
Workgroup: QUIC Working Group

Internet-Draft: draft-ietf-quic-multipath-03

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: Y. Liu, Ed.

Alibaba Inc.

Y. Ma

Alibaba Inc.

Q. De Coninck, Ed.

UCLouvain

O. Bonaventure

UCLouvain and Tessares

C. Huitema

Private Octopus Inc.

M. Kuehlewind, Ed.

Ericsson

Multipath Extension for QUIC

Abstract

This document specifies a multipath extension for the QUIC protocol

to enable the simultaneous usage of multiple paths for a single

connection.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the QUIC Working Group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/mirjak/draft-lmbdhk-quic-multipath.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/mirjak/draft-lmbdhk-quic-multipath
https://github.com/mirjak/draft-lmbdhk-quic-multipath
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. High-level overview

3. Handshake Negotiation and Transport Parameter

4. Path Setup and Removal

4.1. Path Initiation

4.2. Path State Management

4.3. Path Close

4.3.1. Use PATH_ABANDON Frame to Close a Path

4.3.2. Refusing a New Path

4.3.3. Effect of RETIRE_CONNECTION_ID Frame

4.3.4. Idle Timeout

4.4. Path States

5. Congestion Control

6. Computing Path RTT

7. Packet Scheduling

8. Recovery

9. Packet Number Space and Use of Connection ID

9.1. Using Zero-Length connection ID

9.1.1. Sending Acknowledgements and Handling Ranges

9.1.2. Loss and Congestion Handling With Zero-Length CID

9.1.3. RTT Estimation Considerations when SPNS is Used

9.1.4. ECN and Zero-Length CID Considerations

9.1.5. Restricted Sending to Zero-Length CID Peer

9.2. Using non-zero length CID and Multiple Packet Number Spaces

9.2.1. Packet Protection for QUIC Multipath

9.2.2. Key Update for QUIC Multipath

10. Examples

10.1. Path Establishment

10.2. Path Closure

11. Implementation Considerations

11.1. Handling different PMTU sizes

¶

¶

https://trustee.ietf.org/license-info

11.2. Keep Alive

12. New Frames

12.1. PATH_ABANDON Frame

12.2. PATH_STATUS frame

12.3. ACK_MP Frame

13. Error Codes

14. IANA Considerations

15. Security Considerations

16. Contributors

17. Acknowledgments

18. References

18.1. Normative References

18.2. Informative References

Authors' Addresses

1. Introduction

This document specifies an extension to QUIC version 1

[QUIC-TRANSPORT] to enable the simultaneous usage of multiple paths

for a single connection.

This proposal is based on several basic design points:

Re-use as much as possible mechanisms of QUIC version 1. In

particular, this proposal uses path validation as specified for

QUIC version 1 and aims to re-use as much as possible of QUIC's

connection migration.

Use the same packet header formats as QUIC version 1 to avoid the

risk of packets being dropped by middleboxes (which may only

support QUIC version 1)

Congestion Control must be per-path (following [QUIC-TRANSPORT])

which usually also requires per-path RTT measurements

PMTU discovery should be performed per-path

A path is determined by the 4-tuple of source and destination IP

address as well as source and destination port. Therefore, there

can be at most one active paths/connection ID per 4-tuple.

The path management specified in Section 9 of [QUIC-TRANSPORT]

fulfills multiple goals: it directs a peer to switch sending through

a new preferred path, and it allows the peer to release resources

associated with the old path. Multipath requires several changes to

that mechanism:

Allow simultaneous transmission of non-probing frames on multiple

paths.

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc9000#section-9

Continue using an existing path even if non-probing frames have

been received on another path.

Manage the removal of paths that have been abandoned.

As such, this extension specifies a departure from the specification

of path management in Section 9 of [QUIC-TRANSPORT] and therefore

requires negotiation between the two endpoints using a new transport

parameter, as specified in Section 3.

This extension uses multiple packet number spaces. When multipath is

negotiated, each destination connection ID is linked to a separate

packet number space. Using multiple packet number spaces enables

direct use of the loss recovery and congestion control mechanisms

defined in [QUIC-RECOVERY].

Some deployments of QUIC use zero-length connection IDs. When a node

selects to use zero-length connection IDs, it is not possible to use

different connection IDs for distinguishing packets sent to that

node over different paths. This extension also specifies a way to

use zero-length CID by using the same packet number space on all

paths. However, when using the same packet number space on multiple

paths, out of order delivery is likely. This causes inflation of the

number of acknowledgement ranges and therefore of the the size of

ACK frames. Senders that accept to use a single number space on

multiple paths when sending to a node using zero-length CID need to

take special care to minimize the impact of multipath delivery on

loss detection, congestion control, and ECN handling. This proposal

specifies algorithms for controlling the size of acknowledgement

packets and ECN handling in Section Section 9.1 and Section 9.1.4.

This proposal does not cover address discovery and management.

Addresses and the actual decision process to setup or tear down

paths are assumed to be handled by the application that is using the

QUIC multipath extension. Further, this proposal only specifies a

simple basic packet scheduling algorithm, in order to provide some

basic implementation guidance. However, more advanced algorithms as

well as potential extensions to enhance signaling of the current

path state are expected as future work.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

*

¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-9

We assume that the reader is familiar with the terminology used in

[QUIC-TRANSPORT]. In addition, we define the following terms:

Path: refers to the 4-tuple {source IP address, source port

number, destination IP address, destination port number}. A path

refers to "network path" used in [QUIC-TRANSPORT].

Path Identifier (Path ID): An identifier that is used to identify

a path in a QUIC connection at an endpoint. Path Identifier is

used in multipath control frames (etc. PATH_ABANDON frame) to

identify a path. By default, it is defined as the sequence number

of the destination Connection ID used for sending packets on that

particular path, but alternative definitions can be used if the

length of that connection ID is zero.

Packet Number Space Identifier (PN Space ID): An identifier that

is used to distinguish packet number spaces for different paths.

It is used in 1-RTT packets and ACK_MP frames. Each node

maintains a list of "Received Packets" for each of the CID that

it provided to the peer, which is used for acknowledging packets

received with that CID.

The difference between Path Identifier and Packet Number Space

Identifier, is that the Path Identifier is used in multipath control

frames to identify a path, and the Packet Number Space Identifier is

used in 1-RTT packets and ACK_MP frames to distinguish packet number

spaces for different paths. Both identifiers have the same value,

which is the sequence number of the connection ID, if a non-zero

connection ID is used. If the connection ID is zero length, the

Packet Number Space Identifier is 0, while the Path Identifier is

selected on path establishment.

2. High-level overview

The multipath extensions to QUIC proposed in this document enable

the simultaneous utilization of different paths to exchange non-

probing QUIC frames for a single connection. This contrasts with the

base QUIC protocol [QUIC-TRANSPORT] that includes a connection

migration mechanism that selects only one path to exchange such

frames.

A multipath QUIC connection starts with a QUIC handshake as a

regular QUIC connection. See further Section 3. The peers use the

enable_multipath transport parameter during the handshake to

negotiate the utilization of the multipath capabilities. The

active_connection_id_limit transport parameter limits the maximum

number of active paths that can be used during a connection. A

multipath QUIC connection is thus an established QUIC connection

¶

*

¶

*

¶

*

¶

¶

¶

where the enable_multipath transport parameter has been successfully

negotiated.

To add a new path to an existing multipath QUIC connection, a client

starts a path validation on the chosen path, as further described in

Section 4. In this version of the document, a QUIC server does not

initiate the creation of a path, but it can validate a new path

created by a client. A new path can only be used once it has been

validated. Each endpoint associates a Path identifier to each path.

This identifier is notably used when a peer sends a PATH_ABANDON

frame to indicate that it has closed the path whose identifier is

contained in the PATH_ABANDON frame.

In addition to these core features, an application using Multipath

QUIC will typically need additional algorithms to handle the number

of active paths and how they are used to send packets. As these

differ depending on the application's requirements, their

specification is out of scope of this document.

3. Handshake Negotiation and Transport Parameter

This extension defines a new transport parameter, used to negotiate

the use of the multipath extension during the connection handshake,

as specified in [QUIC-TRANSPORT]. The new transport parameter is

defined as follows:

name: enable_multipath (TBD - experiments use 0xbabf)

value: 0 (default) for disabled.

The valid options for the value field are listed in Table 1:

Option Definition

0x0 don't support multipath

0x1 supports multipath as defined in this document

Table 1: Available value for enable_multipath

If for any one of the endpoints, the parameter is absent or set to

0, the endpoints MUST fallback to [QUIC-TRANSPORT] with single

active path and MUST NOT use any frame or mechanism defined in this

document.

If endpoint receives an unexpected value for the transport parameter

"enable_multipath", it MUST treat this as a connection error of type

TRANSPORT_PARAMETER_ERROR (specified in Section 20.1 of

[QUIC-TRANSPORT]) and close the connection.

This extension does not change the definition of any transport

parameter defined in Section 18.2. of [QUIC-TRANSPORT].

¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-20.1
https://rfc-editor.org/rfc/rfc9000#section-18.2.

Inline with the definition in [QUIC-TRANSPORT]

disable_active_migration also disables multipath support, except

"after a client has acted on a preferred_address transport

parameter" (Section 18.2. of [QUIC-TRANSPORT]).

The transport parameter "active_connection_id_limit"

[QUIC-TRANSPORT] limits the number of usable Connection IDs, and

also limits the number of concurrent paths. For the QUIC multipath

extension this limit even applies when no connection ID is exposed

in the QUIC header.

4. Path Setup and Removal

After completing the handshake, endpoints have agreed to enable

multipath feature and can start using multiple paths. This document

does not specify how an endpoint that is reachable via several

addresses announces these addresses to the other endpoint. In

particular, if the server uses the preferred_address transport

parameter, clients SHOULD NOT assume that the initial server address

and the addresses contained in this parameter can be simultaneously

used for multipath. Furthermore, this document does not discuss when

a client decides to initiate a new path. We delegate such discussion

in separate documents.

This proposal adds one multipath control frame for path management:

PATH_ABANDON frame for the receiver side to abandon the path (see

Section 12.1)

All the new frames are sent in 1-RTT packets [QUIC-TRANSPORT].

4.1. Path Initiation

When the multipath option is negotiated, clients that want to use an

additional path MUST first initiate the Address Validation procedure

with PATH_CHALLENGE and PATH_RESPONSE frames described in

Section 8.2 of [QUIC-TRANSPORT]. After receiving packets from the

client on a new path, if the server decides to use the new path, the

server MUST perform path validation (Section 8.2 of

[QUIC-TRANSPORT]) unless it has previously validated that address.

If validation succeed, the client can send non-probing, 1-RTT

packets on the new paths. In contrast with the specification in

Section 9 of [QUIC-TRANSPORT], the server MUST NOT assume that

receiving non-probing packets on a new path indicates an attempt to

migrate to that path. Instead, servers SHOULD consider new paths

over which non-probing packets have been received as available for

transmission.

¶

¶

¶

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-18.2.
https://rfc-editor.org/rfc/rfc9000#section-8.2
https://rfc-editor.org/rfc/rfc9000#section-8.2
https://rfc-editor.org/rfc/rfc9000#section-9

4.2. Path State Management

An endpoint uses PATH_STATUS frames to inform that the peer should

send packets in the preference expressed by these frames. Notice

that the endpoint might not follow the peer's advertisements, but

the PATH_STATUS frame is still a clear signal of suggestion for the

preference of path usage by the peer.

PATH_STATUS frame describes 2 kinds of path states:

Mark a path as "available", i.e., allow the peer to use its own

logic to split traffic among available paths.

Mark a path as "standby", i.e., suggest that no traffic should be

sent on that path if another path is available.

Endpoints use Path Identifier field in PATH_STATUS frame to identify

which path's state is going to be changed. Notice that PATH_STATUS

frame can be sent via a different path. An Endpoint MAY ignore the

PATH_STATUS frame if it would make all the paths unavailable in a

single connection.

4.3. Path Close

Each endpoint manages the set of paths that are available for

transmission. At any time in the connection, each endpoint can

decide to abandon one of these paths, following for example changes

in local connectivity or changes in local preferences. After an

endpoint abandons a path, the peer will not receive any more non-

probing packets on that path.

An endpoint that wants to close a path SHOULD use explicit request

to terminate the path by sending the PATH_ABANDON frame (see

Section 4.3.1). Note that while abandoning a path will cause

Connection ID retirement, only retiring the associated Connection ID

does not necessarily advertise path abandon (see Section 4.3.3).

However, implicit signals such as idle time or packet losses might

be the only way for an endhost to detect path closure (see

Section 4.3.4).

Note that other explicit closing mechanisms of [QUIC-TRANSPORT]

still apply on the whole connection. In particular, the reception of

either a CONNECTION_CLOSE (Section 10.2 of [QUIC-TRANSPORT]) or a

Stateless Reset (Section 10.3 of [QUIC-TRANSPORT]) closes the

connection.

4.3.1. Use PATH_ABANDON Frame to Close a Path

Both endpoints, namely the client and the server, can close a path,

by sending PATH_ABANDON frame (see Section 12.1) which abandons the

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-10.2
https://rfc-editor.org/rfc/rfc9000#section-10.3

path with a corresponding Path Identifier. Once a path is marked as

"abandoned", it means that the resources related to the path, such

as the used connection IDs, can be released. However, information

related to data delivered over that path SHOULD not be released

immediately as acknowledgments can still be received or other frames

that also may trigger retransmission of data on another path.

The endpoint sending the PATH_ABANDON frame SHOULD consider a path

as abandoned when the packet that contained the PATH_ABANDON frame

is acknowledged. When releasing resources of a path, the endpoint

SHOULD send a RETIRE_CONNECTION_ID frame for the connection IDs used

on the path, if any.

The receiver of a PATH_ABANDON frame SHOULD NOT release its

resources immediately, but SHOULD wait for the reception of the

RETIRE_CONNECTION_ID frame for the used connection IDs or 3 RTOs.

Usually, it is expected that the PATH_ABANDON frame is used by the

client to indicate to the server that path conditions have changed

such that the path is or will be not usable anymore, e.g. in case of

a mobility event. The PATH_ABANDON frame therefore indicates to the

receiving peer that the sender does not intend to send any packets

on that path anymore but also recommends to the receiver that no

packets should be sent in either direction. The receiver of an

PATH_ABANDON frame MAY also send an PATH_ABANDON frame to signal its

own willingness to not send any packet on this path anymore.

If connection IDs are used, PATH_ABANDON frames can be sent on any

path, not only the path that is intended to be closed. Thus, a path

can be abandoned even if connectivity on that path is already

broken. If no connection IDs are used and the PATH_ABANDON frame has

to send on the path that is intended to be closed, it is possible

that the packet containing the PATH_ABANDON frame or the packet

containing the ACK for the PATH_ABANDON frame cannot be received

anymore and the endpoint might need to rely on an idle time out to

close the path, as described in Section 4.3.4.

Retransmittable frames, that have previously been sent on the

abandoned path and are considered lost, SHOULD be retransmitted on a

different path.

If a PATH_ABANDON frame is received for the only active path of a

QUIC connection, the receiving peer SHOULD send a CONNECTION_CLOSE

frame and enters the closing state. If the client received a

PATH_ABANDON frame for the last open path, it MAY instead try to

open a new path, if available, and only initiate connection closure

if path validation fails or a CONNECTION_CLOSE frame is received

from the server. Similarly the server MAY wait for a short, limited

¶

¶

¶

¶

¶

¶

time such as one RTO if a path probing packet is received on a new

path before sending the CONNECTION_CLOSE frame.

4.3.2. Refusing a New Path

An endpoint may deny the establishment of a new path initiated by

its peer during the address validation procedure. According to

[QUIC-TRANSPORT], the standard way to deny the establishment of a

path is to not send a PATH_RESPONSE in response to the peer's

PATH_CHALLENGE. An endpoint that has negotiated the usage of the

multipath extension MAY use an explicit method by sending on another

active path a PATH_ABANDON frame containing the Path Identifier of

the refused path, but only if the PATH_CHALLENGE arrives in a packet

using a non-zero length Connection ID.

4.3.3. Effect of RETIRE_CONNECTION_ID Frame

Receiving a RETIRE_CONNECTION_ID frame causes the endpoint to

discard the resources associated with that connection ID. If the

connection ID was used by the peer to identify a path from the peer

to this endpoint, the resources include the list of received packets

used to send acknowledgements. The peer MAY decide to keep sending

data using the same IP addresses and UDP ports previously associated

with the connection ID, but MUST use a different connection ID when

doing so.

Note that if the sender retires a Connection ID that is still used

by in-flight packets, it may receive ACK_MP frames referencing the

retired Connection ID. If the sender stops tracking sent packets

with retired Connection ID, these would be spuriously marked as

lost. To avoid such performance issue without keeping retired

Connection ID state, an endpoint should first stop sending packets

with the to-be-retired Connection ID, then wait for all in-flight

packets to be either acknowledged or marked as lost, and finally

retire the Connection ID.

4.3.4. Idle Timeout

[QUIC-TRANSPORT] allows for closing of connections if they stay idle

for too long. The connection idle timeout in multipath QUIC is

defined as "no packet received on any path for the duration of the

idle timeout". When only one path is available, servers MUST follow

the specifications in [QUIC-TRANSPORT].

When more than one path is available, hosts shall monitor the

arrival of non-probing packets and the acknowledgements for the

packets sent over each path. Hosts SHOULD stop sending traffic on a

path if for at least the period of the idle timeout as specified in

Section 10.1. of [QUIC-TRANSPORT] (a) no non-probing packet was

received or (b) no non-probing packet sent over this path was

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-10.1.

acknowledged, but MAY ignore that rule if it would disqualify all

available paths. To avoid idle timeout of a path, endpoints can send

ack-eliciting packets such as packets containing PING frames

(Section 19.2 of [QUIC-TRANSPORT]) on that path to keep it alive.

Sending periodic PING frames also helps prevent middlebox timeout,

as discussed in Section 10.1.2 of [QUIC-TRANSPORT].

Server MAY release the resource associated with paths for which no

non-probing packet was received for a sufficiently long path-idle

delay, but SHOULD only release resource for the last available path

if no traffic is received for the duration of the idle timeout, as

specified in Section 10.1 of [QUIC-TRANSPORT]. This means if all

paths remain idle for the idle timeout, the connection is implicitly

closed.

Server implementations need to select the sub-path idle timeout as a

trade- off between keeping resources, such as connection IDs, in use

for an excessive time or having to promptly reestablish a path after

a spurious estimate of path abandonment by the client.

4.4. Path States

Figure 1 shows the states that an endpoint's path can have.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-19.2
https://rfc-editor.org/rfc/rfc9000#section-10.1.2
https://rfc-editor.org/rfc/rfc9000#section-10.1

Figure 1: States of a path

In non-final states, hosts have to track the following information.

Associated 4-tuple: The tuple (source IP, source port,

destination IP, destination port) used by the endhost to send

packets over the path.

Associated Destination Connection ID: The Connection ID used to

send packets over the path.

If multiple packet number spaces are used over the connection, hosts

MUST also track the following information.

Path Packet Number Space: The endpoint maintains a separate

packet number for sending and receiving packets over this path.

Packet number considerations described in [QUIC-TRANSPORT] apply

within the given path.

 o

 | PATH_CHALLENGE sent/received on new path

 v

 +------------+ Path validation abandoned

 | Validating |----------------------------------+

 +------------+ |

 | |

 | PATH_RESPONSE received |

 | |

 v |

 +------------+ Path blackhole detected |

 | Active |----------------------------------+

 +------------+ |

 | |

 | PATH_ABANDONED sent/received |

 v |

 +------------+ |

 | Closing | |

 +------------+ |

 | |

 | Path's draining timeout |

 | (at least 3 PTO) |

 v |

 +------------+ |

 | Closed |<---------------------------------+

 +------------+

¶

*

¶

*

¶

¶

*

¶

In the "Active" state, hosts MUST also track the following

information.

Associated Source Connection ID: The Connection ID used to

receive packets over the path.

A path in the "Validating" state performs path validation as

described in Section 8.2 of [QUIC-TRANSPORT]. An endhost should not

send non-probing frames on a path in "Validating" state, as it has

no guarantee that packets will actually reach the peer.

The endhost can use all the paths in the "Active" state, provided

that the congestion control and flow control currently allow sending

of new data on a path. Note that if a path became idle due to a

timeout, endpoints SHOULD send PATH_ABANDONED frame before closing

the path.

In the "Closing" state, the endhost SHOULD NOT send packets on this

path anymore, as there is no guarantee that the peer can still map

the packets to the connection. The endhost SHOULD wait for the

acknowledgment of the PATH_ABANDONED frame before moving the path to

the "Closed" state to ensure a graceful termination of the path.

When a path reaches the "Closed" state, the endhost releases all the

path's associated resources, including the associated Connection

IDs. Endpoints SHOULD send RETIRE_CONNECTION_ID frames for releasing

the associated Connection IDs following [QUIC-TRANSPORT].

Considering endpoints are not expected to send packets on the

current path in the "Closed" state, endpoints can send

RETIRE_CONNECTION_ID frames on other available paths. Consequently,

the endhost is not able to send nor receive packets on this path

anymore.

5. Congestion Control

Senders MUST manage per-path congestion status, and MUST NOT send

more data on a given path than congestion control on that path

allows. This is already a requirement of [QUIC-TRANSPORT].

When a Multipath QUIC connection uses two or more paths, there is no

guarantee that these paths are fully disjoint. When two (or more

paths) share the same bottleneck, using a standard congestion

control scheme could result in an unfair distribution of the

bandwidth with the multipath connection getting more bandwidth than

competing single paths connections. Multipath TCP uses the LIA

congestion control scheme specified in [RFC6356] to solve this

problem. This scheme can immediately be adapted to Multipath QUIC.

Other coupled congestion control schemes have been proposed for

Multipath TCP such as [OLIA].

¶

*

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-8.2

6. Computing Path RTT

Acknowledgement delays are the sum of two one-way delays, the delay

on the packet sending path and the delay on the return path chosen

for the acknowledgements. When different paths have different

characteristics, this can cause acknowledgement delays to vary

widely. Consider for example a multipath transmission using both a

terrestrial path, with a latency of 50ms in each direction, and a

geostationary satellite path, with a latency of 300ms in both

directions. The acknowledgement delay will depend on the combination

of paths used for the packet transmission and the ACK transmission,

as shown in Table 2.

ACK Path \ Data path Terrestrial Satellite

Terrestrial 100ms 350ms

Satellite 350ms 600ms

Table 2: Example of ACK delays using multiple

paths

Using the default algorithm specified in [QUIC-RECOVERY] would

result in suboptimal performance, computing average RTT and standard

deviation from series of different delay measurements of different

combined paths. At the same time, early tests showed that it is

desirable to send ACKs through the shortest path because a shorter

ACK delay results in a tighter control loop and better performances.

The tests also showed that it is desirable to send copies of the

ACKs on multiple paths, for robustness if a path experiences sudden

losses.

An early implementation mitigated the delay variation issue by using

time stamps, as specified in [QUIC-Timestamp]. When the timestamps

are present, the implementation can estimate the transmission delay

on each one-way path, and can then use these one way delays for more

efficient implementations of recovery and congestion control

algorithms.

If timestamps are not available, implementations could estimate one

way delays using statistical techniques. For example, in the example

shown in Table 1, implementations can use "same path" measurements

to estimate the one way delay of the terrestrial path to about 50ms

in each direction, and that of the satellite path to about 300ms.

Further measurements can then be used to maintain estimates of one

way delay variations, using logical similar to Kalman filters. But

statistical processing is error-prone, and using time stamps

provides more robust measurements.

¶

¶

¶

¶

7. Packet Scheduling

The transmission of QUIC packets on a regular QUIC connection is

regulated by the arrival of data from the application and the

congestion control scheme. QUIC packets can only be sent when the

congestion window of at least one path is open.

Multipath QUIC implementations also need to include a packet

scheduler that decides, among the paths whose congestion window is

open, the path over which the next QUIC packet will be sent. Many

factors can influence the definition of these algorithms and their

precise definition is outside the scope of this document. Various

packet schedulers have been proposed and implemented, notably for

Multipath TCP. A companion draft [I-D.bonaventure-iccrg-schedulers]

provides several general-purpose packet schedulers depending on the

application goals.

Note that the receiver could use a different scheduling strategy to

send ACK(_MP) frames. The recommended default behaviour consists in

sending ACK(_MP) frames on the path they acknowledge packets. Other

scheduling strategies, such as sending ACK(_MP) frames on the lowest

latency path, might be considered, but they could impact the sender

with side effects on, e.g., the RTT estimation or the congestion

control scheme. When adopting such asymetrical acknowledgment

scheduling, the receiver should at least ensure that the sender

negotiated one-way delay calculation mechanism (e.g.,

[QUIC-Timestamp]).

8. Recovery

Simultaneous use of multiple paths enables different retransmission

strategies to cope with losses such as: a) retransmitting lost

frames over the same path, b) retransmitting lost frames on a

different or dedicated path, and c) duplicate lost frames on several

paths (not recommended for general purpose use due to the network

overhead). While this document does not preclude a specific

strategy, more detailed specification is out of scope.

9. Packet Number Space and Use of Connection ID

If the connection ID is present (non-zero length) in the packet

header, the connection ID is used to identify the path. If no

connection ID is present, the 4 tuple identifies the path. The

initial path that is used during the handshake (and multipath

negotiation) has the path ID 0 and therefore all 0-RTT packets are

also tracked and processed with the path ID 0. For 1-RTT packets,

the path ID is the sequence number of the Destination Connection ID

present in the packet header, as defined in Section 5.1.1 of

[QUIC-TRANSPORT], or also 0 if the Connection ID is zero-length.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-5.1.1

If non-zero-length Connection IDs are used, an endpoint MUST use

different Connection IDs on different paths. Still, the receiver may

observe the same Connection ID used on different 4-tuples due to,

e.g., NAT rebinding. In such case, the receiver reacts as specified

in Section 9.3 of [QUIC-TRANSPORT].

Acknowledgements of Initial and Handshake packets MUST be carried

using ACK frames, as specified in [QUIC-TRANSPORT]. The ACK frames,

as defined in [QUIC-TRANSPORT], do not carry path identifiers. If

for any reason ACK frames are received in 1-RTT packets while the

state of multipath negotiation is ambiguous, they MUST be

interpreted as acknowledging packets sent on path 0.

9.1. Using Zero-Length connection ID

If a zero-length connection ID is used, one packet number space for

all paths. That means the packet sequence numbers are allocated from

the common number space, so that, for example, packet number N could

be sent on one path and packet number N+1 on another.

In this case, ACK frames report the numbers of packets that have

been received so far, regardless of the path on which they have been

received. That means the sender needs to maintain an association

between sent packet numbers and the path over which these packets

were sent. This is necessary to implement per path congestion

control, as explained in Section 9.1.2.

Further, the receiver of packets with zero-length connection IDs

should implement handling of acknowledgements as defined in

Section 9.1.1.

ECN handing is specified in Section 9.1.4, and mitigation of the RTT

measurement is further explained in Section 9.1.3.

If a node does not want to implement this logic, it MAY instead

limit its use of multiple paths as explained in Section 9.1.5.

9.1.1. Sending Acknowledgements and Handling Ranges

If zero-length CID and therefore also a single packet number space

is used by the sender, the receiver MAY send ACK frames instead of

ACK_MP frames to reduce overhead as the additional path ID field

will anyway always carry the same value.

If senders decide to send packets on paths with different

transmission delays, some packets will very likely be received out

of order. This will cause the ACK frames to carry multiple ranges of

received packets. The large number of range increases the size of

ACK frames, causing transmission and processing overhead.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-9.3

The size and overhead of the ACK frames can be controlled by the

combination of one or several of the following:

Not transmitting again ACK ranges that were present in an ACK

frame acknowledged by the peer.

Delay acknowledgements to allow for arrival of "hole filling"

packets.

Limit the total number of ranges sent in an ACK frame.

Limiting the number of transmissions of a specific ACK range, on

the assumption that a sufficient number of transmissions almost

certainly ensures reception by the peer.

Send multiple messages for a given path in a single socket

operation, so that a series of packets sent from a single path

uses a series of consecutive sequence numbers without creating

holes.

9.1.2. Loss and Congestion Handling With Zero-Length CID

When sending to a zero-length CID receiver, senders may receive

acknowledgements that combine packet numbers received over multiple

paths. However, even if one packet number space is used on multiple

path the sender MUST maintain separate congestion control state for

each path. Therefore, senders MUST be able to infer the sending path

from the acknowledged packet numbers, for example by remembering

which packet was sent on what path. The senders MUST use that

information to perform congestion control on the relevant paths, and

to correctly estimate the transmission delays on each path. (See

Section 9.1.3 for specific considerations about using the ACK Delay

field of ACK frames, and Section 9.1.4 for issues on using ECN

marks.)

Loss detection as specified in [QUIC-RECOVERY] uses algorithms based

on timers and on sequence numbers. When packets are sent over

multiple paths, loss detection must be adapted to allow for

different RTTs on different paths. When sending to zero-length CID

receivers, packets sent on different paths may be received out of

order. Therefore, senders cannot directly use the packet sequence

numbers to compute the Packet Thresholds defined in Section 6.1.1 of

[QUIC-RECOVERY]. Relying only on Time Thresholds produces correct

results, but is somewhat suboptimal. Some implementations have been

getting good results by not just remembering the path over which a

packet was sent, but also maintaining an order list of packets sent

on each path. That ordered list can then be used to compute

acknowledgement gaps per path in Packet Threshold tests.

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9002#section-6.1.1

9.1.3. RTT Estimation Considerations when SPNS is Used

When SPNS is in use, accurate RTT estimation requires more careful

considerations. According to [QUIC-RECOVERY], an endpoint generates

an RTT sample on receiving an ACK frame that meets the following two

conditions: (1) the largest acknowledged packet number is newly

acknowledged, and (2) at least one of the newly acknowledged packets

was ack-eliciting. The RTT sample, latest_rtt is calculated as the

time elapsed since the largest acknowledged packet was sent.

However, when applying the above algorithm with SPNS, one may

encounter the following issues: (1) RTT of some paths are not

updated timely if ACKs are mostly returned from other paths, and (2)

ACK frames depend on the largest received packet of the connection,

not the path, and the resulted RTT sample may be the sum of the one-

way delays of two different paths. One solution for accurate RTT

measurements is to employ time-stamps as described in

[QUIC-Timestamp]. If one chooses not to use time-stamps but wants to

get reasonable estimation of RTTs on multiple paths with single

packet number space, the following practices can be used:

For packet receiver (ACK sender):

Maintain an ACK threshold and an ACK timer for each path. A path

should send an ACK when it receives ack-eliciting-threshold

number of ack-eliciting packets (e.g., two) on this path, and an

ack-eliciting packet must be acknowledged within MAX_ACK_DELAY.

Write ACK frame based on the largest received packet of the path.

Start the ACK ranges with the largest received packet number of

that path, which means that the "Largest Acknowledged" field is

the path's largest packet number and the "ACK Delay" field is the

delay time of the path's largest received packet.

For packet sender (ACK receiver):

Maintain an unacked list for each path to retrieve the packets

that has been sent when an ACK is received. It can coexist with

the unacked list of the connection layer or packet number space

layer.

Generate RTT sample for a path when the following conditions are

met: (1) the largest acknowledged packet number is newly

acknowledged by the ACK received from this path, and (2) at least

one of the newly acknowledged packets was ack-eliciting.

9.1.4. ECN and Zero-Length CID Considerations

ECN feedback in QUIC is provided based on counters in the ACK frame

(see Section 19.3.2. of [QUIC-TRANSPORT]). That means if an ACK

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc9000#section-19.3.2.

frame acknowledges multiple packets, the ECN feedback cannot be

accounted to a specific packet.

There are separate counters for each packet number space. However,

sending to zero-length CID receivers, the same number space is used

for multiple paths. Respectively, if an ACK frames acknowledges

multiple packets from different paths, the ECN feedback cannot

unambiguously be assigned to a path.

If the sender marks its packets with the ECN capable flags, the

network will expect standard reactions to ECN marks, such as slowing

down transmission on the sending path. If zero-length CID is used,

the sending path is however ambiguous. Therefore, the sender MUST

treat a CE marking as a congestion signal on all sending paths that

have been by a packet that was acknowledged in the ACK frame

signaling the CE counter increase.

A host that is sending over multiple paths to a zero-length CID

receiver MAY disable ECN marking and send all subsequent packets as

Not-ECN capable.

9.1.5. Restricted Sending to Zero-Length CID Peer

Hosts that are designed to support multipath using multiple number

spaces MAY adopt a conservative posture after negotiating multipath

support with a peer using zero-length CID. The simplest posture is

to only send data on one path at a time, while accepting packets on

all acceptable paths. In that case:

the attribution of packets to path discussed in Section 9.1.2 are

easy to solve because packets are sent on a single path,

the ACK Delays are correct,

the vast majority of ECN marks relate to the current sending

path.

Of course, the hosts will only take limited advantage from the

multipath capability in these scenarios. Support for "make before

break" migrations will improve, but load sharing between multiple

paths will not work.

9.2. Using non-zero length CID and Multiple Packet Number Spaces

If packets contain a non-zero CID, each path has its own packet

number space for transmitting 1-RTT packets and a new ACK frame

format is used as specified in Section 12.3. Compared to the QUIC

version 1 ACK frame, the ACK_MP frames additionally contains a

Packet Number Space Identifier (PN Space ID). The PN Space ID used

to distinguish packet number spaces for different paths and is

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

¶

simply derived from the sequence number of Destination Connection

ID. Therefore, the packet number space for 1-RTT packets can be

identified based on the Destination Connection ID in each packet.

As soon as the negotiation of multipath support is completed,

endpoints SHOULD use ACK_MP frames instead of ACK frames for

acknowledgements of 1-RTT packets on path 0, as well as for 0-RTT

packets that are acknowledged after the handshake concluded.

Following [QUIC-TRANSPORT], each endpoint uses NEW_CONNECTION_ID

frames to issue usable connections IDs to reach it. Before an

endpoint adds a new path by initiating path validation, it MUST

check whether at least one unused Connection ID is available for

each side.

If the transport parameter "active_connection_id_limit" is

negotiated as N, the server provided N Connection IDs, and the

client is already actively using N paths, the limit is reached. If

the client wants to start a new path, it has to retire one of the

established paths.

ACK_MP frame (defined in Section 12.3) can be returned via either a

different path, or the same path identified by the Path Identifier,

based on different strategies of sending ACK_MP frames.

Using multiple packet number spaces requires changes in the way AEAD

is applied for packet protection, as explained in Section 9.2.1, and

tighter constraints for key updates, as explained in Section 9.2.2.

9.2.1. Packet Protection for QUIC Multipath

Packet protection for QUIC version 1 is specified in Section 5 of

[QUIC-TLS]. The general principles of packet protection are not

changed for QUIC Multipath. No changes are needed for setting packet

protection keys, initial secrets, header protection, use of 0-RTT

keys, receiving out-of-order protected packets, receiving protected

packets, or retry packet integrity. However, the use of multiple

number spaces for 1-RTT packets requires changes in AEAD usage.

Section 5.3 of [QUIC-TLS] specifies AEAD usage, and in particular

the use of a nonce, N, formed by combining the packet protection IV

with the packet number. If multiple packet number spaces are used,

the packet number alone would not guarantee the uniqueness of the

nonce.

In order to guarantee the uniqueness of the nonce, the nonce N is

calculated by combining the packet protection IV with the packet

number and with the path identifier.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9001#section-5
https://rfc-editor.org/rfc/rfc9001#section-5.3

The path ID for 1-RTT packets is the sequence number of

[QUIC-TRANSPORT], or zero if the Connection ID is zero-length.

Section 19 of [QUIC-TRANSPORT] encodes the Connection ID Sequence

Number as a variable-length integer, allowing values up to 2^62-1;

in this specification, a range of less than 2^32-1 values MUST be

used before updating the packet protection key.

To calculate the nonce, a 96 bit path-and-packet-number is composed

of the 32 bit Connection ID Sequence Number in byte order, two zero

bits, and the 62 bits of the reconstructed QUIC packet number in

network byte order. If the IV is larger than 96 bits, the path-and-

packet-number is left-padded with zeros to the size of the IV. The

exclusive OR of the padded packet number and the IV forms the AEAD

nonce.

For example, assuming the IV value is 6b26114b9cba2b63a9e8dd4f, the

connection ID sequence number is 3, and the packet number is aead,

the nonce will be set to 6b2611489cba2b63a9e873e2.

9.2.2. Key Update for QUIC Multipath

The Key Phase bit update process for QUIC version 1 is specified in

Section 6 of [QUIC-TLS]. The general principles of key update are

not changed in this specification. Following QUIC version 1, the Key

Phase bit is used to indicate which packet protection keys are used

to protect the packet. The Key Phase bit is toggled to signal each

subsequent key update. Because of network delays, packets protected

with the older key might arrive later than the packets protected

with the new key. Therefore, the endpoint needs to retain old packet

keys to allow these delayed packets to be processed and it must

distinguish between the new key and the old key. In QUIC version 1,

this is done using packet numbers so that the rule is made simple:

Use the older key if packet number is lower than any packet number

frame the current key phase.

When using multiple packet number spaces on different paths, some

care is needed when initiating the Key Update process, as different

paths use different packet number spaces but share a single key.

When a key update is initiated on one path, packets sent to another

path needs to know when the transition is complete. Otherwise, it is

possible that the other paths send packets with the old keys, but

skip sending any packets in the current key phase and directly jump

to sending packet in the next key phase. When that happens, as the

endpoint can only retain two sets of packet protection keys with the

1-bit Key Phase bit, the other paths cannot distinguish which key

should be used to decode received packets, which results in a key

rotation synchronization problem.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-19
https://rfc-editor.org/rfc/rfc9001#section-6

To address such a synchronization issue, if key update is

initialized on one path, the sender SHOULD send at least one packet

with the new key on all active paths. Further, an endpoint MUST NOT

initiate a subsequent key update until a packet with the current key

has been acknowledged on each path.

Following Section 5.4 of [QUIC-TLS], the Key Phase bit is protected,

so sending multiple packets with Key Phase bit flipping at the same

time should not cause linkability issue.

10. Examples

10.1. Path Establishment

Figure 2 illustrates an example of new path establishment using

multiple packet number spaces.

Figure 2: Example of new path establishment

In Figure 2, the endpoints first exchange new available Connection

IDs with the NEW_CONNECTION_ID frame. In this example, the client

provides one Connection ID (C1 with sequence number 1), and server

provides two Connection IDs (S1 with sequence number 1, and S2 with

sequence number 2).

Before the client opens a new path by sending a packet on that path

with a PATH_CHALLENGE frame, it has to check whether there is an

unused Connection IDs available for each side. In this example, the

client chooses the Connection ID S2 as the Destination Connection ID

in the new path.

¶

¶

¶

 Client Server

 (Exchanges start on default path)

 1-RTT[]: NEW_CONNECTION_ID[C1, Seq=1] -->

 <-- 1-RTT[]: NEW_CONNECTION_ID[S1, Seq=1]

 <-- 1-RTT[]: NEW_CONNECTION_ID[S2, Seq=2]

 ...

 (starts new path)

 1-RTT[0]: DCID=S2, PATH_CHALLENGE[X] -->

 Checks AEAD using nonce(CID sequence 2, PN 0)

 <-- 1-RTT[0]: DCID=C1, PATH_RESPONSE[X], PATH_CHALLENGE[Y],

 ACK_MP[Seq=2,PN=0]

 Checks AEAD using nonce(CID sequence 1, PN 0)

 1-RTT[1]: DCID=S2, PATH_RESPONSE[Y],

 ACK_MP[Seq=1, PN=0], ... -->

¶

¶

https://rfc-editor.org/rfc/rfc9001#section-5.4

If the client has used all the allocated CID, it is supposed to

retire those that are not used anymore, and the server is supposed

to provide replacements, as specified in [QUIC-TRANSPORT]. Usually,

it is desired to provide one more connection ID as currently in use,

to allow for new paths or migration.

10.2. Path Closure

In this example, the client detects the network environment change

(client's 4G/Wi-Fi is turned off, Wi-Fi signal is fading to a

threshold, or the quality of RTT or loss rate is becoming worse) and

wants to close the initial path.

Figure 3 illustrates an example of path closing when both the client

and the server use non-zero-length CIDs. For the first path, the

server's 1-RTT packets use DCID C1, which has a sequence number of

1; the client's 1-RTT packets use DCID S2, which has a sequence

number of 2. For the second path, the server's 1-RTT packets use

DCID C2, which has a sequence number of 2; the client's 1-RTT

packets use DCID S3, which has a sequence number of 3. Note that the

paths use different packet number spaces. In this case, the client

is going to close the first path. It identifies the path by the

sequence number of the received packet's DCID over that path (path

identifier type 0x00), hence using the path_id 1. Optionally, the

server confirms the path closure by sending an PATH_ABANDON frame

using the sequence number of the received packet's DCID over that

path (path identifier type 0x00) as path identifier, which

corresponds to the path_id 2. Both the client and the server can

close the path after receiving the RETIRE_CONNECTION_ID frame for

that path.

Figure 3: Example of closing a path when both the client and the server

choose to receive non-zero-length CIDs.

Figure 4 illustrates an example of path closing when the client

chooses to receive zero-length CIDs while the server chooses to

receive non-zero-length CIDs. Because there is a zero-length CID in

¶

¶

¶

Client Server

(client tells server to abandon a path)

1-RTT[X]: DCID=S2 PATH_ABANDON[path_id_type=0, path_id=1]->

 (server tells client to abandon a path)

 <-1-RTT[Y]: DCID=C1 PATH_ABANDON[path_id_type=0, path_id=2],

 ACK_MP[Seq=2, PN=X]

(client retires the corresponding CID)

1-RTT[U]: DCID=S3 RETIRE_CONNECTION_ID[2], ACK_MP[Seq=1, PN=Y] ->

 (server retires the corresponding CID)

 <- 1-RTT[V]: DCID=C2 RETIRE_CONNECTION_ID[1], ACK_MP[Seq=3, PN=U]

one direction, single packet number spaces are used. For the first

path, the client's 1-RTT packets use DCID S2, which has a sequence

number of 2. For the second path, the client's 1-RTT packets use

DCID S3, which has a sequence number of 3. Again, in this case, the

client is going to close the first path. Because the client now

receives zero-length CID packets, it needs to use path identifier

type 0x01, which identifies a path by the DCID sequence number of

the packets it sends over that path, and hence, it uses a path_id 2

in its PATH_ABANDON frame. The server SHOULD stop sending new data

on the path indicated by the PATH_ABANDON frame after receiving it.

However, The client may want to repeat the PATH_ABANDON frame if it

sees the server continuing to send data. When the client's

PATH_ABANDON frame is acknowledged, it sends out a

RETIRE_CONNECTION_ID frame for the CID used on the first path. The

server can readily close the first path when it receives the

RETIRE_CONNECTION_ID frame from the client. However, since the

client will not receive a RETIRE_CONNECTION_ID frame, after sending

out the RETIRE_CONNECTION_ID frame, the client waits for 3 RTO

before closing the path.

Figure 4: Example of closing a path when the client chooses to receive

zero-length CIDs while the server chooses to receive non-zero-length

CIDs

11. Implementation Considerations

11.1. Handling different PMTU sizes

An implementation should take care to handle different PMTU sizes

across multiple paths. One simple option if the PMTUs are relatively

similar is to apply the minimum PMTU of all paths to each path. The

benefit of such an approach is to simplify retransmission processing

as the content of lost packets initially sent on one path can be

sent on another path without further frame scheduling adaptations.

11.2. Keep Alive

The QUIC specification defines an optional keep alive process, see

Section 5.3 of [QUIC-TRANSPORT]. Implementations of the multipath

¶

 Client Server

 (client tells server to abandon a path)

 1-RTT[X]: DCID=S2 PATH_ABANDON[path_id_type=1, path_id=2]->

 (server stops sending on that path after

 receiving PATH_ABANDON)

 (client retires the corresponding CID

 after PATH_ABANDON is acknowledged)

 1-RTT[X+1]: DCID=S3 RETIRE_CONNECTION_ID[2]->

¶

https://rfc-editor.org/rfc/rfc9000#section-5.3

extension should map this keep alive process to a number of paths.

Some applications may wish to ensure that one path remains active,

while others could prefer to have two or more active paths during

the connection lifetime. Different applications will likely require

different strategies. Once the implementation has decided which

paths to keep alive, it can do so by sending Ping frames on each of

these paths before the idle timeout expires.

12. New Frames

All the new frames MUST only be sent in 1-RTT packet, and MUST NOT

use other encryption levels.

If an endpoint receives multipath-specific frames from packets of

other encryption levels, it MUST return MP_PROTOCOL_VIOLATION as a

connection error and close the connection.

12.1. PATH_ABANDON Frame

The PATH_ABANDON frame informs the peer to abandon a path. More

complex path management can be made possible with additional

extensions (e.g., PATH_STATUS frame in [I-D.liu-multipath-quic]).

PATH_ABANDON frames are formatted as shown in Figure 5.

Figure 5: PATH_ABANDON Frame Format

PATH_ABANDON frames contain the following fields:

Path Identifier: An identifier of the path, which is formatted as

shown in Figure 6.

Identifier Type: Identifier Type field is set to indicate the

type of path identifier.

Type 0: Refer to the connection identifier issued by the

sender of the control frame. Note that this is the connection

identifier used by the peer when sending packets on the to-be-

closed path. This method SHOULD be used if this connection

identifier is non-zero length. This method MUST NOT be used if

this connection identifier is zero-length.

¶

¶

¶

¶

¶

 PATH_ABANDON Frame {

 Type (i) = TBD-02 (experiments use 0xbaba05),

 Path Identifier (..),

 Error Code (i),

 Reason Phrase Length (i),

 Reason Phrase (..),

 }

¶

¶

*

¶

-

¶

Error Code:

Reason Phrase Length:

Reason Phrase:

Type 1: Refer to the connection identifier issued by the

receiver of the control frame. Note that this is the

connection identifier used by the sender when sending packets

on the to-be-closed path. This method MUST NOT be used if this

connection identifier is zero-length.

Type 2: Refer to the path over which the control frame is sent

or received.

Path Identifier Content: A variable-length integer specifying the

path identifier. If Identifier Type is 2, the Path Identifier

Content MUST be empty.

Figure 6: Path Identifier Format

Note: If the receiver of the PATH_ABANDON frame is using non-zero

length Connection ID on that path, endpoint SHOULD use type 0x00 for

path identifier in the control frame. If the receiver of the

PATH_ABANDON frame is using zero-length Connection ID, but the peer

is using non-zero length Connection ID on that path, endpoints

SHOULD use type 0x01 for path identifier. If both endpoints are

using 0-length Connection IDs on that path, endpoints SHOULD only

use type 0x02 for path identifier.

A variable-length integer that indicates the reason for

abandoning this path.

A variable-length integer specifying the

length of the reason phrase in bytes. Because an PATH_ABANDON

frame cannot be split between packets, any limits on packet size

will also limit the space available for a reason phrase.

Additional diagnostic information for the closure.

This can be zero length if the sender chooses not to give details

beyond the Error Code value. This SHOULD be a UTF-8 encoded

string [RFC3629], though the frame does not carry information,

such as language tags, that would aid comprehension by any entity

other than the one that created the text.

PATH_ABANDON frames SHOULD be acknowledged. If a packet containing a

PATH_ABANDON frame is considered lost, the peer SHOULD repeat it.

If the Identifier Type is 0x00 or 0x01, PATH_ABANDON frames MAY be

sent on any path, not only the path identified by the Path

-

¶

-

¶

*

¶

 Path Identifier {

 Identifier Type (i) = 0x00..0x02,

 [Path Identifier Content (i)],

 }

¶

¶

¶

¶

¶

Identifier Content field. If the Identifier Type if 0x02, the

PATH_ABANDON frame MUST only be sent on the path that is intended to

be abandoned.

12.2. PATH_STATUS frame

PATH_STATUS Frame are used by endpoints to inform the peer of the

current status of one path, and the peer should send packets

according to the preference expressed in these frames. PATH_STATUS

frames are formatted as shown in Figure 7.

Figure 7: PATH_STATUS Frame Format

PATH_STATUS Frames contain the following fields:

Path Identifier: An identifier of the path, which is formatted as

shown in Figure 6. Exactly the same as the definition of Path

Identifier in {#path-abandon-frame}.

Path Status sequence number: A variable-length integer specifying

the sequence number assigned for this PATH_STATUS frame. The

sequence number MUST be monotonically increasing generated by the

sender of the Path Status frame in the same connection. The receiver

of the Path Status frame needs to use and compare the sequence

numbers separately for each Path Identifier.

Available values of Path Status field are:

1: Standby

2: Available

Endpoints use PATH_STATUS frame to inform the peer whether it prefer

to use this path or not. If an endpoint receives a PATH_STATUS frame

containing 1-Standby status, it SHOULD stop sending non-probing

packets on the corresponding path, until it receive a new

PATH_STATUS frame containing 2-Available status with a higher

sequence number referring to the same path.

Frames may be received out of order. A peer MUST ignore an incoming

PATH_STATUS frame if it previously received another PATH_STATUS

¶

¶

 PATH_STATUS Frame {

 Type (i) = TBD-03 (experiments use 0xbaba06),

 Path Identifier (..),

 Path Status sequence number (i),

 Path Status (i),

 }

¶

¶

¶

¶

* ¶

* ¶

¶

frame for the same Path Identifier with a sequence number equal to

or higher than the sequence number of the incoming frame.

PATH_STATUS frames SHOULD be acknowledged. If a packet containing a

PATH_STATUS frame is considered lost, the peer should only repeat it

if it was the last status sent for that path -- as indicated by the

sequence number.

12.3. ACK_MP Frame

The ACK_MP frame (types TBD-00 and TBD-01; experiments use

0xbaba00..0xbaba01) is an extension of the ACK frame defined by

[QUIC-TRANSPORT]. It is used to acknowledge packets that were sent

on different paths when using multiple packet number spaces. If the

frame type is TBD-01, ACK_MP frames also contain the sum of QUIC

packets with associated ECN marks received on the connection up to

this point.

ACK_MP frame is formatted as shown in Figure 8.

Figure 8: ACK_MP Frame Format

Compared to the ACK frame specified in [QUIC-TRANSPORT], the

following field is added.

Packet Number Space Identifier: An identifier of the path packet

number space, which is the sequence number of Destination Connection

ID of the 1-RTT packets which are acknowledged by the ACK_MP frame.

If the endpoint receives 1-RTT packets with zero-length Connection

ID, it SHOULD use Packet Number Space Identifier 0 in ACK_MP frames.

If an endpoint receives an ACK_MP frame with a packet number space

ID which was never issued by endpoints (i.e., with a sequence number

larger than the largest one advertised), it MUST treat this as a

connection error of type MP_PROTOCOL_VIOLATION and close the

connection. If an endpoint receives an ACK_MP frame with a packet

number space ID which is no more active (e.g., retired by a

RETIRE_CONNECTION_ID frame or belonging to closed paths), it MUST

ignore the ACK_MP frame without causing a connection error.

¶

¶

¶

¶

 ACK_MP Frame {

 Type (i) = TBD-00..TBD-01 (experiments use 0xbaba00..0xbaba01),

 Packet Number Space Identifier (i),

 Largest Acknowledged (i),

 ACK Delay (i),

 ACK Range Count (i),

 First ACK Range (i),

 ACK Range (..) ...,

 [ECN Counts (..)],

 }

¶

¶

When using a single packet number space, endhosts MUST NOT send

ACK_MP frames. If an endhost receives an ACK_MP frame while a single

packet number space was negotiated, it MUST treat this as a

connection error of type MP_PROTOCOL_VIOLATION and close the

connection.

13. Error Codes

Multipath QUIC transport error codes are 62-bit unsigned integers

following [QUIC-TRANSPORT].

This section lists the defined multipath QUIC transport error codes

that can be used in a CONNECTION_CLOSE frame with a type of 0x1c.

These errors apply to the entire connection.

MP_PROTOCOL_VIOLATION (experiments use 0xba01): An endpoint detected

an error with protocol compliance that was not covered by more

specific error codes.

14. IANA Considerations

This document defines a new transport parameter for the negotiation

of enable multiple paths for QUIC, and two new frame types. The

draft defines provisional values for experiments, but we expect IANA

to allocate short values if the draft is approved.

The following entry in Table 3 should be added to the "QUIC

Transport Parameters" registry under the "QUIC Protocol" heading.

Value Parameter Name. Specification

TBD (experiments use 0xbabf) enable_multipath Section 3

Table 3: Addition to QUIC Transport Parameters Entries

The following frame types defined in Table 4 should be added to the

"QUIC Frame Types" registry under the "QUIC Protocol" heading.

Value Frame Name Specification

TBD-00 - TBD-01 (experiments use

0xbaba00-0xbaba01)
ACK_MP Section 12.3

TBD-02 (experiments use 0xbaba05) PATH_ABANDON Section 12.1

TBD-03 (experiments use 0xbaba06) PATH_STATUS Section 12.2

Table 4: Addition to QUIC Frame Types Entries

The following transport error code defined in Table 5 should be

added to the "QUIC Transport Error Codes" registry under the "QUIC

Protocol" heading.

¶

¶

¶

¶

¶

¶

¶

¶

[QUIC-TLS]

[QUIC-TRANSPORT]

[RFC2119]

[RFC3629]

[RFC8174]

Value Code Description Specification

TBD

(experiments

use 0xba01)

MP_PROTOCOL_VIOLATION

Multipath

protocol

violation

Section 13

Table 5: Error Code for Multipath QUIC

15. Security Considerations

TBD

16. Contributors

This document is a collaboration of authors that combines work from

three proposals. Further contributors that were also involved one of

the original proposals are:

Qing An

Zhenyu Li

17. Acknowledgments

TBD

18. References

18.1. Normative References

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

* ¶

* ¶

¶

https://www.rfc-editor.org/rfc/rfc9001
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc8174

[I-D.bonaventure-iccrg-schedulers]

[I-D.liu-multipath-quic]

[OLIA]

[QUIC-Invariants]

[QUIC-RECOVERY]

[QUIC-Timestamp]

[RFC6356]

18.2. Informative References

Bonaventure, O., Piraux, M., De Coninck, Q., Baerts, M.,

Paasch, C., and M. Amend, "Multipath schedulers", Work in

Progress, Internet-Draft, draft-bonaventure-iccrg-

schedulers-02, 25 October 2021, <https://

datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-

schedulers-02>.

Liu, Y., Ma, Y., Huitema, C., An, Q., and

Z. Li, "Multipath Extension for QUIC", Work in Progress,

Internet-Draft, draft-liu-multipath-quic-04, 5 September

2021, <https://datatracker.ietf.org/doc/html/draft-liu-

multipath-quic-04>.

Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.

Le Boudec, "MPTCP is not pareto-optimal: performance

issues and a possible solution", Proceedings of the 8th

international conference on Emerging networking

experiments and technologies, ACM , 2012.

Thomson, M., "Version-Independent Properties of

QUIC", RFC 8999, DOI 10.17487/RFC8999, May 2021,

<https://www.rfc-editor.org/rfc/rfc8999>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", RFC 9002, DOI

10.17487/RFC9002, May 2021, <https://www.rfc-editor.org/

rfc/rfc9002>.

Huitema, C., "Quic Timestamps For Measuring One-Way

Delays", Work in Progress, Internet-Draft, draft-huitema-

quic-ts-08, 28 August 2022, <https://

datatracker.ietf.org/doc/html/draft-huitema-quic-ts-08>.

Raiciu, C., Handley, M., and D. Wischik, "Coupled

Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011, <https://

www.rfc-editor.org/rfc/rfc6356>.

Authors' Addresses

Yanmei Liu (editor)

Alibaba Inc.

Email: miaoji.lym@alibaba-inc.com

Yunfei Ma

Alibaba Inc.

https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-02
https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-02
https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-02
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-04
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-04
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc9002
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-08
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-08
https://www.rfc-editor.org/rfc/rfc6356
https://www.rfc-editor.org/rfc/rfc6356
mailto:miaoji.lym@alibaba-inc.com

Email: yunfei.ma@alibaba-inc.com

Quentin De Coninck (editor)

UCLouvain

Email: quentin.deconinck@uclouvain.be

Olivier Bonaventure

UCLouvain and Tessares

Email: olivier.bonaventure@uclouvain.be

Christian Huitema

Private Octopus Inc.

Email: huitema@huitema.net

Mirja Kuehlewind (editor)

Ericsson

Email: mirja.kuehlewind@ericsson.com

mailto:yunfei.ma@alibaba-inc.com
mailto:quentin.deconinck@uclouvain.be
mailto:olivier.bonaventure@uclouvain.be
mailto:huitema@huitema.net
mailto:mirja.kuehlewind@ericsson.com

	Multipath Extension for QUIC
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. High-level overview
	3. Handshake Negotiation and Transport Parameter
	4. Path Setup and Removal
	4.1. Path Initiation
	4.2. Path State Management
	4.3. Path Close
	4.3.1. Use PATH_ABANDON Frame to Close a Path
	4.3.2. Refusing a New Path
	4.3.3. Effect of RETIRE_CONNECTION_ID Frame
	4.3.4. Idle Timeout

	4.4. Path States

	5. Congestion Control
	6. Computing Path RTT
	7. Packet Scheduling
	8. Recovery
	9. Packet Number Space and Use of Connection ID
	9.1. Using Zero-Length connection ID
	9.1.1. Sending Acknowledgements and Handling Ranges
	9.1.2. Loss and Congestion Handling With Zero-Length CID
	9.1.3. RTT Estimation Considerations when SPNS is Used
	9.1.4. ECN and Zero-Length CID Considerations
	9.1.5. Restricted Sending to Zero-Length CID Peer

	9.2. Using non-zero length CID and Multiple Packet Number Spaces
	9.2.1. Packet Protection for QUIC Multipath
	9.2.2. Key Update for QUIC Multipath

	10. Examples
	10.1. Path Establishment
	10.2. Path Closure

	11. Implementation Considerations
	11.1. Handling different PMTU sizes
	11.2. Keep Alive

	12. New Frames
	12.1. PATH_ABANDON Frame
	12.2. PATH_STATUS frame
	12.3. ACK_MP Frame

	13. Error Codes
	14. IANA Considerations
	15. Security Considerations
	16. Contributors
	17. Acknowledgments
	18. References
	18.1. Normative References
	18.2. Informative References

	Authors' Addresses

