
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-qlog-h3-events-03

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: R. Marx, Ed.

Akamai

L. Niccolini, Ed.

Meta

M. Seemann, Ed.

Protocol Labs

L. Pardue, Ed.

Cloudflare

HTTP/3 and QPACK qlog event definitions

Abstract

This document describes concrete qlog event definitions and their

metadata for HTTP/3 and QPACK-related events. These events can then

be embedded in the higher level schema defined in [QLOG-MAIN].

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Overview

2.1. Usage with QUIC

2.2. Raw packet and frame information

3. HTTP/3 and QPACK Event Overview

4. HTTP/3 Events

4.1. parameters_set

4.2. parameters_restored

4.3. stream_type_set

4.4. frame_created

4.5. frame_parsed

4.6. push_resolved

5. HTTP/3 Data Field Definitions

5.1. Owner

5.2. HTTPFrame

5.2.1. HTTPDataFrame

5.2.2. HTTPHeadersFrame

5.2.3. HTTPCancelPushFrame

5.2.4. HTTPSettingsFrame

5.2.5. HTTPPushPromiseFrame

5.2.6. HTTPGoAwayFrame

5.2.7. HTTPMaxPushIDFrame

5.2.8. HTTPReservedFrame

5.2.9. HTTPUnknownFrame

5.2.10. HTTPApplicationError

6. QPACK Events

6.1. state_updated

6.2. stream_state_updated

6.3. dynamic_table_updated

6.4. headers_encoded

6.5. headers_decoded

6.6. instruction_created

6.7. instruction_parsed

7. QPACK Data Field Definitions

7.1. QPACKInstruction

7.1.1. SetDynamicTableCapacityInstruction

7.1.2. InsertWithNameReferenceInstruction

7.1.3. InsertWithoutNameReferenceInstruction

7.1.4. DuplicateInstruction

7.1.5. SectionAcknowledgementInstruction

7.1.6. StreamCancellationInstruction

7.1.7. InsertCountIncrementInstruction

7.2. QPACKHeaderBlockRepresentation

7.2.1. IndexedHeaderField

7.2.2. LiteralHeaderFieldWithName

7.2.3. LiteralHeaderFieldWithoutName

7.3. QPACKHeaderBlockPrefix

7.4. QPACKTableType

8. Security and Privacy Considerations

9. IANA Considerations

10. Normative References

Appendix A. Change Log

A.1. Since draft-ietf-quic-qlog-h3-events-02:

A.2. Since draft-ietf-quic-qlog-h3-events-01:

A.3. Since draft-ietf-quic-qlog-h3-events-00:

A.4. Since draft-marx-qlog-event-definitions-quic-h3-02:

A.5. Since draft-marx-qlog-event-definitions-quic-h3-01:

A.6. Since draft-marx-qlog-event-definitions-quic-h3-00:

Acknowledgements

Authors' Addresses

1. Introduction

This document describes the values of the qlog name ("category" +

"event") and "data" fields and their semantics for HTTP/3 [HTTP/3]

and QPACK [QPACK].

Note to RFC editor: Please remove the follow paragraphs in this

section before publication.

Feedback and discussion are welcome at https://github.com/quicwg/

qlog. Readers are advised to refer to the "editor's draft" at that

URL for an up-to-date version of this document.

Concrete examples of integrations of this schema in various

programming languages can be found at https://github.com/quiclog/

qlog/.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The event and data structure definitions in ths document are

expressed in the Concise Data Definition Language [CDDL] and its

extensions described in [QLOG-MAIN].

The following fields from [QLOG-MAIN] are imported and used: name,

category, type, data, group_id, protocol_type, importance, RawInfo,

and time-related fields.

¶

¶

¶

¶

¶

¶

¶

https://github.com/quicwg/qlog
https://github.com/quicwg/qlog
https://github.com/quiclog/qlog/
https://github.com/quiclog/qlog/

Note:

Note:

2. Overview

This document describes how the HTTP/3 and QPACK can be expressed in

qlog using the schema defined in [QLOG-MAIN]. HTTP/3 and QPACK

events are defined with a category, a name (the concatenation of

"category" and "event"), an "importance", an optional "trigger", and

"data" fields.

Some data fields use complex datastructures. These are represented

as enums or re-usable definitions, which are grouped together on the

bottom of this document for clarity.

When any event from this document is included in a qlog trace, the

"protocol_type" qlog array field MUST contain an entry with the

value "HTTP3".

2.1. Usage with QUIC

The events described in this document can be used with or without

logging the related QUIC events defined in [QLOG-QUIC]. If used with

QUIC events, the QUIC document takes precedence in terms of

recommended filenames and trace separation setups.

If used without QUIC events, it is recommended that the

implementation assign a globally unique identifier to each HTTP/3

connection. This ID can then be used as the value of the qlog

"group_id" field, as well as the qlog filename or file identifier,

potentially suffixed by the vantagepoint type (For example,

abcd1234_server.qlog would contain the server-side trace of the

connection with GUID abcd1234).

2.2. Raw packet and frame information

This document re-uses the definition of the RawInfo data class from

[QLOG-MAIN].

As HTTP/3 does not use trailers in frames, each HTTP/3 frame

header_length can be calculated as header_length = RawInfo:length

- RawInfo:payload_length

In some cases, the length fields are also explicitly

reflected inside of frame headers. For example, all HTTP/3 frames

include their explicit payload lengths in the frame header. In

these cases, those fields are intentionally preserved in the

event definitions. Even though this can lead to duplicate data

when the full RawInfo is logged, it allows a more direct mapping

of the HTTP/3 specifications to qlog, making it easier for users

to interpret. In this case, both fields MUST have the same value.

¶

¶

¶

¶

¶

¶

¶

¶

3. HTTP/3 and QPACK Event Overview

This document defines events in two categories, written as lowercase

to follow convention: http (Section 4) and qpack (Section 6).

As described in Section 3.4.2 of [QLOG-MAIN], the qlog "name" field

is the concatenation of category and type.

Table 1 summarizes the name value of each event type that is defined

in this specification.

Name value Importance Definition

http:parameters_set Base Section 4.1

http:parameters_restored Base Section 4.2

http:stream_type_set Base Section 4.3

http:frame_created Core Section 4.4

http:frame_parsed Core Section 4.5

http:push_resolved Extra Section 4.6

qpack:state_updated Base Section 6.1

qpack:stream_state_updated Core Section 6.2

qpack:dynamic_table_updated Extra Section 6.3

qpack:headers_encoded Base Section 6.4

qpack:headers_decoded Base Section 6.5

qpack:instruction_created Base Section 6.6

qpack:instruction_parsed Base Section 6.7

Table 1: HTTP/3 and QPACK Events

4. HTTP/3 Events

HTTP/3 events extend the $ProtocolEventBody extension point defined

in [QLOG-MAIN].

HTTPEvents = HTTPParametersSet / HTTPParametersRestored /

 HTTPStreamTypeSet / HTTPFrameCreated /

 HTTPFrameParsed / HTTPPushResolved

$ProtocolEventBody /= HTTPEvents

Figure 1: HTTPEvents definition and ProtocolEventBody extension

4.1. parameters_set

Importance: Base

This event contains HTTP/3 and QPACK-level settings, mostly those

received from the HTTP/3 SETTINGS frame. All these parameters are

typically set once and never change. However, they are typically set

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-03#section-3.4.2

at different times during the connection, so there can be several

instances of this event with different fields set.

Note that some settings have two variations (one set locally, one

requested by the remote peer). This is reflected in the "owner"

field. As such, this field MUST be correct for all settings included

a single event instance. If you need to log settings from two sides,

you MUST emit two separate event instances.

Note: we use the CDDL unwrap operator (~) here to make

HTTPParameters into a re-usable list of fields. The unwrap operator

copies the fields from the referenced type into the target type

directly, extending the target with the unwrapped fields. TODO:

explain this better + provide reference and maybe an example.

Definition:

HTTPParametersSet = {

 ? owner: Owner

 ~HTTPParameters

 ; qlog-specific

 ; indicates whether this implementation waits for a SETTINGS

 ; frame before processing requests

 ? waits_for_settings: bool

}

HTTPParameters = {

 ? max_header_list_size: uint64

 ? max_table_capacity: uint64

 ? blocked_streams_count: uint64

 ; additional settings for grease and extensions

 * text => uint64

}

Figure 2: HTTPParametersSet definition

Note: enabling server push is not explicitly done in HTTP/3 by use

of a setting or parameter. Instead, it is communicated by use of the

MAX_PUSH_ID frame, which should be logged using the frame_created

and frame_parsed events below.

Additionally, this event can contain any number of unspecified

fields. This is to reflect setting of for example unknown (greased)

settings or parameters of (proprietary) extensions.

¶

¶

¶

¶

¶

¶

4.2. parameters_restored

Importance: Base

When using QUIC 0-RTT, HTTP/3 clients are expected to remember and

reuse the server's SETTINGs from the previous connection. This event

is used to indicate which HTTP/3 settings were restored and to which

values when utilizing 0-RTT.

Definition:

HTTPParametersRestored = {

 ~HTTPParameters

}

Figure 3: HTTPParametersRestored definition

Note that, like for parameters_set above, this event can contain any

number of unspecified fields to allow for additional and custom

settings.

4.3. stream_type_set

Importance: Base

Emitted when a stream's type becomes known. This is typically when a

stream is opened and the stream's type indicator is sent or

received.

Note: most of this information can also be inferred by looking at a

stream's id, since id's are strictly partitioned at the QUIC level.

Even so, this event has a "Base" importance because it helps a lot

in debugging to have this information clearly spelled out.

Definition:

¶

¶

¶

¶

¶

¶

¶

¶

HTTPStreamTypeSet = {

 ? owner: Owner

 stream_id: uint64

 stream_type: HTTPStreamType

 ; only when stream_type === "unknown"

 ? raw_stream_type: uint64

 ; only when stream_type === "push"

 ? associated_push_id: uint64

}

HTTPStreamType = "request" /

 "control" /

 "push" /

 "reserved" /

 "unknown" /

 "qpack_encode" /

 "qpack_decode"

Figure 4: HTTPStreamTypeSet definition

4.4. frame_created

Importance: Core

HTTP equivalent to the packet_sent event. This event is emitted when

the HTTP/3 framing actually happens. Note: this is not necessarily

the same as when the HTTP/3 data is passed on to the QUIC layer. For

that, see the "data_moved" event in [QLOG-QUIC].

Definition:

HTTPFrameCreated = {

 stream_id: uint64

 ? length: uint64

 frame: $HTTPFrame

 ? raw: RawInfo

}

Figure 5: HTTPFrameCreated definition

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be created in a streaming fashion. In this

case, the frame_created event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

¶

¶

¶

¶

4.5. frame_parsed

Importance: Core

HTTP equivalent to the packet_received event. This event is emitted

when we actually parse the HTTP/3 frame. Note: this is not

necessarily the same as when the HTTP/3 data is actually received on

the QUIC layer. For that, see the "data_moved" event in [QLOG-QUIC].

Definition:

HTTPFrameParsed = {

 stream_id: uint64

 ? length: uint64

 frame: $HTTPFrame

 ? raw: RawInfo

}

Figure 6: HTTPFrameParsed definition

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be processed in a streaming fashion. In this

case, the frame_parsed event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

4.6. push_resolved

Importance: Extra

This event is emitted when a pushed resource is successfully claimed

(used) or, conversely, abandoned (rejected) by the application on

top of HTTP/3 (e.g., the web browser). This event is added to help

debug problems with unexpected PUSH behaviour, which is commonplace

with HTTP/2.

Definition:

¶

¶

¶

¶

¶

¶

¶

HTTPPushResolved = {

 ? push_id: uint64

 ; in case this is logged from a place that does not have access

 ; to the push_id

 ? stream_id: uint64

 decision: HTTPPushDecision

}

HTTPPushDecision = "claimed" / "abandoned"

Figure 7: HTTPPushResolved definition

5. HTTP/3 Data Field Definitions

The following data field definitions can be used in HTTP/3 events.

5.1. Owner

Owner = "local" / "remote"

Figure 8: Owner definition

5.2. HTTPFrame

The generic $HTTPFrame is defined here as a CDDL extension point (a

"socket" or "plug"). It can be extended to support additional HTTP/3

frame types.

; The HTTPFrame is any key-value map (e.g., JSON object)

$HTTPFrame /= {

 * text => any

}

Figure 9: HTTPFrame plug definition

The HTTP/3 frame types defined in this document are as follows:

¶

¶

¶

HTTPBaseFrames = HTTPDataFrame /

 HTTPHeadersFrame /

 HTTPCancelPushFrame /

 HTTPSettingsFrame /

 HTTPPushPromiseFrame /

 HTTPGoawayFrame /

 HTTPMaxPushIDFrame /

 HTTPReservedFrame /

 HTTPUnknownFrame

$HTTPFrame /= HTTPBaseFrames

Figure 10: HTTPBaseFrames definition

5.2.1. HTTPDataFrame

HTTPDataFrame = {

 frame_type: "data"

 ? raw: hexstring

}

Figure 11: HTTPDataFrame definition

5.2.2. HTTPHeadersFrame

This represents an uncompressed, plaintext HTTP Headers frame (e.g.,

no QPACK compression is applied).

For example:

¶

¶

headers: [

 {

 "name": ":path",

 "value": "/"

 },

 {

 "name": ":method",

 "value": "GET"

 },

 {

 "name": ":authority",

 "value": "127.0.0.1:4433"

 },

 {

 "name": ":scheme",

 "value": "https"

 }

]

Figure 12: HTTPHeadersFrame example

HTTPHeadersFrame = {

 frame_type: "headers"

 headers: [* HTTPField]

}

Figure 13: HTTPHeadersFrame definition

HTTPField = {

 name: text

 value: text

}

Figure 14: HTTPField definition

5.2.3. HTTPCancelPushFrame

HTTPCancelPushFrame = {

 frame_type: "cancel_push"

 push_id: uint64

}

Figure 15: HTTPCancelPushFrame definition

5.2.4. HTTPSettingsFrame

HTTPSettingsFrame = {

 frame_type: "settings"

 settings: [* HTTPSetting]

}

HTTPSetting = {

 name: text

 value: uint64

}

Figure 16: HTTPSettingsFrame definition

5.2.5. HTTPPushPromiseFrame

HTTPPushPromiseFrame = {

 frame_type: "push_promise"

 push_id: uint64

 headers: [* HTTPField]

}

Figure 17: HTTPPushPromiseFrame definition

5.2.6. HTTPGoAwayFrame

HTTPGoawayFrame = {

 frame_type: "goaway"

 ; Either stream_id or push_id.

 ; This is implicit from the sender of the frame

 id: uint64

}

Figure 18: HTTPGoawayFrame definition

5.2.7. HTTPMaxPushIDFrame

HTTPMaxPushIDFrame = {

 frame_type: "max_push_id"

 push_id: uint64

}

Figure 19: HTTPMaxPushIDFrame definition

5.2.8. HTTPReservedFrame

HTTPReservedFrame = {

 frame_type: "reserved"

 ? length: uint64

}

Figure 20: HTTPReservedFrame definition

5.2.9. HTTPUnknownFrame

HTTPUnknownFrame = {

 frame_type: "unknown"

 raw_frame_type: uint64

 ? raw_length: uint32

 ? raw: hexstring

}

Figure 21: UnknownFrame definition

5.2.10. HTTPApplicationError

HTTPApplicationError = "http_no_error" /

 "http_general_protocol_error" /

 "http_internal_error" /

 "http_stream_creation_error" /

 "http_closed_critical_stream" /

 "http_frame_unexpected" /

 "http_frame_error" /

 "http_excessive_load" /

 "http_id_error" /

 "http_settings_error" /

 "http_missing_settings" /

 "http_request_rejected" /

 "http_request_cancelled" /

 "http_request_incomplete" /

 "http_early_response" /

 "http_connect_error" /

 "http_version_fallback"

Figure 22: HTTPApplicationError definition

The HTTPApplicationError defines the general $ApplicationError

definition in the qlog QUIC definition, see [QLOG-QUIC].

; ensure HTTP errors are properly validate in QUIC events as well

; e.g., QUIC's ConnectionClose Frame

$ApplicationError /= HTTPApplicationError

6. QPACK Events

QPACK events extend the $ProtocolEventBody extension point defined

in [QLOG-MAIN].

QPACKEvents = QPACKStateUpdate / QPACKStreamStateUpdate /

 QPACKDynamicTableUpdate / QPACKHeadersEncoded /

 QPACKHeadersDecoded / QPACKInstructionCreated /

 QPACKInstructionParsed

$ProtocolEventBody /= QPACKEvents

Figure 23: QPACKEvents definition and ProtocolEventBody extension

QPACK events mainly serve as an aid to debug low-level QPACK

issues.The higher-level, plaintext header values SHOULD (also) be

logged in the http.frame_created and http.frame_parsed event data

(instead).

¶

¶

¶

¶

Note: qpack does not have its own parameters_set event. This was

merged with http.parameters_set for brevity, since qpack is a

required extension for HTTP/3 anyway. Other HTTP/3 extensions MAY

also log their SETTINGS fields in http.parameters_set or MAY define

their own events.

6.1. state_updated

Importance: Base

This event is emitted when one or more of the internal QPACK

variables changes value. Note that some variables have two

variations (one set locally, one requested by the remote peer). This

is reflected in the "owner" field. As such, this field MUST be

correct for all variables included a single event instance. If you

need to log settings from two sides, you MUST emit two separate

event instances.

Definition:

QPACKStateUpdate = {

 owner: Owner

 ? dynamic_table_capacity: uint64

 ; effective current size, sum of all the entries

 ? dynamic_table_size: uint64

 ? known_received_count: uint64

 ? current_insert_count: uint64

}

Figure 24: QPACKStateUpdate definition

6.2. stream_state_updated

Importance: Core

This event is emitted when a stream becomes blocked or unblocked by

header decoding requests or QPACK instructions.

Note: This event is of "Core" importance, as it might have a large

impact on HTTP/3's observed performance.

Definition:

¶

¶

¶

¶

¶

¶

¶

¶

QPACKStreamStateUpdate = {

 stream_id: uint64

 ; streams are assumed to start "unblocked"

 ; until they become "blocked"

 state: QPACKStreamState

}

QPACKStreamState = "blocked" / "unblocked"

Figure 25: QPACKStreamStateUpdate definition

6.3. dynamic_table_updated

Importance: Extra

This event is emitted when one or more entries are inserted or

evicted from QPACK's dynamic table.

Definition:

QPACKDynamicTableUpdate = {

 ; local = the encoder's dynamic table

 ; remote = the decoder's dynamic table

 owner: Owner

 update_type: QPACKDynamicTableUpdateType

 entries: [+ QPACKDynamicTableEntry]

}

QPACKDynamicTableUpdateType = "inserted" / "evicted"

QPACKDynamicTableEntry = {

 index: uint64

 ? name: text / hexstring

 ? value: text / hexstring

}

Figure 26: QPACKDynamicTableUpdate definition

6.4. headers_encoded

Importance: Base

This event is emitted when an uncompressed header block is encoded

successfully.

Note: this event has overlap with http.frame_created for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

¶

¶

¶

¶

¶

¶

Definition:

QPACKHeadersEncoded = {

 ? stream_id: uint64

 ? headers: [+ HTTPField]

 block_prefix: QPACKHeaderBlockPrefix

 header_block: [+ QPACKHeaderBlockRepresentation]

 ? length: uint

 ? raw: hexstring

}

Figure 27: QPACKHeadersEncoded definition

6.5. headers_decoded

Importance: Base

This event is emitted when a compressed header block is decoded

successfully.

Note: this event has overlap with http.frame_parsed for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

Definition:

QPACKHeadersDecoded = {

 ? stream_id: uint64

 ? headers: [+ HTTPField]

 block_prefix: QPACKHeaderBlockPrefix

 header_block: [+ QPACKHeaderBlockRepresentation]

 ? length: uint32

 ? raw: hexstring

}

Figure 28: QPACKHeadersDecoded definition

6.6. instruction_created

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is created and added to the encoder/decoder stream.

¶

¶

¶

¶

¶

¶

¶

Definition:

QPACKInstructionCreated = {

 ; see definition in appendix

 instruction: QPACKInstruction

 ? length: uint32

 ? raw: hexstring

}

Figure 29: QPACKInstructionCreated definition

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

6.7. instruction_parsed

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is read from the encoder/decoder stream.

Definition:

QPACKInstructionParsed = {

 ; see QPACKInstruction definition in appendix

 instruction: QPACKInstruction

 ? length: uint32

 ? raw: hexstring

}

Figure 30: QPACKInstructionParsed definition

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

7. QPACK Data Field Definitions

The following data field definitions can be used in QPACK events.

7.1. QPACKInstruction

Note: the instructions do not have explicit encoder/decoder types,

since there is no overlap between the instructions of both types in

neither name nor function.

¶

¶

¶

¶

¶

¶

¶

¶

QPACKInstruction = SetDynamicTableCapacityInstruction /

 InsertWithNameReferenceInstruction /

 InsertWithoutNameReferenceInstruction /

 DuplicateInstruction /

 SectionAcknowledgementInstruction /

 StreamCancellationInstruction /

 InsertCountIncrementInstruction

Figure 31: QPACKInstruction definition

7.1.1. SetDynamicTableCapacityInstruction

SetDynamicTableCapacityInstruction = {

 instruction_type: "set_dynamic_table_capacity"

 capacity: uint32

}

Figure 32: SetDynamicTableCapacityInstruction definition

7.1.2. InsertWithNameReferenceInstruction

InsertWithNameReferenceInstruction = {

 instruction_type: "insert_with_name_reference"

 table_type: QPACKTableType

 name_index: uint32

 huffman_encoded_value: bool

 ? value_length: uint32

 ? value: text

}

Figure 33: InsertWithNameReferenceInstruction definition

7.1.3. InsertWithoutNameReferenceInstruction

InsertWithoutNameReferenceInstruction = {

 instruction_type: "insert_without_name_reference"

 huffman_encoded_name: bool

 ? name_length: uint32

 ? name: text

 huffman_encoded_value: bool

 ? value_length: uint32

 ? value: text

}

Figure 34: InsertWithoutNameReferenceInstruction definition

7.1.4. DuplicateInstruction

DuplicateInstruction = {

 instruction_type: "duplicate"

 index: uint32

}

Figure 35: DuplicateInstruction definition

7.1.5. SectionAcknowledgementInstruction

SectionAcknowledgementInstruction = {

 instruction_type: "section_acknowledgement"

 stream_id: uint64

}

Figure 36: SectionAcknowledgementInstruction definition

7.1.6. StreamCancellationInstruction

StreamCancellationInstruction = {

 instruction_type: "stream_cancellation"

 stream_id: uint64

}

Figure 37: StreamCancellationInstruction definition

7.1.7. InsertCountIncrementInstruction

InsertCountIncrementInstruction = {

 instruction_type: "insert_count_increment"

 increment: uint32

}

Figure 38: InsertCountIncrementInstruction definition

7.2. QPACKHeaderBlockRepresentation

QPACKHeaderBlockRepresentation = IndexedHeaderField /

 LiteralHeaderFieldWithName /

 LiteralHeaderFieldWithoutName

Figure 39: QPACKHeaderBlockRepresentation definition

7.2.1. IndexedHeaderField

Note: also used for "indexed header field with post-base index"

IndexedHeaderField = {

 header_field_type: "indexed_header"

 ; MUST be "dynamic" if is_post_base is true

 table_type: QPACKTableType

 index: uint32

 ; to represent the "indexed header field with post-base index"

 ; header field type

 is_post_base: bool .default false

}

Figure 40: IndexedHeaderField definition

7.2.2. LiteralHeaderFieldWithName

Note: also used for "Literal header field with post-base name

reference"

LiteralHeaderFieldWithName = {

 header_field_type: "literal_with_name"

 ; the 3rd "N" bit

 preserve_literal: bool

 ; MUST be "dynamic" if is_post_base is true

 table_type: QPACKTableType

 name_index: uint32

 huffman_encoded_value: bool

 ? value_length: uint32

 ? value: text

 ; to represent the "indexed header field with post-base index"

 ; header field type

 is_post_base: bool .default false

}

Figure 41: LiteralHeaderFieldWithName definition

7.2.3. LiteralHeaderFieldWithoutName

¶

¶

[CDDL]

LiteralHeaderFieldWithoutName = {

 header_field_type: "literal_without_name"

 ; the 3rd "N" bit

 preserve_literal: bool

 huffman_encoded_name: bool

 ? name_length: uint32

 ? name: text

 huffman_encoded_value: bool

 ? value_length: uint32

 ? value: text

}

Figure 42: LiteralHeaderFieldWithoutName definition

7.3. QPACKHeaderBlockPrefix

QPACKHeaderBlockPrefix = {

 required_insert_count: uint32

 sign_bit: bool

 delta_base: uint32

}

Figure 43: QPACKHeaderBlockPrefix definition

7.4. QPACKTableType

QPACKTableType = "static" / "dynamic"

Figure 44: QPACKTableType definition

8. Security and Privacy Considerations

The security and privacy considerations discussed in [QLOG-MAIN]

apply to this document as well.

9. IANA Considerations

TBD

10. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

¶

¶

https://www.rfc-editor.org/rfc/rfc8610

[HTTP/3]

[QLOG-MAIN]

[QLOG-QUIC]

[QPACK]

[RFC2119]

[RFC8174]

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Marx, R., Niccolini, L., and M. Seemann, "Main logging

schema for qlog", Work in Progress, Internet-Draft,

draft-ietf-quic-qlog-main-schema-03, 31 August 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

qlog-main-schema-03>.

Marx, R., Niccolini, L., and M. Seemann, "QUIC event

definitions for qlog", Work in Progress, Internet-Draft,

draft-ietf-quic-qlog-quic-events-02, 31 August 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

qlog-quic-events-02>.

Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:

Field Compression for HTTP/3", RFC 9204, DOI 10.17487/

RFC9204, June 2022, <https://www.rfc-editor.org/rfc/

rfc9204>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Appendix A. Change Log

A.1. Since draft-ietf-quic-qlog-h3-events-02:

Renamed HTTPStreamType data to request (#222)

Added HTTPStreamType value unknown (#227)

Added HTTPUnknownFrame (#224)

Replaced old and new fields with stream_type in HTTPStreamTypeSet

(#240)

Changed HTTPFrame to a CDDL plug type (#257)

Moved data definitions out of the appendix into separate sections

Added overview Table of Contents

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-02
https://www.rfc-editor.org/rfc/rfc9204
https://www.rfc-editor.org/rfc/rfc9204
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

A.2. Since draft-ietf-quic-qlog-h3-events-01:

No changes - new draft to prevent expiration

A.3. Since draft-ietf-quic-qlog-h3-events-00:

Change the data definition language from TypeScript to CDDL

(#143)

A.4. Since draft-marx-qlog-event-definitions-quic-h3-02:

These changes were done in preparation of the adoption of the

drafts by the QUIC working group (#137)

Split QUIC and HTTP/3 events into two separate documents

Moved RawInfo, Importance, Generic events and Simulation events

to the main schema document.

A.5. Since draft-marx-qlog-event-definitions-quic-h3-01:

Major changes:

Moved data_moved from http to transport. Also made the "from" and

"to" fields flexible strings instead of an enum (#111,#65)

Moved packet_type fields to PacketHeader. Moved packet_size field

out of PacketHeader to RawInfo:length (#40)

Made events that need to log packet_type and packet_number use a

header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial

tokens (#94,#86,#117)

Moved separate general event categories into a single category

"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events

(#85,#75,#28)

Added parameters_restored events to help clarify 0-RTT behaviour

(#88)

Smaller changes:

Merged loss_timer events into one loss_timer_updated event

Field data types are now strongly defined (#10,#39,#36,#115)

* ¶

*

¶

*

¶

* ¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

Renamed qpack instruction_received and instruction_sent to

instruction_created and instruction_parsed (#114)

Updated qpack:dynamic_table_updated.update_type. It now has the

value "inserted" instead of "added" (#113)

Updated qpack:dynamic_table_updated. It now has an "owner" field

to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since

this was moved to be a generic property of the "data" field (#80)

Updated transport:connection_id_updated to be more in line with

other similar events. Also dropped importance from Core to Base

(#45)

Added length property to PaddingFrame (#34)

Added packet_number field to transport:frames_processed (#74)

Added a way to generically log packet header flags (first 8 bits)

to PacketHeader

Added additional guidance on which events to log in which

situations (#53)

Added "simulation:scenario" event to help indicate simulation

details

Added "packets_acked" event (#107)

Added "datagram_ids" to the datagram_X and packet_X events to

allow tracking of coalesced QUIC packets (#91)

Extended connection_state_updated with more fine-grained states

(#49)

A.6. Since draft-marx-qlog-event-definitions-quic-h3-00:

Event and category names are now all lowercase

Added many new events and their definitions

"type" fields have been made more specific (especially important

for PacketType fields, which are now called packet_type instead

of type)

Events are given an importance indicator (issue #22)

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

Event names are more consistent and use past tense (issue #21)

Triggers have been redefined as properties of the "data" field

and updated for most events (issue #23)

Acknowledgements

Much of the initial work by Robin Marx was done at the Hasselt and

KU Leuven Universities.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen

Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja

Kuehlewind, Jeremy Laine, Kazu Yamamoto, and Christian Huitema for

their feedback and suggestions.

Authors' Addresses

Robin Marx (editor)

Akamai

Email: rmarx@akamai.com

Luca Niccolini (editor)

Meta

Email: lniccolini@meta.com

Marten Seemann (editor)

Protocol Labs

Email: marten@protocol.ai

Lucas Pardue (editor)

Cloudflare

Email: lucaspardue.24.7@gmail.com

* ¶

*

¶

¶

¶

mailto:rmarx@akamai.com
mailto:lniccolini@meta.com
mailto:marten@protocol.ai
mailto:lucaspardue.24.7@gmail.com

	HTTP/3 and QPACK qlog event definitions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Overview
	2.1. Usage with QUIC
	2.2. Raw packet and frame information

	3. HTTP/3 and QPACK Event Overview
	4. HTTP/3 Events
	4.1. parameters_set
	4.2. parameters_restored
	4.3. stream_type_set
	4.4. frame_created
	4.5. frame_parsed
	4.6. push_resolved

	5. HTTP/3 Data Field Definitions
	5.1. Owner
	5.2. HTTPFrame
	5.2.1. HTTPDataFrame
	5.2.2. HTTPHeadersFrame
	5.2.3. HTTPCancelPushFrame
	5.2.4. HTTPSettingsFrame
	5.2.5. HTTPPushPromiseFrame
	5.2.6. HTTPGoAwayFrame
	5.2.7. HTTPMaxPushIDFrame
	5.2.8. HTTPReservedFrame
	5.2.9. HTTPUnknownFrame
	5.2.10. HTTPApplicationError

	6. QPACK Events
	6.1. state_updated
	6.2. stream_state_updated
	6.3. dynamic_table_updated
	6.4. headers_encoded
	6.5. headers_decoded
	6.6. instruction_created
	6.7. instruction_parsed

	7. QPACK Data Field Definitions
	7.1. QPACKInstruction
	7.1.1. SetDynamicTableCapacityInstruction
	7.1.2. InsertWithNameReferenceInstruction
	7.1.3. InsertWithoutNameReferenceInstruction
	7.1.4. DuplicateInstruction
	7.1.5. SectionAcknowledgementInstruction
	7.1.6. StreamCancellationInstruction
	7.1.7. InsertCountIncrementInstruction

	7.2. QPACKHeaderBlockRepresentation
	7.2.1. IndexedHeaderField
	7.2.2. LiteralHeaderFieldWithName
	7.2.3. LiteralHeaderFieldWithoutName

	7.3. QPACKHeaderBlockPrefix
	7.4. QPACKTableType

	8. Security and Privacy Considerations
	9. IANA Considerations
	10. Normative References
	Appendix A. Change Log
	A.1. Since draft-ietf-quic-qlog-h3-events-02:
	A.2. Since draft-ietf-quic-qlog-h3-events-01:
	A.3. Since draft-ietf-quic-qlog-h3-events-00:
	A.4. Since draft-marx-qlog-event-definitions-quic-h3-02:
	A.5. Since draft-marx-qlog-event-definitions-quic-h3-01:
	A.6. Since draft-marx-qlog-event-definitions-quic-h3-00:

	Acknowledgements
	Authors' Addresses

