.

The load balancer uses the the second through eleventh octets of the

connection ID for the nonce, zero-pads it to 16 octets, uses xors

the result with the twelfth and thirteenth octet. The result is

padded with 14 octets of zeros and encrypted to obtain a mask that

is xored with the nonce octets. Finally, the nonce octets are padded

with six octets of zeros, encrypted, and the first two octets xored

with the server ID octets to obtain the actual server ID.

This three-pass algorithm is a simplified version of the FFX

algorithm, with the property that each encrypted nonce value depends

on all server ID bits, and each encrypted server ID bit depends on

all nonce bits and all server ID bits. This mitigates attacks

against stream ciphers in which attackers simply flip encrypted

server-ID bits.

The output of the decryption is the server ID that the load balancer

uses for routing.

5.2.3. Server Actions

When generating a routable connection ID, the server writes

arbitrary bits into its nonce octets, and its provided server ID

into the server ID octets. Servers MAY opt to have a longer

connection ID beyond the nonce and server ID. The additional bits

MAY encode additional information, but SHOULD appear essentially

random to observers.

If the decrypted nonce bits increase monotonically, that guarantees

that nonces are not reused between connection IDs from the same

server.

The server encrypts the server ID using exactly the algorithm as

described in Section 5.2.2, performing the three passes in reverse

order.

5.3. Block Cipher CID Algorithm

The Block Cipher CID Algorithm, by using a full 16 octets of

plaintext and a 128-bit cipher, provides higher cryptographic

protection and detection of unroutable connection IDs. However, it

also requires connection IDs of at least 17 octets, increasing

overhead of client-to-server packets.
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Figure 5: Block Cipher CID Format

5.3.1. Configuration Agent Actions

If server IDs are statically allocated, the server ID length MUST be

no more than 12 octets, to provide servers adequate entropy to

generate unique CIDs.

The configuration agent also selects an 16-octet AES-ECB key to use

for connection ID decryption.

5.3.2. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer reads the first

octet to obtain the config rotation bits. It then decrypts the

subsequent 16 octets using AES-ECB decryption and the chosen key.

The decrypted plaintext contains the server id and opaque server

data in that order. The load balancer uses the server ID octets for

routing.

5.3.3. Server Actions

When generating a routable connection ID, the server MUST choose a

connection ID length between 17 and 20 octets. The server writes its

server ID into the server ID octets and arbitrary bits into the

remaining bits. These arbitrary bits MAY encode additional

information, and MUST differ between connection IDs. Bits in the

eighteenth, nineteenth, and twentieth octets SHOULD appear

essentially random to observers. The first octet is reserved as

described in Section 3.

The server then encrypts the second through seventeenth octets using

the 128-bit AES-ECB cipher.

6. ICMP Processing

For protocols where 4-tuple load balancing is sufficient, it is

straightforward to deliver ICMP packets from the network to the

correct server, by reading the echoed IP and transport-layer headers

to obtain the 4-tuple. When routing is based on connection ID,

further measures are required, as most QUIC packets that trigger

Block Cipher CID {

  First Octet (8),

  Encrypted Server ID (8..128),

  Encrypted Bits for Server Use (128-len(Encrypted Server ID)),

  Unencrypted Bits for Server Use (0..24),

}
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ICMP responses will only contain a client-generated connection ID

that contains no routing information.

To solve this problem, load balancers MAY maintain a mapping of

Client IP and port to server ID based on recently observed packets.

Alternatively, servers MAY implement the technique described in

Section 14.4.1 of [RFC9000] to increase the likelihood a Source

Connection ID is included in ICMP responses to Path Maximum

Transmission Unit (PMTU) probes. Load balancers MAY parse the echoed

packet to extract the Source Connection ID, if it contains a QUIC

long header, and extract the Server ID as if it were in a

Destination CID.

7. Retry Service

When a server is under load, QUICv1 allows it to defer storage of

connection state until the client proves it can receive packets at

its advertised IP address. Through the use of a Retry packet, a

token in subsequent client Initial packets, and transport

parameters, servers verify address ownership and clients verify that

there is no on-path attacker generating Retry packets.

A "Retry Service" detects potential Denial of Service attacks and

handles sending of Retry packets on behalf of the server. As it is,

by definition, literally an on-path entity, the service must

communicate some of the original connection IDs back to the server

so that it can pass client verification. It also must either verify

the address itself (with the server trusting this verification) or

make sure there is common context for the server to verify the

address using a service-generated token.

There are two different mechanisms to allow offload of DoS

mitigation to a trusted network service. One requires no shared

state; the server need only be configured to trust a retry service,

though this imposes other operational constraints. The other

requires a shared key, but has no such constraints.

7.1. Common Requirements

Regardless of mechanism, a retry service has an active mode, where

it is generating Retry packets, and an inactive mode, where it is

not, based on its assessment of server load and the likelihood an

attack is underway. The choice of mode MAY be made on a per-packet

or per-connection basis, through a stochastic process or based on

client address.

A configuration agent MUST distribute a list of QUIC versions the

Retry Service supports. It MAY also distribute either an "Allow-
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List" or a "Deny-List" of other QUIC versions. It MUST NOT

distribute both an Allow-List and a Deny-List.

The Allow-List or Deny-List MUST NOT include any versions included

for Retry Service Support.

The Configuration Agent MUST provide a means for the entity that

controls the Retry Service to report its supported version(s) to the

configuration Agent. If the entity has not reported this

information, it MUST NOT activate the Retry Service and the

configuration agent MUST NOT distribute configuration that activates

it.

The configuration agent MAY delete versions from the final supported

version list if policy does not require the Retry Service to operate

on those versions.

The configuration Agent MUST provide a means for the entities that

control servers behind the Retry Service to report either an Allow-

List or a Deny-List.

If all entities supply Allow-Lists, the consolidated list MUST be

the union of these sets. If all entities supply Deny-Lists, the

consolidated list MUST be the intersection of these sets.

If entities provide a mixture of Allow-Lists and Deny-Lists, the

consolidated list MUST be a Deny-List that is the intersection of

all provided Deny-Lists and the inverses of all Allow-Lists.

If no entities that control servers have reported Allow-Lists or

Deny-Lists, the default is a Deny-List with the null set (i.e., all

unsupported versions will be admitted). This preserves the future

extensibilty of QUIC.

A retry service MUST forward all packets for a QUIC version it does

not support that are not on a Deny-List or absent from an Allow-

List. Note that if servers support versions the retry service does

not, this may increase load on the servers.

Note that future versions of QUIC might not have Retry packets,

require different information in Retry, or use different packet type

indicators.

7.1.1. Considerations for Non-Initial Packets

Initial Packets are especially effective at consuming server

resources because they cause the server to create connection state.

Even when mitigating this load with Retry Packets, the act of

validating an Initial Token and sending a Retry Packet is more
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expensive than the response to a non-Initial packet with an unknown

Connection ID: simply dropping it and/or sending a Stateless Reset.

Nevertheless, a Retry Service in Active Mode might desire to shield

servers from non-Initial packets that do not correspond to a

previously admitted Initial Packet. This has a number of

considerations.

If a Retry Service maintains no per-flow state whatsoever, it

cannot distinguish between valid and invalid non-Initial packets

and MUST forward all non-Initial Packets to the server.

For QUIC versions the Retry Service does not support and are

present on the Allow-List (or absent from the Deny-List), the

Retry Service cannot distinguish Initial Packets from other long

headers and therefore MUST admit all long headers.

If a Retry Service keeps per-flow state, it can identify 4-tuples

that have been previously approved, admit non-Initial packets

from those flows, and drop all others. However, dropping short

headers will effectively break Address Migration and NAT

Rebinding when in Active Mode, as post-migration packets will

arrive with a previously unknown 4-tuple. This policy will also

break connection attempts using any new QUIC versions that begin

connections with a short header.

If a Retry Service is integrated with a QUIC-LB routable load

balancer, it can verify that the Destination Connection ID is

routable, and only admit non-Initial packets with routable DCIDs.

As the Connection ID encoding is invariant across QUIC versions,

the Retry Service can do this for all short headers.

Nothing in this section prevents Retry Services from making basic

syntax correctness checks on packets with QUIC versions that it

understands (e.g., enforcing the Initial Packet datagram size

minimum in version 1) and dropping packets that are not routable

with the QUIC specification.

7.2. No-Shared-State Retry Service

The no-shared-state retry service requires no coordination, except

that the server must be configured to accept this service and know

which QUIC versions the retry service supports. The scheme uses the

first bit of the token to distinguish between tokens from Retry

packets (codepoint '0') and tokens from NEW_TOKEN frames (codepoint

'1').

7.2.1. Configuration Agent Actions

See Section 7.1.
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7.2.2. Service Requirements

A no-shared-state retry service MUST be present on all paths from

potential clients to the server. These paths MUST fail to pass QUIC

traffic should the service fail for any reason. That is, if the

service is not operational, the server MUST NOT be exposed to client

traffic. Otherwise, servers that have already disabled their Retry

capability would be vulnerable to attack.

The path between service and server MUST be free of any potential

attackers. Note that this and other requirements above severely

restrict the operational conditions in which a no-shared-state retry

service can safely operate.

Retry tokens generated by the service MUST have the format below.

Figure 6: Format of non-shared-state retry service tokens

The first bit of retry tokens generated by the service MUST be zero.

The token has the following additional fields:

ODCIL: The length of the original destination connection ID from the

triggering Initial packet. This is in cleartext to be readable for

the server, but authenticated later in the token. The Retry Service

SHOULD reject any token in which the value is less than 8.

RSCIL: The retry source connection ID length.

Original Destination Connection ID: This also in cleartext and

authenticated later.

Retry Source Connection ID: This also in cleartext and authenticated

later.

Opaque Data: This data MUST contain encrypted information that

allows the retry service to validate the client's IP address, in

accordance with the QUIC specification. It MUST also provide a

cryptographically secure means to validate the integrity of the

entire token.
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Non-Shared-State Retry Service Token {

  Token Type (1) = 0,

  ODCIL (7) = 8..20,

  RSCIL (8) = 0..20,

  Original Destination Connection ID (64..160),

  Retry Source Connection ID (0..160),

  Opaque Data (..),

}
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Upon receipt of an Initial packet with a token that begins with '0',

the retry service MUST validate the token in accordance with the

QUIC specification.

In active mode, the service MUST issue Retry packets for all Client

initial packets that contain no token, or a token that has the first

bit set to '1'. It MUST NOT forward the packet to the server. The

service MUST validate all tokens with the first bit set to '0'. If

successful, the service MUST forward the packet with the token

intact. If unsuccessful, it MUST drop the packet. The Retry Service

MAY send an Initial Packet containing a CONNECTION_CLOSE frame with

the INVALID_TOKEN error code when dropping the packet.

Note that this scheme has a performance drawback. When the retry

service is in active mode, clients with a token from a NEW_TOKEN

frame will suffer a 1-RTT penalty even though its token provides

proof of address.

In inactive mode, the service MUST forward all packets that have no

token or a token with the first bit set to '1'. It MUST validate all

tokens with the first bit set to '0'. If successful, the service

MUST forward the packet with the token intact. If unsuccessful, it

MUST either drop the packet or forward it with the token removed.

The latter requires decryption and re-encryption of the entire

Initial packet to avoid authentication failure. Forwarding the

packet causes the server to respond without the

original_destination_connection_id transport parameter, which

preserves the normal QUIC signal to the client that there is an on-

path attacker.

7.2.3. Server Requirements

A server behind a non-shared-state retry service MUST NOT send Retry

packets for a QUIC version the retry service understands. It MAY

send Retry for QUIC versions the Retry Service does not understand.

Tokens sent in NEW_TOKEN frames MUST have the first bit set to '1'.

If a server receives an Initial Packet with the first bit set to

'1', it could be from a server-generated NEW_TOKEN frame and should

be processed in accordance with the QUIC specification. If a server

receives an Initial Packet with the first bit to '0', it is a Retry

token and the server MUST NOT attempt to validate it. Instead, it

MUST assume the address is validated and MUST extract the Original

Destination Connection ID and Retry Source Connection ID, assuming

the format described in Section 7.2.2.
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7.3. Shared-State Retry Service

A shared-state retry service uses a shared key, so that the server

can decode the service's retry tokens. It does not require that all

traffic pass through the Retry service, so servers MAY send Retry

packets in response to Initial packets that don't include a valid

token.

Both server and service must have time synchronized with respect to

one another to prevent tokens being incorrectly marked as expired,

though tight synchronization is unnecessary.

The tokens are protected using AES128-GCM AEAD, as explained in 

Section 7.3.1. All tokens, generated by either the server or retry

service, MUST use the following format, which includes:

A 96 bit unique token number transmitted in clear text, but

protected as part of the AEAD associated data.

An 8 bit token key identifier.

A token body, encoding the Original Destination Connection ID,

the Retry Source Connection ID, and the Timestamp, optionally

followed by server specific Opaque Data.

The token protection uses an 128 bit representation of the source IP

address from the triggering Initial packet. The client IP address is

16 octets. If an IPv4 address, the last 12 octets are zeroes.

If there is a Network Address Translator (NAT) in the server

infrastructure that changes the client IP, the Retry Service MUST

either be positioned behind the NAT, or the NAT must have the token

key to rewrite the Retry token accordingly. Note also that a host

that obtains a token through a NAT and then attempts to connect over

a path that does not have an identically configured NAT will fail

address validation.

The 96 bit unique token number is set to a random value using a

cryptography-grade random number generator.

The token key identifier and the corresponding AEAD key and AEAD IV

are provisioned by the configuration agent.

The token body is encoded as follows:
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Figure 7: Body of shared-state retry service tokens

The token body has the following fields:

ODCIL: The original destination connection ID length. Tokens in

NEW_TOKEN frames MUST set this field to zero.

RSCIL: The retry source connection ID length. Tokens in NEW_TOKEN

frames MUST set this field to zero.

Port: The Source Port of the UDP datagram that triggered the Retry

packet. This field MUST be present if and only if the ODCIL is

greater than zero. This field is therefore always absent in tokens

in NEW_TOKEN frames.

Original Destination Connection ID: The server or Retry Service

copies this from the field in the client Initial packet.

Retry Source Connection ID: The server or Retry service copies this

from the Source Connection ID of the Retry packet.

Timestamp: The Timestamp is a 64-bit integer, in network order, that

expresses the expiration time of the token as a number of seconds in

POSIX time (see Sec. 4.16 of [TIME_T]).

Opaque Data: The server may use this field to encode additional

information, such as congestion window, RTT, or MTU. The Retry

Service MUST have zero-length opaque data.

Some implementations of QUIC encode in the token the Initial Packet

Number used by the client, in order to verify that the client sends

the retried Initial with a PN larger that the triggering Initial.

Such implementations will encode the Initial Packet Number as part

of the opaque data. As tokens may be generated by the Service,

servers MUST NOT reject tokens because they lack opaque data and

therefore the packet number.

7.3.1. Token Protection with AEAD

On the wire, the token is presented as:

Shared-State Retry Service Token Body {

   ODCIL (8) = 0..20,

   RSCIL (8) = 0..20,

   [Port (16)],

   Original Destination Connection ID (0..160),

   Retry Source Connection ID (0..160),

   Timestamp (64),

   Opaque Data (..),

}
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Figure 8: Wire image of shared-state retry service tokens

The tokens are protected using AES128-GCM as follows:

The Key Sequence is the 8 bit identifier to retrieve the token

key and IV.

The AEAD IV, is a 96 bit data which produced by implementer's

custom AEAD IV derivation function.

The AEAD nonce, N, is formed by combining the AEAD IV with the 96

bit unique token number. The 96 bits of the unique token number

are left-padded with zeros to the size of the IV. The exclusive

OR of the padded unique token number and the AEAD IV forms the

AEAD nonce.

The associated data is a formatted as a pseudo header by

combining the cleartext part of the token with the IP address of

the client.

Figure 9: Psuedoheader for shared-state retry service tokens

The input plaintext for the AEAD is the token body. The output

ciphertext of the AEAD is transmitted in place of the token body.

The AEAD Integrity Check Value(ICV), defined in Section 6 of 

[RFC4106], is computed as part of the AEAD encryption process,

and is verified during decryption.

7.3.2. Configuration Agent Actions

The configuration agent generates and distributes a "token key", a

"token IV", a key sequence, and the information described in Section

7.1.

Shared-State Retry Service Token {

  Unique Token Number (96),

  Key Sequence (8),

  Encrypted Shared-State Retry Service Token Body (80..),

  AEAD Integrity Check Value (128),

}

¶

*

¶

*

¶

*

¶

*

¶

Shared-State Retry Service Token Pseudoheader {

  IP Address (128),

  Unique Token Number (96),

  Key Sequence (8),

}
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7.3.3. Service Requirements

In inactive mode, the Retry service forwards all packets without

further inspection or processing.

Retry services MUST NOT issue Retry packets except where explicitly

allowed below, to avoid sending a Retry packet in response to a

Retry token.

When in active mode, the service MUST generate Retry tokens with the

format described above when it receives a client Initial packet with

no token.

The service SHOULD decrypt incoming tokens. The service SHOULD drop

packets with unknown key sequence, or an AEAD ICV that does not

match the expected value. (By construction, the AEAD ICV will only

match if the client IP Address also matches.)

If the token verification passes, and the ODCIL and RSCIL fields are

both zero, then this is a NEW_TOKEN token generated by the server.

Processing of NEW_TOKEN tokens is subtly different from Retry

tokens, as described below.

The service SHOULD drop a packet containing a token where the ODCIL

is greater than zero and less than the minimum number of octets for

a client-generated CID (8 in QUIC version 1). The service also

SHOULD drop a packet containing a token where the ODCIL is zero and

RSCIL is nonzero.

If the Timestamp of a token points to time in the past, the token

has expired; however, in order to allow for clock skew, it SHOULD

NOT consider tokens to be expired if the Timestamp encodes a few

seconds in the past. An active Retry service SHOULD drop packets

with expired tokens. If a NEW_TOKEN token, the service MUST generate

a Retry packet in response. It MUST NOT generate a Retry packet in

response to an expired Retry token.

If a Retry token, the service SHOULD drop packets where the port

number encoded in the token does not match the source port in the

encapsulating UDP header.

All other packets SHOULD be forwarded to the server.

7.3.4. Server Requirements

When issuing Retry or NEW_TOKEN tokens, the server MUST include the

client IP address in the authenticated data as specified in Section

7.3.1. The ODCIL and RSCIL fields are zero for NEW_TOKEN tokens,

making them easily distinguishable from Retry tokens.
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The server MUST validate all tokens that arrive in Initial packets,

as they may have bypassed the Retry service.

For Retry tokens that follow the format above, servers SHOULD use

the timestamp field to apply its expiration limits for tokens. This

need not be precisely synchronized with the retry service. However,

servers MAY allow retry tokens marked as being a few seconds in the

past, due to possible clock synchronization issues.

After decrypting the token, the server uses the corresponding fields

to populate the original_destination_connection_id transport

parameter, with a length equal to ODCIL, and the

retry_source_connection_id transport parameter, with length equal to

RSCIL.

For QUIC versions the service does not support, the server MAY use

any token format.

As discussed in [RFC9000], a server MUST NOT send a Retry packet in

response to an Initial packet that contains a retry token.

8. Configuration Requirements

QUIC-LB requires common configuration to synchronize understanding

of encodings and guarantee explicit consent of the server.

The load balancer and server MUST agree on a routing algorithm,

server ID allocation method, and the relevant parameters for that

algorithm.

All algorithms require a server ID length. If server IDs are

statically allocated, the load balancer MUST receive the full table

of mappings, and each server must receive its assigned SID(s), from

the configuration agent.

For Stream Cipher CID Routing, the servers and load balancer also

MUST have a common understanding of the key and nonce length.

For Block Cipher CID Routing, the servers and load balancer also

MUST have a common understanding of the key.

Note that server IDs are opaque bytes, not integers, so there is no

notion of network order or host order.

A server configuration MUST specify if the first octet encodes the

CID length. Note that a load balancer does not need the CID length,

as the required bytes are present in the QUIC packet.
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A full QUIC-LB server configuration MUST also specify the supported

QUIC versions of any Retry Service. If a shared-state service, the

server also must have the token key.

A non-shared-state Retry Service need only be configured with the

QUIC versions it supports, and an Allow- or Deny-List. A shared-

state Retry Service also needs the token key, and to be aware if a

NAT sits between it and the servers.

Appendix A provides a YANG Model of the a full QUIC-LB

configuration.

9. Additional Use Cases

This section discusses considerations for some deployment scenarios

not implied by the specification above.

9.1. Load balancer chains

Some network architectures may have multiple tiers of low-state load

balancers, where a first tier of devices makes a routing decision to

the next tier, and so on, until packets reach the server. Although

QUIC-LB is not explicitly designed for this use case, it is possible

to support it.

If each load balancer is assigned a range of server IDs that is a

subset of the range of IDs assigned to devices that are closer to

the client, then the first devices to process an incoming packet can

extract the server ID and then map it to the correct forwarding

address. Note that this solution is extensible to arbitrarily large

numbers of load-balancing tiers, as the maximum server ID space is

quite large.

9.2. Moving connections between servers

Some deployments may transparently move a connection from one server

to another. The means of transferring connection state between

servers is out of scope of this document.

To support a handover, a server involved in the transition could

issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,

and retire CIDs associated with the new server using the "Retire

Prior To" field in that frame.

Alternately, if the old server is going offline, the load balancer

could simply map its server ID to the new server's address.
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10. Version Invariance of QUIC-LB

Non-shared-state Retry Services are inherently dependent on the

format (and existence) of Retry Packets in each version of QUIC, and

so Retry Service configuration explicitly includes the supported

QUIC versions.

The server ID encodings, and requirements for their handling, are

designed to be QUIC version independent (see [RFC8999]). A QUIC-LB

load balancer will generally not require changes as servers deploy

new versions of QUIC. However, there are several unlikely future

design decisions that could impact the operation of QUIC-LB.

The maximum Connection ID length could be below the minimum

necessary for one or more encoding algorithms.

Section 4.1 provides guidance about how load balancers should handle

unroutable DCIDs. This guidance, and the implementation of an

algorithm to handle these DCIDs, rests on some assumptions:

Incoming short headers do not contain DCIDs that are client-

generated.

The use of client-generated incoming DCIDs does not persist

beyond a few round trips in the connection.

While the client is using DCIDs it generated, some exposed fields

(IP address, UDP port, client-generated destination Connection

ID) remain constant for all packets sent on the same connection.

Dynamic server ID allocation is dependent on client-generated

Destination CIDs in Initial Packets being at least 8 octets in

length. If they are not, the load balancer may not be able to

extract a valid server ID to add to its table. Configuring a

shorter server ID length can increase robustness to a change.

While this document does not update the commitments in [RFC8999],

the additional assumptions are minimal and narrowly scoped, and

provide a likely set of constants that load balancers can use with

minimal risk of version- dependence.

If these assumptions are invalid, this specification is likely to

lead to loss of packets that contain unroutable DCIDs, and in

extreme cases connection failure.

Some load balancers might inspect elements of the Server Name

Indication (SNI) extension in the TLS Client Hello to make a routing

decision. Note that the format and cryptographic protection of this

information may change in future versions or extensions of TLS or

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶



QUIC, and therefore this functionality is inherently not version-

invariant.

11. Security Considerations

QUIC-LB is intended to prevent linkability. Attacks would therefore

attempt to subvert this purpose.

Note that the Plaintext CID algorithm makes no attempt to obscure

the server mapping, and therefore does not address these concerns.

It exists to allow consistent CID encoding for compatibility across

a network infrastructure, which makes QUIC robust to NAT rebinding.

Servers that are running the Plaintext CID algorithm SHOULD only use

it to generate new CIDs for the Server Initial Packet and SHOULD NOT

send CIDs in QUIC NEW_CONNECTION_ID frames, except that it sends one

new Connection ID in the event of config rotation Section 3.1. Doing

so might falsely suggest to the client that said CIDs were generated

in a secure fashion.

A linkability attack would find some means of determining that two

connection IDs route to the same server. As described above, there

is no scheme that strictly prevents linkability for all traffic

patterns, and therefore efforts to frustrate any analysis of server

ID encoding have diminishing returns.

11.1. Attackers not between the load balancer and server

Any attacker might open a connection to the server infrastructure

and aggressively simulate migration to obtain a large sample of IDs

that map to the same server. It could then apply analytical

techniques to try to obtain the server encoding.

The Stream and Block Cipher CID algorithms provide robust protection

against any sort of linkage. The Plaintext CID algorithm makes no

attempt to protect this encoding.

Were this analysis to obtain the server encoding, then on-path

observers might apply this analysis to correlating different client

IP addresses.

11.2. Attackers between the load balancer and server

Attackers in this privileged position are intrinsically able to map

two connection IDs to the same server. The QUIC-LB algorithms do

prevent the linkage of two connection IDs to the same individual

connection if servers make reasonable selections when generating new

IDs for that connection.
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11.3. Multiple Configuration IDs

During the period in which there are multiple deployed configuration

IDs (see Section 3.1), there is a slight increase in linkability.

The server space is effectively divided into segments with CIDs that

have different config rotation bits. Entities that manage servers

SHOULD strive to minimize these periods by quickly deploying new

configurations across the server pool.

11.4. Limited configuration scope

A simple deployment of QUIC-LB in a cloud provider might use the

same global QUIC-LB configuration across all its load balancers that

route to customer servers. An attacker could then simply become a

customer, obtain the configuration, and then extract server IDs of

other customers' connections at will.

To avoid this, the configuration agent SHOULD issue QUIC-LB

configurations to mutually distrustful servers that have different

keys for encryption algorithms. In many cases, the load balancers

can distinguish these configurations by external IP address.

However, assigning multiple entities to an IP address is

complimentary with concealing DNS requests (e.g., DoH [RFC8484]) and

the TLS Server Name Indicator (SNI) ([I-D.ietf-tls-esni]) to obscure

the ultimate destination of traffic. While the load balancer's

fallback algorithm (Section 4.2) can use the SNI to make a routing

decision on the first packet, there are three ways to route

subsequent packets:

all co-tenants can use the same QUIC-LB configuration, leaking

the server mapping to each other as described above;

co-tenants can be issued one of up to three configurations

distinguished by the config rotation bits (Section 3.1), exposing

information about the target domain to the entire network; or

tenants can use 4-tuple routing in their CIDs (in which case they

SHOULD disable migration in their connections), which neutralizes

the value of QUIC-LB but preserves privacy.

When configuring QUIC-LB, administrators must evaluate the privacy

tradeoff considering the relative value of each of these properties,

given the trust model between tenants, the presence of methods to

obscure the domain name, and value of address migration in the

tenant use cases.

As the plaintext algorithm makes no attempt to conceal the server

mapping, these deployments SHOULD simply use a common configuration.
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11.5. Stateless Reset Oracle

Section 21.9 of [RFC9000] discusses the Stateless Reset Oracle

attack. For a server deployment to be vulnerable, an attacking

client must be able to cause two packets with the same Destination

CID to arrive at two different servers that share the same

cryptographic context for Stateless Reset tokens. As QUIC-LB

requires deterministic routing of DCIDs over the life of a

connection, it is a sufficient means of avoiding an Oracle without

additional measures.

11.6. Connection ID Entropy

The Stream Cipher and Block Cipher algorithms need to generate

different cipher text for each generated Connection ID instance to

protect the Server ID. To do so, at least four octets of the Block

Cipher CID and at least eight octets of the Stream Cipher CID are

reserved for a nonce that, if used only once, will result in unique

cipher text for each Connection ID.

If servers simply increment the nonce by one with each generated

connection ID, then it is safe to use the existing keys until any

server's nonce counter exhausts the allocated space and rolls over

to zero. Whether or not it implements this method, the server MUST

NOT reuse a nonce until it switches to a configuration with new

keys.

Configuration agents SHOULD implement an out-of-band method to

discover when servers are in danger of exhausting their nonce space,

and SHOULD respond by issuing a new configuration. A server that has

exhausted its nonces MUST either switch to a different

configuration, or if none exists, use the 4-tuple routing config

rotation codepoint.

11.7. Shared-State Retry Keys

The Shared-State Retry Service defined in Section 7.3 describes the

format of retry tokens or new tokens protected and encrypted using

AES128-GCM. Each token includes a 96 bit randomly generated unique

token number, and an 8 bit identifier used to get the AES-GCM

encryption context. The AES-GCM encryption context contains a 128

bit key and an AEAD IV. There are three important security

considerations for these tokens:

An attacker that obtains a copy of the encryption key will be

able to decrypt and forge tokens.

Attackers may be able to retrieve the key if they capture a

sufficently large number of retry tokens encrypted with a given

key.
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[RFC8446]

[RFC8999]

[RFC9000]

[TIME_T]

Confidentiality of the token data will fail if separate tokens

reuse the same 96 bit unique token number and the same key.

To protect against disclosure of keys to attackers, service and

servers MUST ensure that the keys are stored securely. To limit the

consequences of potential exposures, the time to live of any given

key should be limited.

Section 6.6 of [RFC9001] states that "Endpoints MUST count the

number of encrypted packets for each set of keys. If the total

number of encrypted packets with the same key exceeds the

confidentiality limit for the selected AEAD, the endpoint MUST stop

using those keys." It goes on with the specific limit: "For

AEAD_AES_128_GCM and AEAD_AES_256_GCM, the confidentiality limit is

2^23 encrypted packets; see Appendix B.1." It is prudent to adopt

the same limit here, and configure the service in such a way that no

more than 2^23 tokens are generated with the same key.

In order to protect against collisions, the 96 bit unique token

numbers should be generated using a cryptographically secure

pseudorandom number generator (CSPRNG), as specified in Appendix C.1

of the TLS 1.3 specification [RFC8446]. With proper random numbers,

if fewer than 2^40 tokens are generated with a single key, the risk

of collisions is lower than 0.001%.

12. IANA Considerations

There are no IANA requirements.
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module ietf-quic-lb {

  yang-version "1.1";

  namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";

  prefix "quic-lb";

  import ietf-yang-types {

    prefix yang;

    reference

      "RFC 6991: Common YANG Data Types.";

  }

  import ietf-inet-types {

    prefix inet;

    reference

      "RFC 6991: Common YANG Data Types.";

  }

  organization

    "IETF QUIC Working Group";

  contact

    "WG Web:   <http://datatracker.ietf.org/wg/quic>

     WG List:  <quic@ietf.org>

     Authors: Martin Duke (martin.h.duke at gmail dot com)

              Nick Banks (nibanks at microsoft dot com)";

  description

    "This module enables the explicit cooperation of QUIC servers with

     trusted intermediaries without breaking important protocol features.

     Copyright (c) 2021 IETF Trust and the persons identified as

     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or

     without modification, is permitted pursuant to, and subject to

     the license terms contained in, the Simplified BSD License set

     forth in Section 4.c of the IETF Trust's Legal Provisions

     Relating to IETF Documents

     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX

     (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

     for full legal notices.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

     'MAY', and 'OPTIONAL' in this document are to be interpreted as

     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

     they appear in all capitals, as shown here.";



  revision "2021-01-29" {

    description

      "Initial Version";

    reference

      "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";

  }

  container quic-lb {

    presence "The container for QUIC-LB configuration.";

    description

      "QUIC-LB container.";

    typedef quic-lb-key {

      type yang:hex-string {

        length 47;

      }

      description

        "This is a 16-byte key, represented with 47 bytes";

    }

    list cid-configs {

      key "config-rotation-bits";

      description

        "List up to three load balancer configurations";

      leaf config-rotation-bits {

        type uint8 {

          range "0..2";

        }

        mandatory true;

        description

          "Identifier for this CID configuration.";

      }

      leaf first-octet-encodes-cid-length {

        type boolean;

        default false;

        description

          "If true, the six least significant bits of the first CID

           octet encode the CID length minus one.";

      }

      leaf cid-key {

        type quic-lb-key;

        description

          "Key for encrypting the connection ID. If absent, the

           configuration uses the Plaintext algorithm.";

      }



      leaf nonce-length {

        type uint8 {

          range "8..16";

        }

        must '(../cid-key)' {

          error-message "nonce-length only valid if cid-key is set";

        }

        description

          "Length, in octets, of the nonce. If absent when cid-key is

           present, the configuration uses the Block Cipher Algorithm.

           If present along with cid-key, the configurationuses the

           Stream Cipher Algorithm.";

      }

      leaf lb-timeout {

        type uint32;

        description

          "Existence means the configuration uses dynamic Server ID allocation.

           Time (in seconds) to keep a server ID allocation if no packets with

           that server ID arrive.";

      }

      leaf server-id-length {

        type uint8 {

          range "1..18";

        }

        must '(../lb-timeout and . <= 7) or

               (not(../lb-timeout) and

                (not(../cid-key) and . <= 16) or

                ((../nonce-length) and . <= (19 - ../nonce-length)) or

                ((../cid-key) and not(../nonce-length) and . <= 12))' {

          error-message

            "Server ID length too long for routing algorithm and server ID

             allocation method";

        }

        mandatory true;

        description

          "Length (in octets) of a server ID. Further range-limited

           by sid-allocation, cid-key, and nonce-length.";

      }

      list server-id-mappings {

        when "not(../lb-timeout)";

        key "server-id";

        description "Statically allocated Server IDs";

        leaf server-id {

          type yang:hex-string;



          must "string-length(.) = 3 * ../../server-id-length - 1";

          mandatory true;

          description

            "An allocated server ID";

        }

        leaf server-address {

          type inet:ip-address;

          mandatory true;

          description

            "Destination address corresponding to the server ID";

        }

      }

    }

    container retry-service-config {

      description

        "Configuration of Retry Service. If supported-versions is empty, there

         is no retry service. If token-keys is empty, it uses the non-shared-

         state service. If present, it uses shared-state tokens.";

      leaf-list supported-versions {

        type uint32;

        description

          "QUIC versions that the retry service supports. If empty, there

           is no retry service.";

      }

      leaf unsupported-version-default {

        type enumeration {

          enum allow {

            description "Unsupported versions admitted by default";

          }

          enum deny {

            description "Unsupported versions denied by default";

          }

        }

        default allow;

        description

          "Are unsupported versions not in version-exceptions allowed

           or denied?";

      }

      leaf-list version-exceptions {

        type uint32;

        description

          "Exceptions to the default-deny or default-allow rule.";

      }



      list token-keys {

        key "key-sequence-number";

        description

          "list of active keys, for key rotation purposes. Existence implies

           shared-state format";

        leaf key-sequence-number {

          type uint8;

          mandatory true;

          description

            "Identifies the key used to encrypt the token";

        }

        leaf token-key {

          type quic-lb-key;

          mandatory true;

          description

            "16-byte key to encrypt the token";

        }

        leaf token-iv {

          type yang:hex-string {

            length 23;

          }

          mandatory true;

          description

            "8-byte IV to encrypt the token, encoded in 23 bytes";

        }

      }

    }

  }

}

¶



A.1. Tree Diagram

This summary of the YANG model uses the notation in [RFC8340].

Appendix B. Load Balancer Test Vectors

Each section of this draft includes multiple sets of load balancer

configuration, each of which has five examples of server ID and

server use bytes and how they are encoded in a CID.

In some cases, there are no server use bytes. Note that, for

simplicity, the first octet bits used for neither config rotation

nor length self-encoding are random, rather than listed in the

server use field. Therefore, a server implementation using these

parameters may generate CIDs with a slightly different first octet.

This section uses the following abbreviations:

¶

module: ietf-quic-lb

  +--rw quic-lb

     +--rw cid-configs*

     |       [config-rotation-bits]

     |  +--rw config-rotation-bits             uint8

     |  +--rw first-octet-encodes-cid-length?  boolean

     |  +--rw cid-key?                         yang:hex-string

     |  +--rw nonce-length?                    uint8

     |  +--rw lb-timeout?                      uint32

     |  +--rw server-id-length                 uint8

     |  +--rw server-id-mappings*?

     |  |       [server-id]

     |  |  +--rw server-id                     yang:hex-string

     |  |  +--rw server-address                inet:ip-address

     +--ro retry-service-config

     |  +--rw supported-versions*

     |  |  +--rw version                       uint32

     |  +--rw unsupported-version-default      enumeration {allow deny}

     |  +--rw version-exceptions*

     |  |  +--rw version                       uint32

     |  +--rw token-keys*?

     |  |       [key-sequence-number]

     |  |  +--rw key-sequence-number           uint8

     |  |  +--rw token-key                     yang:hex-string

     |  |  +--rw token-iv                      yang:hex-string
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All values except length_self_encoding and sid_len are expressed in

hexidecimal format.

cid      Connection ID

cr_bits  Config Rotation Bits

LB       Load Balancer

sid      Server ID

sid_len  Server ID length

su       Server Use Bytes

¶
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B.1. Plaintext Connection ID Algorithm

B.2. Stream Cipher Connection ID Algorithm

In each case below, the server is using a plain text nonce value of

zero.

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 1

cid 01be sid be su

cid 0221b7 sid 21 su b7

cid 03cadfd8 sid ca su dfd8

cid 041e0c9328 sid 1e su 0c9328

cid 050c8f6d9129 sid 0c su 8f6d9129

LB configuration: cr_bits 0x0 length_self_encoding: n sid_len 2

cid 02aab0 sid aab0 su

cid 3ac4b106 sid c4b1 su 06

cid 08bd3cf4a0 sid bd3c su f4a0

cid 3771d59502d6 sid 71d5 su 9502d6

cid 1d57dee8b888f3 sid 57de su e8b888f3

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 3

cid 0336c976 sid 36c976 su

cid 04aa291806 sid aa2918 su 06

cid 0586897bd8b6 sid 86897b su d8b6

cid 063625bcae4de0 sid 3625bc su ae4de0

cid 07966fb1f3cb535f sid 966fb1 su f3cb535f

LB configuration: cr_bits 0x0 length_self_encoding: n sid_len 4

cid 185172fab8 sid 5172fab8 su

cid 2eb7ff2c9297 sid b7ff2c92 su 97

cid 14f3eb3dd3edbe sid f3eb3dd3 su edbe

cid 3feb31cece744b74 sid eb31cece su 744b74

cid 06b9f34c353ce23bb5 sid b9f34c35 su 3ce23bb5

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 5

cid 05bdcd8d0b1d sid bdcd8d0b1d su

cid 06aee673725a63 sid aee673725a su 63

cid 07bbf338ddbf37f4 sid bbf338ddbf su 37f4

cid 08fbbca64c26756840 sid fbbca64c26 su 756840

cid 09e7737c495b93894e34 sid e7737c495b su 93894e34

¶
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LB configuration: cr_bits 0x0 length_self_encoding: y nonce_len 12 sid_len 1

    key 4d9d0fd25a25e7f321ef464e13f9fa3d

cid 0d69fe8ab8293680395ae256e89c sid c5 su

cid 0e420d74ed99b985e10f5073f43027 sid d5 su 27

cid 0f380f440c6eefd3142ee776f6c16027 sid 10 su 6027

cid 1020607efbe82049ddbf3a7c3d9d32604d sid 3c su 32604d

cid 11e132d12606a1bb0fa17e1caef00ec54c10 sid e3 su 0ec54c10

LB configuration: cr_bits 0x0 length_self_encoding: n nonce_len 12 sid_len 2

    key 49e1cec7fd264b1f4af37413baf8ada9

cid 3d3a5e1126414271cc8dc2ec7c8c15 sid f7fe su

cid 007042539e7c5f139ac2adfbf54ba748 sid eaf4 su 48

cid 2bc125dd2aed2aafacf59855d99e029217 sid e880 su 9217

cid 3be6728dc082802d9862c6c8e4dda3d984d8 sid 62c6 su d984d8

cid 1afe9c6259ad350fc7bad28e0aeb2e8d4d4742 sid 8502 su 8d4d4742

LB configuration: cr_bits 0x0 length_self_encoding: y nonce_len 14 sid_len 3

    key 2c70df0b399bd33a7335523dcdb884ad

cid 11d62e8670565cd30b552edff6782ff5a740 sid d794bb su

cid 12c70e481f49363cabd9370d1fd5012c12bca5 sid 2cbd5d su a5

cid 133b95dfd8ad93566782f8424df82458069fc9e9 sid d126cd su c9e9

cid 13ac6ffcd635532ab60370306c7ee572d6b6e795 sid 539e42 su e795

cid 1383ed07a9700777ff450bb39bb9c1981266805c sid 9094dd su 805c

LB configuration: cr_bits 0x0 length_self_encoding: n nonce_len 12 sid_len 4

    key 2297b8a95c776cf9c048b76d9dc27019

cid 32873890c3059ca62628089439c44c1f84 sid 7398d8ca su

cid 1ff7c7d7b9823954b178636c99a7dc93ac83 sid 9655f091 su 83

cid 31044000a5ebb3bf2fa7629a17f2c78b077c17 sid 8b035fc6 su 7c17

cid 1791bd28c66721e8fea0c6f34fd2d8e663a6ef70 sid 6672e0e2 su a6ef70

cid 3df1d90ad5ccd5f8f475f040e90aeca09ec9839d sid b98b1fff su c9839d

LB configuration: cr_bits 0x0 length_self_encoding: y nonce_len 8 sid_len 5

    key 484b2ed942d9f4765e45035da3340423

cid 0da995b7537db605bfd3a38881ae sid 391a7840dc su

cid 0ed8d02d55b91d06443540d1bf6e98 sid 10f7f7b284 su 98

cid 0f3f74be6d46a84ccb1fd1ee92cdeaf2 sid 0606918fc0 su eaf2

cid 1045626dbf20e03050837633cc5650f97c sid e505eea637 su 50f97c

cid 11bb9a17f691ab446a938427febbeb593eaa sid 99343a2a96 su eb593eaa

¶



B.3. Block Cipher Connection ID Algorithm

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 1

    key 411592e4160268398386af84ea7505d4

cid 10564f7c0df399f6d93bdddb1a03886f25 sid 23 su 05231748a80884ed58007847eb9fd0

cid 10d5c03f9dd765d73b3d8610b244f74d02 sid 15 su 76cd6b6f0d3f0b20fc8e633e3a05f3

cid 108ca55228ab23b92845341344a2f956f2 sid 64 su 65c0ce170a9548717498b537cb8790

cid 10e73f3d034aef2f6f501e3a7693d6270a sid 07 su f9ad10c84cc1e89a2492221d74e707

cid 101a6ce13d48b14a77ecfd365595ad2582 sid 6c su 76ce4689b0745b956ef71c2608045d

LB configuration: cr_bits 0x0 length_self_encoding: n sid_len 2

    key 92ce44aecd636aeeff78da691ef48f77

cid 20aa09bc65ed52b1ccd29feb7ef995d318 sid a52f su 99278b92a86694ff0ecd64bc2f73

cid 30b8dbef657bd78a2f870e93f9485d5211 sid 6c49 su 7381c8657a388b4e9594297afe96

cid 043a8137331eacd2e78383279b202b9a6d sid 4188 su 5ac4b0e0b95f4e7473b49ee2d0dd

cid 3ba71ea2bcf0ab95719ab59d3d7fde770d sid 8ccc su 08728807605db25f2ca88be08e0f

cid 37ef1956b4ec354f40dc68336a23d42b31 sid c89d su 5a3ccd1471caa0de221ad6c185c0

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 3

    key 5c49cb9265efe8ae7b1d3886948b0a34

cid 10efcffc161d232d113998a49b1dbc4aa0 sid 0690b3 su 958fc9f38fe61b83881b2c5780

cid 10fc13bdbcb414ba90e391833400c19505 sid 031ac3 su 9a55e1e1904e780346fcc32c3c

cid 10d3cc1efaf5dc52c7a0f6da2746a8c714 sid 572d3a su ff2ec9712664e7174dc03ca3f8

cid 107edf37f6788e33c0ec7758a485215f2b sid 562c25 su 02c5a5dcbea629c3840da5f567

cid 10bc28da122582b7312e65aa096e9724fc sid 2fa4f0 su 8ae8c666bfc0fc364ebfd06b9a

LB configuration: cr_bits 0x0 length_self_encoding: n sid_len 4

    key e787a3a491551fb2b4901a3fa15974f3

cid 26125351da12435615e3be6b16fad35560 sid 0cb227d3 su 65b40b1ab54e05bff55db046

cid 14de05fc84e41b611dfbe99ed5b1c9d563 sid 6a0f23ad su d73bee2f3a7e72b3ffea52d9

cid 1306052c3f973db87de6d7904914840ff1 sid ca21402d su 5829465f7418b56ee6ada431

cid 1d202b5811af3e1dba9ea2950d27879a92 sid b14e1307 su 4902aba8b23a5f24616df3cf

cid 26538b78efc2d418539ad1de13ab73e477 sid a75e0148 su 0040323f1854e75aeb449b9f

LB configuration: cr_bits 0x0 length_self_encoding: y sid_len 5

    key d5a6d7824336fbe0f25d28487cdda57c

cid 10a2794871aadb20ddf274a95249e57fde sid 82d3b0b1a1 su 0935471478c2edb8120e60

cid 108122fe80a6e546a285c475a3b8613ec9 sid fbcc902c9d su 59c47946882a9a93981c15

cid 104d227ad9dd0fef4c8cb6eb75887b6ccc sid 2808e22642 su 2a7ef40e2c7e17ae40b3fb

cid 10b3f367d8627b36990a28d67f50b97846 sid 5e018f0197 su 2289cae06a566e5cb6cfa4

cid 1024412bfe25f4547510204bdda6143814 sid 8a8dd3d036 su 4b12933a135e5eaaebc6fd

¶



B.4. Shared State Retry Tokens

In this case, the shared-state retry token is issued by retry

service, so the opaque data of shared-state retry token body would

be null (Section 7.3).

Appendix C. Interoperability with DTLS over UDP

Some environments may contain DTLS traffic as well as QUIC operating

over UDP, which may be hard to distinguish.

In most cases, the packet parsing rules above will cause a QUIC-LB

load balancer to route DTLS traffic in an appropriate way. DTLS 1.3

implementations that use the connection_id extension [I-D.ietf-tls-

dtls-connection-id] might use the techniques in this document to

generate connection IDs and achieve robust routability for DTLS

associations if they meet a few additional requirements. This non-

normative appendix describes this interaction.

C.1. DTLS 1.0 and 1.2

DTLS 1.0 [RFC4347] and 1.2 [RFC6347] use packet formats that a QUIC-

LB router will interpret as short header packets with CIDs that

request 4-tuple routing. As such, they will route such packets

¶

LB configuration:

key_seq 0x00

encrypt_key 0x30313233343536373839303132333435

AEAD_IV 0x313233343536373839303132

Shared-State Retry Service Token Body:

ODCIL 0x12

RSCIL 0x10

port 0x1a0a

original_destination_connection_id 0x0c3817b544ca1c94313bba41757547eec937

retry_source_connection_id 0x0301e770d24b3b13070dd5c2a9264307

timestamp 0x0000000060c7bf4d

Shared-State Retry Service Token:

unique_token_number 0x59ef316b70575e793e1a8782

key_sequence 0x00

encrypted_shared_state_retry_service_token_body

0x7d38b274aa4427c7a1557c3fa666945931defc65da387a83855196a7cb73caac1e28e5346fd76868de94f8b62294

AEAD_ICV 0xf91174fdd711543a32d5e959867f9c22

AEAD related parameters:

client_ip_addr 127.0.0.1

client_port 6666

AEAD_nonce 0x68dd025f45616941072ab6b0

AEAD_associated_data 0x7f00000100000000000000000000000059ef316b70575e793e1a878200

¶
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consistently as long as the 4-tuple does not change. Note that DTLS

1.0 has been deprecated by the IETF.

The first octet of every DTLS 1.0 or 1.2 datagram contains the

content type. A QUIC-LB load balancer will interpret any content

type less than 128 as a short header packet, meaning that the

subsequent octets should contain a connection ID.

Existing TLS content types comfortably fit in the range below 128.

Assignment of codepoints greater than 64 would require coordination

in accordance with [RFC7983], and anyway would likely create

problems demultiplexing DTLS and version 1 of QUIC. Therefore, this

document believes it is extremely unlikely that TLS content types of

128 or greater will be assigned. Nevertheless, such an assignment

would cause a QUIC-LB load balancer to interpret the packet as a

QUIC long header with an essentially random connection ID, which is

likely to be routed irregularly.

The second octet of every DTLS 1.0 or 1.2 datagram is the bitwise

complement of the DTLS Major version (i.e. version 1.x = 0xfe). A

QUIC-LB load balancer will interpret this as a connection ID that

requires 4-tuple based load balancing, meaning that the routing will

be consistent as long as the 4-tuple remains the same.

[I-D.ietf-tls-dtls-connection-id] defines an extension to add

connection IDs to DTLS 1.2. Unfortunately, a QUIC-LB load balancer

will not correctly parse the connection ID and will continue 4-tuple

routing. An modified QUIC-LB load balancer that correctly identifies

DTLS and parses a DTLS 1.2 datagram for the connection ID is outside

the scope of this document.

C.2. DTLS 1.3

DTLS 1.3 [I-D.draft-ietf-tls-dtls13] changes the structure of

datagram headers in relevant ways.

Handshake packets continue to have a TLS content type in the first

octet and 0xfe in the second octet, so they will be 4-tuple routed,

which should not present problems for likely NAT rebinding or

address change events.

Non-handshake packets always have zero in their most significant bit

and will therefore always be treated as QUIC short headers. If the

connection ID is present, it follows in the succeeding octets.

Therefore, a DTLS 1.3 association where the server utilizes

Connection IDs and the encodings in this document will be routed

correctly in the presence of client address and port changes.

However, if the client does not include the connection_id extension

in its ClientHello, the server is unable to use connection IDs. In
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this case, non- handshake packets will appear to contain random

connection IDs and be routed randomly. Thus, unmodified QUIC-LB load

balancers will not work with DTLS 1.3 if the client does not

advertise support for connection IDs, or the server does not request

the use of a compliant connection ID.

A QUIC-LB load balancer might be modified to identify DTLS 1.3

packets and correctly parse the fields to identify when there is no

connection ID and revert to 4-tuple routing, removing the server

requirement above. However, such a modification is outside the scope

of this document, and classifying some packets as DTLS might be

incompatible with future versions of QUIC.

C.3. Future Versions of DTLS

As DTLS does not have an IETF consensus document that defines what

parts of DTLS will be invariant in future versions, it is difficult

to speculate about the applicability of this section to future

versions of DTLS.
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Appendix E. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

E.1. since draft-ietf-quic-load-balancers-06

Added interoperability with DTLS

Changed "non-compliant" to "unroutable"

Changed "arbitrary" algorithm to "fallback"

Revised security considerations for mistrustful tenants

Added retry service considerations for non-Initial packets

E.2. since draft-ietf-quic-load-balancers-05

Added low-config CID for further discussion
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Complete revision of shared-state Retry Token

Added YANG model

Updated configuration limits to ensure CID entropy

Switched to notation from quic-transport

E.3. since draft-ietf-quic-load-balancers-04

Rearranged the shared-state retry token to simplify token

processing

More compact timestamp in shared-state retry token

Revised server requirements for shared-state retries

Eliminated zero padding from the test vectors

Added server use bytes to the test vectors

Additional compliant DCID criteria

E.4. since-draft-ietf-quic-load-balancers-03

Improved Config Rotation text

Added stream cipher test vectors

Deleted the Obfuscated CID algorithm

E.5. since-draft-ietf-quic-load-balancers-02

Replaced stream cipher algorithm with three-pass version

Updated Retry format to encode info for required TPs

Added discussion of version invariance

Cleaned up text about config rotation

Added Reset Oracle and limited configuration considerations

Allow dropped long-header packets for known QUIC versions

E.6. since-draft-ietf-quic-load-balancers-01

Test vectors for load balancer decoding

Deleted remnants of in-band protocol
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Light edit of Retry Services section

Discussed load balancer chains

E.7. since-draft-ietf-quic-load-balancers-00

Removed in-band protocol from the document

E.8. Since draft-duke-quic-load-balancers-06

Switch to IETF WG draft.

E.9. Since draft-duke-quic-load-balancers-05

Editorial changes

Made load balancer behavior independent of QUIC version

Got rid of token in stream cipher encoding, because server might

not have it

Defined "non-compliant DCID" and specified rules for handling

them.

Added psuedocode for config schema

E.10. Since draft-duke-quic-load-balancers-04

Added standard for retry services

E.11. Since draft-duke-quic-load-balancers-03

Renamed Plaintext CID algorithm as Obfuscated CID

Added new Plaintext CID algorithm

Updated to allow 20B CIDs

Added self-encoding of CID length

E.12. Since draft-duke-quic-load-balancers-02

Added Config Rotation

Added failover mode

Tweaks to existing CID algorithms

Added Block Cipher CID algorithm

Reformatted QUIC-LB packets
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E.13. Since draft-duke-quic-load-balancers-01

Complete rewrite

Supports multiple security levels

Lightweight messages

E.14. Since draft-duke-quic-load-balancers-00

Converted to markdown

Added variable length connection IDs
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