
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-qlog-h3-events-00

Published: 10 June 2021

Intended Status: Standards Track

Expires: 12 December 2021

Authors: R. Marx

KU Leuven

L. Niccolini, Ed.

Facebook

M. Seemann, Ed.

Protocol Labs

HTTP/3 and QPACK event definitions for qlog

Abstract

This document describes concrete qlog event definitions and their

metadata for HTTP/3 and QPACK-related events. These events can then

be embedded in the higher level schema defined in [QLOG-MAIN].

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 December 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Overview

2.1. Usage with QUIC

2.2. Links to the main schema

2.2.1. Raw packet and frame information

3. HTTP/3 and QPACK event definitions

3.1. http

3.1.1. parameters_set

3.1.2. parameters_restored

3.1.3. stream_type_set

3.1.4. frame_created

3.1.5. frame_parsed

3.1.6. push_resolved

3.2. qpack

3.2.1. state_updated

3.2.2. stream_state_updated

3.2.3. dynamic_table_updated

3.2.4. headers_encoded

3.2.5. headers_decoded

3.2.6. instruction_created

3.2.7. instruction_parsed

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. HTTP/3 data field definitions

A.1. HTTP/3 Frames

A.1.1. DataFrame

A.1.2. HeadersFrame

A.1.3. CancelPushFrame

A.1.4. SettingsFrame

A.1.5. PushPromiseFrame

A.1.6. GoAwayFrame

A.1.7. MaxPushIDFrame

A.1.8. DuplicatePushFrame

A.1.9. ReservedFrame

A.1.10. UnknownFrame

A.2. ApplicationError

Appendix B. QPACK DATA type definitions

B.1. QPACK Instructions

B.1.1. SetDynamicTableCapacityInstruction

B.1.2. InsertWithNameReferenceInstruction

B.1.3. InsertWithoutNameReferenceInstruction

B.1.4. DuplicateInstruction

B.1.5. HeaderAcknowledgementInstruction

B.1.6. StreamCancellationInstruction

B.1.7. InsertCountIncrementInstruction

B.2. QPACK Header compression

B.2.1. IndexedHeaderField

B.2.2. LiteralHeaderFieldWithName

B.2.3. LiteralHeaderFieldWithoutName

B.2.4. QPackHeaderBlockPrefix

Appendix C. Change Log

C.1. Since draft-marx-qlog-event-definitions-quic-h3-02:

C.2. Since draft-marx-qlog-event-definitions-quic-h3-01:

C.3. Since draft-marx-qlog-event-definitions-quic-h3-00:

Appendix D. Design Variations

Appendix E. Acknowledgements

Authors' Addresses

1. Introduction

This document describes the values of the qlog name ("category" +

"event") and "data" fields and their semantics for the HTTP/3 and

QPACK protocols. This document is based on draft-34 of the HTTP/3 I-

D [QUIC-HTTP] and draft-21 of the QPACK I-D [QUIC-QPACK]. QUIC

events are defined in a separate document [QLOG-QUIC].

Feedback and discussion are welcome at https://github.com/quicwg/

qlog. Readers are advised to refer to the "editor's draft" at that

URL for an up-to-date version of this document.

Concrete examples of integrations of this schema in various

programming languages can be found at https://github.com/quiclog/

qlog/.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

The examples and data definitions in ths document are expressed in a

custom data definition language, inspired by JSON and TypeScript,

and described in [QLOG-MAIN].

2. Overview

This document describes the values of the qlog "name" ("category" +

"event") and "data" fields and their semantics for the HTTP/3 and

QPACK protocols.

This document assumes the usage of the encompassing main qlog schema

defined in [QLOG-MAIN]. Each subsection below defines a separate

¶

¶

¶

¶

¶

¶

https://github.com/quicwg/qlog
https://github.com/quicwg/qlog
https://github.com/quiclog/qlog/
https://github.com/quiclog/qlog/

Note:

Note:

category (for example http, qpack) and each subsubsection is an

event type (for example frame_created).

For each event type, its importance and data definition is laid out,

often accompanied by possible values for the optional "trigger"

field. For the definition and semantics of "importance" and

"trigger", see the main schema document.

Most of the complex datastructures, enums and re-usable definitions

are grouped together on the bottom of this document for clarity.

2.1. Usage with QUIC

The events described in this document can be used with or without

logging the related QUIC events defined in [QLOG-QUIC]. If used with

QUIC events, the QUIC document takes precedence in terms of

recommended filenames and trace separation setups.

If used without QUIC events, it is recommended that the

implementation assign a globally unique identifier to each HTTP/3

connection. This ID can then be used as the value of the qlog

"group_id" field, as well as the qlog filename or file identifier,

potentially suffixed by the vantagepoint type (For example,

abcd1234_server.qlog would contain the server-side trace of the

connection with GUID abcd1234).

2.2. Links to the main schema

This document re-uses all the fields defined in the main qlog schema

(e.g., name, category, type, data, group_id, protocol_type, the

time-related fields, importance, RawInfo, etc.).

One entry in the "protocol_type" qlog array field MUST be "HTTP3" if

events from this document are included in a qlog trace.

2.2.1. Raw packet and frame information

This document re-uses the definition of the RawInfo data class from

[QLOG-MAIN].

As HTTP/3 does not use trailers in frames, each HTTP/3 frame

header_length can be calculated as header_length = RawInfo:length

- RawInfo:payload_length

In some cases, the length fields are also explicitly

reflected inside of frame headers. For example, all HTTP/3 frames

include their explicit payload lengths in the frame header. In

these cases, those fields are intentionally preserved in the

event definitions. Even though this can lead to duplicate data

when the full RawInfo is logged, it allows a more direct mapping

¶

¶

¶

¶

¶

¶

¶

¶

¶

of the HTTP/3 specifications to qlog, making it easier for users

to interpret. In this case, both fields MUST have the same value.

3. HTTP/3 and QPACK event definitions

Each subheading in this section is a qlog event category, while each

sub-subheading is a qlog event type.

For example, for the following two items, we have the category

"http" and event type "parameters_set", resulting in a concatenated

qlog "name" field value of "http:parameters_set".

3.1. http

Note: like all category values, the "http" category is written in

lowercase.

3.1.1. parameters_set

Importance: Base

This event contains HTTP/3 and QPACK-level settings, mostly those

received from the HTTP/3 SETTINGS frame. All these parameters are

typically set once and never change. However, they are typically set

at different times during the connection, so there can be several

instances of this event with different fields set.

Note that some settings have two variations (one set locally, one

requested by the remote peer). This is reflected in the "owner"

field. As such, this field MUST be correct for all settings included

a single event instance. If you need to log settings from two sides,

you MUST emit two separate event instances.

Data:

Note: enabling server push is not explicitly done in HTTP/3 by use

of a setting or parameter. Instead, it is communicated by use of the

MAX_PUSH_ID frame, which should be logged using the frame_created

and frame_parsed events below.

¶

¶

¶

¶

¶

¶

¶

¶

{

 owner?:"local" | "remote",

 max_header_list_size?:uint64, // from SETTINGS_MAX_HEADER_LIST_SIZE

 max_table_capacity?:uint64, // from SETTINGS_QPACK_MAX_TABLE_CAPACITY

 blocked_streams_count?:uint64, // from SETTINGS_QPACK_BLOCKED_STREAMS

 // qlog-defined

 waits_for_settings?:boolean // indicates whether this implementation waits for a SETTINGS frame before processing requests

}

¶

¶

Additionally, this event can contain any number of unspecified

fields. This is to reflect setting of for example unknown (greased)

settings or parameters of (proprietary) extensions.

3.1.2. parameters_restored

Importance: Base

When using QUIC 0-RTT, HTTP/3 clients are expected to remember and

reuse the server's SETTINGs from the previous connection. This event

is used to indicate which HTTP/3 settings were restored and to which

values when utilizing 0-RTT.

Data:

Note that, like for parameters_set above, this event can contain any

number of unspecified fields to allow for additional and custom

settings.

3.1.3. stream_type_set

Importance: Base

Emitted when a stream's type becomes known. This is typically when a

stream is opened and the stream's type indicator is sent or

received.

Note: most of this information can also be inferred by looking at a

stream's id, since id's are strictly partitioned at the QUIC level.

Even so, this event has a "Base" importance because it helps a lot

in debugging to have this information clearly spelled out.

Data:

¶

¶

¶

¶

{

 max_header_list_size?:uint64,

 max_table_capacity?:uint64,

 blocked_streams_count?:uint64

}

¶

¶

¶

¶

¶

¶

3.1.4. frame_created

Importance: Core

HTTP equivalent to the packet_sent event. This event is emitted when

the HTTP/3 framing actually happens. Note: this is not necessarily

the same as when the HTTP/3 data is passed on to the QUIC layer. For

that, see the "data_moved" event in [QLOG-QUIC].

Data:

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be created in a streaming fashion. In this

case, the frame_created event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

3.1.5. frame_parsed

Importance: Core

{

 stream_id:uint64,

 owner?:"local"|"remote"

 old?:StreamType,

 new:StreamType,

 associated_push_id?:uint64 // only when new == "push"

}

enum StreamType {

 data, // bidirectional request-response streams

 control,

 push,

 reserved,

 qpack_encode,

 qpack_decode

}

¶

¶

¶

¶

{

 stream_id:uint64,

 length?:uint64, // payload byte length of the frame

 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo

}

¶

¶

¶

HTTP equivalent to the packet_received event. This event is emitted

when we actually parse the HTTP/3 frame. Note: this is not

necessarily the same as when the HTTP/3 data is actually received on

the QUIC layer. For that, see the "data_moved" event in [QLOG-QUIC].

Data:

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be processed in a streaming fashion. In this

case, the frame_parsed event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

3.1.6. push_resolved

Importance: Extra

This event is emitted when a pushed resource is successfully claimed

(used) or, conversely, abandoned (rejected) by the application on

top of HTTP/3 (e.g., the web browser). This event is added to help

debug problems with unexpected PUSH behaviour, which is commonplace

with HTTP/2.

3.2. qpack

Note: like all category values, the "qpack" category is written in

lowercase.

The QPACK events mainly serve as an aid to debug low-level QPACK

issues. The higher-level, plaintext header values SHOULD (also) be

logged in the http.frame_created and http.frame_parsed event data

(instead).

Note: qpack does not have its own parameters_set event. This was

merged with http.parameters_set for brevity, since qpack is a

¶

¶

{

 stream_id:uint64,

 length?:uint64, // payload byte length of the frame

 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo

}

¶

¶

¶

¶

{

 push_id?:uint64,

 stream_id?:uint64, // in case this is logged from a place that does not have access to the push_id

 decision:"claimed"|"abandoned"

}

¶

¶

¶

required extension for HTTP/3 anyway. Other HTTP/3 extensions MAY

also log their SETTINGS fields in http.parameters_set or MAY define

their own events.

3.2.1. state_updated

Importance: Base

This event is emitted when one or more of the internal QPACK

variables changes value. Note that some variables have two

variations (one set locally, one requested by the remote peer). This

is reflected in the "owner" field. As such, this field MUST be

correct for all variables included a single event instance. If you

need to log settings from two sides, you MUST emit two separate

event instances.

Data:

3.2.2. stream_state_updated

Importance: Core

This event is emitted when a stream becomes blocked or unblocked by

header decoding requests or QPACK instructions.

Note: This event is of "Core" importance, as it might have a large

impact on HTTP/3's observed performance.

Data:

3.2.3. dynamic_table_updated

Importance: Extra

¶

¶

¶

¶

{

 owner:"local" | "remote",

 dynamic_table_capacity?:uint64,

 dynamic_table_size?:uint64, // effective current size, sum of all the entries

 known_received_count?:uint64,

 current_insert_count?:uint64

}

¶

¶

¶

¶

¶

{

 stream_id:uint64,

 state:"blocked"|"unblocked" // streams are assumed to start "unblocked" until they become "blocked"

}

¶

¶

This event is emitted when one or more entries are inserted or

evicted from QPACK's dynamic table.

Data:

3.2.4. headers_encoded

Importance: Base

This event is emitted when an uncompressed header block is encoded

successfully.

Note: this event has overlap with http.frame_created for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

Data:

3.2.5. headers_decoded

Importance: Base

This event is emitted when a compressed header block is decoded

successfully.

¶

¶

{

 owner:"local" | "remote", // local = the encoder's dynamic table. remote = the decoder's dynamic table

 update_type:"inserted"|"evicted",

 entries:Array<DynamicTableEntry>

}

class DynamicTableEntry {

 index:uint64;

 name?:string | bytes;

 value?:string | bytes;

}

¶

¶

¶

¶

¶

{

 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,

 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

Note: this event has overlap with http.frame_parsed for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

Data:

3.2.6. instruction_created

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is created and added to the encoder/decoder stream.

Data:

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

3.2.7. instruction_parsed

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is read from the encoder/decoder stream.

Data:

¶

¶

{

 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,

 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

{

 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

¶

[QLOG-MAIN]

[QLOG-QUIC]

[QUIC-HTTP]

[QUIC-QPACK]

[RFC2119]

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

4. Security Considerations

TBD

5. IANA Considerations

TBD

6. References

6.1. Normative References

Marx, R., Ed., Niccolini, L., Ed., and M. Seemann, Ed.,

"Main logging schema for qlog", Work in Progress,

Internet-Draft, draft-ietf-quic-qlog-main-schema-00,

<https://tools.ietf.org/html/draft-ietf-quic-qlog-main-

schema-00>.

Marx, R., Ed., Niccolini, L., Ed., and M. Seemann, Ed.,

"QUIC event definitions for qlog", Work in Progress,

Internet-Draft, draft-ietf-quic-qlog-quic-events-00,

<https://tools.ietf.org/html/draft-ietf-quic-qlog-quic-

events-00>.

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-latest, <https://tools.ietf.org/html/draft-

ietf-quic-http-latest>.

Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:

Header Compression for HTTP over QUIC", Work in Progress,

Internet-Draft, draft-ietf-quic-qpack-latest, <https://

tools.ietf.org/html/draft-ietf-quic-qpack-latest>.

6.2. Informative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

{

 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-qlog-main-schema-00
https://tools.ietf.org/html/draft-ietf-quic-qlog-main-schema-00
https://tools.ietf.org/html/draft-ietf-quic-qlog-quic-events-00
https://tools.ietf.org/html/draft-ietf-quic-qlog-quic-events-00
https://tools.ietf.org/html/draft-ietf-quic-http-latest
https://tools.ietf.org/html/draft-ietf-quic-http-latest
https://tools.ietf.org/html/draft-ietf-quic-qpack-latest
https://tools.ietf.org/html/draft-ietf-quic-qpack-latest

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Appendix A. HTTP/3 data field definitions

A.1. HTTP/3 Frames

A.1.1. DataFrame

A.1.2. HeadersFrame

This represents an uncompressed, plaintext HTTP Headers frame (e.g.,

no QPACK compression is applied).

For example:

A.1.3. CancelPushFrame

type HTTP3Frame = DataFrame | HeadersFrame | PriorityFrame | CancelPushFrame | SettingsFrame | PushPromiseFrame | GoAwayFrame | MaxPushIDFrame | DuplicatePushFrame | ReservedFrame | UnknownFrame;¶

class DataFrame{

 frame_type:string = "data";

 raw?:bytes;

}

¶

¶

¶

headers: [{"name":":path","value":"/"},{"name":":method","value":"GET"},{"name":":authority","value":"127.0.0.1:4433"},{"name":":scheme","value":"https"}]¶

class HeadersFrame{

 frame_type:string = "header";

 headers:Array<HTTPHeader>;

}

class HTTPHeader {

 name:string;

 value:string;

}

¶

class CancelPushFrame{

 frame_type:string = "cancel_push";

 push_id:uint64;

}

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

A.1.4. SettingsFrame

A.1.5. PushPromiseFrame

A.1.6. GoAwayFrame

A.1.7. MaxPushIDFrame

A.1.8. DuplicatePushFrame

A.1.9. ReservedFrame

class SettingsFrame{

 frame_type:string = "settings";

 settings:Array<Setting>;

}

class Setting{

 name:string;

 value:string;

}

¶

class PushPromiseFrame{

 frame_type:string = "push_promise";

 push_id:uint64;

 headers:Array<HTTPHeader>;

}

¶

class GoAwayFrame{

 frame_type:string = "goaway";

 stream_id:uint64;

}

¶

class MaxPushIDFrame{

 frame_type:string = "max_push_id";

 push_id:uint64;

}

¶

class DuplicatePushFrame{

 frame_type:string = "duplicate_push";

 push_id:uint64;

}

¶

class ReservedFrame{

 frame_type:string = "reserved";

}

¶

A.1.10. UnknownFrame

HTTP/3 re-uses QUIC's UnknownFrame definition, since their values

and usage overlaps. See [QLOG-QUIC].

A.2. ApplicationError

Appendix B. QPACK DATA type definitions

B.1. QPACK Instructions

Note: the instructions do not have explicit encoder/decoder types,

since there is no overlap between the insturctions of both types in

neither name nor function.

B.1.1. SetDynamicTableCapacityInstruction

¶

enum ApplicationError{

 http_no_error,

 http_general_protocol_error,

 http_internal_error,

 http_stream_creation_error,

 http_closed_critical_stream,

 http_frame_unexpected,

 http_frame_error,

 http_excessive_load,

 http_id_error,

 http_settings_error,

 http_missing_settings,

 http_request_rejected,

 http_request_cancelled,

 http_request_incomplete,

 http_early_response,

 http_connect_error,

 http_version_fallback

}

¶

¶

type QPackInstruction = SetDynamicTableCapacityInstruction | InsertWithNameReferenceInstruction | InsertWithoutNameReferenceInstruction | DuplicateInstruction | HeaderAcknowledgementInstruction | StreamCancellationInstruction | InsertCountIncrementInstruction;¶

class SetDynamicTableCapacityInstruction {

 instruction_type:string = "set_dynamic_table_capacity";

 capacity:uint32;

}

¶

B.1.2. InsertWithNameReferenceInstruction

B.1.3. InsertWithoutNameReferenceInstruction

B.1.4. DuplicateInstruction

B.1.5. HeaderAcknowledgementInstruction

class InsertWithNameReferenceInstruction {

 instruction_type:string = "insert_with_name_reference";

 table_type:"static"|"dynamic";

 name_index:uint32;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class InsertWithoutNameReferenceInstruction {

 instruction_type:string = "insert_without_name_reference";

 huffman_encoded_name:boolean;

 name_length?:uint32;

 name?:string;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class DuplicateInstruction {

 instruction_type:string = "duplicate";

 index:uint32;

}

¶

class HeaderAcknowledgementInstruction {

 instruction_type:string = "header_acknowledgement";

 stream_id:uint64;

}

¶

B.1.6. StreamCancellationInstruction

B.1.7. InsertCountIncrementInstruction

B.2. QPACK Header compression

B.2.1. IndexedHeaderField

Note: also used for "indexed header field with post-base index"

B.2.2. LiteralHeaderFieldWithName

Note: also used for "Literal header field with post-base name

reference"

class StreamCancellationInstruction {

 instruction_type:string = "stream_cancellation";

 stream_id:uint64;

}

¶

class InsertCountIncrementInstruction {

 instruction_type:string = "insert_count_increment";

 increment:uint32;

}

¶

type QPackHeaderBlockRepresentation = IndexedHeaderField | LiteralHeaderFieldWithName | LiteralHeaderFieldWithoutName;¶

¶

class IndexedHeaderField {

 header_field_type:string = "indexed_header";

 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true

 index:uint32;

 is_post_base:boolean = false; // to represent the "indexed header field with post-base index" header field type

}

¶

¶

B.2.3. LiteralHeaderFieldWithoutName

B.2.4. QPackHeaderBlockPrefix

Appendix C. Change Log

C.1. Since draft-marx-qlog-event-definitions-quic-h3-02:

These changes were done in preparation of the adoption of the

drafts by the QUIC working group (#137)

Split QUIC and HTTP/3 events into two separate documents

Moved RawInfo, Importance, Generic events and Simulation events

to the main schema document.

class LiteralHeaderFieldWithName {

 header_field_type:string = "literal_with_name";

 preserve_literal:boolean; // the 3rd "N" bit

 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true

 name_index:uint32;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

 is_post_base:boolean = false; // to represent the "Literal header field with post-base name reference" header field type

}

¶

class LiteralHeaderFieldWithoutName {

 header_field_type:string = "literal_without_name";

 preserve_literal:boolean; // the 3rd "N" bit

 huffman_encoded_name:boolean;

 name_length?:uint32;

 name?:string;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class QPackHeaderBlockPrefix {

 required_insert_count:uint32;

 sign_bit:boolean;

 delta_base:uint32;

}

¶

*

¶

* ¶

*

¶

C.2. Since draft-marx-qlog-event-definitions-quic-h3-01:

Major changes:

Moved data_moved from http to transport. Also made the "from" and

"to" fields flexible strings instead of an enum (#111,#65)

Moved packet_type fields to PacketHeader. Moved packet_size field

out of PacketHeader to RawInfo:length (#40)

Made events that need to log packet_type and packet_number use a

header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial

tokens (#94,#86,#117)

Moved separate general event categories into a single category

"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events

(#85,#75,#28)

Added parameters_restored events to help clarify 0-RTT behaviour

(#88)

Smaller changes:

Merged loss_timer events into one loss_timer_updated event

Field data types are now strongly defined (#10,#39,#36,#115)

Renamed qpack instruction_received and instruction_sent to

instruction_created and instruction_parsed (#114)

Updated qpack:dynamic_table_updated.update_type. It now has the

value "inserted" instead of "added" (#113)

Updated qpack:dynamic_table_updated. It now has an "owner" field

to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since

this was moved to be a generic property of the "data" field (#80)

Updated transport:connection_id_updated to be more in line with

other similar events. Also dropped importance from Core to Base

(#45)

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

Added length property to PaddingFrame (#34)

Added packet_number field to transport:frames_processed (#74)

Added a way to generically log packet header flags (first 8 bits)

to PacketHeader

Added additional guidance on which events to log in which

situations (#53)

Added "simulation:scenario" event to help indicate simulation

details

Added "packets_acked" event (#107)

Added "datagram_ids" to the datagram_X and packet_X events to

allow tracking of coalesced QUIC packets (#91)

Extended connection_state_updated with more fine-grained states

(#49)

C.3. Since draft-marx-qlog-event-definitions-quic-h3-00:

Event and category names are now all lowercase

Added many new events and their definitions

"type" fields have been made more specific (especially important

for PacketType fields, which are now called packet_type instead

of type)

Events are given an importance indicator (issue #22)

Event names are more consistent and use past tense (issue #21)

Triggers have been redefined as properties of the "data" field

and updated for most events (issue #23)

Appendix D. Design Variations

TBD

Appendix E. Acknowledgements

Much of the initial work by Robin Marx was done at Hasselt

University.

Thanks to Marten Seemann, Jana Iyengar, Brian Trammell, Dmitri

Tikhonov, Stephen Petrides, Jari Arkko, Marcus Ihlar, Victor

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

¶

Vasiliev, Mirja Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian

Huitema, and Lucas Pardue for their feedback and suggestions.

Authors' Addresses

Robin Marx

KU Leuven

Email: robin.marx@kuleuven.be

Luca Niccolini (editor)

Facebook

Email: lniccolini@fb.com

Marten Seemann (editor)

Protocol Labs

Email: marten@protocol.ai

¶

mailto:robin.marx@kuleuven.be
mailto:lniccolini@fb.com
mailto:marten@protocol.ai

	HTTP/3 and QPACK event definitions for qlog
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Overview
	2.1. Usage with QUIC
	2.2. Links to the main schema
	2.2.1. Raw packet and frame information

	3. HTTP/3 and QPACK event definitions
	3.1. http
	3.1.1. parameters_set
	3.1.2. parameters_restored
	3.1.3. stream_type_set
	3.1.4. frame_created
	3.1.5. frame_parsed
	3.1.6. push_resolved

	3.2. qpack
	3.2.1. state_updated
	3.2.2. stream_state_updated
	3.2.3. dynamic_table_updated
	3.2.4. headers_encoded
	3.2.5. headers_decoded
	3.2.6. instruction_created
	3.2.7. instruction_parsed

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. HTTP/3 data field definitions
	A.1. HTTP/3 Frames
	A.1.1. DataFrame
	A.1.2. HeadersFrame
	A.1.3. CancelPushFrame
	A.1.4. SettingsFrame
	A.1.5. PushPromiseFrame
	A.1.6. GoAwayFrame
	A.1.7. MaxPushIDFrame
	A.1.8. DuplicatePushFrame
	A.1.9. ReservedFrame
	A.1.10. UnknownFrame

	A.2. ApplicationError
	Appendix B. QPACK DATA type definitions
	B.1. QPACK Instructions
	B.1.1. SetDynamicTableCapacityInstruction
	B.1.2. InsertWithNameReferenceInstruction
	B.1.3. InsertWithoutNameReferenceInstruction
	B.1.4. DuplicateInstruction
	B.1.5. HeaderAcknowledgementInstruction
	B.1.6. StreamCancellationInstruction
	B.1.7. InsertCountIncrementInstruction

	B.2. QPACK Header compression
	B.2.1. IndexedHeaderField
	B.2.2. LiteralHeaderFieldWithName
	B.2.3. LiteralHeaderFieldWithoutName
	B.2.4. QPackHeaderBlockPrefix

	Appendix C. Change Log
	C.1. Since draft-marx-qlog-event-definitions-quic-h3-02:
	C.2. Since draft-marx-qlog-event-definitions-quic-h3-01:
	C.3. Since draft-marx-qlog-event-definitions-quic-h3-00:
	Appendix D. Design Variations
	Appendix E. Acknowledgements
	Authors' Addresses

