
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-load-balancers-10

Published: 4 January 2022

Intended Status: Standards Track

Expires: 8 July 2022

Authors: M. Duke

F5 Networks, Inc.

N. Banks

Microsoft

QUIC-LB: Generating Routable QUIC Connection IDs

Abstract

The QUIC protocol design is resistant to transparent packet

inspection, injection, and modification by intermediaries. However,

the server can explicitly cooperate with network services by

agreeing to certain conventions and/or sharing state with those

services. This specification provides a standardized means of

solving three problems: (1) maintaining routability to servers via a

low-state load balancer even when the connection IDs in use change;

(2) explicit encoding of the connection ID length in all packets to

assist hardware accelerators; and (3) injection of QUIC Retry

packets by an anti-Denial-of-Service agent on behalf of the server.

Note to Readers

Discussion of this document takes place on the QUIC Working Group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/quicwg/load-balancers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 July 2022.

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/quicwg/load-balancers
https://github.com/quicwg/load-balancers
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Notation

2. Protocol Objectives

2.1. Simplicity

2.2. Security

3. First CID octet

3.1. Config Rotation

3.2. Configuration Failover

3.3. Length Self-Description

3.4. Format

4. Load Balancing Preliminaries

4.1. Unroutable Connection IDs

4.2. Fallback Algorithms

4.3. Server ID Allocation

4.4. CID format

5. Routing Algorithms

5.1. Plaintext CID Algorithm

5.1.1. Configuration Agent Actions

5.1.2. Load Balancer Actions

5.1.3. Server Actions

5.2. Encrypted Short CID Algorithm

5.2.1. Configuration Agent Actions

5.2.2. Server Actions

5.2.3. Load Balancer Actions

5.3. Encrypted Long CID Algorithm

5.3.1. Configuration Agent Actions

5.3.2. Load Balancer Actions

5.3.3. Server Actions

6. ICMP Processing

¶

¶

https://trustee.ietf.org/license-info

7. Retry Service

7.1. Common Requirements

7.1.1. Considerations for Non-Initial Packets

7.2. No-Shared-State Retry Service

7.2.1. Configuration Agent Actions

7.2.2. Service Requirements

7.2.3. Server Requirements

7.3. Shared-State Retry Service

7.3.1. Token Protection with AEAD

7.3.2. Configuration Agent Actions

7.3.3. Service Requirements

7.3.4. Server Requirements

8. Configuration Requirements

9. Additional Use Cases

9.1. Load balancer chains

9.2. Moving connections between servers

10. Version Invariance of QUIC-LB

11. Security Considerations

11.1. Attackers not between the load balancer and server

11.2. Attackers between the load balancer and server

11.3. Multiple Configuration IDs

11.4. Limited configuration scope

11.5. Stateless Reset Oracle

11.6. Connection ID Entropy

11.7. Shared-State Retry Keys

12. IANA Considerations

13. References

13.1. Normative References

13.2. Informative References

Appendix A. QUIC-LB YANG Model

A.1. Tree Diagram

Appendix B. Load Balancer Test Vectors

B.1. Plaintext Connection ID Algorithm

B.2. Encrypted Short Connection ID Algorithm

B.3. Encrypted Long Connection ID Algorithm

B.4. Shared State Retry Tokens

Appendix C. Interoperability with DTLS over UDP

C.1. DTLS 1.0 and 1.2

C.2. DTLS 1.3

C.3. Future Versions of DTLS

Appendix D. Acknowledgments

Appendix E. Change Log

E.1. since draft-ietf-quic-load-balancers-09

E.2. since draft-ietf-quic-load-balancers-08

E.3. since draft-ietf-quic-load-balancers-07

E.4. since draft-ietf-quic-load-balancers-06

E.5. since draft-ietf-quic-load-balancers-05

E.6. since draft-ietf-quic-load-balancers-04

E.7. since-draft-ietf-quic-load-balancers-03

E.8. since-draft-ietf-quic-load-balancers-02

E.9. since-draft-ietf-quic-load-balancers-01

E.10. since-draft-ietf-quic-load-balancers-00

E.11. Since draft-duke-quic-load-balancers-06

E.12. Since draft-duke-quic-load-balancers-05

E.13. Since draft-duke-quic-load-balancers-04

E.14. Since draft-duke-quic-load-balancers-03

E.15. Since draft-duke-quic-load-balancers-02

E.16. Since draft-duke-quic-load-balancers-01

E.17. Since draft-duke-quic-load-balancers-00

Authors' Addresses

1. Introduction

QUIC packets [RFC9000] usually contain a connection ID to allow

endpoints to associate packets with different address/port 4-tuples

to the same connection context. This feature makes connections

robust in the event of NAT rebinding. QUIC endpoints usually

designate the connection ID which peers use to address packets.

Server-generated connection IDs create a potential need for out-of-

band communication to support QUIC.

QUIC allows servers (or load balancers) to designate an initial

connection ID to encode useful routing information for load

balancers. It also encourages servers, in packets protected by

cryptography, to provide additional connection IDs to the client.

This allows clients that know they are going to change IP address or

port to use a separate connection ID on the new path, thus reducing

linkability as clients move through the world.

There is a tension between the requirements to provide routing

information and mitigate linkability. Ultimately, because new

connection IDs are in protected packets, they must be generated at

the server if the load balancer does not have access to the

connection keys. However, it is the load balancer that has the

context necessary to generate a connection ID that encodes useful

routing information. In the absence of any shared state between load

balancer and server, the load balancer must maintain a relatively

expensive table of server-generated connection IDs, and will not

route packets correctly if they use a connection ID that was

originally communicated in a protected NEW_CONNECTION_ID frame.

This specification provides common algorithms for encoding the

server mapping in a connection ID given some shared parameters. The

mapping is generally only discoverable by observers that have the

parameters, preserving unlinkability as much as possible.

Aside from load balancing, a QUIC server may also desire to offload

other protocol functions to trusted intermediaries. These

¶

¶

¶

¶

intermediaries might include hardware assist on the server host

itself, without access to fully decrypted QUIC packets. For example,

this document specifies a means of offloading stateless retry to

counter Denial of Service attacks. It also proposes a system for

self-encoding connection ID length in all packets, so that crypto

offload can consistently look up key information.

While this document describes a small set of configuration

parameters to make the server mapping intelligible, the means of

distributing these parameters between load balancers, servers, and

other trusted intermediaries is out of its scope. There are numerous

well-known infrastructures for distribution of configuration.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

In this document, "client" and "server" refer to the endpoints of a

QUIC connection unless otherwise indicated. A "load balancer" is an

intermediary for that connection that does not possess QUIC

connection keys, but it may rewrite IP addresses or conduct other IP

or UDP processing. A "configuration agent" is the entity that

determines the QUIC-LB configuration parameters for the network and

leverages some system to distribute that configuration.

Note that stateful load balancers that act as proxies, by

terminating a QUIC connection with the client and then retrieving

data from the server using QUIC or another protocol, are treated as

a server with respect to this specification.

For brevity, "Connection ID" will often be abbreviated as "CID".

1.2. Notation

All wire formats will be depicted using the notation defined in

Section 1.3 of [RFC9000]. There is one addition: the function len()

refers to the length of a field which can serve as a limit on a

different field, so that the lengths of two fields can be concisely

defined as limited to a sum, for example:

x(A..B) y(C..B-len(x))

¶

¶

¶

¶

¶

¶

¶

¶

¶

indicates that x can be of any length between A and B, and y can be

of any length between C and B provided that (len(x) + len(y)) does

not exceed B.

The example below illustrates the basic framework:

Figure 1: Example Format

2. Protocol Objectives

2.1. Simplicity

QUIC is intended to provide unlinkability across connection

migration, but servers are not required to provide additional

connection IDs that effectively prevent linkability. If the

coordination scheme is too difficult to implement, servers behind

load balancers using connection IDs for routing will use trivially

linkable connection IDs. Clients will therefore be forced to choose

between terminating the connection during migration or remaining

linkable, subverting a design objective of QUIC.

The solution should be both simple to implement and require little

additional infrastructure for cryptographic keys, etc.

2.2. Security

In the limit where there are very few connections to a pool of

servers, no scheme can prevent the linking of two connection IDs

with high probability. In the opposite limit, where all servers have

many connections that start and end frequently, it will be difficult

to associate two connection IDs even if they are known to map to the

same server.

QUIC-LB is relevant in the region between these extremes: when the

information that two connection IDs map to the same server is

helpful to linking two connection IDs. Obviously, any scheme that

¶

¶

Example Structure {

 One-bit Field (1),

 7-bit Field with Fixed Value (7) = 61,

 Field with Variable-Length Integer (i),

 Arbitrary-Length Field (..),

 Variable-Length Field (8..24),

 Variable-Length Field with Dynamic Limit (8..24-len(Variable-Length Field)),

 Field With Minimum Length (16..),

 Field With Maximum Length (..128),

 [Optional Field (64)],

 Repeated Field (8) ...,

}

¶

¶

¶

transparently communicates this mapping to outside observers

compromises QUIC's defenses against linkability.

Though not an explicit goal of the QUIC-LB design, concealing the

server mapping also complicates attempts to focus attacks on a

specific server in the pool.

3. First CID octet

The first octet of a Connection ID is reserved for two special

purposes, one mandatory (config rotation) and one optional (length

self-description).

Subsequent sections of this document refer to the contents of this

octet as the "first octet."

3.1. Config Rotation

The first two bits of any connection ID MUST encode an identifier

for the configuration that the connection ID uses. This enables

incremental deployment of new QUIC-LB settings (e.g., keys).

When new configuration is distributed to servers, there will be a

transition period when connection IDs reflecting old and new

configuration coexist in the network. The rotation bits allow load

balancers to apply the correct routing algorithm and parameters to

incoming packets.

Configuration Agents SHOULD deliver new configurations to load

balancers before doing so to servers, so that load balancers are

ready to process CIDs using the new parameters when they arrive.

A Configuration Agent SHOULD NOT use a codepoint to represent a new

configuration until it takes precautions to make sure that all

connections using CIDs with an old configuration at that codepoint

have closed or transitioned.

Servers MUST NOT generate new connection IDs using an old

configuration after receiving a new one from the configuration

agent. Servers MUST send NEW_CONNECTION_ID frames that provide CIDs

using the new configuration, and retire CIDs using the old

configuration using the "Retire Prior To" field of that frame.

It also possible to use these bits for more long-lived distinction

of different configurations, but this has privacy implications (see

Section 11.3).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.2. Configuration Failover

If a server has not received a valid QUIC-LB configuration, and

believes that low-state, Connection-ID aware load balancers are in

the path, it SHOULD generate connection IDs with the config rotation

bits set to '11' and SHOULD use the "disable_active_migration"

transport parameter in all new QUIC connections. It SHOULD NOT send

NEW_CONNECTION_ID frames with new values.

A load balancer that sees a connection ID with config rotation bits

set to '11' MUST revert to 5-tuple routing. These connection IDs may

be of any length; however, see Section 11.6 for limits on this

length.

3.3. Length Self-Description

Local hardware cryptographic offload devices may accelerate QUIC

servers by receiving keys from the QUIC implementation indexed to

the connection ID. However, on physical devices operating multiple

QUIC servers, it is impractical to efficiently lookup these keys if

the connection ID does not self-encode its own length.

Note that this is a function of particular server devices and is

irrelevant to load balancers. As such, load balancers MAY omit this

from their configuration. However, the remaining 6 bits in the first

octet of the Connection ID are reserved to express the length of the

following connection ID, not including the first octet.

A server not using this functionality SHOULD make the six bits

appear to be random.

3.4. Format

Figure 2: First Octet Format

The first octet has the following fields:

Config Rotation: Indicates the configuration used to interpret the

CID.

CID Len or Random Bits: Length Self-Description (if applicable), or

random bits otherwise. Encodes the length of the Connection ID

following the First Octet.

¶

¶

¶

¶

¶

First Octet {

 Config Rotation (2),

 CID Len or Random Bits (6),

}

¶

¶

¶

4. Load Balancing Preliminaries

In QUIC-LB, load balancers do not generate individual connection IDs

for servers. Instead, they communicate the parameters of an

algorithm to generate routable connection IDs.

The algorithms differ in the complexity of configuration at both

load balancer and server. Increasing complexity improves obfuscation

of the server mapping.

This section describes three participants: the configuration agent,

the load balancer, and the server. For any given QUIC-LB

configuration that enables connection-ID-aware load balancing, there

must be a choice of (1) routing algorithm, (2) server ID allocation

strategy, and (3) algorithm parameters.

Fundamentally, servers generate connection IDs that encode their

server ID. Load balancers decode the server ID from the CID in

incoming packets to route to the correct server.

There are situations where a server pool might be operating two or

more routing algorithms or parameter sets simultaneously. The load

balancer uses the first two bits of the connection ID to multiplex

incoming DCIDs over these schemes (see Section 3.1).

4.1. Unroutable Connection IDs

QUIC-LB servers will generate Connection IDs that are decodable to

extract a server ID in accordance with a specified algorithm and

parameters. However, QUIC often uses client-generated Connection IDs

prior to receiving a packet from the server.

These client-generated CIDs might not conform to the expectations of

the routing algorithm and therefore not be routable by the load

balancer. Those that are not routable are "unroutable DCIDs" and

receive similar treatment regardless of why they're unroutable:

The config rotation bits (Section 3.1) may not correspond to an

active configuration. Note: a packet with a DCID that indicates

5-tuple routing (see Section 3.2) is always routable.

The DCID might not be long enough for the decoder to process.

The extracted server mapping might not correspond to an active

server.

All other DCIDs are routable.

Load balancers MUST forward packets with routable DCIDs to a server

in accordance with the chosen routing algorithm.

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

¶

¶

Load balancers SHOULD drop short header packets with unroutable

DCIDs.

When forwarding a packet with a long header and unroutable DCID,

load balancers MUST use a fallback algorithm as specified in Section

4.2.

Load balancers MAY drop packets with long headers and unroutable

DCIDs if and only if it knows that the encoded QUIC version does not

allow an unroutable DCID in a packet with that signature. For

example, a load balancer can safely drop a QUIC version 1 Handshake

packet with an unroutable DCID, as a version 1 Handshake packet sent

to a QUIC-LB routable server will always have a server-generated

routable CID. The prohibition against dropping packets with long

headers remains for unknown QUIC versions.

Furthermore, while the load balancer function MUST NOT drop packets,

the device might implement other security policies, outside the

scope of this specification, that might force a drop.

Servers that receive packets with unroutable CIDs MUST use the

available mechanisms to induce the client to use a routable CID in

future packets. In QUIC version 1, this requires using a routable

CID in the Source CID field of server-generated long headers.

4.2. Fallback Algorithms

There are conditions described below where a load balancer routes a

packet using a "fallback algorithm." It can choose any algorithm,

without coordination with the servers, but the algorithm SHOULD be

deterministic over short time scales so that related packets go to

the same server. The design of this algorithm SHOULD consider the

version-invariant properties of QUIC described in [RFC8999] to

maximize its robustness to future versions of QUIC.

A fallback algorithm MUST NOT make the routing behavior dependent on

any bits in the first octet of the QUIC packet header, except the

first bit, which indicates a long header. All other bits are QUIC

version-dependent and intermediaries SHOULD NOT base their design on

version-specific templates.

For example, one fallback algorithm might convert a unroutable DCID

to an integer and divided by the number of servers, with the modulus

used to forward the packet. The number of servers is usually

consistent on the time scale of a QUIC connection handshake. Another

might simply hash the address/port 4-tuple. See also Section 10.

¶

¶

¶

¶

¶

¶

¶

¶

4.3. Server ID Allocation

Load Balancer configurations include a mapping of server IDs to

forwarding addresses. The corresponding server configurations

contain one or more unique server IDs.

The configuration agent chooses a server ID length for each

configuration that MUST be at least one octet.

A QUIC-LB configuration MAY significantly over-provision the server

ID space (i.e., provide far more codepoints than there are servers)

to increase the probability that a randomly generated Destination

Connection ID is unroutable.

The configuration agent SHOULD provide a means for servers to

express the number of server IDs it can usefully employ, because a

single routing address actually corresponds to multiple server

entities (see Section 9.1).

Conceptually, each configuration has its own set of server ID

allocations, though two static configurations with identical server

ID lengths MAY use a common allocation between them.

A server encodes one of its assigned server IDs in any CID it

generates using the relevant configuration.

4.4. CID format

All connection IDs use the following format:

Figure 3: CID Format

Each configuration specifies the length of the Server ID and Nonce

fields, with limits defined for each algorithm. When using a given

configuration, the server MUST generate CIDs of length equal to the

lengths of these three fields.

The Server ID is assigned to each server in accordance with Section

4.3. Dynamically allocated SIDs are limited to seven octets or

fewer. Statically allocated ones have different limits for each

algorithm.

¶

¶

¶

¶

¶

¶

¶

QUIC-LB Connection ID {

 First Octet (8),

 Server ID (8..152-len(Nonce)),

 Nonce (32..152-len(Server ID),

}

¶

¶

The configuration agent assigns a server ID to every server in its

pool, and determines a server ID length (in octets) sufficiently

large to encode all server IDs, including potential future servers.

The Nonce is selected by the server when it generates a CID. As the

name implies, a server MUST use a nonce no more than once when

generating a CID for a given server ID and unique set of

configuration parameters.

The nonce length MUST be at least 4 octets. Additional limits on its

length are different for each algorithm. See Section 11.6 for limits

on nonce generation.

As QUIC version 1 limits connection IDs to 20 octets, the server ID

and nonce lengths MUST sum to 19 octets or less.

5. Routing Algorithms

Encryption in the algorithms below uses the AES-128-ECB cipher.

Future standards could add new algorithms that use other ciphers to

provide cryptographic agility in accordance with [RFC7696]. QUIC-LB

implementations SHOULD be extensible to support new algorithms.

5.1. Plaintext CID Algorithm

The Plaintext CID Algorithm makes no attempt to obscure the mapping

of connections to servers, significantly increasing linkability.

5.1.1. Configuration Agent Actions

See Section 4.4.

5.1.2. Load Balancer Actions

On each incoming packet, the load balancer extracts consecutive

octets, beginning with the second octet. These bytes represent the

server ID. It ignores the nonce.

5.1.3. Server Actions

When a server needs a new connection ID, it encodes one of its

assigned server IDs in consecutive octets beginning with the second

and chooses a nonce. This nonce MUST appear to be random (see

Section 11.6).

5.2. Encrypted Short CID Algorithm

The Encrypted Short CID algorithm provides cryptographic protection

at the cost of additional per-packet processing at the load balancer

¶

¶

¶

¶

¶

¶

¶

¶

¶

to decrypt every incoming connection ID, unless the load balancer

maintains state for the routing information of any given 4-tuple.

5.2.1. Configuration Agent Actions

The nonce length MUST be no fewer than 4 octets. The nonce SHOULD be

at least as long as the server ID in order to save the load balancer

an encryption pass; see below.

The configuration agent also selects an 16-octet AES-ECB key to use

for connection ID decryption.

5.2.2. Server Actions

When generating a routable connection ID, the server writes

arbitrary bits into its nonce octets, and its provided server ID

into the server ID octets. See Section 11.6 for nonce generation

considerations.

The server encrypts the server ID using the following four pass

algorithm, which leverages 128-bit AES Electronic Codebook (ECB)

mode, much like QUIC header protection.

In the text below, ^ is the XOR function and || is concatenation.

The truncate() function takes the most significant octets of its

argument, so that the XOR function operates on fields of the same

length. The expand() function outputs 16 octets, with its first

argument in the most significant bits, its second argument in the

least significant bits, and zeros in all other positions. Thus,

expand(0xaaba3c, 0x13) = 0xaaba3c00000000000000000000000013

The example at the end of this section helps to clarify the steps

described below.

The server concatenates the server ID and nonce to create

plaintext_CID.

The server splits plaintext_CID into components left_0 and

right_0 of equal length, splitting an odd octet in half if

necessary. For example, 0x7040b81b55ccf3 would split into a

left_0 of 0x7040b81 and right_0 of 0xb55ccf3.

Encrypt left_0. The encryption is 128-bit AES-ECB with the key

provided by the configuration agent, and the plaintext argument

is an expanded version of left_0 where left_0 constitutes the

most significant bits, 0x01 is the least significant octet, and

all other bits are zero.

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

XOR the most significant bits of the ciphertext with right_0 to

form right_1.

Thus steps 3 and 4 can be expressed as

right_1 = right_0 ^ truncate(AES_ECB(key, expand(left_0, 0x01))

Repeat steps 3 and 4, but use them to compute left_1 by

expanding and encrypting right_1 with the least significant

octet as 0x02 and XOR the results with left_0.

left_1 = left_0 ^ truncate(AES_ECB(key, expand(right_1), 0x02))

Repeat steps 3 and 4, but use them to compute right_2 by

expanding and encrypting left_1 with the least significant

octet as 0x03 and XOR the results with right_1.

right_2 = right_1 ^ truncate(AES_ECB(key, expand(left_1, 0x03))

Repeat steps 3 and 4, but use them to compute left_2 by

expanding and encrypting right_2 with the least significant

octet as 0x04 and XOR the results with left_1.

left_2 = left_1 ^ truncate(AES_ECB(key, expand(right_2), 0x04))

The server concatenates left_2 with right_2 to form the

ciphertext CID, which it appends to the first octet.

The following example executes the steps for the provided inputs.

Note that the plaintext is of odd octet length, so the middle octet

will be split evenly left_0 and right_0.

4.

¶

¶

¶

5.

¶

¶

6.

¶

¶

7.

¶

¶

8.

¶

¶

server_id = 0x3144a

nonce = 0x9c69c275

key = 0xfdf726a9893ec05c0632d30z6680baf0

// step 1

plaintext_CID = 0x31441a9c69c275

// step 2

left_0 = 0x31441a9

right_0 = 0xc69c275

// step 3

aes_input = 0x31441a90000000000000000000000001

ciphertext = 0xdea73834473e88afee51be7f6bdff0e7

// step 4

right_1 = 0xc69c275 ^ 0xdea7383 = 0x183b1f6

// step 5

aes_input = 0x183b1f60000000000000000000000002

aes_output = 0x15ab4a6f252c0283a0446c74c3f98860

left_1 = 0x31441a9 ^ 0x15ab4a6 = 0x24ef50f

// step 6

AES input = 0x24ef50f0000000000000000000000003

AES output = 0xbeaca161e903ebb97cfda599a29ad8ff

right_2 = 0x183b1f6 ^ 0xbeaca16 = 0xa697be0

// step 7

AES input: = 0xa697be00000000000000000000000004

AES output = 0x13ea04a5e3c707bf197e8fcbcd43ef98

left_2 = 0x24ef50f ^ 0x13ea04a = 0x3705545

// step 8

cid = first_octet || left_2 || right_2 = 0x073705545a697be0

5.2.3. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer extracts as many of

the earliest octets from the destination connection ID as necessary

to match the server ID. The nonce immediately follows.

The load balancer decrypts the nonce and the server ID using the

reverse of the algorithm above.

First, split the ciphertext CID (excluding the first octet) into its

equal- length components left_2 and right_2. Then follow the process

below:

¶

¶

¶

¶

left_1 = left_2 ^ truncate(AES_ECB(key, expand(right_2), 0x04))

right_1 = right_2 ^ truncate(AES_ECB(key, expand(left_1, 0x03))

left_0 = left_1 ^ truncate(AES_ECB(key, expand(right_1), 0x02))

As the load balancer has no need for the nonce, it can conclude

after 3 passes as long as the server ID is entirely contained in

left_0 (i.e., the nonce is at least as large as the server ID). If

the server ID is longer, a fourth pass is necessary:

right_0 = right_1 ^ truncate(AES_ECB(key, expand(left_0, 0x01)))

and the load balancer has to concatenate left_0 and right_0 to

obtain the complete server ID.

5.3. Encrypted Long CID Algorithm

The Encrypted Long CID Algorithm, by using a full 16 octets of

plaintext and a 128-bit cipher, protects the server ID with a single

encryption pass. However, it also requires connection IDs of at

least 17 octets, increasing overhead of client-to-server packets.

5.3.1. Configuration Agent Actions

The server ID length MUST be no more than 12 octets. The nonce and

server ID MUST sum to at least 16 octets.

The configuration agent also selects an 16-octet AES-ECB key to use

for connection ID decryption.

5.3.2. Load Balancer Actions

Upon receipt of a QUIC packet, the load balancer reads the first

octet to obtain the config rotation bits. It then decrypts the

subsequent 16 octets using AES-ECB decryption and the chosen key.

The first octets of the plaintext contains the server id.

5.3.3. Server Actions

The server encrypts both its server ID and enough octets in a nonce

to form a 16-octet block using the configured AES-ECB key. Note that

any remaining octets in the nonce are transmitted as plaintext, and

should consider the constraints in Section 11.6.

6. ICMP Processing

For protocols where 4-tuple load balancing is sufficient, it is

straightforward to deliver ICMP packets from the network to the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

correct server, by reading the echoed IP and transport-layer headers

to obtain the 4-tuple. When routing is based on connection ID,

further measures are required, as most QUIC packets that trigger

ICMP responses will only contain a client-generated connection ID

that contains no routing information.

To solve this problem, load balancers MAY maintain a mapping of

Client IP and port to server ID based on recently observed packets.

Alternatively, servers MAY implement the technique described in

Section 14.4.1 of [RFC9000] to increase the likelihood a Source

Connection ID is included in ICMP responses to Path Maximum

Transmission Unit (PMTU) probes. Load balancers MAY parse the echoed

packet to extract the Source Connection ID, if it contains a QUIC

long header, and extract the Server ID as if it were in a

Destination CID.

7. Retry Service

When a server is under load, QUICv1 allows it to defer storage of

connection state until the client proves it can receive packets at

its advertised IP address. Through the use of a Retry packet, a

token in subsequent client Initial packets, and transport

parameters, servers verify address ownership and clients verify that

there is no on-path attacker generating Retry packets.

A "Retry Service" detects potential Denial of Service attacks and

handles sending of Retry packets on behalf of the server. As it is,

by definition, literally an on-path entity, the service must

communicate some of the original connection IDs back to the server

so that it can pass client verification. It also must either verify

the address itself (with the server trusting this verification) or

make sure there is common context for the server to verify the

address using a service-generated token.

There are two different mechanisms to allow offload of DoS

mitigation to a trusted network service. One requires no shared

state; the server need only be configured to trust a retry service,

though this imposes other operational constraints. The other

requires a shared key, but has no such constraints.

7.1. Common Requirements

Regardless of mechanism, a retry service has an active mode, where

it is generating Retry packets, and an inactive mode, where it is

not, based on its assessment of server load and the likelihood an

attack is underway. The choice of mode MAY be made on a per-packet

or per-connection basis, through a stochastic process or based on

client address.

¶

¶

¶

¶

¶

¶

¶

A configuration agent MUST distribute a list of QUIC versions the

Retry Service supports. It MAY also distribute either an "Allow-

List" or a "Deny-List" of other QUIC versions. It MUST NOT

distribute both an Allow-List and a Deny-List.

The Allow-List or Deny-List MUST NOT include any versions included

for Retry Service Support.

The Configuration Agent MUST provide a means for the entity that

controls the Retry Service to report its supported version(s) to the

configuration Agent. If the entity has not reported this

information, it MUST NOT activate the Retry Service and the

configuration agent MUST NOT distribute configuration that activates

it.

The configuration agent MAY delete versions from the final supported

version list if policy does not require the Retry Service to operate

on those versions.

The configuration Agent MUST provide a means for the entities that

control servers behind the Retry Service to report either an Allow-

List or a Deny-List.

If all entities supply Allow-Lists, the consolidated list MUST be

the union of these sets. If all entities supply Deny-Lists, the

consolidated list MUST be the intersection of these sets.

If entities provide a mixture of Allow-Lists and Deny-Lists, the

consolidated list MUST be a Deny-List that is the intersection of

all provided Deny-Lists and the inverses of all Allow-Lists.

If no entities that control servers have reported Allow-Lists or

Deny-Lists, the default is a Deny-List with the null set (i.e., all

unsupported versions will be admitted). This preserves the future

extensibilty of QUIC.

A retry service MUST forward all packets for a QUIC version it does

not support that are not on a Deny-List or absent from an Allow-

List. Note that if servers support versions the retry service does

not, this may increase load on the servers.

Note that future versions of QUIC might not have Retry packets,

require different information in Retry, or use different packet type

indicators.

7.1.1. Considerations for Non-Initial Packets

Initial Packets are especially effective at consuming server

resources because they cause the server to create connection state.

Even when mitigating this load with Retry Packets, the act of

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

validating an Initial Token and sending a Retry Packet is more

expensive than the response to a non-Initial packet with an unknown

Connection ID: simply dropping it and/or sending a Stateless Reset.

Nevertheless, a Retry Service in Active Mode might desire to shield

servers from non-Initial packets that do not correspond to a

previously admitted Initial Packet. This has a number of

considerations.

If a Retry Service maintains no per-flow state whatsoever, it

cannot distinguish between valid and invalid non-Initial packets

and MUST forward all non-Initial Packets to the server.

For QUIC versions the Retry Service does not support and are

present on the Allow-List (or absent from the Deny-List), the

Retry Service cannot distinguish Initial Packets from other long

headers and therefore MUST admit all long headers.

If a Retry Service keeps per-flow state, it can identify 4-tuples

that have been previously approved, admit non-Initial packets

from those flows, and drop all others. However, dropping short

headers will effectively break Address Migration and NAT

Rebinding when in Active Mode, as post-migration packets will

arrive with a previously unknown 4-tuple. This policy will also

break connection attempts using any new QUIC versions that begin

connections with a short header.

If a Retry Service is integrated with a QUIC-LB routable load

balancer, it can verify that the Destination Connection ID is

routable, and only admit non-Initial packets with routable DCIDs.

As the Connection ID encoding is invariant across QUIC versions,

the Retry Service can do this for all short headers.

Nothing in this section prevents Retry Services from making basic

syntax correctness checks on packets with QUIC versions that it

understands (e.g., enforcing the Initial Packet datagram size

minimum in version 1) and dropping packets that are not routable

with the QUIC specification.

7.2. No-Shared-State Retry Service

The no-shared-state retry service requires no coordination, except

that the server must be configured to accept this service and know

which QUIC versions the retry service supports. The scheme uses the

first bit of the token to distinguish between tokens from Retry

packets (codepoint '0') and tokens from NEW_TOKEN frames (codepoint

'1').

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

7.2.1. Configuration Agent Actions

See Section 7.1.

7.2.2. Service Requirements

A no-shared-state retry service MUST be present on all paths from

potential clients to the server. These paths MUST fail to pass QUIC

traffic should the service fail for any reason. That is, if the

service is not operational, the server MUST NOT be exposed to client

traffic. Otherwise, servers that have already disabled their Retry

capability would be vulnerable to attack.

The path between service and server MUST be free of any potential

attackers. Note that this and other requirements above severely

restrict the operational conditions in which a no-shared-state retry

service can safely operate.

Retry tokens generated by the service MUST have the format below.

Figure 4: Format of non-shared-state retry service tokens

The first bit of retry tokens generated by the service MUST be zero.

The token has the following additional fields:

ODCIL: The length of the original destination connection ID from the

triggering Initial packet. This is in cleartext to be readable for

the server, but authenticated later in the token. The Retry Service

SHOULD reject any token in which the value is less than 8.

Original Destination Connection ID: This also in cleartext and

authenticated later.

Opaque Data: This data contains the information necessary to

authenticate the Retry token in accordance with the QUIC

specification. A straightforward implementation would encode the

Retry Source Connection ID, client IP address, and a timestamp in

the Opaque Data. A more space-efficient implementation would use the

Retry Source Connection ID and Client IP as associated data in an

encryption operation, and encode only the timestamp and the

authentication tag in the Opaque Data. If the Initial Packet has

¶

¶

¶

¶

Non-Shared-State Retry Service Token {

 Token Type (1) = 0,

 ODCIL (7) = 8..20,

 Original Destination Connection ID (64..160),

 Opaque Data (..),

}

¶

¶

¶

altered the Connection ID or source IP address, authentication of

the token will fail.

Upon receipt of an Initial packet with a token that begins with '0',

the retry service MUST validate the token in accordance with the

QUIC specification.

In active mode, the service MUST issue Retry packets for all Client

initial packets that contain no token, or a token that has the first

bit set to '1'. It MUST NOT forward the packet to the server. The

service MUST validate all tokens with the first bit set to '0'. If

successful, the service MUST forward the packet with the token

intact. If unsuccessful, it MUST drop the packet. The Retry Service

MAY send an Initial Packet containing a CONNECTION_CLOSE frame with

the INVALID_TOKEN error code when dropping the packet.

Note that this scheme has a performance drawback. When the retry

service is in active mode, clients with a token from a NEW_TOKEN

frame will suffer a 1-RTT penalty even though its token provides

proof of address.

In inactive mode, the service MUST forward all packets that have no

token or a token with the first bit set to '1'. It MUST validate all

tokens with the first bit set to '0'. If successful, the service

MUST forward the packet with the token intact. If unsuccessful, it

MUST either drop the packet or forward it with the token removed.

The latter requires decryption and re-encryption of the entire

Initial packet to avoid authentication failure. Forwarding the

packet causes the server to respond without the

original_destination_connection_id transport parameter, which

preserves the normal QUIC signal to the client that there is an on-

path attacker.

7.2.3. Server Requirements

A server behind a non-shared-state retry service MUST NOT send Retry

packets for a QUIC version the retry service understands. It MAY

send Retry for QUIC versions the Retry Service does not understand.

Tokens sent in NEW_TOKEN frames MUST have the first bit set to '1'.

If a server receives an Initial Packet with the first bit set to

'1', it could be from a server-generated NEW_TOKEN frame and should

be processed in accordance with the QUIC specification. If a server

receives an Initial Packet with the first bit to '0', it is a Retry

token and the server MUST NOT attempt to validate it. Instead, it

MUST assume the address is validated, MUST include the packet's

Destination Connection ID in a Retry Source Connection ID transport

parameter, and MUST extract the Original Destination Connection ID

¶

¶

¶

¶

¶

¶

¶

from the token cleartext for use in the transport parameter of the

same name.

7.3. Shared-State Retry Service

A shared-state retry service uses a shared key, so that the server

can decode the service's retry tokens. It does not require that all

traffic pass through the Retry service, so servers MAY send Retry

packets in response to Initial packets that don't include a valid

token.

Both server and service must have time synchronized with respect to

one another to prevent tokens being incorrectly marked as expired,

though tight synchronization is unnecessary.

The tokens are protected using AES128-GCM AEAD, as explained in

Section 7.3.1. All tokens, generated by either the server or retry

service, MUST use the following format, which includes:

A 1 bit token type identifier.

A 7 bit token key identifier.

A 96 bit unique token number transmitted in clear text, but

protected as part of the AEAD associated data.

A token body, encoding the Original Destination Connection ID and

the Timestamp, optionally followed by server specific Opaque

Data.

The token protection uses an 128 bit representation of the source IP

address from the triggering Initial packet. The client IP address is

16 octets. If an IPv4 address, the last 12 octets are zeroes. It

also uses the Source Connection ID of the Retry packet, which will

cause an authentication failure if it differs from the Destination

Connection ID of the packet bearing the token.

If there is a Network Address Translator (NAT) in the server

infrastructure that changes the client IP, the Retry Service MUST

either be positioned behind the NAT, or the NAT must have the token

key to rewrite the Retry token accordingly. Note also that a host

that obtains a token through a NAT and then attempts to connect over

a path that does not have an identically configured NAT will fail

address validation.

The 96 bit unique token number is set to a random value using a

cryptography-grade random number generator.

The token key identifier and the corresponding AEAD key and AEAD IV

are provisioned by the configuration agent.

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

The token body is encoded as follows:

Figure 5: Body of shared-state retry service tokens

The token body has the following fields:

Timestamp: The Timestamp is a 64-bit integer, in network order, that

expresses the expiration time of the token as a number of seconds in

POSIX time (see Sec. 4.16 of [TIME_T]).

ODCIL: The original destination connection ID length. Tokens in

NEW_TOKEN frames do not have this field.

Original Destination Connection ID: The server or Retry Service

copies this from the field in the client Initial packet. Tokens in

NEW_TOKEN frames do not have this field.

Port: The Source Port of the UDP datagram that triggered the Retry

packet. This field MUST be present if and only if the ODCIL is

greater than zero. This field is therefore always absent in tokens

in NEW_TOKEN frames.

Opaque Data: The server may use this field to encode additional

information, such as congestion window, RTT, or MTU. The Retry

Service MUST have zero-length opaque data.

Some implementations of QUIC encode in the token the Initial Packet

Number used by the client, in order to verify that the client sends

the retried Initial with a PN larger that the triggering Initial.

Such implementations will encode the Initial Packet Number as part

of the opaque data. As tokens may be generated by the Service,

servers MUST NOT reject tokens because they lack opaque data and

therefore the packet number.

Shared-state Retry Services use the AES-128-ECB cipher. Future

standards could add new algorithms that use other ciphers to provide

cryptographic agility in accordance with [RFC7696]. Retry Service

and server implementations SHOULD be extensible to support new

algorithms.

¶

Shared-State Retry Service Token Body {

 Timestamp (64),

 [ODCIL (8) = 8..20],

 [Original Destination Connection ID (64..160)],

 [Port (16)],

 Opaque Data (..),

}

¶

¶

¶

¶

¶

¶

¶

¶

7.3.1. Token Protection with AEAD

On the wire, the token is presented as:

Figure 6: Wire image of shared-state retry service tokens

The tokens are protected using AES128-GCM as follows:

The Key Sequence is the 7 bit identifier to retrieve the token

key and IV.

The AEAD IV, is a 96 bit data which produced by implementer's

custom AEAD IV derivation function.

The AEAD nonce, N, is formed by combining the AEAD IV with the 96

bit unique token number. The 96 bits of the unique token number

are left-padded with zeros to the size of the IV. The exclusive

OR of the padded unique token number and the AEAD IV forms the

AEAD nonce.

The associated data is a formatted as a pseudo header by

combining the cleartext part of the token with the IP address of

the client. The format of the pseudoheader depends on whether the

Token Type bit is '1' (a NEW_TOKEN token) or '0' (a Retry token).

Figure 7: Psuedoheader for shared-state retry service tokens

RSCIL: The Retry Source Connection ID Length in octets. This field

is only present when the Token Type is '0'.

¶

Shared-State Retry Service Token {

 Token Type (1),

 Key Sequence (7),

 Unique Token Number (96),

 Encrypted Shared-State Retry Service Token Body (64..),

 AEAD Integrity Check Value (128),

}

¶

*

¶

*

¶

*

¶

*

¶

Shared-State Retry Service Token Pseudoheader {

 IP Address (128),

 Token Type (1),

 Key Sequence (7),

 Unique Token Number (96),

 [RSCIL (8)],

 [Retry Source Connection ID (0..20)],

}

¶

Retry Source Connection ID: To create a Retry Token, populate this

field with the Source Connection ID the Retry packet will use. To

validate a Retry token, populate it with the Destination Connection

ID of the Initial packet that carries the token. This field is only

present when the Token Type is '0'.

The input plaintext for the AEAD is the token body. The output

ciphertext of the AEAD is transmitted in place of the token body.

The AEAD Integrity Check Value(ICV), defined in Section 6 of

[RFC4106], is computed as part of the AEAD encryption process,

and is verified during decryption.

7.3.2. Configuration Agent Actions

The configuration agent generates and distributes a "token key", a

"token IV", a key sequence, and the information described in Section

7.1.

7.3.3. Service Requirements

In inactive mode, the Retry service forwards all packets without

further inspection or processing. The rest of this section only

applies to a service in active mode.

Retry services MUST NOT issue Retry packets except where explicitly

allowed below, to avoid sending a Retry packet in response to a

Retry token.

The service MUST generate Retry tokens with the format described

above when it receives a client Initial packet with no token.

If there is a token of either type, the service MUST attempt to

decrypt it.

To decrypt a packet, the service checks the Token Type and

constructs a pseudoheader with the appropriate format for that type,

using the bearing packet's Destination Connection ID to populate the

Retry Source Connection ID field, if any.

A token is invalid if:

it uses unknown key sequence,

the AEAD ICV does not match the expected value (By construction,

it will only match if the client IP Address, and any Retry Source

Connection ID, also matches),

the ODCIL, if present, is invalid for a client-generated CID

(less than 8 or more than 20 in QUIC version 1),

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

the Timestamp of a token points to time in the past (however, in

order to allow for clock skew, it SHOULD NOT consider tokens to

be expired if the Timestamp encodes a few seconds in the past),

or

the port number, if present, does not match the source port in

the encapsulating UDP header.

Packets with valid tokens MUST be forwarded to the server.

The service MUST drop packets with invalid tokens. If the token is

of type '1' (NEW_TOKEN), it MUST respond with a Retry packet. If of

type '0', it MUST NOT respond with a Retry packet.

7.3.4. Server Requirements

The server MAY issue Retry or NEW_TOKEN tokens in accordance with

[RFC9000]. When doing so, it MUST follow the format above.

The server MUST validate all tokens that arrive in Initial packets,

as they may have bypassed the Retry service. It determines validity

using the procedure in Section 7.3.3.

If a valid Retry token, the server populates the

original_destination_connection_id transport parameter using the

corresponding token field. It populates the

retry_source_connection_id transport parameter with the Destination

Connection ID of the packet bearing the token.

In all other respects, the server processes both valid and invalid

tokens in accordance with [RFC9000].

For QUIC versions the service does not support, the server MAY use

any token format.

8. Configuration Requirements

QUIC-LB requires common configuration to synchronize understanding

of encodings and guarantee explicit consent of the server.

The load balancer and server MUST agree on a routing algorithm and

the relevant parameters for that algorithm.

All algorithm configurations can have a server ID length, nonce

length, and key. However, for Plaintext CID, there is no key.

The load balancer MUST receive the full table of mappings, and each

server must receive its assigned SID(s), from the configuration

agent.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note that server IDs are opaque bytes, not integers, so there is no

notion of network order or host order.

A server configuration MUST specify if the first octet encodes the

CID length. Note that a load balancer does not need the CID length,

as the required bytes are present in the QUIC packet.

A full QUIC-LB server configuration MUST also specify the supported

QUIC versions of any Retry Service. If a shared-state service, the

server also must have the token key.

A non-shared-state Retry Service need only be configured with the

QUIC versions it supports, and an Allow- or Deny-List. A shared-

state Retry Service also needs the token key, and to be aware if a

NAT sits between it and the servers.

Appendix A provides a YANG Model of the a full QUIC-LB

configuration.

9. Additional Use Cases

This section discusses considerations for some deployment scenarios

not implied by the specification above.

9.1. Load balancer chains

Some network architectures may have multiple tiers of low-state load

balancers, where a first tier of devices makes a routing decision to

the next tier, and so on, until packets reach the server. Although

QUIC-LB is not explicitly designed for this use case, it is possible

to support it.

If each load balancer is assigned a range of server IDs that is a

subset of the range of IDs assigned to devices that are closer to

the client, then the first devices to process an incoming packet can

extract the server ID and then map it to the correct forwarding

address. Note that this solution is extensible to arbitrarily large

numbers of load-balancing tiers, as the maximum server ID space is

quite large.

9.2. Moving connections between servers

Some deployments may transparently move a connection from one server

to another. The means of transferring connection state between

servers is out of scope of this document.

To support a handover, a server involved in the transition could

issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,

and retire CIDs associated with the new server using the "Retire

Prior To" field in that frame.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Alternately, if the old server is going offline, the load balancer

could simply map its server ID to the new server's address.

10. Version Invariance of QUIC-LB

Non-shared-state Retry Services are inherently dependent on the

format (and existence) of Retry Packets in each version of QUIC, and

so Retry Service configuration explicitly includes the supported

QUIC versions.

The server ID encodings, and requirements for their handling, are

designed to be QUIC version independent (see [RFC8999]). A QUIC-LB

load balancer will generally not require changes as servers deploy

new versions of QUIC. However, there are several unlikely future

design decisions that could impact the operation of QUIC-LB.

The maximum Connection ID length could be below the minimum

necessary for one or more encoding algorithms.

Section 4.1 provides guidance about how load balancers should handle

unroutable DCIDs. This guidance, and the implementation of an

algorithm to handle these DCIDs, rests on some assumptions:

Incoming short headers do not contain DCIDs that are client-

generated.

The use of client-generated incoming DCIDs does not persist

beyond a few round trips in the connection.

While the client is using DCIDs it generated, some exposed fields

(IP address, UDP port, client-generated destination Connection

ID) remain constant for all packets sent on the same connection.

Dynamic server ID allocation is dependent on client-generated

Destination CIDs in Initial Packets being at least 8 octets in

length. If they are not, the load balancer may not be able to

extract a valid server ID to add to its table. Configuring a

shorter server ID length can increase robustness to a change.

While this document does not update the commitments in [RFC8999],

the additional assumptions are minimal and narrowly scoped, and

provide a likely set of constants that load balancers can use with

minimal risk of version- dependence.

If these assumptions are invalid, this specification is likely to

lead to loss of packets that contain unroutable DCIDs, and in

extreme cases connection failure.

Some load balancers might inspect elements of the Server Name

Indication (SNI) extension in the TLS Client Hello to make a routing

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

decision. Note that the format and cryptographic protection of this

information may change in future versions or extensions of TLS or

QUIC, and therefore this functionality is inherently not version-

invariant.

11. Security Considerations

QUIC-LB is intended to prevent linkability. Attacks would therefore

attempt to subvert this purpose.

Note that the Plaintext CID algorithm makes no attempt to obscure

the server mapping, and therefore does not address these concerns.

It exists to allow consistent CID encoding for compatibility across

a network infrastructure, which makes QUIC robust to NAT rebinding.

Servers that are running the Plaintext CID algorithm SHOULD only use

it to generate new CIDs for the Server Initial Packet and SHOULD NOT

send CIDs in QUIC NEW_CONNECTION_ID frames, except that it sends one

new Connection ID in the event of config rotation Section 3.1. Doing

so might falsely suggest to the client that said CIDs were generated

in a secure fashion.

A linkability attack would find some means of determining that two

connection IDs route to the same server. As described above, there

is no scheme that strictly prevents linkability for all traffic

patterns, and therefore efforts to frustrate any analysis of server

ID encoding have diminishing returns.

11.1. Attackers not between the load balancer and server

Any attacker might open a connection to the server infrastructure

and aggressively simulate migration to obtain a large sample of IDs

that map to the same server. It could then apply analytical

techniques to try to obtain the server encoding.

The Encrypted CID algorithms provide robust protection against any

sort of linkage. The Plaintext CID algorithm makes no attempt to

protect this encoding.

Were this analysis to obtain the server encoding, then on-path

observers might apply this analysis to correlating different client

IP addresses.

11.2. Attackers between the load balancer and server

Attackers in this privileged position are intrinsically able to map

two connection IDs to the same server. The QUIC-LB algorithms do

prevent the linkage of two connection IDs to the same individual

connection if servers make reasonable selections when generating new

IDs for that connection.

¶

¶

¶

¶

¶

¶

¶

¶

11.3. Multiple Configuration IDs

During the period in which there are multiple deployed configuration

IDs (see Section 3.1), there is a slight increase in linkability.

The server space is effectively divided into segments with CIDs that

have different config rotation bits. Entities that manage servers

SHOULD strive to minimize these periods by quickly deploying new

configurations across the server pool.

11.4. Limited configuration scope

A simple deployment of QUIC-LB in a cloud provider might use the

same global QUIC-LB configuration across all its load balancers that

route to customer servers. An attacker could then simply become a

customer, obtain the configuration, and then extract server IDs of

other customers' connections at will.

To avoid this, the configuration agent SHOULD issue QUIC-LB

configurations to mutually distrustful servers that have different

keys for encryption algorithms. In many cases, the load balancers

can distinguish these configurations by external IP address.

However, assigning multiple entities to an IP address is

complimentary with concealing DNS requests (e.g., DoH [RFC8484]) and

the TLS Server Name Indicator (SNI) ([I-D.ietf-tls-esni]) to obscure

the ultimate destination of traffic. While the load balancer's

fallback algorithm (Section 4.2) can use the SNI to make a routing

decision on the first packet, there are three ways to route

subsequent packets:

all co-tenants can use the same QUIC-LB configuration, leaking

the server mapping to each other as described above;

co-tenants can be issued one of up to three configurations

distinguished by the config rotation bits (Section 3.1), exposing

information about the target domain to the entire network; or

tenants can use 4-tuple routing in their CIDs (in which case they

SHOULD disable migration in their connections), which neutralizes

the value of QUIC-LB but preserves privacy.

When configuring QUIC-LB, administrators must evaluate the privacy

tradeoff considering the relative value of each of these properties,

given the trust model between tenants, the presence of methods to

obscure the domain name, and value of address migration in the

tenant use cases.

As the plaintext algorithm makes no attempt to conceal the server

mapping, these deployments SHOULD simply use a common configuration.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

11.5. Stateless Reset Oracle

Section 21.9 of [RFC9000] discusses the Stateless Reset Oracle

attack. For a server deployment to be vulnerable, an attacking

client must be able to cause two packets with the same Destination

CID to arrive at two different servers that share the same

cryptographic context for Stateless Reset tokens. As QUIC-LB

requires deterministic routing of DCIDs over the life of a

connection, it is a sufficient means of avoiding an Oracle without

additional measures.

Note also that when a server starts using a new QUIC-LB config

rotation codepoint, new CIDs might not be unique with respect to

previous configurations that occupied that codepoint, and therefore

different clients may have observed the same CID and stateless reset

token. A straightforward method of managing stateless reset keys is

to maintain a separate key for each config rotation codepoint, and

replace each key when the configuration for that codepoint changes.

Thus, a server transitions from one config to another, it will be

able to generate correct tokens for connections using either type of

CID.

11.6. Connection ID Entropy

If a server ever reuses a nonce in generating a CID for a given

configuration, it risks exposing sensitive information. Given the

same server ID, the CID will be identical (aside from a possible

difference in the first octet). This can risk exposure of the QUIC-

LB key. If two clients receive the same connection ID, they also

have each other's stateless reset token unless that key has changed

in the interim.

The Encrypted Short and Encrypted Long algorithms need to generate

different cipher text for each generated Connection ID instance to

protect the Server ID. To do so, at least four octets of the CID are

reserved for a nonce that, if used only once, will result in unique

cipher text for each Connection ID.

If servers simply increment the nonce by one with each generated

connection ID, then it is safe to use the existing keys until any

server's nonce counter exhausts the allocated space and rolls over.

To maximize entropy, servers SHOULD start with a random nonce value,

in which case the configuration is usable until the nonce value

wraps around to zero and then reaches the initial value again.

Whether or not it implements the counter method, the server MUST NOT

reuse a nonce until it switches to a configuration with new keys.

Both the Plaintext CID and Encrypted Long CID algorithms send parts

of their nonce in plaintext. Servers MUST generate nonces so that

¶

¶

¶

¶

¶

¶

the plaintext portion appears to be random. Observable correlations

between plaintext nonces would provide trivial linkability between

individual connections, rather than just to a common server.

For any algorithm, configuration agents SHOULD implement an out-of-

band method to discover when servers are in danger of exhausting

their nonce space, and SHOULD respond by issuing a new

configuration. A server that has exhausted its nonces MUST either

switch to a different configuration, or if none exists, use the 4-

tuple routing config rotation codepoint.

When sizing a nonce that is to be randomly generated, the

configuration agent SHOULD consider that a server generating a N-bit

nonce will create a duplicate about every 2^(N/2) attempts, and

therefore compare the expected rate at which servers will generate

CIDs with the lifetime of a configuration.

11.7. Shared-State Retry Keys

The Shared-State Retry Service defined in Section 7.3 describes the

format of retry tokens or new tokens protected and encrypted using

AES128-GCM. Each token includes a 96 bit randomly generated unique

token number, and an 8 bit identifier used to get the AES-GCM

encryption context. The AES-GCM encryption context contains a 128

bit key and an AEAD IV. There are three important security

considerations for these tokens:

An attacker that obtains a copy of the encryption key will be

able to decrypt and forge tokens.

Attackers may be able to retrieve the key if they capture a

sufficently large number of retry tokens encrypted with a given

key.

Confidentiality of the token data will fail if separate tokens

reuse the same 96 bit unique token number and the same key.

To protect against disclosure of keys to attackers, service and

servers MUST ensure that the keys are stored securely. To limit the

consequences of potential exposures, the time to live of any given

key should be limited.

Section 6.6 of [RFC9001] states that "Endpoints MUST count the

number of encrypted packets for each set of keys. If the total

number of encrypted packets with the same key exceeds the

confidentiality limit for the selected AEAD, the endpoint MUST stop

using those keys." It goes on with the specific limit: "For

AEAD_AES_128_GCM and AEAD_AES_256_GCM, the confidentiality limit is

2^23 encrypted packets; see Appendix B.1." It is prudent to adopt

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

[RFC8446]

[RFC8999]

[RFC9000]

[TIME_T]

[I-D.draft-ietf-tls-dtls13]

[I-D.ietf-tls-dtls-connection-id]

the same limit here, and configure the service in such a way that no

more than 2^23 tokens are generated with the same key.

In order to protect against collisions, the 96 bit unique token

numbers should be generated using a cryptographically secure

pseudorandom number generator (CSPRNG), as specified in Appendix C.1

of the TLS 1.3 specification [RFC8446]. With proper random numbers,

if fewer than 2^40 tokens are generated with a single key, the risk

of collisions is lower than 0.001%.

12. IANA Considerations

There are no IANA requirements.

13. References

13.1. Normative References

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Thomson, M., "Version-Independent Properties of QUIC",

RFC 8999, DOI 10.17487/RFC8999, May 2021, <https://

www.rfc-editor.org/info/rfc8999>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

"Open Group Standard: Vol. 1: Base Definitions, Issue 7",

IEEE Std 1003.1 , 2018, <http://pubs.opengroup.org/

onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16>.

13.2. Informative References

Rescorla, E., Tschofenig, H., and N.

Modadugu, "The Datagram Transport Layer Security (DTLS)

Protocol Version 1.3", Work in Progress, Internet-Draft,

draft-ietf-tls-dtls13-43, 30 April 2021, <https://

www.ietf.org/archive/id/draft-ietf-tls-dtls13-43.txt>.

Rescorla, E., Tschofenig, H.,

Fossati, T., and A. Kraus, "Connection Identifiers for

DTLS 1.2", Work in Progress, Internet-Draft, draft-ietf-

tls-dtls-connection-id-13, 22 June 2021, <https://

www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-

id-13.txt>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls-connection-id-13.txt

[I-D.ietf-tls-esni]

[RFC2119]

[RFC4106]

[RFC4347]

[RFC6020]

[RFC6347]

[RFC7696]

[RFC7983]

Rescorla, E., Oku, K., Sullivan, N., and C. A.

Wood, "TLS Encrypted Client Hello", Work in Progress,

Internet-Draft, draft-ietf-tls-esni-13, 12 August 2021,

<https://www.ietf.org/archive/id/draft-ietf-tls-

esni-13.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Viega, J. and D. McGrew, "The Use of Galois/Counter Mode

(GCM) in IPsec Encapsulating Security Payload (ESP)", RFC

4106, DOI 10.17487/RFC4106, June 2005, <https://www.rfc-

editor.org/info/rfc4106>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,

<https://www.rfc-editor.org/info/rfc4347>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

<https://www.rfc-editor.org/info/rfc7696>.

Petit-Huguenin, M. and G. Salgueiro, "Multiplexing Scheme

Updates for Secure Real-time Transport Protocol (SRTP)

Extension for Datagram Transport Layer Security (DTLS)",

https://www.ietf.org/archive/id/draft-ietf-tls-esni-13.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-13.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4106
https://www.rfc-editor.org/info/rfc4106
https://www.rfc-editor.org/info/rfc4347
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7696

[RFC8340]

[RFC8484]

[RFC9001]

RFC 7983, DOI 10.17487/RFC7983, September 2016, <https://

www.rfc-editor.org/info/rfc7983>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/info/rfc8484>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/info/rfc9001>.

Appendix A. QUIC-LB YANG Model

This YANG model conforms to [RFC6020] and expresses a complete QUIC-

LB configuration.¶

https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc9001

module ietf-quic-lb {

 yang-version "1.1";

 namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";

 prefix "quic-lb";

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 organization

 "IETF QUIC Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/quic>

 WG List: <quic@ietf.org>

 Authors: Martin Duke (martin.h.duke at gmail dot com)

 Nick Banks (nibanks at microsoft dot com)";

 description

 "This module enables the explicit cooperation of QUIC servers with

 trusted intermediaries without breaking important protocol features.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 revision "2021-01-29" {

 description

 "Initial Version";

 reference

 "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";

 }

 container quic-lb {

 presence "The container for QUIC-LB configuration.";

 description

 "QUIC-LB container.";

 typedef quic-lb-key {

 type yang:hex-string {

 length 47;

 }

 description

 "This is a 16-byte key, represented with 47 bytes";

 }

 typedef algorithm-type {

 type enumeration {

 enum plaintext {

 description "Plaintext CID Algorithm";

 }

 enum encrypted-short {

 description "Encrypted Short CID Algorithm";

 }

 enum encrypted-long {

 description "Encrypted Long CID Algorithm";

 }

 }

 }

 list cid-configs {

 key "config-rotation-bits";

 description

 "List up to three load balancer configurations";

 leaf config-rotation-bits {

 type uint8 {

 range "0..2";

 }

 mandatory true;

 description

 "Identifier for this CID configuration.";

 }

 leaf first-octet-encodes-cid-length {

 type boolean;

 default false;

 description

 "If true, the six least significant bits of the first CID

 octet encode the CID length minus one.";

 }

 leaf cid-key {

 type quic-lb-key;

 description

 "Key for encrypting the connection ID. If absent, the

 configuration uses the Plaintext algorithm.";

 }

 leaf algorithm {

 type algorithm-type;

 mandatory true;

 description

 "The algorithm that encodes the server ID";

 }

 must 'cid-key or (algorithm = "plaintext")' {

 error-message "Encrypted algorithm requires key";

 }

 leaf nonce-length {

 type uint8 {

 range "4..18";

 }

 mandatory true;

 description

 "Length, in octets, of the nonce. Short nonces mean there will be

 frequent configuration updates.";

 }

 leaf server-id-length {

 type uint8 {

 range "1..15";

 }

 must '. <= (19 - ../nonce-length)' {

 error-message

 "Server ID and nonce lengths must sum to no more than 19.";

 }

 must '(../algorithm != "encrypted-long") or (. <= 12)' {

 error-message

 "encrypted-long requires server ID length <= 12.";

 }

 must '(../algorithm != "encrypted-long") or

 ((. + ../nonce-length) >= 16)' {

 error-message

 "For Encrypted Long CIDs, server ID length plus nonce length must be at

 least 16";

 }

 mandatory true;

 description

 "Length (in octets) of a server ID. Further range-limited

 by sid-allocation, cid-key, and nonce-length.";

 }

 list server-id-mappings {

 key "server-id";

 description "Statically allocated Server IDs";

 leaf server-id {

 type yang:hex-string;

 must "string-length(.) = 3 * ../../server-id-length - 1";

 mandatory true;

 description

 "An allocated server ID";

 }

 leaf server-address {

 type inet:ip-address;

 mandatory true;

 description

 "Destination address corresponding to the server ID";

 }

 }

 }

 container retry-service-config {

 description

 "Configuration of Retry Service. If supported-versions is empty, there

 is no retry service. If token-keys is empty, it uses the non-shared-

 state service. If present, it uses shared-state tokens.";

 leaf-list supported-versions {

 type uint32;

 description

 "QUIC versions that the retry service supports. If empty, there

 is no retry service.";

 }

 leaf unsupported-version-default {

 type enumeration {

 enum allow {

 description "Unsupported versions admitted by default";

 }

 enum deny {

 description "Unsupported versions denied by default";

 }

 }

 default allow;

 description

 "Are unsupported versions not in version-exceptions allowed

 or denied?";

 }

 leaf-list version-exceptions {

 type uint32;

 description

 "Exceptions to the default-deny or default-allow rule.";

 }

 list token-keys {

 key "key-sequence-number";

 description

 "list of active keys, for key rotation purposes. Existence implies

 shared-state format";

 leaf key-sequence-number {

 type uint8 {

 range "0..127";

 }

 mandatory true;

 description

 "Identifies the key used to encrypt the token";

 }

 leaf token-key {

 type quic-lb-key;

 mandatory true;

 description

 "16-byte key to encrypt the token";

 }

 leaf token-iv {

 type yang:hex-string {

 length 23;

 }

 mandatory true;

 description

 "8-byte IV to encrypt the token, encoded in 23 bytes";

 }

 }

 }

 }

}

¶

A.1. Tree Diagram

This summary of the YANG model uses the notation in [RFC8340].

Appendix B. Load Balancer Test Vectors

Each section of this draft includes multiple sets of load balancer

configuration, each of which has five examples of server ID and

server use bytes and how they are encoded in a CID.

In some cases, there are no server use bytes. Note that, for

simplicity, the first octet bits used for neither config rotation

nor length self-encoding are random, rather than listed in the

server use field. Therefore, a server implementation using these

parameters may generate CIDs with a slightly different first octet.

This section uses the following abbreviations:

All values except length_self_encoding and sid_len are expressed in

hexidecimal format.

¶

module: ietf-quic-lb

 +--rw quic-lb

 +--rw cid-configs* [config-rotation-bits]

 | +--rw config-rotation-bits uint8

 | +--rw first-octet-encodes-cid-length? boolean

 | +--rw cid-key? quic-lb-key

 | +--rw algorithm algorithm-tyype

 | +--rw nonce-length uint8

 | +--rw server-id-length uint8

 | +--rw server-id-mappings* [server-id]

 | | +--rw server-id yang:hex-string

 | | +--rw server-address inet:ip-address

 +--ro retry-service-config

 | +--rw supported-versions* uint32

 | +--rw unsupported-version-default? enumeration

 | +--rw version-exceptions* uint32

 | +--rw token-keys*? [key-sequence-number]

 | | +--rw key-sequence-number uint8

 | | +--rw token-key quic-lb-key

 | | +--rw token-iv yang:hex-string

¶

¶

¶

¶

cid Connection ID

cr_bits Config Rotation Bits

LB Load Balancer

sid Server ID

sid_len Server ID length

¶

¶

B.1. Plaintext Connection ID Algorithm

TBD

B.2. Encrypted Short Connection ID Algorithm

In each case below, the server is using a plain text nonce value of

zero.

TBD

B.3. Encrypted Long Connection ID Algorithm

In each case below, the server is using a plain text nonce value of

zero.

TBD

B.4. Shared State Retry Tokens

In this case, the shared-state retry token is issued by retry

service, so the opaque data of shared-state retry token body would

be null (Section 7.3).

¶

¶

¶

¶

¶

¶

LB configuration:

key_seq 0x00

encrypt_key 0x30313233343536373839303132333435

AEAD_IV 0x313233343536373839303132

Shared-State Retry Service Token Body:

ODCIL 0x12

RSCIL 0x10

port 0x1a0a

original_destination_connection_id 0x0c3817b544ca1c94313bba41757547eec937

retry_source_connection_id 0x0301e770d24b3b13070dd5c2a9264307

timestamp 0x0000000060c7bf4d

Shared-State Retry Service Token:

unique_token_number 0x59ef316b70575e793e1a8782

key_sequence 0x00

encrypted_shared_state_retry_service_token_body

0x7d38b274aa4427c7a1557c3fa666945931defc65da387a83855196a7cb73caac1e28e5346fd76868de94f8b62294

AEAD_ICV 0xf91174fdd711543a32d5e959867f9c22

AEAD related parameters:

client_ip_addr 127.0.0.1

client_port 6666

AEAD_nonce 0x68dd025f45616941072ab6b0

AEAD_associated_data 0x7f00000100000000000000000000000059ef316b70575e793e1a878200

¶

Appendix C. Interoperability with DTLS over UDP

Some environments may contain DTLS traffic as well as QUIC operating

over UDP, which may be hard to distinguish.

In most cases, the packet parsing rules above will cause a QUIC-LB

load balancer to route DTLS traffic in an appropriate way. DTLS 1.3

implementations that use the connection_id extension [I-D.ietf-tls-

dtls-connection-id] might use the techniques in this document to

generate connection IDs and achieve robust routability for DTLS

associations if they meet a few additional requirements. This non-

normative appendix describes this interaction.

C.1. DTLS 1.0 and 1.2

DTLS 1.0 [RFC4347] and 1.2 [RFC6347] use packet formats that a QUIC-

LB router will interpret as short header packets with CIDs that

request 4-tuple routing. As such, they will route such packets

consistently as long as the 4-tuple does not change. Note that DTLS

1.0 has been deprecated by the IETF.

The first octet of every DTLS 1.0 or 1.2 datagram contains the

content type. A QUIC-LB load balancer will interpret any content

type less than 128 as a short header packet, meaning that the

subsequent octets should contain a connection ID.

Existing TLS content types comfortably fit in the range below 128.

Assignment of codepoints greater than 64 would require coordination

in accordance with [RFC7983], and anyway would likely create

problems demultiplexing DTLS and version 1 of QUIC. Therefore, this

document believes it is extremely unlikely that TLS content types of

128 or greater will be assigned. Nevertheless, such an assignment

would cause a QUIC-LB load balancer to interpret the packet as a

QUIC long header with an essentially random connection ID, which is

likely to be routed irregularly.

The second octet of every DTLS 1.0 or 1.2 datagram is the bitwise

complement of the DTLS Major version (i.e. version 1.x = 0xfe). A

QUIC-LB load balancer will interpret this as a connection ID that

requires 4-tuple based load balancing, meaning that the routing will

be consistent as long as the 4-tuple remains the same.

[I-D.ietf-tls-dtls-connection-id] defines an extension to add

connection IDs to DTLS 1.2. Unfortunately, a QUIC-LB load balancer

will not correctly parse the connection ID and will continue 4-tuple

routing. An modified QUIC-LB load balancer that correctly identifies

DTLS and parses a DTLS 1.2 datagram for the connection ID is outside

the scope of this document.

¶

¶

¶

¶

¶

¶

¶

C.2. DTLS 1.3

DTLS 1.3 [I-D.draft-ietf-tls-dtls13] changes the structure of

datagram headers in relevant ways.

Handshake packets continue to have a TLS content type in the first

octet and 0xfe in the second octet, so they will be 4-tuple routed,

which should not present problems for likely NAT rebinding or

address change events.

Non-handshake packets always have zero in their most significant bit

and will therefore always be treated as QUIC short headers. If the

connection ID is present, it follows in the succeeding octets.

Therefore, a DTLS 1.3 association where the server utilizes

Connection IDs and the encodings in this document will be routed

correctly in the presence of client address and port changes.

However, if the client does not include the connection_id extension

in its ClientHello, the server is unable to use connection IDs. In

this case, non- handshake packets will appear to contain random

connection IDs and be routed randomly. Thus, unmodified QUIC-LB load

balancers will not work with DTLS 1.3 if the client does not

advertise support for connection IDs, or the server does not request

the use of a compliant connection ID.

A QUIC-LB load balancer might be modified to identify DTLS 1.3

packets and correctly parse the fields to identify when there is no

connection ID and revert to 4-tuple routing, removing the server

requirement above. However, such a modification is outside the scope

of this document, and classifying some packets as DTLS might be

incompatible with future versions of QUIC.

C.3. Future Versions of DTLS

As DTLS does not have an IETF consensus document that defines what

parts of DTLS will be invariant in future versions, it is difficult

to speculate about the applicability of this section to future

versions of DTLS.

Appendix D. Acknowledgments

Manasi Deval, Erik Fuller, Toma Gavrichenkov, Jana Iyengar, Subodh

Iyengar, Ladislav Lhotka, Jan Lindblad, Ling Tao Nju, Ilari

Liusvaara, Kazuho Oku, Udip Pant, Ian Swett, Martin Thomson, Dmitri

Tikhonov, Victor Vasiliev, and William Zeng Ke all provided useful

input to this document.

¶

¶

¶

¶

¶

¶

¶

Appendix E. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

E.1. since draft-ietf-quic-load-balancers-09

Renamed "Stream Cipher" and "Block Cipher" to "Encrypted Short"

and "Encrypted Long"

Changed "Encrypted Short" to a 4-pass algorithm.

Recommended a random initial nonce for encrypted short.

E.2. since draft-ietf-quic-load-balancers-08

Eliminate Dynamic SID allocation

Eliminated server use bytes

E.3. since draft-ietf-quic-load-balancers-07

Shortened SSCID nonce minimum length to 4 bytes

Removed RSCID from Retry token body

Simplified CID formats

Shrunk size of SID table

E.4. since draft-ietf-quic-load-balancers-06

Added interoperability with DTLS

Changed "non-compliant" to "unroutable"

Changed "arbitrary" algorithm to "fallback"

Revised security considerations for mistrustful tenants

Added retry service considerations for non-Initial packets

E.5. since draft-ietf-quic-load-balancers-05

Added low-config CID for further discussion

Complete revision of shared-state Retry Token

Added YANG model

Updated configuration limits to ensure CID entropy

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Switched to notation from quic-transport

E.6. since draft-ietf-quic-load-balancers-04

Rearranged the shared-state retry token to simplify token

processing

More compact timestamp in shared-state retry token

Revised server requirements for shared-state retries

Eliminated zero padding from the test vectors

Added server use bytes to the test vectors

Additional compliant DCID criteria

E.7. since-draft-ietf-quic-load-balancers-03

Improved Config Rotation text

Added stream cipher test vectors

Deleted the Obfuscated CID algorithm

E.8. since-draft-ietf-quic-load-balancers-02

Replaced stream cipher algorithm with three-pass version

Updated Retry format to encode info for required TPs

Added discussion of version invariance

Cleaned up text about config rotation

Added Reset Oracle and limited configuration considerations

Allow dropped long-header packets for known QUIC versions

E.9. since-draft-ietf-quic-load-balancers-01

Test vectors for load balancer decoding

Deleted remnants of in-band protocol

Light edit of Retry Services section

Discussed load balancer chains

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

E.10. since-draft-ietf-quic-load-balancers-00

Removed in-band protocol from the document

E.11. Since draft-duke-quic-load-balancers-06

Switch to IETF WG draft.

E.12. Since draft-duke-quic-load-balancers-05

Editorial changes

Made load balancer behavior independent of QUIC version

Got rid of token in stream cipher encoding, because server might

not have it

Defined "non-compliant DCID" and specified rules for handling

them.

Added psuedocode for config schema

E.13. Since draft-duke-quic-load-balancers-04

Added standard for retry services

E.14. Since draft-duke-quic-load-balancers-03

Renamed Plaintext CID algorithm as Obfuscated CID

Added new Plaintext CID algorithm

Updated to allow 20B CIDs

Added self-encoding of CID length

E.15. Since draft-duke-quic-load-balancers-02

Added Config Rotation

Added failover mode

Tweaks to existing CID algorithms

Added Block Cipher CID algorithm

Reformatted QUIC-LB packets

E.16. Since draft-duke-quic-load-balancers-01

Complete rewrite

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Supports multiple security levels

Lightweight messages

E.17. Since draft-duke-quic-load-balancers-00

Converted to markdown

Added variable length connection IDs

Authors' Addresses

Martin Duke

F5 Networks, Inc.

Email: martin.h.duke@gmail.com

Nick Banks

Microsoft

Email: nibanks@microsoft.com

* ¶

* ¶

* ¶

* ¶

mailto:martin.h.duke@gmail.com
mailto:nibanks@microsoft.com

	QUIC-LB: Generating Routable QUIC Connection IDs
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Notation

	2. Protocol Objectives
	2.1. Simplicity
	2.2. Security

	3. First CID octet
	3.1. Config Rotation
	3.2. Configuration Failover
	3.3. Length Self-Description
	3.4. Format

	4. Load Balancing Preliminaries
	4.1. Unroutable Connection IDs
	4.2. Fallback Algorithms
	4.3. Server ID Allocation
	4.4. CID format

	5. Routing Algorithms
	5.1. Plaintext CID Algorithm
	5.1.1. Configuration Agent Actions
	5.1.2. Load Balancer Actions
	5.1.3. Server Actions

	5.2. Encrypted Short CID Algorithm
	5.2.1. Configuration Agent Actions
	5.2.2. Server Actions
	5.2.3. Load Balancer Actions

	5.3. Encrypted Long CID Algorithm
	5.3.1. Configuration Agent Actions
	5.3.2. Load Balancer Actions
	5.3.3. Server Actions

	6. ICMP Processing
	7. Retry Service
	7.1. Common Requirements
	7.1.1. Considerations for Non-Initial Packets

	7.2. No-Shared-State Retry Service
	7.2.1. Configuration Agent Actions
	7.2.2. Service Requirements
	7.2.3. Server Requirements

	7.3. Shared-State Retry Service
	7.3.1. Token Protection with AEAD
	7.3.2. Configuration Agent Actions
	7.3.3. Service Requirements
	7.3.4. Server Requirements

	8. Configuration Requirements
	9. Additional Use Cases
	9.1. Load balancer chains
	9.2. Moving connections between servers

	10. Version Invariance of QUIC-LB
	11. Security Considerations
	11.1. Attackers not between the load balancer and server
	11.2. Attackers between the load balancer and server
	11.3. Multiple Configuration IDs
	11.4. Limited configuration scope
	11.5. Stateless Reset Oracle
	11.6. Connection ID Entropy
	11.7. Shared-State Retry Keys

	12. IANA Considerations
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. QUIC-LB YANG Model
	A.1. Tree Diagram

	Appendix B. Load Balancer Test Vectors
	B.1. Plaintext Connection ID Algorithm
	B.2. Encrypted Short Connection ID Algorithm
	B.3. Encrypted Long Connection ID Algorithm
	B.4. Shared State Retry Tokens

	Appendix C. Interoperability with DTLS over UDP
	C.1. DTLS 1.0 and 1.2
	C.2. DTLS 1.3
	C.3. Future Versions of DTLS

	Appendix D. Acknowledgments
	Appendix E. Change Log
	E.1. since draft-ietf-quic-load-balancers-09
	E.2. since draft-ietf-quic-load-balancers-08
	E.3. since draft-ietf-quic-load-balancers-07
	E.4. since draft-ietf-quic-load-balancers-06
	E.5. since draft-ietf-quic-load-balancers-05
	E.6. since draft-ietf-quic-load-balancers-04
	E.7. since-draft-ietf-quic-load-balancers-03
	E.8. since-draft-ietf-quic-load-balancers-02
	E.9. since-draft-ietf-quic-load-balancers-01
	E.10. since-draft-ietf-quic-load-balancers-00
	E.11. Since draft-duke-quic-load-balancers-06
	E.12. Since draft-duke-quic-load-balancers-05
	E.13. Since draft-duke-quic-load-balancers-04
	E.14. Since draft-duke-quic-load-balancers-03
	E.15. Since draft-duke-quic-load-balancers-02
	E.16. Since draft-duke-quic-load-balancers-01
	E.17. Since draft-duke-quic-load-balancers-00

	Authors' Addresses

