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Abstract

This document discusses manageability of the QUIC transport

protocol, focusing on the implications of QUIC's design and wire

image on network operations involving QUIC traffic. It is intended

as a "user's manual" for the wire image, providing guidance for

network operators and equipment vendors who rely on the use of

transport-aware network functions.
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1. Introduction

QUIC [QUIC-TRANSPORT] is a new transport protocol that is

encapsulated in UDP. QUIC integrates TLS [QUIC-TLS] to encrypt all

payload data and most control information. QUIC version 1 was

designed primarily as a transport for HTTP, with the resulting

protocol being known as HTTP/3 [QUIC-HTTP].

This document provides guidance for network operations that manage

QUIC traffic. This includes guidance on how to interpret and utilize

information that is exposed by QUIC to the network, requirements and

assumptions of the QUIC design with respect to network treatment,

and a description of how common network management practices will be

impacted by QUIC.

QUIC is an end-to-end transport protocol; therefore, no information

in the protocol header is intended to be mutable by the network.

This property is enforced through integrity protection of the wire

image [WIRE-IMAGE]. Encryption of most transport-layer control

signaling means that less information is visible to the network than

is the case with TCP.

Integrity protection can also simplify troubleshooting at the end

points as none of the nodes on the network path can modify transport

layer information. However, it means in-network operations that

depend on modification of data (for examples, see [RFC9065]) are not

possible without the cooperation of a QUIC endpoint. Such

cooperation might be possible with the introduction of a proxy which

authenticates as an endpoint. Proxy operations are not in scope for

this document.

Network management is not a one-size-fits-all endeavour: practices

considered necessary or even mandatory within enterprise networks

with certain compliance requirements, for example, would be

impermissible on other networks without those requirements. The

presence of a particular practice in this document should therefore

not be construed as a recommendation to apply it. For each practice,

this document describes what is and is not possible with the QUIC

transport protocol as defined.

This document focuses solely on network management practices that

observe traffic on the wire. Replacement of troubleshooting based on

observation with active measurement techniques, for example, is

therefore out of scope. A more generalized treatment of network

management operations on encrypted transports is given in [RFC9065].

QUIC-specific terminology used in this document is defined in [QUIC-

TRANSPORT].
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2. Features of the QUIC Wire Image

This section discusses those aspects of the QUIC transport protocol

that have an impact on the design and operation of devices that

forward QUIC packets. This section is therefore primarily

considering the unencrypted part of QUIC's wire image [WIRE-IMAGE],

which is defined as the information available in the packet header

in each QUIC packet, and the dynamics of that information. Since

QUIC is a versioned protocol, the wire image of the header format

can also change from version to version. However, the field that

identifies the QUIC version in some packets, and the format of the

Version Negotiation Packet, are both inspectable and invariant 

[QUIC-INVARIANTS].

This document addresses version 1 of the QUIC protocol, whose wire

image is fully defined in [QUIC-TRANSPORT] and [QUIC-TLS]. Features

of the wire image described herein may change in future versions of

the protocol, except when specified as an invariant [QUIC-

INVARIANTS], and cannot be used to identify QUIC as a protocol or to

infer the behavior of future versions of QUIC.

2.1. QUIC Packet Header Structure

QUIC packets may have either a long header or a short header. The

first bit of the QUIC header is the Header Form bit, and indicates

which type of header is present. The purpose of this bit is

invariant across QUIC versions.

The long header exposes more information. It contains a version

number, as well as source and destination connection IDs for

associating packets with a QUIC connection. The definition and

location of these fields in the QUIC long header are invariant for

future versions of QUIC, although future versions of QUIC may

provide additional fields in the long header [QUIC-INVARIANTS].

In version 1 of QUIC, the long header is used during connection

establishment to transmit crypto handshake data, perform version

negotiation, retry, and send 0-RTT data.

Short headers are used after connection establishment in version 1

of QUIC, and expose only an optional destination connection ID and

the initial flags byte with the spin bit for RTT measurement.

The following information is exposed in QUIC packet headers in all

versions of QUIC (as specified in [QUIC-INVARIANTS]):

version number: the version number is present in the long header,

and identifies the version used for that packet. During Version

Negotiation (see Section 17.2.1 of [QUIC-TRANSPORT] and Section

2.8), the version number field has a special value (0x00000000)
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that identifies the packet as a Version Negotiation packet. QUIC

version 1 uses version 0x00000001. Operators should expect to

observe packets with other version numbers as a result of various

Internet experiments, future standards, and greasing ([RFC7801]).

An IANA registry contains the values of all standardized versions

of QUIC, and may contain some proprietary versions (see 

Section 22.2 of [QUIC-TRANSPORT]). However, other versions of

QUIC can be expected to be seen in the Internet at any given

time.

source and destination connection ID: short and long headers

carry a destination connection ID, a variable-length field which,

if not zero-length, can be used to identify the connection

associated with a QUIC packet, for load-balancing and NAT

rebinding purposes; see Section 4.4 and Section 2.6. Long packet

headers additionally carry a source connection ID. The source

connection ID corresponds to the destination connection ID the

source would like to have on packets sent to it, and is only

present on long headers. On long header packets, the length of

the connection IDs is also present; on short header packets, the

length of the destination connection ID is implicit and as such

need to be known from the long header packets.

In version 1 of QUIC, the following additional information is

exposed:

"fixed bit": The second-most-significant bit of the first octet

of most QUIC packets of the current version is set to 1, enabling

endpoints to demultiplex with other UDP-encapsulated protocols.

Even though this bit is fixed in the version 1 specification,

endpoints might use an extension that varies the bit [QUIC-

GREASE]. Therefore, observers cannot reliably use it as an

identifier for QUIC.

latency spin bit: The third-most-significant bit of the first

octet in the short header for version 1. The spin bit is set by

endpoints such that tracking edge transitions can be used to

passively observe end-to-end RTT. See Section 3.8.2 for further

details.

header type: The long header has a 2 bit packet type field

following the Header Form and fixed bits. Header types correspond

to stages of the handshake; see Section 17.2 of [QUIC-TRANSPORT]

for details.

length: The length of the remaining QUIC packet after the length

field, present on long headers. This field is used to implement

coalesced packets during the handshake (see Section 2.2).
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token: Initial packets may contain a token, a variable-length

opaque value optionally sent from client to server, used for

validating the client's address. Retry packets also contain a

token, which can be used by the client in an Initial packet on a

subsequent connection attempt. The length of the token is

explicit in both cases.

Retry (Section 17.2.5 of [QUIC-TRANSPORT]) and Version Negotiation

(Section 17.2.1 of [QUIC-TRANSPORT]) packets are not encrypted.

Retry packets are (forgibly) integrity protected. Transport

parameters are used authenticate the contents of Retry packets later

in the handshake. For other kinds of packets, version 1 of QUIC

cryptographically protects other information in the packet headers:

packet number: All packets except Version Negotiation and Retry

packets have an associated packet number; however, this packet

number is encrypted, and therefore not of use to on-path

observers. The offset of the packet number can be decoded in long

headers, while it is implicit (depending on destination

connection ID length) in short headers. The length of the packet

number is cryptographically protected.

key phase: The Key Phase bit, present in short headers, specifies

the keys used to encrypt the packet to support key rotation. The

Key Phase bit is cryptographically protected.

2.2. Coalesced Packets

Multiple QUIC packets may be coalesced into a single UDP datagram,

with a datagram carrying one or more long header packets followed by

zero or one short header packets. When packets are coalesced, the

Length fields in the long headers are used to separate QUIC packets;

see Section 12.2 of [QUIC-TRANSPORT]. The Length field is variable

length, and its position in the header is also variable depending on

the length of the source and destination connection ID; see 

Section 17.2 of [QUIC-TRANSPORT].

2.3. Use of Port Numbers

Applications that have a mapping for TCP as well as QUIC are

expected to use the same port number for both services. However, as

for all other IETF transports [RFC7605], there is no guarantee that

a specific application will use a given registered port, or that a

given port carries traffic belonging to the respective registered

service, especially when application layer information is encrypted.

For example, [QUIC-HTTP] specifies the use of the HTTP Alternative

Services mechanism [RFC7838] for discovery of HTTP/3 services on

other ports.
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Further, as QUIC has a connection ID, it is also possible to

maintain multiple QUIC connections over one 5-tuple (protocol,

source and destination IP address, and source and destination port).

However, if the connection ID is zero-length, all packets of the 5-

tuple likely belong to the same QUIC connection.

2.4. The QUIC Handshake

New QUIC connections are established using a handshake, which is

distinguishable on the wire (see Section 3.1 for details), and

contains some information that can be passively observed.

To illustrate the information visible in the QUIC wire image during

the handshake, we first show the general communication pattern

visible in the UDP datagrams containing the QUIC handshake, then

examine each of the datagrams in detail.

The QUIC handshake can normally be recognized on the wire through

four flights of datagrams labelled "Client Initial", "Server

Initial", "Client Completion", and "Server Completion", as

illustrated in Figure 1.

A handshake starts with the client sending one or more datagrams

containing Initial packets, detailed in Figure 2, which elicits the

Server Initial response detailed in Figure 3 typically containing

three types of packets: Initial packet(s) with the beginning of the

server's side of the TLS handshake, Handshake packet(s) with the

rest of the server's portion of the TLS handshake, and 1-RTT

packet(s), if present.

Figure 1: General communication pattern visible in the QUIC handshake

As shown here, the client can send 0-RTT data as soon as it has sent

its Client Hello, and the server can send 1-RTT data as soon as it

has sent its Server Hello. The Client Completion flight contains at
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Client                                    Server

  |                                          |

  +----Client Initial----------------------->|

  +----(zero or more 0-RTT)----------------->|

  |                                          |

  |<-----------------------Server Initial----+

  |<--------(1-RTT encrypted data starts)----+

  |                                          |

  +----Client Completion-------------------->|

  +----(1-RTT encrypted data starts)-------->|

  |                                          |

  |<--------------------Server Completion----+

  |                                          |



least one Handshake packet and could also include an Initial packet.

QUIC packets in separate contexts during the handshake can be

coalesced (see Section 2.2) in order to reduce the number of UDP

datagrams sent during the handshake.

Handshake packets can arrive out-of-order without impacting the

handshake as long as the reordering was not accompanied by extensive

delays that trigger a spurious Probe Timeout ({Section 6.2 of

RFC9002}). If QUIC packets get lost or reordered, packets belonging

to the same flight might not be observed in close time succession,

though the sequence of the flights will not change, because one

flight depends upon the peer's previous flight.

Datagrams that contain an Initial packet (Client Initial, Server

Initial, and some Client Completion) contain at least 1200 octets of

UDP payload. This protects against amplification attacks and

verifies that the network path meets the requirements for the

minimum QUIC IP packet size; see Section 14 of [QUIC-TRANSPORT].

This is accomplished by either adding PADDING frames within the

Initial packet, coalescing other packets with the Initial packet, or

leaving unused payload in the UDP packet after the Initial packet. A

network path needs to be able to forward at least this size of

packet for QUIC to be used.

The content of Initial packets is encrypted using Initial Secrets,

which are derived from a per-version constant and the client's

destination connection ID. That content is therefore observable by

any on-path device that knows the per-version constant and is

considered visible in this illustration. The content of QUIC

Handshake packets is encrypted using keys established during the

initial handshake exchange, and is therefore not visible.

Initial, Handshake, and 1-RTT packets belong to different

cryptographic and transport contexts. The Client Completion (Figure

4) and the Server Completion (Figure 5) flights conclude the Initial

and Handshake contexts, by sending final acknowledgments and CRYPTO

frames.
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Figure 2: Example Client Initial datagram without 0-RTT

A Client Initial packet exposes the version, source and destination

connection IDs without encryption. The payload of the Initial packet

is protected using the Initial secret. The complete TLS Client

Hello, including any TLS Server Name Indication (SNI) present, is

sent in one or more CRYPTO frames across one or more QUIC Initial

packets.

Figure 3: Coalesced Server Initial datagram pattern

The Server Initial datagram also exposes version number, source and

destination connection IDs in the clear; the payload of the Initial

packet(s) is protected using the Initial secret.

+----------------------------------------------------------+

| UDP header (source and destination UDP ports)            |

+----------------------------------------------------------+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+----------------------------------------------------------+  |

| QUIC CRYPTO frame header                                 |  |

+----------------------------------------------------------+  |

| | TLS Client Hello (incl. TLS SNI)                    |  |  |

+----------------------------------------------------------+  |

| QUIC PADDING frames                                      |  |

+----------------------------------------------------------+<-+

¶

+------------------------------------------------------------+

| UDP header (source and destination UDP ports)              |

+------------------------------------------------------------+

| QUIC long header (type = Initial, Version, DCID, SCID)   (Length)

+------------------------------------------------------------+  |

| QUIC CRYPTO frame header                                   |  |

+------------------------------------------------------------+  |

| TLS Server Hello                                           |  |

+------------------------------------------------------------+  |

| QUIC ACK frame (acknowledging client hello)                |  |

+------------------------------------------------------------+<-+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+------------------------------------------------------------+  |

| encrypted payload (presumably CRYPTO frames)               |  |

+------------------------------------------------------------+<-+

| QUIC short header                                          |

+------------------------------------------------------------+

| 1-RTT encrypted payload                                    |

+------------------------------------------------------------+

¶



Figure 4: Coalesced Client Completion datagram pattern

The Client Completion flight does not expose any additional

information; however, as the destination connection ID is server-

selected, it usually is not the same ID that is sent in the Client

Initial. Client Completion flights contain 1-RTT packets which

indicate the handshake has completed (see Section 3.2) on the

client, and for three-way handshake RTT estimation as in Section

3.8.

Figure 5: Coalesced Server Completion datagram pattern

Similar to Client Completion, Server Completion also exposes no

additional information; observing it serves only to determine that

the handshake has completed.

When the client uses 0-RTT data, the Client Initial flight can also

include one or more 0-RTT packets, as shown in Figure 6.

+------------------------------------------------------------+

| UDP header (source and destination UDP ports)              |

+------------------------------------------------------------+

| QUIC long header (type = Initial, Version, DCID, SCID)   (Length)

+------------------------------------------------------------+  |

| QUIC ACK frame (acknowledging Server Initial)              |  |

+------------------------------------------------------------+<-+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+------------------------------------------------------------+  |

| encrypted payload (presumably CRYPTO/ACK frames)           |  |

+------------------------------------------------------------+<-+

| QUIC short header                                          |

+------------------------------------------------------------+

| 1-RTT encrypted payload                                    |

+------------------------------------------------------------+

¶

+------------------------------------------------------------+

| UDP header (source and destination UDP ports)              |

+------------------------------------------------------------+

| QUIC long header (type = Handshake, Version, DCID, SCID) (Length)

+------------------------------------------------------------+  |

| encrypted payload (presumably ACK frame)                   |  |

+------------------------------------------------------------+<-+

| QUIC short header                                          |

+------------------------------------------------------------+

| 1-RTT encrypted payload                                    |

+------------------------------------------------------------+

¶
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Figure 6: Coalesced 0-RTT Client Initial datagram

When a 0-RTT packet is coalesced with an Initial packet, the

datagram will be padded to 1200 bytes. Additional datagrams

containing only 0-RTT packets with long headers can be sent after

the client Initial packet(s), containing more 0-RTT data. The amount

of 0-RTT protected data that can be sent in the first flight is

limited by the initial congestion window, typically to around 10

packets (see Section 7.2 of [QUIC-RECOVERY]).

2.5. Integrity Protection of the Wire Image

As soon as the cryptographic context is established, all information

in the QUIC header, including exposed information, is integrity

protected. Further, information that was exposed in packets sent

before the cryptographic context was established is validated during

the cryptographic handshake. Therefore, devices on path cannot alter

any information or bits in QUIC packets. Such alterations would

cause the integrity check to fail, which results in the receiver

discarding the packet. Some parts of Initial packets could be

altered by removing and re-applying the authenticated encryption

without immediate discard at the receiver. However, the

cryptographic handshake validates most fields and any modifications

in those fields will result in connection establishment failing

later.

2.6. Connection ID and Rebinding

The connection ID in the QUIC packet headers allows association of

QUIC packets using information independent of the 5-tuple. This

allows rebinding of a connection after one of the endpoints -

usually the client - has experienced an address change. Further it

can be used by in-network devices to ensure that related 5-tuple

flows are appropriately balanced together (see Section Section 4.4).

+----------------------------------------------------------+

| UDP header (source and destination UDP ports)            |

+----------------------------------------------------------+

| QUIC long header (type = Initial, Version, DCID, SCID) (Length)

+----------------------------------------------------------+  |

| QUIC CRYPTO frame header                                 |  |

+----------------------------------------------------------+  |

| TLS Client Hello (incl. TLS SNI)                         |  |

+----------------------------------------------------------+<-+

| QUIC long header (type = 0-RTT, Version, DCID, SCID)   (Length)

+----------------------------------------------------------+  |

| 0-RTT encrypted payload                                  |  |

+----------------------------------------------------------+<-+
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Client and server each choose a connection ID during the handshake;

for example, a server might request that a client use a connection

ID, whereas the client might choose a zero-length value. Connection

IDs for either endpoint may change during the lifetime of a

connection, with the new connection ID being supplied via encrypted

frames (see Section 5.1 of [QUIC-TRANSPORT]). Therefore, observing a

new connection ID does not necessarily indicate a new connection.

[QUIC-LB] specifies algorithms for encoding the server mapping in a

connection ID in order to share this information with selected on-

path devices such as load balancers. Server mappings should only be

exposed to selected entities. Uncontrolled exposure would allow

linkage of multiple IP addresses to the same host if the server also

supports migration that opens an attack vector on specific servers

or pools. The best way to obscure an encoding is to appear random to

any other observers, which is most rigorously achieved with

encryption. As a result, any attempt to infer information from

specific parts of a connection ID is unlikely to be useful.

2.7. Packet Numbers

The Packet Number field is always present in the QUIC packet header

in version 1; however, it is always encrypted. The encryption key

for packet number protection on Initial packets -- which are sent

before cryptographic context establishment -- is specific to the

QUIC version, while packet number protection on subsequent packets

uses secrets derived from the end-to-end cryptographic context.

Packet numbers are therefore not part of the wire image that is

visible to on-path observers.

2.8. Version Negotiation and Greasing

Version Negotiation packets are used by the server to indicate that

a requested version from the client is not supported (see Section 6

of [QUIC-TRANSPORT]. Version Negotiation packets are not

intrinsically protected, but future QUIC versions could use later

encrypted messages to verify that they were authentic. Therefore,

any modification of this list will be detected and may cause the

endpoints to terminate the connection attempt.

Also note that the list of versions in the Version Negotiation

packet may contain reserved versions. This mechanism is used to

avoid ossification in the implementation of the selection mechanism.

Further, a client may send an Initial packet with a reserved version

number to trigger version negotiation. In the Version Negotiation

packet, the connection IDs of the client's Initial packet are

reflected to provide a proof of return-routability. Therefore,

changing this information will also cause the connection to fail.
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QUIC is expected to evolve rapidly, so new versions, both

experimental and IETF standard versions, will be deployed on the

Internet more often than with other commonly deployed Internet- and

transport-layer protocols. Use of the version number field for

traffic recognition will therefore behave differently than with

these protocols. Using a particular version number to recognize

valid QUIC traffic is likely to persistently miss a fraction of QUIC

flows, and completely fail in the near future. Reliance on the

version number field for the purposes of admission control is

similarly likely to rapidly lead to unintended failure modes.

Admission of QUIC traffic regardless of version avoids these failure

modes, avoids unnecessary deployment delays, and supports continuous

version-based evolution.

3. Network-Visible Information about QUIC Flows

This section addresses the different kinds of observations and

inferences that can be made about QUIC flows by a passive observer

in the network based on the wire image in Section 2. Here we assume

a bidirectional observer (one that can see packets in both

directions in the sequence in which they are carried on the wire)

unless noted, but typically without access to any keying

information.

3.1. Identifying QUIC Traffic

The QUIC wire image is not specifically designed to be

distinguishable from other UDP traffic by a passive observer in the

network. While certain QUIC applications may be heuristically

identifiable on a per-application basis, there is no general method

for distinguishing QUIC traffic from otherwise-unclassifiable UDP

traffic on a given link. Any unrecognized UDP traffic may therefore

be QUIC traffic.

At the time of writing, two application bindings for QUIC have been

published or adopted by the IETF: HTTP/3 [QUIC-HTTP] and DNS over

Dedicated QUIC Connections [I-D.ietf-dprive-dnsoquic]. These are

both known at the time of writing to have active Internet

deployments, so an assumption that all QUIC traffic is HTTP/3 is not

valid. HTTP/3 uses UDP port 443 by convention but various methods

can be used to specify alternate port numbers. Other applications

(e.g., Microsoft's SMB over QUIC) also use UDP port 443 by default.

Therefore, simple assumptions about whether a given flow is using

QUIC, or indeed which application it might be using QUIC, based

solely upon a UDP port number may not hold; see also Section 5 of

[RFC7605].

While the second-most-significant bit (0x40) of the first octet is

set to 1 in most QUIC packets of the current version (see Section
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2.1 and Section 17 of [QUIC-TRANSPORT]), this method of recognizing

QUIC traffic is not reliable. First, it only provides one bit of

information and is prone to collision with UDP-based protocols other

than those considered in [RFC7983]. Second, this feature of the wire

image is not invariant [QUIC-INVARIANTS] and may change in future

versions of the protocol, or even be negotiated during the handshake

via the use of an extension [QUIC-GREASE].

Even though transport parameters transmitted in the client's Initial

packet are observable by the network, they cannot be modified by the

network without causing connection failure. Further, the reply from

the server cannot be observed, so observers on the network cannot

know which parameters are actually in use.

3.1.1. Identifying Negotiated Version

An in-network observer assuming that a set of packets belongs to a

QUIC flow might infer the version number in use by observing the

handshake. If the version number in an Initial packet of the server

response is subsequently seen in a packet from the client, that

version has been accepted by both endpoints to be used for the rest

of the connection (see Section 2 of [I-D.ietf-quic-version-

negotiation]).

The negotiated version cannot be identified for flows for which a

handshake is not observed, such as in the case of connection

migration; however, it might be possible to associate a flow with a

flow for which a version has been identified; see Section 3.5.

3.1.2. First Packet Identification for Garbage Rejection

A related question is whether the first packet of a given flow on a

port known to be associated with QUIC is a valid QUIC packet. This

determination supports in-network filtering of garbage UDP packets

(reflection attacks, random backscatter, etc.). While heuristics

based on the first byte of the packet (packet type) could be used to

separate valid from invalid first packet types, the deployment of

such heuristics is not recommended, as bits in the first byte may

have different meanings in future versions of the protocol.

3.2. Connection Confirmation

This document focuses on QUIC version 1, and this Connection

Confirmation section applies only to packets belonging to QUIC

version 1 flows; for purposes of on-path observation, it assumes

that these packets have been identified as such through the

observation of a version number exchange as described above.

Connection establishment uses Initial and Handshake packets

containing a TLS handshake, and Retry packets that do not contain
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parts of the handshake. Connection establishment can therefore be

detected using heuristics similar to those used to detect TLS over

TCP. A client initiating a connection may also send data in 0-RTT

packets directly after the Initial packet containing the TLS Client

Hello. Since packets may be reordered or lost in the network, 0-RTT

packets could be seen before the Initial packet.

Note that in this version of QUIC, clients send Initial packets

before servers do, servers send Handshake packets before clients do,

and only clients send Initial packets with tokens. Therefore, an

endpoint can be identified as a client or server by an on-path

observer. An attempted connection after Retry can be detected by

correlating the contents of the Retry packet with the Token and the

Destination Connection ID fields of the new Initial packet.

3.3. Distinguishing Acknowledgment Traffic

Some deployed in-network functions distinguish packets that carry

only acknowledgment (ACK-only) information from packets carrying

upper-layer data in order to attempt to enhance performance, for

example by queueing ACKs differently or manipulating ACK signaling 

[RFC3449]. Distinguishing ACK packets is possible in TCP, but is not

supported by QUIC, since acknowledgment signaling is carried inside

QUIC's encrypted payload, and ACK manipulation is impossible.

Specifically, heuristics attempting to distinguish ACK-only packets

from payload-carrying packets based on packet size are likely to

fail, and are not recommended to use as a way to construe internals

of QUIC's operation as those mechanisms can change, e.g., due to the

use of extensions.

3.4. Server Name Indication (SNI)

The client's TLS ClientHello may contain a Server Name Indication

(SNI) [RFC6066] extension, by which the client reveals the name of

the server it intends to connect to, in order to allow the server to

present a certificate based on that name. SNI information is

available to unidirectional observers on the client-to-server path,

if present.

The TLS ClientHello may also contain an Application-Layer Protocol

Negotiation (ALPN) [RFC7301] extension, by which the client exposes

the names of application-layer protocols it supports; an observer

can deduce that one of those protocols will be used if the

connection continues.

Work is currently underway in the TLS working group to encrypt the

contents of the ClientHello in TLS 1.3 [TLS-ECH]. This would make

SNI-based application identification impossible by on-path

observation for QUIC and other protocols that use TLS.
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3.4.1. Extracting Server Name Indication (SNI) Information

If the ClientHello is not encrypted, SNI can be derived from the

client's Initial packet(s) by calculating the Initial secret to

decrypt the packet payload and parsing the QUIC CRYPTO frame(s)

containing the TLS ClientHello.

As both the derivation of the Initial secret and the structure of

the Initial packet itself are version-specific, the first step is

always to parse the version number (the second through fifth bytes

of the long header). Note that only long header packets carry the

version number, so it is necessary to also check if the first bit of

the QUIC packet is set to 1, indicating a long header.

Note that proprietary QUIC versions, that have been deployed before

standardization, might not set the first bit in a QUIC long header

packet to 1. However, it is expected that these versions will

gradually disappear over time and therefore do not require any

special consideration or treatment.

When the version has been identified as QUIC version 1, the packet

type needs to be verified as an Initial packet by checking that the

third and fourth bits of the header are both set to 0. Then the

Destination Connection ID needs to be extracted from the packet. The

Initial secret is calculated using the version-specific Initial

salt, as described in Section 5.2 of [QUIC-TLS]. The length of the

connection ID is indicated in the 6th byte of the header followed by

the connection ID itself.

Note that subsequent Initial packets might contain a Destination

Connection ID other than the one used to generate the Initial

secret. Therefore, attempts to decrypt these packets using the

procedure above might fail unless the Initial secret is retained by

the observer.

To determine the end of the packet header and find the start of the

payload, the packet number length, the source connection ID length,

and the token length need to be extracted. The packet number length

is defined by the seventh and eight bits of the header as described

in Section 17.2 of [QUIC-TRANSPORT], but is protected as described

in Section 5.4 of [QUIC-TLS]. The source connection ID length is

specified in the byte after the destination connection ID. The token

length, which follows the source connection ID, is a variable-length

integer as specified in Section 16 of [QUIC-TRANSPORT].

After decryption, the client's Initial packet(s) can be parsed to

detect the CRYPTO frame(s) that contains the TLS ClientHello, which

then can be parsed similarly to TLS over TCP connections. Note that

there can be multiple CRYPTO frames spread out over one or more
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Initial packets, and they might not be in order, so reassembling the

CRYPTO stream by parsing offsets and lengths is required. Further,

the client's Initial packet(s) may contain other frames, so the

first bytes of each frame need to be checked to identify the frame

type and determine whether the frame can be skipped over. Note that

the length of the frames is dependent on the frame type; see 

Section 18 of [QUIC-TRANSPORT]. E.g., PADDING frames, each

consisting of a single zero byte, may occur before, after, or

between CRYPTO frames. However, extensions might define additional

frame types. If an unknown frame type is encountered, it is

impossible to know the length of that frame which prevents skipping

over it, and therefore parsing fails.

3.5. Flow Association

The QUIC connection ID (see Section 2.6) is designed to allow a

coordinating on-path device, such as a load-balancer, to associate

two flows when one of the endpoints changes address. This change can

be due to NAT rebinding or address migration.

The connection ID must change upon intentional address change by an

endpoint, and connection ID negotiation is encrypted, so it is not

possible for a passive observer to link intended changes of address

using the connection ID.

When one endpoint's address unintentionally changes, as is the case

with NAT rebinding, an on-path observer may be able to use the

connection ID to associate the flow on the new address with the flow

on the old address.

A network function that attempts to use the connection ID to

associate flows must be robust to the failure of this technique.

Since the connection ID may change multiple times during the

lifetime of a connection, packets with the same 5-tuple but

different connection IDs might or might not belong to the same

connection. Likewise, packets with the same connection ID but

different 5-tuples might not belong to the same connection, either.

Connection IDs should be treated as opaque; see Section 4.4 for

caveats regarding connection ID selection at servers.

3.6. Flow Teardown

QUIC does not expose the end of a connection; the only indication to

on-path devices that a flow has ended is that packets are no longer

observed. Stateful devices on path such as NATs and firewalls must

therefore use idle timeouts to determine when to drop state for QUIC

flows; see Section 4.2.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-18


3.7. Flow Symmetry Measurement

QUIC explicitly exposes which side of a connection is a client and

which side is a server during the handshake. In addition, the

symmetry of a flow (whether primarily client-to-server, primarily

server-to-client, or roughly bidirectional, as input to basic

traffic classification techniques) can be inferred through the

measurement of data rate in each direction. Note that QUIC packets

containing only control frames (such as ACK-only packets) may be

padded. Padding, though optional, may conceal connection roles or

flow symmetry information.

3.8. Round-Trip Time (RTT) Measurement

The round-trip time (RTT) of QUIC flows can be inferred by

observation once per flow, during the handshake, as in passive TCP

measurement; this requires parsing of the QUIC packet header and

recognition of the handshake, as illustrated in Section 2.4. It can

also be inferred during the flow's lifetime, if the endpoints use

the spin bit facility described below and in Section 17.3.1 of

[QUIC-TRANSPORT]. RTT measurement is available to unidirectional

observers when the spin bit is enabled.

3.8.1. Measuring Initial RTT

In the common case, the delay between the client's Initial packet

(containing the TLS ClientHello) and the server's Initial packet

(containing the TLS ServerHello) represents the RTT component on the

path between the observer and the server. The delay between the

server's first Handshake packet and the Handshake packet sent by the

client represents the RTT component on the path between the observer

and the client. While the client may send 0-RTT packets after the

Initial packet during connection re-establishment, these can be

ignored for RTT measurement purposes.

Handshake RTT can be measured by adding the client-to-observer and

observer-to-server RTT components together. This measurement

necessarily includes all transport- and application-layer delay at

both endpoints.

3.8.2. Using the Spin Bit for Passive RTT Measurement

The spin bit provides a version-specific method to measure per-flow

RTT from observation points on the network path throughout the

duration of a connection. See Section 17.4 of [QUIC-TRANSPORT] for

the definition of the spin bit in Version 1 of QUIC. Endpoint

participation in spin bit signaling is optional. That is, while its

location is fixed in this version of QUIC, an endpoint can

unilaterally choose to not support "spinning" the bit.
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Use of the spin bit for RTT measurement by devices on path is only

possible when both endpoints enable it. Some endpoints may disable

use of the spin bit by default, others only in specific deployment

scenarios, e.g., for servers and clients where the RTT would reveal

the presence of a VPN or proxy. To avoid making these connections

identifiable based on the usage of the spin bit, all endpoints

randomly disable "spinning" for at least one eighth of connections,

even if otherwise enabled by default. An endpoint not participating

in spin bit signaling for a given connection can use a fixed spin

value for the duration of the connection, or can set the bit

randomly on each packet sent.

When in use, the latency spin bit in each direction changes value

once per RTT any time that both endpoints are sending packets

continuously. An on-path observer can observe the time difference

between edges (changes from 1 to 0 or 0 to 1) in the spin bit signal

in a single direction to measure one sample of end-to-end RTT. This

mechanism follows the principles of protocol measurability laid out

in [IPIM].

Note that this measurement, as with passive RTT measurement for TCP,

includes all transport protocol delay (e.g., delayed sending of

acknowledgments) and/or application layer delay (e.g., waiting for a

response to be generated). It therefore provides devices on path a

good instantaneous estimate of the RTT as experienced by the

application.

However, application-limited and flow-control-limited senders can

have application and transport layer delay, respectively, that are

much greater than network RTT. When the sender is application-

limited and e.g., only sends small amount of periodic application

traffic, where that period is longer than the RTT, measuring the

spin bit provides information about the application period, not the

network RTT.

Since the spin bit logic at each endpoint considers only samples

from packets that advance the largest packet number, signal

generation itself is resistant to reordering. However, reordering

can cause problems at an observer by causing spurious edge detection

and therefore inaccurate (i.e., lower) RTT estimates, if reordering

occurs across a spin-bit flip in the stream.

Simple heuristics based on the observed data rate per flow or

changes in the RTT series can be used to reject bad RTT samples due

to lost or reordered edges in the spin signal, as well as

application or flow control limitation; for example, QoF [TMA-QOF]

rejects component RTTs significantly higher than RTTs over the

history of the flow. These heuristics may use the handshake RTT as

an initial RTT estimate for a given flow. Usually such heuristics
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would also detect if the spin is either constant or randomly set for

a connection.

An on-path observer that can see traffic in both directions (from

client to server and from server to client) can also use the spin

bit to measure "upstream" and "downstream" component RTT; i.e, the

component of the end-to-end RTT attributable to the paths between

the observer and the server and the observer and the client,

respectively. It does this by measuring the delay between a spin

edge observed in the upstream direction and that observed in the

downstream direction, and vice versa.

Raw RTT samples generated using these techniques can be processed in

various ways to generate useful network performance metrics. A

simple linear smoothing or moving minimum filter can be applied to

the stream of RTT samples to get a more stable estimate of

application-experienced RTT. RTT samples measured from the spin bit

can also be used to generate RTT distribution information, including

minimum RTT (which approximates network RTT over longer time

windows) and RTT variance (which approximates one-way packet delay

variance as seen by an application end-point).

4. Specific Network Management Tasks

In this section, we review specific network management and

measurement techniques and how QUIC's design impacts them.

4.1. Passive Network Performance Measurement and Troubleshooting

Limited RTT measurement is possible by passive observation of QUIC

traffic; see Section 3.8. No passive measurement of loss is possible

with the present wire image. Limited observation of upstream

congestion may be possible via the observation of Congestion

Experienced (CE) markings in the IP header [RFC3168] on ECN-enabled

QUIC traffic.

On-path devices can also make measurements of RTT, loss and other

performance metrics when information is carried in an additional

network-layer packet header (Section 6 of [RFC9065] describes use of

operations, administration and management (OAM) information). Using

network-layer approaches also has the advantage that common

observation and analysis tools can be consistently used for multiple

transport protocols, however, these techniques are often limited to

measurements within one or multiple cooperating domains.

4.2. Stateful Treatment of QUIC Traffic

Stateful treatment of QUIC traffic (e.g., at a firewall or NAT

middlebox) is possible through QUIC traffic and version

identification (Section 3.1) and observation of the handshake for
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connection confirmation (Section 3.2). The lack of any visible end-

of-flow signal (Section 3.6) means that this state must be purged

either through timers or through least-recently-used eviction,

depending on application requirements.

While QUIC has no clear network-visible end-of-flow signal and

therefore does require timer-based state removal, the QUIC handshake

indicates confirmation by both ends of a valid bidirectional

transmission. As soon as the handshake completed, timers should be

set long enough to also allow for short idle time during a valid

transmission.

[RFC4787] requires a network state timeout that is not less than 2

minutes for most UDP traffic. However, in practice, a QUIC endpoint

can experience lower timeouts, in the range of 30 to 60 seconds 

[QUIC-TIMEOUT].

In contrast, [RFC5382] recommends a state timeout of more than 2

hours for TCP, given that TCP is a connection-oriented protocol with

well-defined closure semantics. Even though QUIC has explicitly been

designed to tolerate NAT rebindings, decreasing the NAT timeout is

not recommended, as it may negatively impact application performance

or incentivize endpoints to send very frequent keep-alive packets.

The recommendation is therefore that, even when lower state timeouts

are used for other UDP traffic, a state timeout of at least two

minutes ought to be used for QUIC traffic.

If state is removed too early, this could lead to black-holing of

incoming packets after a short idle period. To detect this

situation, a timer at the client needs to expire before a re-

establishment can happen (if at all), which would lead to

unnecessarily long delays in an otherwise working connection.

Furthermore, not all endpoints use routing architectures where

connections will survive a port or address change. So even when the

client revives the connection, a NAT rebinding can cause a routing

mismatch where a packet is not even delivered to the server that

might support address migration. For these reasons, the limits in 

[RFC4787] are important to avoid black-holing of packets (and hence

avoid interrupting the flow of data to the client), especially where

devices are able to distinguish QUIC traffic from other UDP

payloads.

The QUIC header optionally contains a connection ID which could

provide additional entropy beyond the 5-tuple. The QUIC handshake

needs to be observed in order to understand whether the connection

ID is present and what length it has. However, connection IDs may be

renegotiated after the handshake, and this renegotiation is not
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visible to the path. Therefore, using the connection ID as a flow

key field for stateful treatment of flows is not recommended as

connection ID changes will cause undetectable and unrecoverable loss

of state in the middle of a connection. In particular, the use of

the connection ID for functions that require state to make a

forwarding decision is not viable as it will break connectivity, or

at minimum cause long timeout-based delays before this problem is

detected by the endpoints and the connection can potentially be re-

established.

Use of connection IDs is specifically discouraged for NAT

applications. If a NAT hits an operational limit, it is recommended

to rather drop the initial packets of a flow (see also Section 4.5),

which potentially triggers TCP fallback. Use of the connection ID to

multiplex multiple connections on the same IP address/port pair is

not a viable solution as it risks connectivity breakage, in case the

connection ID changes.

4.3. Address Rewriting to Ensure Routing Stability

While QUIC's migration capability makes it possible for a connection

to survive client address changes, this does not work if the routers

or switches in the server infrastructure route using the address-

port 4-tuple. If infrastructure routes on addresses only, NAT

rebinding or address migration will cause packets to be delivered to

the wrong server. [QUIC-LB] describes a way to addresses this

problem by coordinating the selection and use of connection IDs

between load-balancers and servers.

Applying address translation at a middlebox to maintain a stable

address-port mapping for flows based on connection ID might seem

like a solution to this problem. However, hiding information about

the change of the IP address or port conceals important and

security-relevant information from QUIC endpoints and as such would

facilitate amplification attacks (see Section 8 of [QUIC-

TRANSPORT]). A NAT function that hides peer address changes prevents

the other end from detecting and mitigating attacks as the endpoint

cannot verify connectivity to the new address using QUIC

PATH_CHALLENGE and PATH_RESPONSE frames.

In addition, a change of IP address or port is also an input signal

to other internal mechanisms in QUIC. When a path change is

detected, path-dependent variables like congestion control

parameters will be reset protecting the new path from overload.

4.4. Server Cooperation with Load Balancers

In the case of networking architectures that include load balancers,

the connection ID can be used as a way for the server to signal
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information about the desired treatment of a flow to the load

balancers. Guidance on assigning connection IDs is given in [QUIC-

APPLICABILITY]. [QUIC-LB] describes a system for coordinating

selection and use of connection IDs between load-balancers and

servers.

4.5. Filtering Behavior

[RFC4787] describes possible packet filtering behaviors that relate

to NATs but is often also used is other scenarios where packet

filtering is desired. Though the guidance there holds, a

particularly unwise behavior admits a handful of UDP packets and

then makes a decision to whether or not filter later packets in the

same connection. QUIC applications are encouraged to fall back to

TCP if early packets do not arrive at their destination [QUIC-

APPLICABILITY], as QUIC is based on UDP and there are known blocks

of UDP traffic (see Section 4.6). Admitting a few packets allows the

QUIC endpoint to determine that the path accepts QUIC. Sudden drops

afterwards will result in slow and costly timeouts before abandoning

the connection.

4.6. UDP Blocking, Throttling, and NAT Binding

Today, UDP is the most prevalent DDoS vector, since it is easy for

compromised non-admin applications to send a flood of large UDP

packets (while with TCP the attacker gets throttled by the

congestion controller) or to craft reflection and amplification

attacks. Some networks therefore block UDP traffic. With increased

deployment of QUIC, there is also an increased need to allow UDP

traffic on ports used for QUIC. However, if UDP is generally enabled

on these ports, UDP flood attacks may also use the same ports. One

possible response to this threat is to throttle UDP traffic on the

network, allocating a fixed portion of the network capacity to UDP

and blocking UDP datagrams over that cap. As the portion of QUIC

traffic compared to TCP is also expected to increase over time,

using such a limit is not recommended but if done, limits might need

to be adapted dynamically.

Further, if UDP traffic is desired to be throttled, it is

recommended to block individual QUIC flows entirely rather than

dropping packets indiscriminately. When the handshake is blocked,

QUIC-capable applications may fall back to TCP. However, blocking a

random fraction of QUIC packets across 4-tuples will allow many QUIC

handshakes to complete, preventing TCP fallback, but these

connections will suffer from severe packet loss (see also Section

4.5). Therefore, UDP throttling should be realized by per-flow

policing, as opposed to per-packet policing. Note that this per-flow

policing should be stateless to avoid problems with stateful

treatment of QUIC flows (see Section 4.2), for example blocking a
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portion of the space of values of a hash function over the addresses

and ports in the UDP datagram. While QUIC endpoints are often able

to survive address changes, e.g., by NAT rebindings, blocking a

portion of the traffic based on 5-tuple hashing increases the risk

of black-holing an active connection when the address changes.

Note that some source ports are assumed to be reflection attack

vectors by some servers; see Section 8.1 of [QUIC-APPLICABILITY]. As

a result, NAT binding to these source ports can result in that

traffic being blocked.

4.7. DDoS Detection and Mitigation

On-path observation of the transport headers of packets can be used

for various security functions. For example, Denial of Service (DoS)

and Distributed DoS (DDoS) attacks against the infrastructure or

against an endpoint can be detected and mitigated by characterising

anomalous traffic. Other uses include support for security audits

(e.g., verifying the compliance with ciphersuites); client and

application fingerprinting for inventory; and to provide alerts for

network intrusion detection and other next generation firewall

functions.

Current practices in detection and mitigation of DDoS attacks

generally involve classification of incoming traffic (as packets,

flows, or some other aggregate) into "good" (productive) and "bad"

(DDoS) traffic, and then differential treatment of this traffic to

forward only good traffic. This operation is often done in a

separate specialized mitigation environment through which all

traffic is filtered; a generalized architecture for separation of

concerns in mitigation is given in [DOTS-ARCH].

Efficient classification of this DDoS traffic in the mitigation

environment is key to the success of this approach. Limited first-

packet garbage detection as in Section 3.1.2 and stateful tracking

of QUIC traffic as in Section 4.2 above may be useful during

classification.

Note that the use of a connection ID to support connection migration

renders 5-tuple based filtering insufficient to detect active flows

and requires more state to be maintained by DDoS defense systems if

support of migration of QUIC flows is desired. For the common case

of NAT rebinding, where the client's address changes without the

client's intent or knowledge, DDoS defense systems can detect a

change in the client's endpoint address by linking flows based on

the server's connection IDs. However, QUIC's linkability resistance

ensures that a deliberate connection migration is accompanied by a

change in the connection ID. In this case, the connection ID can not
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be used to distinguish valid, active traffic from new attack

traffic.

It is also possible for endpoints to directly support security

functions such as DoS classification and mitigation. Endpoints can

cooperate with an in-network device directly by e.g., sharing

information about connection IDs.

Another potential method could use an on-path network device that

relies on pattern inferences in the traffic and heuristics or

machine learning instead of processing observed header information.

However, it is questionable whether connection migrations must be

supported during a DDoS attack. While unintended migration without a

connection ID change can be more easily supported, it might be

acceptable to not support migrations of active QUIC connections that

are not visible to the network functions performing the DDoS

detection. As soon as the connection blocking is detected by the

client, the client may be able to rely on the 0-RTT data mechanism

provided by QUIC. When clients migrate to a new path, they should be

prepared for the migration to fail and attempt to reconnect quickly.

Beyond in-network DDoS protection mechanisms, TCP syncookies 

[RFC4937] are a well-established method of mitigating some kinds of

TCP DDoS attacks. QUIC Retry packets are the functional analogue to

syncookies, forcing clients to prove possession of their IP address

before committing server state. However, there are safeguards in

QUIC against unsolicited injection of these packets by

intermediaries who do not have consent of the end server. See [QUIC-

RETRY] for standard ways for intermediaries to send Retry packets on

behalf of consenting servers.

4.8. Quality of Service Handling and ECMP Routing

It is expected that any QoS handling in the network, e.g., based on

use of DiffServ Code Points (DSCPs) [RFC2475] as well as Equal-Cost

Multi-Path (ECMP) routing, is applied on a per flow-basis (and not

per-packet) and as such that all packets belonging to the same

active QUIC connection get uniform treatment.

Using ECMP to distribute packets from a single flow across multiple

network paths or any other non-uniform treatment of packets belong

to the same connection could result in variations in order, delivery

rate, and drop rate. As feedback about loss or delay of each packet

is used as input to the congestion controller, these variations

could adversely affect performance. Depending on the loss recovery

mechanism implemented, QUIC may be more tolerant of packet re-

ordering than typical TCP traffic (see Section 2.7). However, the
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recovery mechanism used by a flow cannot be known by the network and

therefore reordering tolerance should be considered as unknown.

Note that the 5-tuple of a QUIC connection can change due to

migration. In this case different flows are observed by the path and

maybe be treated differently, as congestion control is usually reset

on migration (see also Section 3.5).

4.9. Handling ICMP Messages

Datagram Packetization Layer PMTU Discovery (PLPMTUD) can be used by

QUIC to probe for the supported PMTU. PLPMTUD optionally uses ICMP

messages (e.g., IPv6 Packet Too Big messages). Given known attacks

with the use of ICMP messages, the use of PLPMTUD in QUIC has been

designed to safely use but not rely on receiving ICMP feedback (see 

Section 14.2.1. of [QUIC-TRANSPORT]).

Networks are recommended to forward these ICMP messages and retain

as much of the original packet as possible without exceeding the

minimum MTU for the IP version when generating ICMP messages as

recommended in [RFC1812] and [RFC4443].

4.10. Guiding Path MTU

Some network segments support 1500-byte packets, but can only do so

by fragmenting at a lower layer before traversing a network segment

with a smaller MTU, and then reassembling within the network

segment. This is permissible even when the IP layer is IPv6 or IPv4

with the DF bit set, because fragmentation occurs below the IP

layer. However, this process can add to compute and memory costs,

leading to a bottleneck that limits network capacity. In such

networks this generates a desire to influence a majority of senders

to use smaller packets, to avoid exceeding limited reassembly

capacity.

For TCP, MSS clamping (Section 3.2 of [RFC4459]) is often used to

change the sender's TCP maximum segment size, but QUIC requires a

different approach. Section 14 of [QUIC-TRANSPORT] advises senders

to probe larger sizes using Datagram Packetization Layer PMTU

Discovery ([DPLPMTUD]) or Path Maximum Transmission Unit Discovery

(PMTUD: [RFC1191] and [RFC8201]). This mechanism encourages senders

to approach the maximum packet size, which could then cause

fragmentation within a network segment of which they may not be

aware.

If path performance is limited when forwarding larger packets, an

on-path device should support a maximum packet size for a specific

transport flow and then consistently drop all packets that exceed

the configured size when the inner IPv4 packet has DF set, or IPv6

is used.
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Networks with configurations that would lead to fragmentation of

large packets within a network segment should drop such packets

rather than fragmenting them. Network operators who plan to

implement a more selective policy may start by focusing on QUIC.

QUIC flows cannot always be easily distinguished from other UDP

traffic, but we assume at least some portion of QUIC traffic can be

identified (see Section 3.1). For networks supporting QUIC, it is

recommended that a path drops any packet larger than the

fragmentation size. When a QUIC endpoint uses DPLPMTUD, it will use

a QUIC probe packet to discover the PMTU. If this probe is lost, it

will not impact the flow of QUIC data.

IPv4 routers generate an ICMP message when a packet is dropped

because the link MTU was exceeded. [RFC8504] specifies how an IPv6

node generates an ICMPv6 Packet Too Big message (PTB) in this case.

PMTUD relies upon an endpoint receiving such PTB messages [RFC8201],

whereas DPLPMTUD does not reply upon these messages, but still can

optionally use these to improve performance Section 4.6 of

[DPLPMTUD].

A network cannot know in advance which discovery method is used by a

QUIC endpoint, so it should send a PTB message in addition to

dropping an oversized packet. A generated PTB message should be

compliant with the validation requirements of Section 14.2.1 of

[QUIC-TRANSPORT], otherwise it will be ignored for PMTU discovery.

This provides a signal to the endpoint to prevent the packet size

from growing too large, which can entirely avoid network segment

fragmentation for that flow.

Endpoints can cache PMTU information, in the IP-layer cache. This

short-term consistency between the PMTU for flows can help avoid an

endpoint using a PMTU that is inefficient. The IP cache can also

influence the PMTU value of other IP flows that use the same path 

[RFC8201][DPLPMTUD], including IP packets carrying protocols other

than QUIC. The representation of an IP path is implementation-

specific [RFC8201].

5. IANA Considerations

This document has no actions for IANA.

6. Security Considerations

QUIC is an encrypted and authenticated transport. That means, once

the cryptographic handshake is complete, QUIC endpoints discard most

packets that are not authenticated, greatly limiting the ability of

an attacker to interfere with existing connections.
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However, some information is still observable, as supporting

manageability of QUIC traffic inherently involves tradeoffs with the

confidentiality of QUIC's control information; this entire document

is therefore security-relevant.

More security considerations for QUIC are discussed in [QUIC-

TRANSPORT] and [QUIC-TLS], generally considering active or passive

attackers in the network as well as attacks on specific QUIC

mechanism.

Version Negotiation packets do not contain any mechanism to prevent

version downgrade attacks. However, future versions of QUIC that use

Version Negotiation packets are required to define a mechanism that

is robust against version downgrade attacks. Therefore, a network

node should not attempt to impact version selection, as version

downgrade may result in connection failure.
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