
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-load-balancers-19

Published: 5 February 2024

Intended Status: Standards Track

Expires: 8 August 2024

Authors: M. Duke

Google

N. Banks

Microsoft

C. Huitema

Private Octopus Inc.

QUIC-LB: Generating Routable QUIC Connection IDs

Abstract

QUIC address migration allows clients to change their IP address

while maintaining connection state. To reduce the ability of an

observer to link two IP addresses, clients and servers use new

connection IDs when they communicate via different client addresses.

This poses a problem for traditional "layer-4" load balancers that

route packets via the IP address and port 4-tuple. This

specification provides a standardized means of securely encoding

routing information in the server's connection IDs so that a

properly configured load balancer can route packets with migrated

addresses correctly. As it proposes a structured connection ID

format, it also provides a means of connection IDs self-encoding

their length to aid some hardware offloads.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 August 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Notation

2. First CID octet

2.1. Config Rotation

2.2. Configuration Failover

2.3. Length Self-Description

2.4. Format

3. Load Balancing Preliminaries

3.1. Unroutable Connection IDs

3.2. Fallback Algorithms

3.3. Server ID Allocation

4. Server ID Encoding in Connection IDs

4.1. CID format

4.2. Configuration Agent Actions

4.3. Server Actions

4.3.1. Special Case: Single Pass Encryption

4.3.2. General Case: Four-Pass Encryption

4.4. Load Balancer Actions

4.4.1. Special Case: Single Pass Encryption

4.4.2. General Case: Four-Pass Encryption

5. Per-connection state

6. Additional Use Cases

6.1. Load balancer chains

6.2. Server Process Demultiplexing

6.3. Moving connections between servers

7. Version Invariance of QUIC-LB

8. Security Considerations

8.1. Attackers not between the load balancer and server

8.2. Attackers between the load balancer and server

8.3. Multiple Configuration IDs

8.4. Limited configuration scope

8.5. Stateless Reset Oracle

8.6. Connection ID Entropy

8.7. Distinguishing Attacks

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

¶

https://trustee.ietf.org/license-info

Appendix A. QUIC-LB YANG Model

A.1. Tree Diagram

Appendix B. Load Balancer Test Vectors

B.1. Unencrypted CIDs

B.2. Encrypted CIDs

Appendix C. Interoperability with DTLS over UDP

C.1. DTLS 1.0 and 1.2

C.2. DTLS 1.3

C.3. Future Versions of DTLS

Appendix D. Acknowledgments

Appendix E. Change Log

E.1. since draft-ietf-quic-load-balancers-18

E.2. since draft-ietf-quic-load-balancers-17

E.3. since draft-ietf-quic-load-balancers-16

E.4. since draft-ietf-quic-load-balancers-15

E.5. since draft-ietf-quic-load-balancers-14

E.6. since draft-ietf-quic-load-balancers-13

E.7. since draft-ietf-quic-load-balancers-12

E.8. since draft-ietf-quic-load-balancers-11

E.9. since draft-ietf-quic-load-balancers-10

E.10. since draft-ietf-quic-load-balancers-09

E.11. since draft-ietf-quic-load-balancers-08

E.12. since draft-ietf-quic-load-balancers-07

E.13. since draft-ietf-quic-load-balancers-06

E.14. since draft-ietf-quic-load-balancers-05

E.15. since draft-ietf-quic-load-balancers-04

E.16. since-draft-ietf-quic-load-balancers-03

E.17. since-draft-ietf-quic-load-balancers-02

E.18. since-draft-ietf-quic-load-balancers-01

E.19. since-draft-ietf-quic-load-balancers-00

E.20. Since draft-duke-quic-load-balancers-06

E.21. Since draft-duke-quic-load-balancers-05

E.22. Since draft-duke-quic-load-balancers-04

E.23. Since draft-duke-quic-load-balancers-03

E.24. Since draft-duke-quic-load-balancers-02

E.25. Since draft-duke-quic-load-balancers-01

E.26. Since draft-duke-quic-load-balancers-00

Authors' Addresses

1. Introduction

QUIC packets [RFC9000] usually contain a connection ID to allow

endpoints to associate packets with different address/port 4-tuples

to the same connection context. This feature makes connections

robust in the event of NAT rebinding. QUIC endpoints usually

designate the connection ID which peers use to address packets.

Server-generated connection IDs create a potential need for out-of-

band communication to support QUIC.¶

QUIC allows servers (or load balancers) to encode useful routing

information for load balancers in connection IDs. It also encourages

servers, in packets protected by cryptography, to provide additional

connection IDs to the client. This allows clients that know they are

going to change IP address or port to use a separate connection ID

on the new path, thus reducing linkability as clients move through

the world.

There is a tension between the requirements to provide routing

information and mitigate linkability. Ultimately, because new

connection IDs are in protected packets, they must be generated at

the server if the load balancer does not have access to the

connection keys. However, it is the load balancer that has the

context necessary to generate a connection ID that encodes useful

routing information. In the absence of any shared state between load

balancer and server, the load balancer must maintain a relatively

expensive table of server-generated connection IDs, and will not

route packets correctly if they use a connection ID that was

originally communicated in a protected NEW_CONNECTION_ID frame.

This specification provides common algorithms for encoding the

server mapping in a connection ID given some shared parameters. The

mapping is generally only discoverable by observers that have the

parameters, preserving unlinkability as much as possible.

As this document proposes a structured QUIC Connection ID, it also

proposes a system for self-encoding connection ID length in all

packets, so that crypto offload can efficiently obtain key

information.

While this document describes a small set of configuration

parameters to make the server mapping intelligible, the means of

distributing these parameters between load balancers, servers, and

other trusted intermediaries is out of its scope. There are numerous

well-known infrastructures for distribution of configuration.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

In this document, "client" and "server" refer to the endpoints of a

QUIC connection unless otherwise indicated. A "load balancer" is an

intermediary for that connection that does not possess QUIC

connection keys, but it may rewrite IP addresses or conduct other IP

¶

¶

¶

¶

¶

¶

¶

or UDP processing. A "configuration agent" is the entity that

determines the QUIC-LB configuration parameters for the network and

leverages some system to distribute that configuration.

Note that stateful load balancers that act as proxies, by

terminating a QUIC connection with the client and then retrieving

data from the server using QUIC or another protocol, are treated as

a server with respect to this specification.

For brevity, "Connection ID" will often be abbreviated as "CID".

1.2. Notation

All wire formats will be depicted using the notation defined in

Section 1.3 of [RFC9000].

2. First CID octet

The Connection ID construction schemes defined in this document

reserve the first octet of a CID for two special purposes: one

mandatory (config rotation) and one optional (length self-

description).

Subsequent sections of this document refer to the contents of this

octet as the "first octet."

2.1. Config Rotation

The first three bits of any connection ID MUST encode an identifier

for the configuration that the connection ID uses. This enables

incremental deployment of new QUIC-LB settings (e.g., keys).

When new configuration is distributed to servers, there will be a

transition period when connection IDs reflecting old and new

configuration coexist in the network. The rotation bits allow load

balancers to apply the correct routing algorithm and parameters to

incoming packets.

Configuration Agents SHOULD deliver new configurations to load

balancers before doing so to servers, so that load balancers are

ready to process CIDs using the new parameters when they arrive.

A Configuration Agent SHOULD NOT use a codepoint to represent a new

configuration until it takes precautions to make sure that all

connections using CIDs with an old configuration at that codepoint

have closed or transitioned.

Servers MUST NOT generate new connection IDs using an old

configuration after receiving a new one from the configuration

agent. Servers MUST send NEW_CONNECTION_ID frames that provide CIDs

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

using the new configuration, and retire CIDs using the old

configuration using the "Retire Prior To" field of that frame.

It also possible to use these bits for more long-lived distinction

of different configurations, but this has privacy implications (see

Section 8.3).

2.2. Configuration Failover

A server that is configured to use QUIC-LB might be forced to accept

new connections without having received a current configuration. A

server without QUIC-LB configuration can accept connections, but it

SHOULD generate initial connection IDs with the config rotation bits

set to 0b111 and avoid sending the client connection IDs in

NEW_CONNECTION_ID frames or the preferred_address transport

parameter. Servers in this state SHOULD use the

"disable_active_migration" transport parameter until a valid

configuration is received.

A load balancer that sees a connection ID with config rotation bits

set to 0b111 MUST route using an algorithm based solely on the

address/port 4-tuple, which is consistent well beyond the QUIC

handshake. However, a load balancer MAY observe the connection IDs

used during the handshake and populate a connection ID table that

allows the connection to survive a NAT rebinding, and reduces the

probability of connection failure due to a change in the number of

servers.

When using codepoint 0b111, all bytes but the first SHOULD have no

larger of a chance of collision as random bytes. The connection ID

SHOULD be of at least length 8 to provide 7 bytes of entropy after

the first octet with a low chance of collision. Furthermore, servers

in a pool SHOULD also use a consistent connection ID length to

simplify the load balancer's extraction of a connection ID from

short headers.

2.3. Length Self-Description

Local hardware cryptographic offload devices may accelerate QUIC

servers by receiving keys from the QUIC implementation indexed to

the connection ID. However, on physical devices operating multiple

QUIC servers, it might be impractical to efficiently lookup keys if

the connection ID varies in length and does not self-encode its own

length.

Note that this is a function of particular server devices and is

irrelevant to load balancers. As such, load balancers MAY omit this

from their configuration. However, the remaining 5 bits in the first

octet of the Connection ID are reserved to express the length of the

following connection ID, not including the first octet.

¶

¶

¶

¶

¶

¶

¶

A server not using this functionality SHOULD choose the five bits so

as to have no observable relationship to previous connection IDs

issued for that connection.

2.4. Format

Figure 1: First Octet Format

The first octet has the following fields:

Config Rotation: Indicates the configuration used to interpret the

CID.

CID Len or Random Bits: Length Self-Description (if applicable), or

random bits otherwise. Encodes the length of the Connection ID

following the First Octet.

3. Load Balancing Preliminaries

In QUIC-LB, load balancers do not generate individual connection IDs

for servers. Instead, they communicate the parameters of an

algorithm to generate routable connection IDs.

The algorithms differ in the complexity of configuration at both

load balancer and server. Increasing complexity improves obfuscation

of the server mapping.

This section describes three participants: the configuration agent,

the load balancer, and the server. For any given QUIC-LB

configuration that enables connection-ID-aware load balancing, there

must be a choice of (1) routing algorithm, (2) server ID allocation

strategy, and (3) algorithm parameters.

Fundamentally, servers generate connection IDs that encode their

server ID. Load balancers decode the server ID from the CID in

incoming packets to route to the correct server.

There are situations where a server pool might be operating two or

more routing algorithms or parameter sets simultaneously. The load

balancer uses the first two bits of the connection ID to multiplex

incoming DCIDs over these schemes (see Section 2.1).

¶

First Octet {

 Config Rotation (3),

 CID Len or Random Bits (5),

}

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Unroutable Connection IDs

QUIC-LB servers will generate Connection IDs that are decodable to

extract a server ID in accordance with a specified algorithm and

parameters. However, QUIC often uses client-generated Connection IDs

prior to receiving a packet from the server.

These client-generated CIDs might not conform to the expectations of

the routing algorithm and therefore not be routable by the load

balancer. Those that are not routable are "unroutable DCIDs" and

receive similar treatment regardless of why they're unroutable:

The config rotation bits (Section 2.1) may not correspond to an

active configuration. Note: a packet with a DCID with config ID

codepoint 0b111 (see Section 2.2) is always routable.

The DCID might not be long enough for the decoder to process.

The extracted server mapping might not correspond to an active

server.

All other DCIDs are routable.

Load balancers MUST forward packets with routable DCIDs to a server

in accordance with the chosen routing algorithm. Exception: if the

load balancer can parse the QUIC packet and makes a routing decision

depending on the contents (e.g., the SNI in a TLS client hello), it

MAY route in accordance with this instead. However, load balancers

MUST always route long header packets it cannot parse in accordance

with the DCID (see Section 7).

Load balancers SHOULD drop short header packets with unroutable

DCIDs.

When forwarding a packet with a long header and unroutable DCID,

load balancers MUST use a fallback algorithm as specified in

Section 3.2.

Load balancers MAY drop packets with long headers and unroutable

DCIDs if and only if it knows that the encoded QUIC version does not

allow an unroutable DCID in a packet with that signature. For

example, a load balancer can safely drop a QUIC version 1 Handshake

packet with an unroutable DCID, as a version 1 Handshake packet sent

to a QUIC-LB routable server will always have a server-generated

routable CID. The prohibition against dropping packets with long

headers remains for unknown QUIC versions.

Furthermore, while the load balancer function MUST NOT drop packets,

the device might implement other security policies, outside the

scope of this specification, that might force a drop.

¶

¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

Servers that receive packets with unroutable CIDs MUST use the

available mechanisms to induce the client to use a routable CID in

future packets. In QUIC version 1, this requires using a routable

CID in the Source CID field of server-generated long headers.

3.2. Fallback Algorithms

There are conditions described below where a load balancer routes a

packet using a "fallback algorithm." It can choose any algorithm,

without coordination with the servers, but the algorithm SHOULD be

deterministic over short time scales so that related packets go to

the same server. The design of this algorithm SHOULD consider the

version-invariant properties of QUIC described in [RFC8999] to

maximize its robustness to future versions of QUIC.

A fallback algorithm MUST NOT make the routing behavior dependent on

any bits in the first octet of the QUIC packet header, except the

first bit, which indicates a long header. All other bits are QUIC

version-dependent and intermediaries SHOULD NOT base their design on

version-specific templates.

For example, one fallback algorithm might convert a unroutable DCID

to an integer and divided by the number of servers, with the modulus

used to forward the packet. The number of servers is usually

consistent on the time scale of a QUIC connection handshake. Another

might simply hash the address/port 4-tuple. See also Section 7.

3.3. Server ID Allocation

Load Balancer configurations include a mapping of server IDs to

forwarding addresses. The corresponding server configurations

contain one or more unique server IDs.

The configuration agent chooses a server ID length for each

configuration that MUST be at least one octet.

A QUIC-LB configuration MAY significantly over-provision the server

ID space (i.e., provide far more codepoints than there are servers)

to increase the probability that a randomly generated Destination

Connection ID is unroutable.

The configuration agent SHOULD provide a means for servers to

express the number of server IDs it can usefully employ, because a

single routing address actually corresponds to multiple server

entities (see Section 6.1).

Conceptually, each configuration has its own set of server ID

allocations, though two static configurations with identical server

ID lengths MAY use a common allocation between them.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A server encodes one of its assigned server IDs in any CID it

generates using the relevant configuration.

4. Server ID Encoding in Connection IDs

4.1. CID format

All connection IDs use the following format:

Figure 2: CID Format

The First Octet field serves one or two purposes, as defined in

Section 2.

The Server ID field encodes the information necessary for the load

balancer to route a packet with that connection ID. It is often

encrypted.

The server uses the Nonce field to make sure that each connection ID

it generates is unique, even though they all use the same Server ID.

4.2. Configuration Agent Actions

The configuration agent assigns a server ID to every server in its

pool in accordance with Section 3.3, and determines a server ID

length (in octets) sufficiently large to encode all server IDs,

including potential future servers.

Each configuration specifies the length of the Server ID and Nonce

fields, with limits defined for each algorithm.

Optionally, it also defines a 16-octet key. Note that failure to

define a key means that observers can determine the assigned server

of any connection, significantly increasing the linkability of QUIC

address migration.

The nonce length MUST be at least 4 octets. The server ID length

MUST be at least 1 octet.

¶

¶

QUIC-LB Connection ID {

 First Octet (8),

 Plaintext Block (40..152),

}

Plaintext Block {

 Server ID (8..),

 Nonce (32..),

}

¶

¶

¶

¶

¶

¶

¶

As QUIC version 1 limits connection IDs to 20 octets, the server ID

and nonce lengths MUST sum to 19 octets or less.

4.3. Server Actions

The server writes the first octet and its server ID into their

respective fields.

If there is no key in the configuration, the server MUST fill the

Nonce field with bytes that have no observable relationship to the

field in previously issued connection IDs. If there is a key, the

server fills the nonce field with a nonce of its choosing. See

Section 8.6 for details.

The server MAY append additional bytes to the connection ID, up to

the limit specified in that version of QUIC, for its own use. These

bytes MUST NOT provide observers with any information that could

link two connection IDs to the same connection, client, or server.

In particular, all servers using a configuration MUST consistently

add the same length to each connection ID, to preserve the

linkability objectives of QUIC-LB. Any additional bytes SHOULD NOT

provide any observable correlation to previous connection IDs for

that connection (e.g., the bytes can be chosen at random).

If there is no key in the configuration, the Connection ID is

complete. Otherwise, there are further steps, as described in the

two following subsections.

Encryption below uses the AES-128-ECB cipher [NIST-AES-ECB]. Future

standards could add new algorithms that use other ciphers to provide

cryptographic agility in accordance with [RFC7696]. QUIC-LB

implementations SHOULD be extensible to support new algorithms.

4.3.1. Special Case: Single Pass Encryption

When the nonce length and server ID length sum to exactly 16 octets,

the server MUST use a single-pass encryption algorithm. All

connection ID octets except the first form an AES-ECB block. This

block is encrypted once, and the result forms the second through

seventeenth most significant bytes of the connection ID.

4.3.2. General Case: Four-Pass Encryption

Any other field length requires four passes for encryption and at

least three for decryption. To understand this algorithm, it is

useful to define four functions that minimize the amount of bit-

shifting necessary in the event that there are an odd number of

octets.

¶

¶

¶

¶

¶

¶

¶

¶

When configured with both a key, and a nonce length and server ID

length that sum to any number other than 16, the server MUST follow

the algorith below to encrypt the connection ID.

4.3.2.1. Overview

The 4-pass algorithm is a four-round Feistel Network with the round

function being AES-ECB. Most modern applications of Feistel Networks

have more than four rounds. The implications of this choice, which

is meant to limit the per-packet compute overhead at load balancers,

are discussed in Section 8.7.

The server concatenates the server ID and nonce into a single field,

which is then split into equal halves. In successive passes, one of

these halves is expanded into a 16B plaintext, encrypted with AES-

ECB, and the result XORed with the other half. The diagram below

shows the conceptual processing of a plaintext server ID and nonce

into a connection ID. 'FO' stands for 'First Octet'.

FO Server ID Nonce

left_0 right_0

AES-ECB

right_1
AES-ECB

left_1
AES-ECB

AES-ECB

left_2 right_2

FO Ciphertext

¶

¶

¶

¶

4.3.2.2. Useful functions

Two functions are useful to define:

The expand(length, pass, input_bytes) function concatenates three

arguments and outputs 16 zero-padded octets.

The output of expand is as follows:

in which:

'input_bytes' is drawn from one half of the plaintext. It forms

the N most significant octets of the output, where N is half the

'length' argument, rounded up, and thus a number between 3 and

10, inclusive.

'Zeropad' is a set of 14-N octets set to zero.

'length' is an 8-bit integer that reports the sum of the

configured nonce length and server id length in octets, and forms

the fifteenth octet of the output. The 'length' argument MUST NOT

exceed 19 and MUST NOT be less than 5.

'pass' is an 8-bit integer that reports the 'pass' argument of

the algorithm, and forms the sixteenth (least significant) octet

of the output. It guarantees that the cryptographic input of

every pass of the algorithm is unique.

For example,

Similarly, truncate(input, n) returns the first n octets of 'input'.

Let 'half_len' be equal to 'plaintext_len' / 2, rounded up.

¶

¶

¶

ExpandResult {

 input_bytes(...),

 ZeroPad(...),

 length(8),

 pass(8)

}

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

expand(0x06, 0x02, 0xaaba3c) = 0xaaba3c00000000000000000000000602¶

¶

truncate(0x2094842ca49256198c2deaa0ba53caa0, 4) = 0x2094842c¶

¶

4.3.2.3. Algorithm Description

The example at the end of this section helps to clarify the steps

described below.

The server concatenates the server ID and nonce to create

plaintext_CID. The length of the result in octets is

plaintext_len.

The server splits plaintext_CID into components left_0 and

right_0 of equal length half_len. If plaintext_len is odd,

right_0 clears its first four bits, and left_0 clears its last

four bits. For example, 0x7040b81b55ccf3 would split into a

left_0 of 0x7040b810 and right_0 of 0x0b55ccf3.

Encrypt the result of expand(plaintext_len, 1, left_0) using an

AES-ECB-128 cipher to obtain a ciphertext.

XOR the first half_len octets of the ciphertext with right_0 to

form right_1. Steps 3 and 4 can be summarized as

If the plaintext_len is odd, clear the first four bits of

right_1.

Repeat steps 3 and 4, but use them to compute left_1 by

expanding and encrypting right_1 with pass = 2, and XOR the

results with left_0.

If the plaintext_len is odd, clear the last four bits of

left_1.

Repeat steps 3 and 4, but use them to compute right_2 by

expanding and encrypting left_1 with pass = 3, and XOR the

results with right_1.

If the plaintext_len is odd, clear the first four bits of

right_2.

Repeat steps 3 and 4, but use them to compute left_2 by

expanding and encrypting right_2 with pass = 4, and XOR the

results with left_1.

¶

1.

¶

2.

¶

3.

¶

4.

¶

 result = AES_ECB(key, expand(plaintext_len, 1, left_0))

 right_1 = XOR(right_0, truncate(result, half_len))

¶

5.

¶

6.

¶

 result = AES_ECB(key, expand(plaintext_len, 2, right_1))

 left_1 = XOR(left_0, truncate(result, half_len))

¶

7.

¶

8.

¶

 result = AES_ECB(key, expand(plaintext_len, 3, left_1))

 right_2 = XOR(right_1, truncate(result, half_len))

¶

9.

¶

10.

¶

If the plaintext_len is odd, clear the last four bits of

left_2.

The server concatenates left_2 with right_2 to form the

ciphertext CID, which it appends to the first octet. If

plaintext_len is odd, the four least significant bits of left_2

and four most significant bits of right_2, which are all zero,

are stripped off before concatenation to make the resulting

ciphertext the same length as the original plaintext.

4.3.2.4. Encryption Example

The following example executes the steps for the provided inputs.

Note that the plaintext is of odd octet length, so the middle octet

will be split evenly left_0 and right_0.

 result = AES_ECB(key, expand(plaintext_len, 4, right_2))

 left_2 = XOR(left_1, truncate(result, half_len))

¶

11.

¶

12.

¶

¶

server_id = 0x31441a

nonce = 0x9c69c275

key = 0xfdf726a9893ec05c0632d3956680baf0

// step 1

plaintext_CID = 0x31441a9c69c275

plaintext_len = 7

// step 2

hash_len = 4

left_0 = 0x31441a90

right_0 = 0x0c69c275

// step 3

aes_input = 0x31441a90000000000000000000000701

aes_output = 0xa255dd8cdacf01948d3a848c3c7fee23

// step 4

right_1 = 0x0c69c275 ^ 0xa255dd8c = 0xae3c1ff9

// step 5 (clear bits)

right_1 = 0x0e8c1ff9

// step 6

aes_input = 0x0e8c1ff9000000000000000000000702

aes_output = 0xe5e452cb9e1bedb0b2bf830506bf4c4e

left_1 = 0x31441a90 ^ 0xe5e452cb = 0xd4a0485b

// step 7 (clear bits)

left_1 = 0xd4a04850

// step 8

aes_input = 0xd4a04850000000000000000000000703

aes_output = 0xb7821ab3024fed0913b6a04d18e3216f

right_2 = 0x0e8c1ff9 ^ 0xb7821ab3 = 0xb9be054a

// step 9 (clear bits)

right_2 = 0x09be054a

// step 10

aes_input = 0x09be054a000000000000000000000704

aes_output = 0xb334357cfdf81e3fafe180154eaf7378

left_2 = 0xd4a04850 ^ 0xb3e4357c = 0x67947d2c

// step 11 (clear bits)

left_2 = 0x67947d20

// step 12

cid = first_octet || left_2 || right_2 = 0x0767947d29be054a

¶

4.4. Load Balancer Actions

On each incoming packet, the load balancer extracts consecutive

octets, beginning with the second octet. If there is no key, the

first octets correspond to the server ID.

If there is a key, the load balancer takes one of two actions:

4.4.1. Special Case: Single Pass Encryption

If server ID length and nonce length sum to exactly 16 octets, they

form a ciphertext block. The load balancer decrypts the block using

the AES-ECB key and extracts the server ID from the most significant

bytes of the resulting plaintext.

4.4.2. General Case: Four-Pass Encryption

First, split the ciphertext CID (excluding the first octet) into its

equal- length components left_2 and right_2. Then follow the process

below:

As the load balancer has no need for the nonce, it can conclude

after 3 passes as long as the server ID is entirely contained in

left_0 (i.e., the nonce is at least as large as the server ID). If

the server ID is longer, a fourth pass is necessary:

and the load balancer has to concatenate left_0 and right_0 to

obtain the complete server ID.

5. Per-connection state

The CID allocation methods QUIC-LB defines require no per-connection

state at the load balancer. The load balancer can extract the server

¶

¶

¶

¶

 result = AES_ECB(key, expand(plaintext_len, 4, right_2))

 left_1 = XOR(left_2, truncate(result, half_len))

 if (plaintext_len_is_odd()) clear_last_bits(left_1, 4)

 result = AES_ECB(key, expand(plaintext_len, 3, left_1))

 right_1 = XOR(right_2, truncate(result, half_len))

 if (plaintext_len_is_odd()) clear_first_bits(left_1, 4)

 result = AES_ECB(key, expand(plaintext_len, 2, right_1))

 left_0 = XOR(left_1, truncate(result, half_len))

 if (plaintext_len_is_odd()) clear_last_bits(left_0, 4)

¶

¶

 result = AES_ECB(key, expand(plaintext_len, 1, left_0))

 right_0 = XOR(right_1, truncate(result, half_len))

 if (plaintext_len_is_odd()) clear_first_bits(right_0, 4)

¶

¶

ID from the connection ID of each incoming packet and route that

packet accordingly.

However, once a routing decision has been made, the load balancer

MAY associate the 4-tuple or connection ID with the decision. This

has two advantages:

The load balancer only extracts the server ID once until the 4-

tuple or connection ID changes. When the CID is encrypted, this

might reduce computational load.

Incoming Stateless Reset packets and ICMP messages are easily

routed to the correct origin server.

In addition to the increased state requirements, however, load

balancers cannot detect the CONNECTION_CLOSE frame to indicate the

end of the connection, so they rely on a timeout to delete

connection state. There are numerous considerations around setting

such a timeout.

In the event a connection ends, freeing an IP and port, and a

different connection migrates to that IP and port before the

timeout, the load balancer will misroute the different connection's

packets to the original server. A short timeout limits the

likelihood of such a misrouting.

Furthermore, if a short timeout causes premature deletion of state,

the routing is easily recoverable by decoding an incoming Connection

ID. However, a short timeout also reduces the chance that an

incoming Stateless Reset is correctly routed.

Servers MAY implement the technique described in Section 14.4.1 of

[RFC9000] in case the load balancer is stateless, to increase the

likelihood a Source Connection ID is included in ICMP responses to

Path Maximum Transmission Unit (PMTU) probes. Load balancers MAY

parse the echoed packet to extract the Source Connection ID, if it

contains a QUIC long header, and extract the Server ID as if it were

in a Destination CID.

6. Additional Use Cases

This section discusses considerations for some deployment scenarios

not implied by the specification above.

6.1. Load balancer chains

Some network architectures may have multiple tiers of low-state load

balancers, where a first tier of devices makes a routing decision to

the next tier, and so on, until packets reach the server. Although

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-14.4.1

QUIC-LB is not explicitly designed for this use case, it is possible

to support it.

If each load balancer is assigned a range of server IDs that is a

subset of the range of IDs assigned to devices that are closer to

the client, then the first devices to process an incoming packet can

extract the server ID and then map it to the correct forwarding

address. Note that this solution is extensible to arbitrarily large

numbers of load-balancing tiers, as the maximum server ID space is

quite large.

If the number of necessary server IDs per next hop is uniform, a

simple implementation would use successively longer server IDs at

each tier of load balancing, and the server configuration would

match the last tier. Load balancers closer to the client can then

treat any parts of the server ID they did not use as part of the

nonce.

6.2. Server Process Demultiplexing

QUIC servers might have QUIC running on multiple processes listening

on the same address, and have a need to demultiplex between them. In

principle, this demultiplexer is a Layer 4 load balancer, and the

guidance in Section 6.1 applies. However, in many deployments the

demultiplexer lacks the capability to perform decryption operations.

Internal server coordination is out of scope of this specification,

but this non-normative section proposes some approaches that could

work given certain server capabilities:

Some bytes of the server ID are reserved to encode the process

ID. The demultiplexer might operate based on the 4-tuple or other

legacy indicator, but the receiving server process extracts the

server ID, and if it does not match the one for that process, the

process could "toss" the packet to the correct destination

process.

Each process could register the connection IDs it generates with

the demultiplexer, which routes those connection IDs accordingly.

In a combination of the two approaches above, the demultiplexer

generally routes by 4-tuple. After a migration, the process

tosses the first flight of packets and registers the new

connection ID with the demultiplexer. This alternative limits the

bandwidth consumption of tossing and the memory footprint of a

full connection ID table.

When generating a connection ID, the server writes the process ID

to the random field of the first octet, or if this is being used

for length encoding, in an octet it appends after the ciphertext.

It then applies a keyed hash (with a key locally generated for

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

the sole use of that server). The hash result is used as a

bitmask to XOR with the bits encoding the process ID. On packet

receipt, the demultiplexer applies the same keyed hash to

generate the same mask and recoversthe process ID. (Note that

this approach is conceptually similar to QUIC header protection).

6.3. Moving connections between servers

Some deployments may transparently move a connection from one server

to another. The means of transferring connection state between

servers is out of scope of this document.

To support a handover, a server involved in the transition could

issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,

and retire CIDs associated with the old server using the "Retire

Prior To" field in that frame.

7. Version Invariance of QUIC-LB

The server ID encodings, and requirements for their handling, are

designed to be QUIC version independent (see [RFC8999]). A QUIC-LB

load balancer will generally not require changes as servers deploy

new versions of QUIC. However, there are several unlikely future

design decisions that could impact the operation of QUIC-LB.

A QUIC version might define limits on connection ID length that make

some or all of the mechanisms in this document unusable. For

example, a maximum connection ID length could be below the minimum

necessary to use all or part of this specification; or, the minimum

connection ID length could be larger than the largest value in this

specification.

Section 3.1 provides guidance about how load balancers should handle

unroutable DCIDs. This guidance, and the implementation of an

algorithm to handle these DCIDs, rests on some assumptions:

Incoming short headers do not contain DCIDs that are client-

generated.

The use of client-generated incoming DCIDs does not persist

beyond a few round trips in the connection.

While the client is using DCIDs it generated, some exposed fields

(IP address, UDP port, client-generated destination Connection

ID) remain constant for all packets sent on the same connection.

While this document does not update the commitments in [RFC8999],

the additional assumptions are minimal and narrowly scoped, and

provide a likely set of constants that load balancers can use with

minimal risk of version- dependence.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

If these assumptions are not valid, this specification is likely to

lead to loss of packets that contain unroutable DCIDs, and in

extreme cases connection failure. A QUIC version that violates the

assumptions in this section therefore cannot be safely deployed with

a load balancer that follows this specification. An updated or

alternative version of this specification might address these

shortcomings for such a QUIC version.

Some load balancers might inspect version-specific elements of

packets to make a routing decision. This might include the Server

Name Indication (SNI) extension in the TLS Client Hello. The format

and cryptographic protection of this information may change in

future versions or extensions of TLS or QUIC, and therefore this

functionality is inherently not version-invariant. Such a load

balancer, when it receives packets from an unknown QUIC version,

might misdirect initial packets to the wrong tenant. While this can

be inefficient, the design in this document preserves the ability

for tenants to deploy new versions provided they have an out-of-band

means of providing a connection ID for the client to use.

8. Security Considerations

QUIC-LB is intended to prevent linkability. Attacks would therefore

attempt to subvert this purpose.

Note that without a key for the encoding, QUIC-LB makes no attempt

to obscure the server mapping, and therefore does not address these

concerns. Without a key, QUIC-LB merely allows consistent CID

encoding for compatibility across a network infrastructure, which

makes QUIC robust to NAT rebinding. Servers that are encoding their

server ID without a key algorithm SHOULD only use it to generate new

CIDs for the Server Initial Packet and SHOULD NOT send CIDs in QUIC

NEW_CONNECTION_ID frames, except that it sends one new Connection ID

in the event of config rotation Section 2.1. Doing so might falsely

suggest to the client that said CIDs were generated in a secure

fashion.

A linkability attack would find some means of determining that two

connection IDs route to the same server. Due to the limitations of

measures at QUIC layer, there is no scheme that strictly prevents

linkability for all traffic patterns.

To see why, consider two limits. At one extreme, one client is

connected to the server pool and migrates its address. An observer

can easily link the two addresses, and there is no remedy at the

QUIC layer.

At the other extreme, a very large number of clients are connected

to each server, and they all migrate address constantly. At this

¶

¶

¶

¶

¶

¶

limit, even an unencrypted server ID encoding is unlikely to

definitively link two addresses.

Therefore, efforts to frustrate any analysis of server ID encoding

have diminishing returns. Nevertheless, this specification seeks to

minimize the probability two addresses can be linked.

8.1. Attackers not between the load balancer and server

Any attacker might open a connection to the server infrastructure

and aggressively simulate migration to obtain a large sample of IDs

that map to the same server. It could then apply analytical

techniques to try to obtain the server encoding.

An encrypted encoding provides robust protection against this. An

unencrypted one provides none.

Were this analysis to obtain the server encoding, then on-path

observers might apply this analysis to correlating different client

IP addresses.

8.2. Attackers between the load balancer and server

Attackers in this privileged position are intrinsically able to map

two connection IDs to the same server. These algorithms ensure that

two connection IDs for the same connection cannot be identified as

such as long as the server chooses the first octet and any plaintext

nonce correctly.

8.3. Multiple Configuration IDs

During the period in which there are multiple deployed configuration

IDs (see Section 2.1), there is a slight increase in linkability.

The server space is effectively divided into segments with CIDs that

have different config rotation bits. Entities that manage servers

SHOULD strive to minimize these periods by quickly deploying new

configurations across the server pool.

8.4. Limited configuration scope

A simple deployment of QUIC-LB in a cloud provider might use the

same global QUIC-LB configuration across all its load balancers that

route to customer servers. An attacker could then simply become a

customer, obtain the configuration, and then extract server IDs of

other customers' connections at will.

To avoid this, the configuration agent SHOULD issue QUIC-LB

configurations to mutually distrustful servers that have different

keys for encryption algorithms. In many cases, the load balancers

can distinguish these configurations by external IP address.

¶

¶

¶

¶

¶

¶

¶

¶

¶

However, assigning multiple entities to an IP address is

complimentary with concealing DNS requests (e.g., DoH [RFC8484]) and

the TLS Server Name Indicator (SNI) ([I-D.ietf-tls-esni]) to obscure

the ultimate destination of traffic. While the load balancer's

fallback algorithm (Section 3.2) can use the SNI to make a routing

decision on the first packet, there are three ways to route

subsequent packets:

all co-tenants can use the same QUIC-LB configuration, leaking

the server mapping to each other as described above;

co-tenants can be issued one of up to seven configurations

distinguished by the config rotation bits (Section 2.1), exposing

information about the target domain to the entire network; or

tenants can use the 0b111 codepoint in their CIDs (in which case

they SHOULD disable migration in their connections), which

neutralizes the value of QUIC-LB but preserves privacy.

When configuring QUIC-LB, administrators evaluate the privacy

tradeoff by considering the relative value of each of these

properties, given the trust model between tenants, the presence of

methods to obscure the domain name, and value of address migration

in the tenant use cases.

As the plaintext algorithm makes no attempt to conceal the server

mapping, these deployments MAY simply use a common configuration.

8.5. Stateless Reset Oracle

Section 21.9 of [RFC9000] discusses the Stateless Reset Oracle

attack. For a server deployment to be vulnerable, an attacking

client must be able to cause two packets with the same Destination

CID to arrive at two different servers that share the same

cryptographic context for Stateless Reset tokens. As QUIC-LB

requires deterministic routing of DCIDs over the life of a

connection, it is a sufficient means of avoiding an Oracle without

additional measures.

Note also that when a server starts using a new QUIC-LB config

rotation codepoint, new CIDs might not be unique with respect to

previous configurations that occupied that codepoint, and therefore

different clients may have observed the same CID and stateless reset

token. A straightforward method of managing stateless reset keys is

to maintain a separate key for each config rotation codepoint, and

replace each key when the configuration for that codepoint changes.

Thus, a server transitions from one config to another, it will be

able to generate correct tokens for connections using either type of

CID.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

8.6. Connection ID Entropy

If a server ever reuses a nonce in generating a CID for a given

configuration, it risks exposing sensitive information. Given the

same server ID, the CID will be identical (aside from a possible

difference in the first octet). This can risk exposure of the QUIC-

LB key. If two clients receive the same connection ID, they also

have each other's stateless reset token unless that key has changed

in the interim.

The encrypted mode needs to generate different cipher text for each

generated Connection ID instance to protect the Server ID. To do so,

at least four octets of the CID are reserved for a nonce that, if

used only once, will result in unique cipher text for each

Connection ID.

If servers simply increment the nonce by one with each generated

connection ID, then it is safe to use the existing keys until any

server's nonce counter exhausts the allocated space and rolls over.

To maximize entropy, servers SHOULD start with a random nonce value,

in which case the configuration is usable until the nonce value

wraps around to zero and then reaches the initial value again.

Whether or not it implements the counter method, the server MUST NOT

reuse a nonce until it switches to a configuration with new keys.

Servers are forbidden from generating linkable plaintext nonces,

because observable correlations between plaintext nonces would

provide trivial linkability between individual connections, rather

than just to a common server.

For any algorithm, configuration agents SHOULD implement an out-of-

band method to discover when servers are in danger of exhausting

their nonce space, and SHOULD respond by issuing a new

configuration. A server that has exhausted its nonces MUST either

switch to a different configuration, or if none exists, use the 4-

tuple routing config rotation codepoint.

When sizing a nonce that is to be randomly generated, the

configuration agent SHOULD consider that a server generating a N-bit

nonce will create a duplicate about every 2^(N/2) attempts, and

therefore compare the expected rate at which servers will generate

CIDs with the lifetime of a configuration.

8.7. Distinguishing Attacks

The Four Pass Encryption algorithm is structured as a 4-round

Feistel network with non-bijective round function. As such, it does

not offer a very high security level against distinguishing attacks,

as explained in [Patarin2008]. Attackers can mount these attacks if

¶

¶

¶

¶

¶

¶

¶

[NIST-AES-ECB]

[RFC8999]

[RFC9000]

[I-D.ietf-tls-esni]

they are in possession of O(SQRT(len/2)) pairs of ciphertext and

known corresponding plain text, where "len" is the sum of the

lengths of the Server ID and the Nonce.

The authors considered increasing the number of passes from 4 to 12,

which would definitely block these attacks. However, this would

require 12 round of AES decryption by load balancers accessing the

CID, a cost deemed prohibitive in the planned deployments.

The attacks described in [Patarin2008] rely on known plain text. In

a normal deployment, the plain text is only known by the server that

generates the ID and by the load balancer that decrypts the content

of the CID. Attackers would have to compensate by guesses about the

allocation of server identifiers or the generation of nonces. These

attacks are thus mitigated by making nonces hard to guess, as

specified in Section 8.6, and by rules related to mixed deployments

that use both clear text CID and encrypted CID, for example when

transitioning from clear text to encryption. Such deployments MUST

use different server ID allocations for the clear text and the

encrypted versions.

These attacks cannot be mounted against the Single Pass Encryption

algorithm.

9. IANA Considerations

There are no IANA requirements.

10. References

10.1. Normative References

Dworkin, M., "Recommendation for Block Cipher Modes

of Operation: Methods and Techniques", NIST Special

Publication 800-38A, 2021, <https://nvlpubs.nist.gov/

nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf>.

Thomson, M., "Version-Independent Properties of QUIC",

RFC 8999, DOI 10.17487/RFC8999, May 2021, <https://

www.rfc-editor.org/rfc/rfc8999>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

10.2. Informative References

Rescorla, E., Oku, K., Sullivan, N., and C. A.

Wood, "TLS Encrypted Client Hello", Work in Progress,

¶

¶

¶

¶

¶

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

[Patarin2008]

[RFC2119]

[RFC4347]

[RFC6020]

[RFC6347]

[RFC7696]

[RFC7983]

[RFC8340]

[RFC8484]

[RFC9146]

Internet-Draft, draft-ietf-tls-esni-17, 9 October 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-tls-

esni-17>.

Patarin, J., "Generic Attacks on Feistel Schemes -

Extended Version", 2008, <https://eprint.iacr.org/

2008/036.pdf>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,

<https://www.rfc-editor.org/rfc/rfc4347>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/rfc/rfc6020>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

<https://www.rfc-editor.org/rfc/rfc7696>.

Petit-Huguenin, M. and G. Salgueiro, "Multiplexing Scheme

Updates for Secure Real-time Transport Protocol (SRTP)

Extension for Datagram Transport Layer Security (DTLS)",

RFC 7983, DOI 10.17487/RFC7983, September 2016, <https://

www.rfc-editor.org/rfc/rfc7983>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/rfc/rfc8340>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/rfc/rfc8484>.

Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and

A. Kraus, "Connection Identifier for DTLS 1.2", RFC 9146,

DOI 10.17487/RFC9146, March 2022, <https://www.rfc-

editor.org/rfc/rfc9146>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17
https://eprint.iacr.org/2008/036.pdf
https://eprint.iacr.org/2008/036.pdf
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4347
https://www.rfc-editor.org/rfc/rfc6020
https://www.rfc-editor.org/rfc/rfc6020
https://www.rfc-editor.org/rfc/rfc6347
https://www.rfc-editor.org/rfc/rfc7696
https://www.rfc-editor.org/rfc/rfc7983
https://www.rfc-editor.org/rfc/rfc7983
https://www.rfc-editor.org/rfc/rfc8340
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc9146
https://www.rfc-editor.org/rfc/rfc9146

[RFC9147]
Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/rfc/rfc9147>.

Appendix A. QUIC-LB YANG Model

These YANG models conform to [RFC6020] and express a complete QUIC-

LB configuration. There is one model for the server and one for the

middlebox (i.e the load balancer and/or Retry Service).¶

https://www.rfc-editor.org/rfc/rfc9147

module ietf-quic-lb-server {

 yang-version "1.1";

 namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";

 prefix "quic-lb";

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 organization

 "IETF QUIC Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/quic>

 WG List: <quic@ietf.org>

 Authors: Martin Duke (martin.h.duke at gmail dot com)

 Nick Banks (nibanks at microsoft dot com)

 Christian Huitema (huitema at huitema.net)";

 description

 "This module enables the explicit cooperation of QUIC servers

 with trusted intermediaries without breaking important

 protocol features.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 revision "2023-07-14" {

 description

 "Updated to design in version 17 of the draft";

 reference

 "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";

 }

 container quic-lb {

 presence "The container for QUIC-LB configuration.";

 description

 "QUIC-LB container.";

 typedef quic-lb-key {

 type yang:hex-string {

 length 47;

 }

 description

 "This is a 16-byte key, represented with 47 bytes";

 }

 leaf config-id {

 type uint8 {

 range "0..6";

 }

 mandatory true;

 description

 "Identifier for this CID configuration.";

 }

 leaf first-octet-encodes-cid-length {

 type boolean;

 default false;

 description

 "If true, the six least significant bits of the first

 CID octet encode the CID length minus one.";

 }

 leaf server-id-length {

 type uint8 {

 range "1..15";

 }

 must '. <= (19 - ../nonce-length)' {

 error-message

 "Server ID and nonce lengths must sum

 to no more than 19.";

 }

 mandatory true;

 description

 "Length (in octets) of a server ID. Further range-limited

 by nonce-length.";

 }

 leaf nonce-length {

 type uint8 {

 range "4..18";

 }

 mandatory true;

 description

 "Length, in octets, of the nonce. Short nonces mean there

 will be frequent configuration updates.";

 }

 leaf cid-key {

 type quic-lb-key;

 description

 "Key for encrypting the connection ID.";

 }

 leaf server-id {

 type yang:hex-string;

 must "string-length(.) = 3 * ../../server-id-length - 1";

 mandatory true;

 description

 "An allocated server ID";

 }

 }

}

¶

module ietf-quic-lb-middlebox {

 yang-version "1.1";

 namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";

 prefix "quic-lb";

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 organization

 "IETF QUIC Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/quic>

 WG List: <quic@ietf.org>

 Authors: Martin Duke (martin.h.duke at gmail dot com)

 Nick Banks (nibanks at microsoft dot com)

 Christian Huitema (huitema at huitema.net)";

 description

 "This module enables the explicit cooperation of QUIC servers

 with trusted intermediaries without breaking important

 protocol features.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 revision "2021-02-11" {

 description

 "Updated to design in version 13 of the draft";

 reference

 "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";

 }

 container quic-lb {

 presence "The container for QUIC-LB configuration.";

 description

 "QUIC-LB container.";

 typedef quic-lb-key {

 type yang:hex-string {

 length 47;

 }

 description

 "This is a 16-byte key, represented with 47 bytes";

 }

 list cid-configs {

 key "config-rotation-bits";

 description

 "List up to three load balancer configurations";

 leaf config-rotation-bits {

 type uint8 {

 range "0..2";

 }

 mandatory true;

 description

 "Identifier for this CID configuration.";

 }

 leaf server-id-length {

 type uint8 {

 range "1..15";

 }

 must '. <= (19 - ../nonce-length)' {

 error-message

 "Server ID and nonce lengths must sum to

 no more than 19.";

 }

 mandatory true;

 description

 "Length (in octets) of a server ID. Further range-limited

 by nonce-length.";

 }

 leaf cid-key {

 type quic-lb-key;

 description

 "Key for encrypting the connection ID.";

 }

 leaf nonce-length {

 type uint8 {

 range "4..18";

 }

 mandatory true;

 description

 "Length, in octets, of the nonce. Short nonces mean there

 will be frequent configuration updates.";

 }

 list server-id-mappings {

 key "server-id";

 description "Statically allocated Server IDs";

 leaf server-id {

 type yang:hex-string;

 must "string-length(.) = 3 * ../../server-id-length - 1";

 mandatory true;

 description

 "An allocated server ID";

 }

 leaf server-address {

 type inet:ip-address;

 mandatory true;

 description

 "Destination address corresponding to the server ID";

 }

 }

 }

 }

}

¶

A.1. Tree Diagram

This summary of the YANG models uses the notation in [RFC8340].

Appendix B. Load Balancer Test Vectors

This section uses the following abbreviations:

In all cases, the server is configured to encode the CID length.

B.1. Unencrypted CIDs

B.2. Encrypted CIDs

The key for all of these examples is

8f95f09245765f80256934e50c66207f. The test vectors include an

example that uses the 16-octet single-pass special case, as well as

an instance where the server ID length exceeds the nonce length,

requiring a fourth decryption pass.

¶

module: ietf-quic-lb-server

 +--rw quic-lb!

 +--rw config-id uint8

 +--rw first-octet-encodes-cid-length? boolean

 +--rw server-id-length uint8

 +--rw nonce-length uint8

 +--rw cid-key? quic-lb-key

 +--rw server-id yang:hex-string

¶

module: ietf-quic-lb-middlebox

 +--rw quic-lb!

 +--rw cid-configs* [config-rotation-bits]

 | +--rw config-rotation-bits uint8

 | +--rw server-id-length uint8

 | +--rw cid-key? quic-lb-key

 | +--rw nonce-length uint8

 | +--rw server-id-mappings* [server-id]

 | +--rw server-id yang:hex-string

 | +--rw server-address inet:ip-address

¶

¶

cid Connection ID

cr_bits Config Rotation Bits

LB Load Balancer

sid Server ID

¶

¶

cr_bits sid nonce cid

0 c4605e 4504cc4f 07c4605e4504cc4f

1 350d28b420 3487d970b 20a350d28b4203487d970b

¶

¶

Appendix C. Interoperability with DTLS over UDP

Some environments may contain DTLS traffic as well as QUIC operating

over UDP, which may be hard to distinguish.

In most cases, the packet parsing rules above will cause a QUIC-LB

load balancer to route DTLS traffic in an appropriate way. DTLS 1.3

implementations that use the connection_id extension [RFC9146] might

use the techniques in this document to generate connection IDs and

achieve robust routability for DTLS associations if they meet a few

additional requirements. This non-normative appendix describes this

interaction.

C.1. DTLS 1.0 and 1.2

DTLS 1.0 [RFC4347] and 1.2 [RFC6347] use packet formats that a QUIC-

LB router will interpret as short header packets with CIDs that

request 4-tuple routing. As such, they will route such packets

consistently as long as the 4-tuple does not change. Note that DTLS

1.0 has been deprecated by the IETF.

The first octet of every DTLS 1.0 or 1.2 datagram contains the

content type. A QUIC-LB load balancer will interpret any content

type less than 128 as a short header packet, meaning that the

subsequent octets should contain a connection ID.

Existing TLS content types comfortably fit in the range below 128.

Assignment of codepoints greater than 64 would require coordination

in accordance with [RFC7983], and anyway would likely create

problems demultiplexing DTLS and version 1 of QUIC. Therefore, this

document believes it is extremely unlikely that TLS content types of

128 or greater will be assigned. Nevertheless, such an assignment

would cause a QUIC-LB load balancer to interpret the packet as a

QUIC long header with an essentially random connection ID, which is

likely to be routed irregularly.

The second octet of every DTLS 1.0 or 1.2 datagram is the bitwise

complement of the DTLS Major version (i.e. version 1.x = 0xfe). A

QUIC-LB load balancer will interpret this as a connection ID that

requires 4-tuple based load balancing, meaning that the routing will

be consistent as long as the 4-tuple remains the same.

cr_bits sid nonce cid

0 ed793a ee080dbf 0720b1d07b359d3c

1 ed793a51d49b8f5fab65 ee080dbf48

 2fcc381bc74cb4fbad2823a3d1f8fed2

2 ed793a51d49b8f5f ee080dbf48c0d1e5

 504dd2d05a7b0de9b2b9907afb5ecf8cc3

3 ed793a51d49b8f5fab ee080dbf48c0d1e55d

 125779c9cc86beb3a3a4a3ca96fce4bfe0cdbc

¶

¶

¶

¶

¶

¶

¶

[RFC9146] defines an extension to add connection IDs to DTLS 1.2.

Unfortunately, a QUIC-LB load balancer will not correctly parse the

connection ID and will continue 4-tuple routing. An modified QUIC-LB

load balancer that correctly identifies DTLS and parses a DTLS 1.2

datagram for the connection ID is outside the scope of this

document.

C.2. DTLS 1.3

DTLS 1.3 [RFC9147] changes the structure of datagram headers in

relevant ways.

Handshake packets continue to have a TLS content type in the first

octet and 0xfe in the second octet, so they will be 4-tuple routed,

which should not present problems for likely NAT rebinding or

address change events.

Non-handshake packets always have zero in their most significant bit

and will therefore always be treated as QUIC short headers. If the

connection ID is present, it follows in the succeeding octets.

Therefore, a DTLS 1.3 association where the server utilizes

Connection IDs and the encodings in this document will be routed

correctly in the presence of client address and port changes.

However, if the client does not include the connection_id extension

in its ClientHello, the server is unable to use connection IDs. In

this case, non- handshake packets will appear to contain random

connection IDs and be routed randomly. Thus, unmodified QUIC-LB load

balancers will not work with DTLS 1.3 if the client does not

advertise support for connection IDs, or the server does not request

the use of a compliant connection ID.

A QUIC-LB load balancer might be modified to identify DTLS 1.3

packets and correctly parse the fields to identify when there is no

connection ID and revert to 4-tuple routing, removing the server

requirement above. However, such a modification is outside the scope

of this document, and classifying some packets as DTLS might be

incompatible with future versions of QUIC.

C.3. Future Versions of DTLS

As DTLS does not have an IETF consensus document that defines what

parts of DTLS will be invariant in future versions, it is difficult

to speculate about the applicability of this section to future

versions of DTLS.

Appendix D. Acknowledgments

Manasi Deval, Erik Fuller, Toma Gavrichenkov, Jana Iyengar, Subodh

Iyengar, Stefan Kolbl, Ladislav Lhotka, Jan Lindblad, Ling Tao Nju,

¶

¶

¶

¶

¶

¶

¶

Ilari Liusvaara, Kazuho Oku, Udip Pant, Ian Swett, Andy Sykes,

Martin Thomson, Dmitri Tikhonov, Victor Vasiliev, and William Zeng

Ke all provided useful input to this document.

Appendix E. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

E.1. since draft-ietf-quic-load-balancers-18

Rearranged the output of the expand function to reduce CPU load

of decrypt

E.2. since draft-ietf-quic-load-balancers-17

fixed regressions in draft-17 publication

E.3. since draft-ietf-quic-load-balancers-16

added a config ID bit (now there are 3).

E.4. since draft-ietf-quic-load-balancers-15

aasvg fixes.

E.5. since draft-ietf-quic-load-balancers-14

Revised process demultiplexing text

Restored lost text in Security Considerations

Editorial comments from Martin Thomson.

Tweaked 4-pass algorithm to avoid accidental plaintext

similarities

E.6. since draft-ietf-quic-load-balancers-13

Incorporated Connection ID length in argument of truncate

function

Added requirements for codepoint 0b11.

Describe Distinguishing Attack in Security Considerations.

Added non-normative language about server process demultiplexers

E.7. since draft-ietf-quic-load-balancers-12

Separated Retry Service design into a separate draft

¶

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

E.8. since draft-ietf-quic-load-balancers-11

Fixed mistakes in test vectors

E.9. since draft-ietf-quic-load-balancers-10

Refactored algorithm descriptions; made the 4-pass algorithm

easier to implement

Revised test vectors

Split YANG model into a server and middlebox version

E.10. since draft-ietf-quic-load-balancers-09

Renamed "Stream Cipher" and "Block Cipher" to "Encrypted Short"

and "Encrypted Long"

Added section on per-connection state

Changed "Encrypted Short" to a 4-pass algorithm.

Recommended a random initial nonce when incrementing.

Clarified what SNI LBs should do with unknown QUIC versions.

E.11. since draft-ietf-quic-load-balancers-08

Eliminate Dynamic SID allocation

Eliminated server use bytes

E.12. since draft-ietf-quic-load-balancers-07

Shortened SSCID nonce minimum length to 4 bytes

Removed RSCID from Retry token body

Simplified CID formats

Shrunk size of SID table

E.13. since draft-ietf-quic-load-balancers-06

Added interoperability with DTLS

Changed "non-compliant" to "unroutable"

Changed "arbitrary" algorithm to "fallback"

Revised security considerations for mistrustful tenants

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Added retry service considerations for non-Initial packets

E.14. since draft-ietf-quic-load-balancers-05

Added low-config CID for further discussion

Complete revision of shared-state Retry Token

Added YANG model

Updated configuration limits to ensure CID entropy

Switched to notation from quic-transport

E.15. since draft-ietf-quic-load-balancers-04

Rearranged the shared-state retry token to simplify token

processing

More compact timestamp in shared-state retry token

Revised server requirements for shared-state retries

Eliminated zero padding from the test vectors

Added server use bytes to the test vectors

Additional compliant DCID criteria

E.16. since-draft-ietf-quic-load-balancers-03

Improved Config Rotation text

Added stream cipher test vectors

Deleted the Obfuscated CID algorithm

E.17. since-draft-ietf-quic-load-balancers-02

Replaced stream cipher algorithm with three-pass version

Updated Retry format to encode info for required TPs

Added discussion of version invariance

Cleaned up text about config rotation

Added Reset Oracle and limited configuration considerations

Allow dropped long-header packets for known QUIC versions

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

E.18. since-draft-ietf-quic-load-balancers-01

Test vectors for load balancer decoding

Deleted remnants of in-band protocol

Light edit of Retry Services section

Discussed load balancer chains

E.19. since-draft-ietf-quic-load-balancers-00

Removed in-band protocol from the document

E.20. Since draft-duke-quic-load-balancers-06

Switch to IETF WG draft.

E.21. Since draft-duke-quic-load-balancers-05

Editorial changes

Made load balancer behavior independent of QUIC version

Got rid of token in stream cipher encoding, because server might

not have it

Defined "non-compliant DCID" and specified rules for handling

them.

Added psuedocode for config schema

E.22. Since draft-duke-quic-load-balancers-04

Added standard for retry services

E.23. Since draft-duke-quic-load-balancers-03

Renamed Plaintext CID algorithm as Obfuscated CID

Added new Plaintext CID algorithm

Updated to allow 20B CIDs

Added self-encoding of CID length

E.24. Since draft-duke-quic-load-balancers-02

Added Config Rotation

Added failover mode

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Tweaks to existing CID algorithms

Added Block Cipher CID algorithm

Reformatted QUIC-LB packets

E.25. Since draft-duke-quic-load-balancers-01

Complete rewrite

Supports multiple security levels

Lightweight messages

E.26. Since draft-duke-quic-load-balancers-00

Converted to markdown

Added variable length connection IDs

Authors' Addresses

Martin Duke

Google

Email: martin.h.duke@gmail.com

Nick Banks

Microsoft

Email: nibanks@microsoft.com

Christian Huitema

Private Octopus Inc.

Email: huitema@huitema.net

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

mailto:martin.h.duke@gmail.com
mailto:nibanks@microsoft.com
mailto:huitema@huitema.net

	QUIC-LB: Generating Routable QUIC Connection IDs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Notation

	2. First CID octet
	2.1. Config Rotation
	2.2. Configuration Failover
	2.3. Length Self-Description
	2.4. Format

	3. Load Balancing Preliminaries
	3.1. Unroutable Connection IDs
	3.2. Fallback Algorithms
	3.3. Server ID Allocation

	4. Server ID Encoding in Connection IDs
	4.1. CID format
	4.2. Configuration Agent Actions
	4.3. Server Actions
	4.3.1. Special Case: Single Pass Encryption
	4.3.2. General Case: Four-Pass Encryption
	4.3.2.1. Overview
	4.3.2.2. Useful functions
	4.3.2.3. Algorithm Description
	4.3.2.4. Encryption Example

	4.4. Load Balancer Actions
	4.4.1. Special Case: Single Pass Encryption
	4.4.2. General Case: Four-Pass Encryption

	5. Per-connection state
	6. Additional Use Cases
	6.1. Load balancer chains
	6.2. Server Process Demultiplexing
	6.3. Moving connections between servers

	7. Version Invariance of QUIC-LB
	8. Security Considerations
	8.1. Attackers not between the load balancer and server
	8.2. Attackers between the load balancer and server
	8.3. Multiple Configuration IDs
	8.4. Limited configuration scope
	8.5. Stateless Reset Oracle
	8.6. Connection ID Entropy
	8.7. Distinguishing Attacks

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. QUIC-LB YANG Model
	A.1. Tree Diagram

	Appendix B. Load Balancer Test Vectors
	B.1. Unencrypted CIDs
	B.2. Encrypted CIDs

	Appendix C. Interoperability with DTLS over UDP
	C.1. DTLS 1.0 and 1.2
	C.2. DTLS 1.3
	C.3. Future Versions of DTLS

	Appendix D. Acknowledgments
	Appendix E. Change Log
	E.1. since draft-ietf-quic-load-balancers-18
	E.2. since draft-ietf-quic-load-balancers-17
	E.3. since draft-ietf-quic-load-balancers-16
	E.4. since draft-ietf-quic-load-balancers-15
	E.5. since draft-ietf-quic-load-balancers-14
	E.6. since draft-ietf-quic-load-balancers-13
	E.7. since draft-ietf-quic-load-balancers-12
	E.8. since draft-ietf-quic-load-balancers-11
	E.9. since draft-ietf-quic-load-balancers-10
	E.10. since draft-ietf-quic-load-balancers-09
	E.11. since draft-ietf-quic-load-balancers-08
	E.12. since draft-ietf-quic-load-balancers-07
	E.13. since draft-ietf-quic-load-balancers-06
	E.14. since draft-ietf-quic-load-balancers-05
	E.15. since draft-ietf-quic-load-balancers-04
	E.16. since-draft-ietf-quic-load-balancers-03
	E.17. since-draft-ietf-quic-load-balancers-02
	E.18. since-draft-ietf-quic-load-balancers-01
	E.19. since-draft-ietf-quic-load-balancers-00
	E.20. Since draft-duke-quic-load-balancers-06
	E.21. Since draft-duke-quic-load-balancers-05
	E.22. Since draft-duke-quic-load-balancers-04
	E.23. Since draft-duke-quic-load-balancers-03
	E.24. Since draft-duke-quic-load-balancers-02
	E.25. Since draft-duke-quic-load-balancers-01
	E.26. Since draft-duke-quic-load-balancers-00

	Authors' Addresses

