
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-quic-manageability-08

Published: 2 November 2020

Intended Status: Informational

Expires: 6 May 2021

Authors: M. Kuehlewind

Ericsson

B. Trammell

Google

Manageability of the QUIC Transport Protocol

Abstract

This document discusses manageability of the QUIC transport

protocol, focusing on caveats impacting network operations involving

QUIC traffic. Its intended audience is network operators, as well as

content providers that rely on the use of QUIC-aware middleboxes,

e.g. for load balancing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Features of the QUIC Wire Image

2.1. QUIC Packet Header Structure

2.2. Coalesced Packets

2.3. Use of Port Numbers

2.4. The QUIC handshake

2.5. Integrity Protection of the Wire Image

2.6. Connection ID and Rebinding

2.7. Packet Numbers

2.8. Version Negotiation and Greasing

3. Network-visible information about QUIC flows

3.1. Identifying QUIC traffic

3.1.1. Identifying Negotiated Version

3.1.2. Rejection of Garbage Traffic

3.2. Connection confirmation

3.3. Application Identification

3.3.1. Extracting Server Name Indication (SNI) Information

3.4. Flow association

3.5. Flow teardown

3.6. Flow symmetry measurement

3.7. Round-Trip Time (RTT) Measurement

3.7.1. Measuring initial RTT

3.7.2. Using the Spin Bit for Passive RTT Measurement

4. Specific Network Management Tasks

4.1. Stateful treatment of QUIC traffic

4.2. Passive network performance measurement and troubleshooting

4.3. Server cooperation with load balancers

4.4. DDoS Detection and Mitigation

4.5. UDP Policing

4.6. Distinguishing acknowledgment traffic

4.7. QoS support and ECMP

5. IANA Considerations

6. Security Considerations

7. Contributors

8. Acknowledgments

9. Appendix

9.1. Distinguishing IETF QUIC and Google QUIC Versions

9.2. Extracting the CRYPTO frame

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. Introduction

QUIC [QUIC-TRANSPORT] is a new transport protocol currently under

development in the IETF QUIC working group, focusing on support of

semantics as needed for HTTP/2 [QUIC-HTTP]. Based on current

deployment practices, QUIC is encapsulated in UDP and encrypted by

default. The current version of QUIC integrates TLS [QUIC-TLS] to

encrypt all payload data and most control information.

Given that QUIC is an end-to-end transport protocol, all information

in the protocol header, even that which can be inspected, is not

meant to be mutable by the network, and is therefore integrity-

protected. While less information is visible to the network than for

TCP, integrity protection can also simplify troubleshooting because

none of the nodes on the network path can modify the transport layer

information.

This document provides guidance for network operation on the

management of QUIC traffic. This includes guidance on how to

interpret and utilize information that is exposed by QUIC to the

network as well as explaining requirement and assumptions that the

QUIC protocol design takes toward the expected network treatment. It

also discusses how common network management practices will be

impacted by QUIC.

Since QUIC's wire image [WIRE-IMAGE] is integrity protected and not

modifiable on path, in-network operations are not possible without

terminating the QUIC connection, for instance using a back-to-back

proxy. Proxy operations are not in scope for this document. QUIC

proxies must be fully-fledged QUIC endpoints, implementing the

transport as defined in [QUIC-TRANSPORT] and [QUIC-TLS] as well as

proxy-relevant semantics for the application(s) running over QUIC

(e.g. HTTP/3 as defined in [QUIC-HTTP]).

Network management is not a one-size-fits-all endeavour: practices

considered necessary or even mandatory within enterprise networks

with certain compliance requirements, for example, would be

impermissible on other networks without those requirements. This

document therefore does not make any specific recommendations as to

which practices should or should not be applied; for each practice,

it describes what is and is not possible with the QUIC transport

protocol as defined.

QUIC is at the moment very much a moving target. This document

refers the state of the QUIC working group drafts as well as to

changes under discussion, via issues and pull requests in GitHub

current as of the time of writing.

¶

¶

¶

¶

¶

¶

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Features of the QUIC Wire Image

In this section, we discusses those aspects of the QUIC transport

protocol that have an impact on the design and operation of devices

that forward QUIC packets. Here, we are concerned primarily with the

unencrypted part of QUIC's wire image [WIRE-IMAGE], which we define

as the information available in the packet header in each QUIC

packet, and the dynamics of that information. Since QUIC is a

versioned protocol, the wire image of the header format can also

change from version to version. However, at least the mechanism by

which a receiver can determine which version is used and the meaning

and location of fields used in the version negotiation process is

invariant [QUIC-INVARIANTS].

This document describes only version 1 the QUIC protocol, whose wire

image is fully defined in [QUIC-TRANSPORT] and [QUIC-TLS]. Note that

features of the wire image described herein and in those documents

may change in future versions of the protocol, and cannot be used to

identify QUIC as a protocol or to infer the behavior of future

versions of QUIC. Section 9.1 provides non-normative guidance on the

identification of QUIC version 1 packets compared to other deployed

versions at the date if publication.

2.1. QUIC Packet Header Structure

QUIC packets may have either a long header, or a short header. The

first bit of the QUIC header us the Header Form bit, and indicates

which type of header is present.

The long header exposes more information. It is used during

connection establishment, including version negotiation, retry, and

0-RTT data. It contains a version number, as well as source and

destination connection IDs for grouping packets belonging to the

same flow. The definition and location of these fields in the QUIC

long header are invariant for future versions of QUIC, although

future versions of QUIC may provide additional fields in the long

header [QUIC-INVARIANTS].

Short headers are used after connection establishment, and contain

only an optional destination connection ID and the spin bit for RTT

measurement.

¶

¶

¶

¶

¶

¶

The following information is exposed in QUIC packet headers:

"fixed bit": the second most significant bit of the first octet

most QUIC packets of the current version is currently set to 1,

for demultiplexing with other UDP-encapsulated protocols.

latency spin bit: the third most significant bit of first octet

in the short packet header. The spin bit is set by endpoints such

that tracking edge transitions can be used to passively observe

end-to-end RTT. See Section 3.7.2 for further details.

header type: the long header has a 2 bit packet type field

following the Header Form and fixed bits. Header types correspond

to stages of the handshake; see Section 17.2 of [QUIC-TRANSPORT]

for details.

version number: the version number present in the long header,

and identifies the version used for that packet. Note that during

Version Negotiation (see Section 2.8, and Section 17.2.1 of

[QUIC-TRANSPORT], the version number field has a special value

(0x00000000) that identifies the packet as a Version Negotiation

packet. QUIC versions that start with 0xff are IETF drafts. QUIC

versions that start with 0x0000 are reserved for IETF consensus

documents, for example the QUIC version 1 is expected to use

version 0x00000001.

source and destination connection ID: short and long packet

headers carry a destination connection ID, a variable-length

field that can be used to identify the connection associated with

a QUIC packet, for load-balancing and NAT rebinding purposes; see

Section 4.3 and Section 2.6. Long packet headers additionally

carry a source connection ID. The source connection ID

corresponds to the destination connection ID the source would

like to have on packets sent to it, and is only present on long

packet headers. On long header packets, the length of the

connection IDs is also present; on short header packets, the

length of the destination connection ID is implicit.

length: the length of the remaining QUIC packet after the length

field, present on long headers. This field is used to implement

coalesced packets during the handshake (see Section 2.2).

token: Initial packets may contain a token, a variable-length

opaque value optionally sent from client to server, used for

validating the client's address. Retry packets also contain a

token, which can be used by the client in an Initial packet on a

subsequent connection attempt. The length of the token is

explicit in both cases.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Retry (Section 17.2.5 of [QUIC-TRANSPORT]) and Version Negotiation

(Section 17.2.1 of [QUIC-TRANSPORT]) packets are not encrypted or

obfuscated in any way. For other kinds of packets, other information

in the packet headers is cryptographically obfuscated:

packet number: All packets except Version Negotiation and Retry

packets have an associated packet number; however, this packet

number is encrypted, and therefore not of use to on-path

observers. The offset of the packet number is encoded in the

header for packets with long headers, while it is implicit

(depending on Destination Connection ID length) in short header

packets. The length of the packet number is cryptographically

obfuscated.

key phase: The Key Phase bit, present in short headers, specifies

the keys used to encrypt the packet, supporting key rotation. The

Key Phase bit is cryptographically obfuscated.

2.2. Coalesced Packets

Multiple QUIC packets may be coalesced into a UDP datagram, with a

datagram carrying one or more long header packets followed by zero

or one short header packets. When packets are coalesced, the Length

fields in the long headers are used to separate QUIC packets. The

length header field is variable length and its position in the

header is also variable depending on the length of the source and

destination connection ID. See Section 4.6 of [QUIC-TRANSPORT].

2.3. Use of Port Numbers

Applications that have a mapping for TCP as well as QUIC are

expected to use the same port number for both services. However, as

with TCP-based services, especially when application layer

information is encrypted, there is no guarantee that a specific

application will use the registered port, or the used port is

carrying traffic belonging to the respective registered service. For

example, [QUIC-TRANSPORT] specifies the use of Alt-Svc for discovery

of QUIC/HTTP services on other ports.

Further, as QUIC has a connection ID, it is also possible to

maintain multiple QUIC connections over one 5-tuple. However, if the

connection ID is not present in the packet header, all packets of

the 5-tuple belong to the same QUIC connection.

2.4. The QUIC handshake

New QUIC connections are established using a handshake, which is

distinguishable on the wire and contains some information that can

be passively observed.

¶

*

¶

*

¶

¶

¶

¶

¶

To illustrate the information visible in the QUIC wire image during

the handshake, we first show the general communication pattern

visible in the UDP datagrams containing the QUIC handshake, then

examine each of the datagrams in detail.

In the nominal case, the QUIC handshake can be recognized on the

wire through at least four datagrams we'll call "QUIC Client Hello",

"QUIC Server Hello", and "Initial Completion", and "Handshake

Completion", for purposes of this illustration, as shown in Figure

1.

Packets in the handshake belong to three separate cryptographic and

transport contexts ("Initial", which contains observable payload,

and "Handshake" and "1-RTT", which do not). QUIC packets in separate

contexts during the handshake are generally coalesced (see Section

2.2) in order to reduce the number of UDP datagrams sent during the

handshake.

As shown here, the client can send 0-RTT data as soon as it has sent

its Client Hello, and the server can send 1-RTT data as soon as it

has sent its Server Hello.

Figure 1: General communication pattern visible in the QUIC handshake

A typical handshake starts with the client sending of a QUIC Client

Hello datagram as shown in Figure 2, which elicits a QUIC Server

Hello datagram as shown in Figure 3 typically containing three

packets: an Initial packet with the Server Hello, a Handshake packet

with the rest of the server's side of the TLS handshake, and initial

1-RTT data, if present.

The content of QUIC Initial packets are encrypted using Initial

Secrets, which are derived from a per-version constant and the

client's destination connection ID; they are therefore observable by

any on-path device that knows the per-version constant; we therefore

¶

¶

¶

¶

Client Server

 | |

 +----QUIC Client Hello-------------------->|

 +----(zero or more 0RTT)------------------>|

 | |

 |<--------------------QUIC Server Hello----+

 |<---------(1RTT encrypted data starts)----+

 | |

 +----Initial Completion------------------->|

 +----(1RTT encrypted data starts)--------->|

 | |

 |<-----------------Handshake Completion----+

 | |

¶

consider these as visible in our illustration. The content of QUIC

Handshake packets are encrypted using keys established during the

initial handshake exchange, and are therefore not visible.

Initial, Handshake, and the Short Header packets transmitted after

the handshake belong to cryptographic and transport contexts. The

Initial Completion Figure 4 and the Handshake Completion Figure 5

datagrams finish these first two contexts, by sending the final

acknowledgment and finishing the transmission of CRYPTO frames.

Figure 2: Typical 1-RTT QUIC Client Hello datagram pattern

The Client Hello datagram exposes version number, source and

destination connection IDs in the clear. Information in the TLS

Client Hello frame, including any TLS Server Name Indication (SNI)

present, is obfuscated using the Initial secret. The QUIC PADDING

frame shown here may be present to ensure the Client Hello datagram

has a minimum size of 1200 octets, to mitigate the possibility of

handshake amplification. Note that the location of PADDING is

implementation-dependent, and PADDING frames may not appear in the

Initial packet in a coalesced packet.

¶

¶

+--+

| UDP header (source and destination UDP ports) |

+--+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+--+ |

| QUIC CRYPTO frame header | |

+--+ |

| TLS Client Hello (incl. TLS SNI) | |

+--+ |

| QUIC PADDING frame | |

+--+<-+

¶

Figure 3: Typical QUIC Server Hello datagram pattern

The Server Hello datagram also exposes version number, source and

destination connection IDs and information in the TLS Server Hello

message which is obfuscated using the Initial secret.

Figure 4: Typical QUIC Initial Completion datagram pattern

The Initial Completion datagram does not expose any additional

information; however, recognizing it can be used to determine that a

handshake has completed (see Section 3.2), and for three-way

handshake RTT estimation as in Section 3.7.

+--+

| UDP header (source and destination UDP ports) |

+--+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+--+ |

| QUIC CRYPTO frame header | |

+--+ |

| TLS Server Hello | |

+--+ |

| QUIC ACK frame (acknowledging client hello) | |

+--+<-+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+--+ |

| encrypted payload (presumably CRYPTO frames) | |

+--+<-+

| QUIC short header |

+--+

| 1-RTT encrypted payload |

+--+

¶

+--+

| UDP header (source and destination UDP ports) |

+--+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+--+ |

| QUIC ACK frame (acknowledging Server Hello Initial) | |

+--+<-+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+--+ |

| encrypted payload (presumably CRYPTO/ACK frames) | |

+--+<-+

| QUIC short header |

+--+

| 1-RTT encrypted payload |

+--+

¶

Figure 5: Typical QUIC Handshake Completion datagram pattern

Similar to Initial Completion, Handshake Completion also exposes no

additional information; observing it serves only to determine that

the handshake has completed.

When the client uses 0-RTT connection resumption, 0-RTT data may

also be seen in the QUIC Client Hello datagram, as shown in Figure

6.

Figure 6: Typical 0-RTT QUIC Client Hello datagram pattern

In a 0-RTT QUIC Client Hello datagram, the PADDING frame is only

present if necessary to increase the size of the datagram with 0RTT

data to at least 1200 bytes. Additional datagrams containing only 0-

RTT protected long header packets may be sent from the client to the

server after the Client Hello datagram, containing the rest of the

0-RTT data. The amount of 0-RTT protected data is limited by the

initial congestion window, typically around 10 packets [RFC6928].

+--+

| UDP header (source and destination UDP ports) |

+--+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+--+ |

| encrypted payload (presumably ACK frame) | |

+--+<-+

| QUIC short header |

+--+

| 1-RTT encrypted payload |

+--+

¶

¶

+--+

| UDP header (source and destination UDP ports) |

+--+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+--+ |

| QUIC CRYPTO frame header | |

+--+ |

| TLS Client Hello (incl. TLS SNI) | |

+--+<-+

| QUIC long header (type = 0RTT, Version, DCID, SCID) (Length)

+--+ |

| 0-rtt encrypted payload | |

+--+<-+

¶

2.5. Integrity Protection of the Wire Image

As soon as the cryptographic context is established, all information

in the QUIC header, including information exposed in the packet

header, is integrity protected. Further, information that was sent

and exposed in handshake packets sent before the cryptographic

context was established are validated later during the cryptographic

handshake. Therefore, devices on path MUST NOT change any

information or bits in QUIC packet headers, since alteration of

header information will lead to a failed integrity check at the

receiver, and can even lead to connection termination.

2.6. Connection ID and Rebinding

The connection ID in the QUIC packet headers allows routing of QUIC

packets at load balancers on other than five-tuple information,

ensuring that related flows are appropriately balanced together; and

to allow rebinding of a connection after one of the endpoint's

addresses changes - usually the client's, in the case of the HTTP

binding. Client and server negotiate connection IDs during the

handshake; typically, however, only the server will request a

connection ID for the lifetime of the connection. Connection IDs for

either endpoint may change during the lifetime of a connection, with

the new connection ID being negotiated via encrypted frames. See

Section 5.1 of [QUIC-TRANSPORT].

Server-generated connection IDs should seek to obscure any encoding,

of routing identities or any other information. Exposing the server

mapping would allow linkage of multiple IP addresses to the same

host if the server also supports migration. Furthermore, this opens

an attack vector on specific servers or pools.

The best way to obscure an encoding is to appear random to

observers, which is most rigorously achieved with encryption. Even

when encrypted, a scheme could embed the unencrypted length of the

Connection ID in the Connection ID itself, instead of remembering

it, e.g. by using the first few bits to indicate a certain size of a

well-known set of possible sizes with multiple values that indicate

the same size but are selected randomly.

[QUIC_LB] further specified possible algorithms to generate

Connection IDs at load balancers.

2.7. Packet Numbers

The packet number field is always present in the QUIC packet header;

however, it is always encrypted. The encryption key for packet

number protection on handshake packets sent before cryptographic

context establishment is specific to the QUIC version, while packet

number protection on subsequent packets uses secrets derived from

¶

¶

¶

¶

¶

the end-to-end cryptographic context. Packet numbers are therefore

not part of the wire image that is visible to on-path observers.

2.8. Version Negotiation and Greasing

Version negotiation is not protected, given the used protection

mechanism can change with the version. However, the choices provided

in the list of version in the Version Negotiation packet will be

validated as soon as the cryptographic context has been established.

Therefore any manipulation of this list will be detected and will

cause the endpoints to terminate the connection.

Also note that the list of versions in the Version Negotiation

packet may contain reserved versions. This mechanism is used to

avoid ossification in the implementation on the selection mechanism.

Further, a client may send a Initial Client packet with a reserved

version number to trigger version negotiation. In the Version

Negotiation packet the connection ID and packet number of the Client

Initial packet are reflected to provide a proof of return-

routability. Therefore changing these information will also cause

the connection to fail.

QUIC is expected to evolve rapidly, so new versions, both

experimental and IETF standard versions, will be deployed in the

Internet more often than with traditional Internet- and transport-

layer protocols. Using a particular version number to recognize

valid QUIC traffic is likely to persistently miss a fraction of QUIC

flows and completely fail in the multi-year timeframe so therefore

not recommended.

3. Network-visible information about QUIC flows

This section addresses the different kinds of observations and

inferences that can be made about QUIC flows by a passive observer

in the network based on the wire image in Section 2. Here we assume

a bidirectional observer (one that can see packets in both

directions in the sequence in which they are carried on the wire)

unless noted.

3.1. Identifying QUIC traffic

The QUIC wire image is not specifically designed to be

distinguishable from other UDP traffic.

The only application binding defined by the IETF QUIC WG is HTTP/3

[QUIC-HTTP] at the time of this writing; however, many other

applications are currently being defined and deployed over QUIC, so

an assumption that all QUIC traffic is HTTP/3 is not valid. HTTP

over QUIC uses UDP port 443 by default, although URLs referring to

resources available over HTTP over QUIC may specify alternate port

¶

¶

¶

¶

¶

¶

numbers. Simple assumptions about whether a given flow is using QUIC

based upon a UDP port number may therefore not hold; see also

[RFC7605] section 5.

While the second most significant bit (0x40) of the first octet is

set to 1 in most QUIC packets of the current version (see Section

2.1), this method of recognizing QUIC traffic is NOT RECOMMENDED.

First, it only provides one bit of information and is quite prone to

collide with UDP-based protocols other than those that this static

bit is meant to allow multiplexing with. Second, this feature of the

wire image is not invariant [QUIC-INVARIANTS] and may change in

future versions of the protocol, or even be negotiated after

handshake via future transport parameters.

3.1.1. Identifying Negotiated Version

An in-network observer assuming that a set of packets belongs to a

QUIC flow can infer the version number in use by observing the

handshake: an Initial packet with a given version from a client to

which a server responds with an Initial packet with the same version

implies acceptance of that version.

Negotiated version cannot be identified for flows for which a

handshake is not observed, such as in the case of connection

migration; however, these flows can be associated with flows for

which a version has been identified; see Section 3.4.

This document focuses on QUIC Version 1, and this section applies

only to packets belonging to Version 1 QUIC flows; for purposes of

on-path observation, it assumes that these packets have been

identified as such through the observation of a version negotiation.

3.1.2. Rejection of Garbage Traffic

A related question is whether a first packet of a given flow on

known QUIC-associated port is a valid QUIC packet, in order to

support in-network filtering of garbage UDP packets (reflection

attacks, random backscatter). While heuristics based on the first

byte of the packet (packet type) could be used to separate valid

from invalid first packet types, the deployment of such heuristics

is not recommended, as packet types may have different meanings in

future versions of the protocol.

3.2. Connection confirmation

Connection establishment uses Initial, Handshake, and Retry packets

containing a TLS handshake. Connection establishment can therefore

be detected using heuristics similar to those used to detect TLS

over TCP. A client using 0-RTT connection may also send data packets

in 0-RTT Protected packets directly after the Initial packet

¶

¶

¶

¶

¶

¶

containing the TLS Client Hello. Since these packets may be

reordered in the network, note that 0-RTT Protected data packets may

be seen before the Initial packet.

Note that clients send Initial packets before servers do, servers

send Handshake packets before clients do, and only clients send

Initial packets with tokens, so the sides of a connection can be

generally be confirmed by an on-path observer. An attempted

connection after Retry can be detected by correlating the token on

the Retry with the token on the subsequent Initial packet.

3.3. Application Identification

The cleartext TLS handshake may contain Server Name Indication (SNI)

[RFC6066], by which the client reveals the name of the server it

intends to connect to, in order to allow the server to present a

certificate based on that name. It may also contain information from

Application-Layer Protocol Negotiation (ALPN) [RFC7301], by which

the client exposes the names of application-layer protocols it

supports; an observer can deduce that one of those protocols will be

used if the connection continues.

Work is currently underway in the TLS working group to encrypt the

SNI in TLS 1.3 [TLS-ESNI]. If used with QUIC, this would make SNI-

based application identification impossible through passive

measurement.

3.3.1. Extracting Server Name Indication (SNI) Information

If the SNI is not encrypted it can be derived from the QUIC Initial

packet by calculating the Initial Secret to decrypt the packet

payload and parse the QUIC CRYPTO Frame containing the TLS

ClientHello.

As both the initial salt for the Initial Secret as well as CRYPTO

frame itself are version-specific, the first step is always to parse

the version number (second to sixth byte of the long header). Note

that only long header packets carry the version number, so it is

necessary to also check the if first bit of the QUIC packet is set

to 1, indicating a long header.

Note, that proprietary QUIC versions, that have been deployed before

standardization, might not set the first bit in a QUIC long header

packets to 1. To parse these versions example code is provided in

the appendix (see Section 9.1), however, it is expected that these

versions will gradually disappear over time.

When the version has been identified as QUIC version 1, the packet

type needs to be verified as an Initial packet by checking that the

third and fourth bit of the header are both set to 0. Then the

¶

¶

¶

¶

¶

¶

¶

Client Destination Connection ID needs to be extracted to calculate

the Initial Secret together with the version specific initial salt,

as described in [QUIC-TLS]. The length of the connection ID is

indicated in the 6th byte of the header followed by the connection

ID itself.

To determine the end of the header and find the start of the payload

further the packet number length, the source connection ID length,

as well as the token length need to be extracted. The packet number

length is defined by the seventh and eight bits of the header as

described in section 17.2. of [QUIC-TRANSPORT]. The source

connection ID length is specified in the byte after the destination

connection ID. And the token length, which follows the source

connection ID, is a variable length integer as specified in section

16 of [QUIC-TRANSPORT].

Finally after decryption, the Initial Client packet can be parsed to

detect the CRYPTO frame that contains the TLS Client Hello, which

then can be respectively parsed similar as for all other TLS

connections. The Initial client packet may contain other frames, so

the first byte of each frame need to be checked to identify the

frame type and the skip over the frame. Note that the length of the

frames is dependent on the frame type. Usually for QUIC version 1,

the packet is expected to only carry the CRYPTO frame and optionally

padding frames. However, padding which is one byte of zeros, may

also occur before or after the CRYPTO frame.

3.4. Flow association

The QUIC Connection ID (see Section 2.6) is designed to allow an on-

path device such as a load-balancer to associate two flows as

identified by five-tuple when the address and port of one of the

endpoints changes; e.g. due to NAT rebinding or server IP address

migration. An observer keeping flow state can associate a connection

ID with a given flow, and can associate a known flow with a new flow

when when observing a packet sharing a connection ID and one

endpoint address (IP address and port) with the known flow.

However, since the connection ID may change multiple times during

the lifetime of a flow, and the negotiation of connection ID changes

is encrypted, packets with the same 5-tuple but different connection

IDs may or may not belong to the same connection.

The connection ID value should be treated as opaque; see Section 4.3

for caveats regarding connection ID selection at servers.

3.5. Flow teardown

QUIC does not expose the end of a connection; the only indication to

on-path devices that a flow has ended is that packets are no longer

¶

¶

¶

¶

¶

¶

observed. Stateful devices on path such as NATs and firewalls must

therefore use idle timeouts to determine when to drop state for QUIC

flows, see further section Section 4.1.

3.6. Flow symmetry measurement

QUIC explicitly exposes which side of a connection is a client and

which side is a server during the handshake. In addition, the

symmetry of a flow (whether primarily client-to-server, primarily

server-to-client, or roughly bidirectional, as input to basic

traffic classification techniques) can be inferred through the

measurement of data rate in each direction. While QUIC traffic is

protected and ACKs may be padded, padding is not required.

3.7. Round-Trip Time (RTT) Measurement

Round-trip time of QUIC flows can be inferred by observation once

per flow, during the handshake, as in passive TCP measurement; this

requires parsing of the QUIC packet header and recognition of the

handshake, as illustrated in Section 2.4. It can also be inferred

during the flow's lifetime, if the endpoints use the spin bit

facility described below and in [QUIC-TRANSPORT], section 17.3.1.

3.7.1. Measuring initial RTT

In the common case, the delay between the Initial packet containing

the TLS Client Hello and the Handshake packet containing the TLS

Server Hello represents the RTT component on the path between the

observer and the server. The delay between the TLS Server Hello and

the Handshake packet containing the TLS Finished message sent by the

client represents the RTT component on the path between the observer

and the client. While the client may send 0-RTT Protected packets

after the Initial packet during 0-RTT connection re-establishment,

these can be ignored for RTT measurement purposes.

Handshake RTT can be measured by adding the client-to-observer and

observer-to-server RTT components together. This measurement

necessarily includes any transport and application layer delay (the

latter mainly caused by the asymmetric crypto operations associated

with the TLS handshake) at both sides.

3.7.2. Using the Spin Bit for Passive RTT Measurement

The spin bit provides an additional method to measure per-flow RTT

from observation points on the network path throughout the duration

of a connection. Endpoint participation in spin bit signaling is

optional in QUIC. That is, while its location is fixed in this

version of QUIC, an endpoint can unilaterally choose to not support

"spinning" the bit. Use of the spin bit for RTT measurement by

devices on path is only possible when both endpoints enable it. Some

¶

¶

¶

¶

¶

endpoints may disable use of the spin bit by default, others only in

specific deployment scenarios, e.g. for servers and clients where

the RTT would reveal the presence of a VPN or proxy. To avoid making

these connections identifiable based on the usage of the spin bit,

it is recommended that all endpoints randomly disable "spinning" for

at least one eighth of connections, even if otherwise enabled by

default. An endpoint not participating in spin bit signaling for a

given connection can use a fixed spin value for the duration of the

connection, or can set the bit randomly on each packet sent.

When in use and a QUIC flow sends data continuously, the latency

spin bit in each direction changes value once per round-trip time

(RTT). An on-path observer can observe the time difference between

edges (changes from 1 to 0 or 0 to 1) in the spin bit signal in a

single direction to measure one sample of end-to-end RTT.

Note that this measurement, as with passive RTT measurement for TCP,

includes any transport protocol delay (e.g., delayed sending of

acknowledgements) and/or application layer delay (e.g., waiting for

a response to be generated). It therefore provides devices on path a

good instantaneous estimate of the RTT as experienced by the

application. A simple linear smoothing or moving minimum filter can

be applied to the stream of RTT information to get a more stable

estimate.

However, application-limited and flow-control-limited senders can

have application and transport layer delay, respectively, that are

much greater than network RTT. When the sender is application-

limited and e.g. only sends small amount of periodic application

traffic, where that period is longer than the RTT, measuring the

spin bit provides information about the application period, not the

network RTT.

Since the spin bit logic at each endpoint considers only samples

from packets that advance the largest packet number, signal

generation itself is resistant to reordering. However, reordering

can cause problems at an observer by causing spurious edge detection

and therefore inaccurate (i.e., lower) RTT estimates, if reordering

occurs across a spin-bit flip in the stream.

Simple heuristics based on the observed data rate per flow or

changes in the RTT series can be used to reject bad RTT samples due

to lost or reordered edges in the spin signal, as well as

application or flow control limitation; for example, QoF [TMA-QOF]

rejects component RTTs significantly higher than RTTs over the

history of the flow. These heuristics may use the handshake RTT as

an initial RTT estimate for a given flow. Usually such heuristics

would also detect if the spin is either constant or randomly set for

a connection.

¶

¶

¶

¶

¶

¶

An on-path observer that can see traffic in both directions (from

client to server and from server to client) can also use the spin

bit to measure "upstream" and "downstream" component RTT; i.e, the

component of the end-to-end RTT attributable to the paths between

the observer and the server and the observer and the client,

respectively. It does this by measuring the delay between a spin

edge observed in the upstream direction and that observed in the

downstream direction, and vice versa.

4. Specific Network Management Tasks

In this section, we review specific network management and

measurement techniques and how QUIC's design impacts them.

4.1. Stateful treatment of QUIC traffic

Stateful treatment of QUIC traffic (e.g., at a firewall or NAT

middlebox) is possible through QUIC traffic and version

identification (Section 3.1) and observation of the handshake for

connection confirmation (Section 3.2). The lack of any visible end-

of-flow signal (Section 3.5) means that this state must be purged

either through timers or through least-recently-used eviction,

depending on application requirements.

[RFC4787] recommends a 2 minute timeout interval for UDP, however,

often timer are lower in the range of 15 to 30 second. In constrast

[RFC5382] recommends a timeout of more than 2 hours for TCP, given

TCP is a connection-oriented protocol with well defined closure

semantics. For network devices that are QUIC-aware, it is

recommended to also use longer timeouts for QUIC traffic, as QUIC is

connection-oriented and as such a handshake packet from the server

indicates the willingness of the server to communicate with the

client.

The QUIC header optionally contains a Connection ID which can be

used as additional entropy beyond the 5-tuple, if needed. The QUIC

handshake needs to be observed in order to understand whether the

Connection ID is present and what length it has. However, Connection

IDs may be renegotiated during a connection, and this renegotiation

is not visible to the path. Keying state off the Connection ID may

therefore cause undetectable and unrecoverable loss of state in the

middle of a connection. Use of Connection ID specifically

discouraged for NAT applications.

4.2. Passive network performance measurement and troubleshooting

Limited RTT measurement is possible by passive observation of QUIC

traffic; see Section 3.7. No passive measurement of loss is possible

with the present wire image. Extremely limited observation of

¶

¶

¶

¶

¶

upstream congestion may be possible via the observation of CE

markings on ECN-enabled QUIC traffic.

4.3. Server cooperation with load balancers

In the case of content distribution networking architectures

including load balancers, the connection ID provides a way for the

server to signal information about the desired treatment of a flow

to the load balancers. Guidance on assigning connection IDs is given

in [QUIC-APPLICABILITY].

4.4. DDoS Detection and Mitigation

Current practices in detection and mitigation of Distributed Denial

of Service (DDoS) attacks generally involves classification of

incoming traffic (as packets, flows, or some other aggregate) into

"good" (productive) and "bad" (DDoS) traffic, then differential

treatment of this traffic to forward only good traffic, to the

extent possible. This operation is often done in a separate

specialized mitigation environment through which all traffic is

filtered; a generalized architecture for separation of concerns in

mitigation is given in [DOTS-ARCH].

Key to successful DDoS mitigation is efficient classification of

this traffic in the mitigation environment. Limited first-packet

garbage detection as in Section 3.1.2 and stateful tracking of QUIC

traffic as in Section 4.1 above may be useful during classification.

Note that the use of a connection ID to support connection migration

renders 5-tuple based filtering insufficient and requires more state

to be maintained by DDoS defense systems. For the common case of NAT

rebinding, DDoS defense systems can detect a change in client's

endpoint address by linking flows based on the first 8 bytes of the

server's connection IDs, provided the server is using at least 8-

bytes-long connection IDs. QUIC's linkability resistance ensures

that a deliberate connection migration is accompanied by a change in

the connection ID and necessitate that connection ID aware DDoS

defense system must have the same information about connection IDs

as the load balancer [I-D.ietf-quic-load-balancers]. This may be

complicated where mitigation and load balancing environments are

logically separate.

It is questionable whether connection migrations must be supported

during a DDoS attack. If the connection migration is not visible to

the network that performs the DDoS detection, an active, migrated

QUIC connection may be blocked by such a system under attack. As

soon as the connection blocking is detected by the client, the

client may rely on the fast resumption mechanism provided by QUIC.

¶

¶

¶

¶

¶

When clients migrate to a new path, they should be prepared for the

migration to fail and attempt to reconnect quickly.

4.5. UDP Policing

Today, UDP is the most prevalent DDoS vector, since it is easy for

compromised non-admin applications to send a flood of large UDP

packets (while with TCP the attacker gets throttled by the

congestion controller) or to craft reflection and amplification

attacks. Networks should therefore be prepared for UDP flood attacks

on ports used for QUIC traffic. One possible response to this threat

is to police UDP traffic on the network, allocating a fixed portion

of the network capacity to UDP and blocking UDP datagram over that

cap.

The recommended way to police QUIC packets is to either drop them

all or to throttle them based on the hash of the UDP datagram's

source and destination addresses, blocking a portion of the hash

space that corresponds to the fraction of UDP traffic one wishes to

drop. When the handshake is blocked, QUIC-capable applications may

failover to TCP (at least applications using well-known UDP ports).

However, blindly blocking a significant fraction of QUIC packets

will allow many QUIC handshakes to complete, preventing a TCP

failover, but the connections will suffer from severe packet loss.

4.6. Distinguishing acknowledgment traffic

Some deployed in-network functions distinguish pure-acknowledgment

(ACK) packets from packets carrying upper-layer data in order to

attempt to enhance performance, for example by queueing ACKs

differently or manipulating ACK signaling. Distinguishing ACK

packets is trivial in TCP, but not supported by QUIC, since

acknowledgment signaling is carried inside QUIC's encrypted payload,

and ACK manipulation is impossible. Specifically, heuristics

attempting to distinguish ACK-only packets from payload-carrying

packets based on packet size are likely to fail, and are

emphatically NOT RECOMMENDED.

4.7. QoS support and ECMP

[EDITOR'S NOTE: this is a bit speculative; keep?]

QUIC does not provide any additional information on requirements on

Quality of Service (QoS) provided from the network. QUIC assumes

that all packets with the same 5-tuple {dest addr, source addr,

protocol, dest port, source port} will receive similar network

treatment. That means all stream that are multiplexed over the same

QUIC connection require the same network treatment and are handled

by the same congestion controller. If differential network treatment

is desired, multiple QUIC connections to the same server might be

¶

¶

¶

¶

¶

used, given that establishing a new connection using 0-RTT support

is cheap and fast.

QoS mechanisms in the network MAY also use the connection ID for

service differentiation, as a change of connection ID is bound to a

change of address which anyway is likely to lead to a re-route on a

different path with different network characteristics.

Given that QUIC is more tolerant of packet re-ordering than TCP (see

Section 2.7), Equal-cost multi-path routing (ECMP) does not

necessarily need to be flow based. However, 5-tuple (plus eventually

connection ID if present) matching is still beneficial for QoS given

all packets are handled by the same congestion controller.

5. IANA Considerations

This document has no actions for IANA.

6. Security Considerations

Supporting manageability of QUIC traffic inherently involves

tradeoffs with the confidentiality of QUIC's control information;

this entire document is therefore security-relevant.

7. Contributors

Dan Druta contributed text to Section 4.4. Igor Lubashev contributed

text to Section 4.3 on the use of the connection ID for load

balancing. Marcus Ilhar contributed text to Section 3.7 on the use

of the spin bit. The pseudo provided in the appendix is based on

input provided by David Schinazi.

8. Acknowledgments

Thanks to Martin Thomson and Martin Duke for contributing by

reviewing and providing text proposals.

This work is partially supported by the European Commission under

Horizon 2020 grant agreement no. 688421 Measurement and Architecture

for a Middleboxed Internet (MAMI), and by the Swiss State

Secretariat for Education, Research, and Innovation under contract

no. 15.0268. This support does not imply endorsement.

9. Appendix

This appendix uses the following conventions: array[i] - one byte at

index i of array array[i:j] - subset of array starting with index i

(inclusive) up to j-1 (inclusive) array[i:] - subset of array

starting with index i (inclusive) up to the end of the array

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.1. Distinguishing IETF QUIC and Google QUIC Versions

This section contains algorithms that allows parsing versions from

both Google QUIC and IETF QUIC. These mechanisms will become

irrelevant when IETF QUIC is fully deployed and Google QUIC is

deprecated.

Note that other than this appendix, nothing in this document applies

to Google QUIC. And the purpose of this appendix is merely to

distinguish IETF QUIC from any versions of Google QUIC.

Conceptually, a Google QUIC version is an opaque 32bit field. When

we refer to a version with four printable characters, we use its

ASCII representation: for example, Q050 refers to {'Q', '0', '5',

'0'} which is equal to {0x51, 0x30, 0x35, 0x30}. Otherwise, we use

its hexadecimal representation: for example, 0xff00001d refers to

{0xff, 0x00, 0x00, 0x1d}.

QUIC versions that start with 'Q' or 'T' followed by three digits

are Google QUIC versions. Versions up to and including 43 are

documented by <https://docs.google.com/document/d/

1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/preview>. Versions

Q046, Q050, T050, and T051 are not fully documented, but this

appendix should contain enough information to allow parsing Client

Hellos for those versions.

To extract the version number itself, one needs to look at the first

byte of the QUIC packet, in other words the first byte of the UDP

payload.

¶

¶

¶

¶

¶

9.2. Extracting the CRYPTO frame

 first_byte = packet[0]

 first_byte_bit1 = ((first_byte & 0x80) != 0)

 first_byte_bit2 = ((first_byte & 0x40) != 0)

 first_byte_bit3 = ((first_byte & 0x20) != 0)

 first_byte_bit4 = ((first_byte & 0x10) != 0)

 first_byte_bit5 = ((first_byte & 0x08) != 0)

 first_byte_bit6 = ((first_byte & 0x04) != 0)

 first_byte_bit7 = ((first_byte & 0x02) != 0)

 first_byte_bit8 = ((first_byte & 0x01) != 0)

 if (first_byte_bit1) {

 version = packet[1:5]

 } else if (first_byte_bit5 && !first_byte_bit2) {

 if (!first_byte_bit8) {

 abort("Packet without version")

 }

 if (first_byte_bit5) {

 version = packet[9:13]

 } else {

 version = packet[5:9]

 }

 } else {

 abort("Packet without version")

 }

¶

 counter = 0

 while (payload[counter] == 0) {

 counter += 1

 }

 first_nonzero_payload_byte = payload[counter]

 fnz_payload_byte_bit3 = ((first_nonzero_payload_byte & 0x20) != 0)

 if (first_nonzero_payload_byte != 0x06) {

 abort("Unexpected frame")

 }

 if (payload[counter+1] != 0x00) {

 abort("Unexpected crypto stream offset")

 }

 counter += 2

 if ((payload[counter] & 0xc0) == 0) {

 crypto_data_length = payload[counter]

 counter += 1

 } else {

 crypto_data_length = payload[counter:counter+2]

 counter += 2

 }

 crypto_data = payload[counter:counter+crypto_data_length]

 ParseTLS(crypto_data)

¶

[RFC2119]

[RFC8174]

[Ding2015]

[DOTS-ARCH]

[I-D.ietf-quic-load-balancers]

[IPIM]

[QUIC-APPLICABILITY]

[QUIC-HTTP]

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

Ding, H. and M. Rabinovich, "TCP Stretch Acknowledgments

and Timestamps - Findings and Impliciations for Passive

RTT Measurement (ACM Computer Communication Review)",

July 2015, <http://www.sigcomm.org/sites/default/files/

ccr/papers/2015/July/0000000-0000002.pdf>.

Mortensen, A., Reddy.K, T., Andreasen, F., Teague, N.,

and R. Compton, "Distributed-Denial-of-Service Open

Threat Signaling (DOTS) Architecture", Work in Progress,

Internet-Draft, draft-ietf-dots-architecture-18, 6 March

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

dots-architecture-18.txt>.

Duke, M. and N. Banks, "QUIC-LB: Generating Routable QUIC

Connection IDs", Work in Progress, Internet-Draft, draft-

ietf-quic-load-balancers-05, 30 October 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-quic-load-

balancers-05.txt>.

Allman, M., Beverly, R., and B. Trammell, "In-Protocol

Internet Measurement (arXiv preprint 1612.02902)", 9

December 2016, <https://arxiv.org/abs/1612.02902>.

Kuehlewind, M. and B. Trammell, "Applicability of the

QUIC Transport Protocol", Work in Progress, Internet-

Draft, draft-ietf-quic-applicability-07, 8 July 2020,

<http://www.ietf.org/internet-drafts/draft-ietf-quic-

applicability-07.txt>.

Bishop, M., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-32, 20 October 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-quic-http-32.txt>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/July/0000000-0000002.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/July/0000000-0000002.pdf
http://www.ietf.org/internet-drafts/draft-ietf-dots-architecture-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-dots-architecture-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
https://arxiv.org/abs/1612.02902
http://www.ietf.org/internet-drafts/draft-ietf-quic-applicability-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-applicability-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt

[QUIC-INVARIANTS]

[QUIC-TLS]

[QUIC-TRANSPORT]

[QUIC_LB]

[RFC4787]

[RFC5382]

[RFC6066]

[RFC6928]

[RFC7301]

Thomson, M., "Version-Independent Properties of

QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

invariants-11, 24 September 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-quic-invariants-11.txt>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-32,

20 October 2020, <http://www.ietf.org/internet-drafts/

draft-ietf-quic-tls-32.txt>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-32, 20 October

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-32.txt>.

Duke, M. and N. Banks, "QUIC-LB: Generating Routable QUIC

Connection IDs", Work in Progress, Internet-Draft, draft-

ietf-quic-load-balancers-05, 30 October 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-quic-load-

balancers-05.txt>.

Audet, F., Ed. and C. Jennings, "Network Address

Translation (NAT) Behavioral Requirements for Unicast

UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January

2007, <https://www.rfc-editor.org/info/rfc4787>.

Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and

P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP

142, RFC 5382, DOI 10.17487/RFC5382, October 2008,

<https://www.rfc-editor.org/info/rfc5382>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,

"Increasing TCP's Initial Window", RFC 6928, DOI

10.17487/RFC6928, April 2013, <https://www.rfc-

editor.org/info/rfc6928>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

http://www.ietf.org/internet-drafts/draft-ietf-quic-invariants-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-invariants-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-load-balancers-05.txt
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc5382
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc6928

[RFC7605]

[TLS-ESNI]

[TMA-QOF]

[WIRE-IMAGE]

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Touch, J., "Recommendations on Using Assigned Transport

Port Numbers", BCP 165, RFC 7605, DOI 10.17487/RFC7605,

August 2015, <https://www.rfc-editor.org/info/rfc7605>.

Rescorla, E., Oku, K., Sullivan, N., and C. Wood, "TLS

Encrypted Client Hello", Work in Progress, Internet-

Draft, draft-ietf-tls-esni-08, 16 October 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-tls-esni-08.txt>.

Trammell, B., Gugelmann, D., and N. Brownlee, "Inline

Data Integrity Signals for Passive Measurement (in Proc.

TMA 2014)", April 2014.

Trammell, B. and M. Kuehlewind, "The Wire Image of a

Network Protocol", RFC 8546, DOI 10.17487/RFC8546, April

2019, <https://www.rfc-editor.org/info/rfc8546>.

Authors' Addresses

Mirja Kuehlewind

Ericsson

Email: mirja.kuehlewind@ericsson.com

Brian Trammell

Google

Gustav-Gull-Platz 1

CH- 8004 Zurich

Switzerland

Email: ietf@trammell.ch

https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7605
http://www.ietf.org/internet-drafts/draft-ietf-tls-esni-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-esni-08.txt
https://www.rfc-editor.org/info/rfc8546
mailto:mirja.kuehlewind@ericsson.com
mailto:ietf@trammell.ch

	Manageability of the QUIC Transport Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Features of the QUIC Wire Image
	2.1. QUIC Packet Header Structure
	2.2. Coalesced Packets
	2.3. Use of Port Numbers
	2.4. The QUIC handshake
	2.5. Integrity Protection of the Wire Image
	2.6. Connection ID and Rebinding
	2.7. Packet Numbers
	2.8. Version Negotiation and Greasing

	3. Network-visible information about QUIC flows
	3.1. Identifying QUIC traffic
	3.1.1. Identifying Negotiated Version
	3.1.2. Rejection of Garbage Traffic

	3.2. Connection confirmation
	3.3. Application Identification
	3.3.1. Extracting Server Name Indication (SNI) Information

	3.4. Flow association
	3.5. Flow teardown
	3.6. Flow symmetry measurement
	3.7. Round-Trip Time (RTT) Measurement
	3.7.1. Measuring initial RTT
	3.7.2. Using the Spin Bit for Passive RTT Measurement

	4. Specific Network Management Tasks
	4.1. Stateful treatment of QUIC traffic
	4.2. Passive network performance measurement and troubleshooting
	4.3. Server cooperation with load balancers
	4.4. DDoS Detection and Mitigation
	4.5. UDP Policing
	4.6. Distinguishing acknowledgment traffic
	4.7. QoS support and ECMP

	5. IANA Considerations
	6. Security Considerations
	7. Contributors
	8. Acknowledgments
	9. Appendix
	9.1. Distinguishing IETF QUIC and Google QUIC Versions
	9.2. Extracting the CRYPTO frame

	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

