
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-qlog-main-schema-02

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: R. Marx, Ed.

KU Leuven

L. Niccolini, Ed.

Facebook

M. Seemann, Ed.

Protocol Labs

Main logging schema for qlog

Abstract

This document describes a high-level schema for a standardized

logging format called qlog. This format allows easy sharing of data

and the creation of reusable visualization and debugging tools. The

high-level schema in this document is intended to be protocol-

agnostic. Separate documents specify how the format should be used

for specific protocol data. The schema is also format-agnostic, and

can be represented in for example JSON, csv or protobuf.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

1.1.1. Schema definition

1.1.2. Serialization

2. Design goals

3. The high level qlog schema

3.1. Summary

3.2. traces

3.3. Individual Trace containers

3.3.1. Configuration

3.3.2. vantage_point

3.4. Field name semantics

3.4.1. Timestamps

3.4.2. Category and Event Type

3.4.3. Data

3.4.4. protocol_type

3.4.5. Triggers

3.4.6. group_id

3.4.7. common_fields

4. Guidelines for event definition documents

4.1. Event design guidelines

4.2. Event importance indicators

4.3. Custom fields

5. Generic events and data classes

5.1. Raw packet and frame information

5.2. Generic events

5.2.1. error

5.2.2. warning

5.2.3. info

5.2.4. debug

5.2.5. verbose

5.3. Simulation events

5.3.1. scenario

5.3.2. marker

6. Serializing qlog

6.1. qlog to JSON mapping

6.1.1. I-JSON

6.1.2. Truncated values

6.2. qlog to JSON Text Sequences mapping

6.2.1. Supporting JSON Text Sequences in tooling

6.3. Other optimizated formatting options

6.3.1. Data structure optimizations

6.3.2. Compression

6.3.3. Binary formats

¶

6.3.4. Overview and summary

6.4. Conversion between formats

7. Methods of access and generation

7.1. Set file output destination via an environment variable

7.2. Access logs via a well-known endpoint

8. Tooling requirements

9. Security and privacy considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Change Log

A.1. Since draft-ietf-quic-qlog-main-schema-01:

A.2. Since draft-ietf-quic-qlog-main-schema-00:

A.3. Since draft-marx-qlog-main-schema-draft-02:

A.4. Since draft-marx-qlog-main-schema-01:

A.5. Since draft-marx-qlog-main-schema-00:

Appendix B. Design Variations

Appendix C. Acknowledgements

Authors' Addresses

1. Introduction

There is currently a lack of an easily usable, standardized endpoint

logging format. Especially for the use case of debugging and

evaluating modern Web protocols and their performance, it is often

difficult to obtain structured logs that provide adequate

information for tasks like problem root cause analysis.

This document aims to provide a high-level schema and harness that

describes the general layout of an easily usable, shareable,

aggregatable and structured logging format. This high-level schema

is protocol agnostic, with logging entries for specific protocols

and use cases being defined in other documents (see for example

[QLOG-QUIC] for QUIC and [QLOG-H3] for HTTP/3 and QPACK-related

event definitions).

The goal of this high-level schema is to provide amenities and

default characteristics that each logging file should contain (or

should be able to contain), such that generic and reusable toolsets

can be created that can deal with logs from a variety of different

protocols and use cases.

As such, this document contains concepts such as versioning,

metadata inclusion, log aggregation, event grouping and log file

size reduction techniques.

¶

¶

¶

¶

Feedback and discussion are welcome at https://github.com/quicwg/

qlog. Readers are advised to refer to the "editor's draft" at that

URL for an up-to-date version of this document.

Concrete examples of integrations of this schema in various

programming languages can be found at https://github.com/quiclog/

qlog/.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

1.1.1. Schema definition

To define events and data structures, all qlog documents use the

Concise Data Definition Language [CDDL]. This document uses the

basic syntax, the specific text, uint, float32, float64, bool, and

any types, as well as the .default, .size, and .regexp control

operators, the ~ unwrapping operator, and the $ extension point

syntax from [CDDL].

Additionally, this document defines the following custom types for

clarity:

; CDDL's uint is defined as being 64-bit in size

; but for many protocol fields we want to be more restrictive

; and explicit

uint8 = uint .size 1

uint16 = uint .size 2

uint32 = uint .size 4

uint64 = uint .size 8

; an even-length lowercase string of hexadecimally encoded bytes

; examples: 82dc, 027339, 4cdbfd9bf0

; this is needed because the default CDDL binary string (bytes/bstr)

; is only CBOR and not JSON compatible

hexstring = text .regexp "([0-9a-f]{2})*"

Figure 1: Additional CDDL type definitions

The main general CDDL syntax conventions in this document a reader

should be aware of for easy reading comprehension are:

? obj : this object is optional

TypeName1 / TypeName2 : a union of these two types (object can be

either type 1 OR type 2)

¶

¶

¶

¶

¶

¶

* ¶

*

¶

https://github.com/quicwg/qlog
https://github.com/quicwg/qlog
https://github.com/quiclog/qlog/
https://github.com/quiclog/qlog/

obj: TypeName : this object has this concrete type

obj: [* TypeName] : this object is an array of this type with

minimum size of 0 elements

obj: [+ TypeName] : this object is an array of this type with

minimum size of 1 element

TypeName = ... : defines a new type

EnumName = "entry1" / "entry2" / entry3 / ...: defines an enum

StructName = { ... } : defines a new struct type

; : single-line comment

* text => any : special syntax to indicate 0 or more fields that

have a string key that maps to any value. Used to indicate a

generic JSON object.

All timestamps and time-related values (e.g., offsets) in qlog are

logged as float64 in the millisecond resolution.

Other qlog documents can define their own CDDL-compatible (struct)

types (e.g., separately for each Packet type that a protocol

supports).

1.1.2. Serialization

While the qlog schemas are format-agnostic, and can be serialized in

many ways (e.g., JSON, CBOR, protobuf, ...), this document only

describes how to employ [JSON], its subset [I-JSON], and its

streamable derivative [JSON-Text-Sequences] as textual serialization

options. As such, examples are provided in [JSON]. Other documents

may describe how to utilize other concrete serialization options,

though tips and requirements for these are also listed in this

document (Section 6).

2. Design goals

The main tenets for the qlog schema design are:

Streamable, event-based logging

Flexibility in the format, complexity in the tooling (e.g., few

components are a MUST, tools need to deal with this)

Extensible and pragmatic

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

Note:

Aggregation and transformation friendly (e.g., the top-level

element for the non-streaming format is a container for

individual traces, group_ids can be used to tag events to a

particular context)

Metadata is stored together with event data

3. The high level qlog schema

A qlog file should be able to contain several indivdual traces and

logs from multiple vantage points that are in some way related. To

that end, the top-level element in the qlog schema defines only a

small set of "header" fields and an array of component traces. For

this document, the required "qlog_version" field MUST have a value

of "0.3".

there have been several previously broadly deployed qlog

versions based on older drafts of this document (see draft-marx-

qlog-main-schema). The old values for the "qlog_version" field

were "draft-00", "draft-01" and "draft-02". When qlog was moved

to the QUIC working group, we decided to switch to a new

versioning scheme which is independent of individual draft

document numbers. However, we did start from 0.3, as conceptually

0.0, 0.1 and 0.2 can map to draft-00, draft-01 and draft-02.

As qlog can be serialized in a variety of ways, the "qlog_format"

field is used to indicate which serialization option was chosen. Its

value MUST either be one of the options defined in this document

(e.g., Section 6) or the field must be omitted entirely, in which

case it assumes the default value of "JSON".

In order to make it easier to parse and identify qlog files and

their serialization format, the "qlog_version" and "qlog_format"

fields and their values SHOULD be in the first 256 characters/bytes

of the resulting log file.

An example of the qlog file's top-level structure is shown in Figure

2.

Definition:

QlogFile = {

 qlog_version: text

 ? qlog_format: text .default "JSON"

 ? title: text

 ? description: text

 ? summary: Summary

 ? traces: [+ Trace / TraceError]

}

*

¶

* ¶

¶

¶

¶

¶

¶

¶

Figure 2: QlogFile definition

JSON serialization example:

Figure 3: QlogFile example

3.1. Summary

In a real-life deployment with a large amount of generated logs, it

can be useful to sort and filter logs based on some basic summarized

or aggregated data (e.g., log length, packet loss rate, log

location, presence of error events, ...). The summary field (if

present) SHOULD be on top of the qlog file, as this allows for the

file to be processed in a streaming fashion (i.e., the

implementation could just read up to and including the summary field

and then only load the full logs that are deemed interesting by the

user).

As the summary field is highly deployment-specific, this document

does not specify any default fields or their semantics. Some

examples of potential entries are shown in Section 3.1.

Definition:

Summary = {

 ; summary can contain any type of custom information

 ; text here doesn't mean the type text,

 ; but the fact that keys/names in the objects are strings

 * text => any

}

Figure 4: Summary definition

JSON serialization example:

¶

{

 "qlog_version": "0.3",

 "qlog_format": "JSON",

 "title": "Name of this particular qlog file (short)",

 "description": "Description for this group of traces (long)",

 "summary": {

 ...

 },

 "traces": [...]

}

¶

¶

¶

¶

Figure 5: Summary example

3.2. traces

It is often advantageous to group several related qlog traces

together in a single file. For example, we can simultaneously

perform logging on the client, on the server and on a single point

on their common network path. For analysis, it is useful to

aggregate these three individual traces together into a single file,

so it can be uniquely stored, transferred and annotated.

As such, the "traces" array contains a list of individual qlog

traces. Typical qlogs will only contain a single trace in this

array. These can later be combined into a single qlog file by taking

the "traces" entry/entries for each qlog file individually and

copying them to the "traces" array of a new, aggregated qlog file.

This is typically done in a post-processing step.

The "traces" array can thus contain both normal traces (for the

definition of the Trace type, see Section 3.3), but also "error"

entries. These indicate that we tried to find/convert a file for

inclusion in the aggregated qlog, but there was an error during the

process. Rather than silently dropping the erroneous file, we can

opt to explicitly include it in the qlog file as an entry in the

"traces" array, as shown in Figure 6.

Definition:

TraceError = {

 error_description: text

 ; the original URI at which we attempted to find the file

 ? uri: text

 ? vantage_point: VantagePoint

}

Figure 6: TraceError definition

JSON serialization example:

{

 "trace_count": 1,

 "max_duration": 5006,

 "max_outgoing_loss_rate": 0.013,

 "total_event_count": 568,

 "error_count": 2

}

¶

¶

¶

¶

¶

Figure 7: TraceError example

Note that another way to combine events of different traces in a

single qlog file is through the use of the "group_id" field,

discussed in Section 3.4.6.

3.3. Individual Trace containers

The exact conceptual definition of a Trace can be fluid. For

example, a trace could contain all events for a single connection,

for a single endpoint, for a single measurement interval, for a

single protocol, etc. As such, a Trace container contains some

metadata in addition to the logged events, see Figure 8.

In the normal use case however, a trace is a log of a single data

flow collected at a single location or vantage point. For example,

for QUIC, a single trace only contains events for a single logical

QUIC connection for either the client or the server.

The semantics and context of the trace can mainly be deduced from

the entries in the "common_fields" list and "vantage_point" field.

Definition:

Trace = {

 ? title: text

 ? description: text

 ? configuration: Configuration

 ? common_fields: CommonFields

 ? vantage_point: VantagePoint

 events: [* Event]

}

Figure 8: Trace definition

JSON serialization example:

{

 "error_description": "File could not be found",

 "uri": "/srv/traces/today/latest.qlog",

 "vantage_point": { type: "server" }

}

¶

¶

¶

¶

¶

¶

Figure 9: Trace example

3.3.1. Configuration

We take into account that a qlog file is usually not used in

isolation, but by means of various tools. Especially when

aggregating various traces together or preparing traces for a

demonstration, one might wish to persist certain tool-based settings

inside the qlog file itself. For this, the configuration field is

used.

The configuration field can be viewed as a generic metadata field

that tools can fill with their own fields, based on per-tool logic.

It is best practice for tools to prefix each added field with their

tool name to prevent collisions across tools. This document only

defines two optional, standard, tool-independent configuration

settings: "time_offset" and "original_uris".

Definition:

Configuration = {

 ; time_offset is in milliseconds

 time_offset: float64

 original_uris:[* text]

 * text => any

}

Figure 10: Configuration definition

JSON serialization example:

{

 "title": "Name of this particular trace (short)",

 "description": "Description for this trace (long)",

 "configuration": {

 "time_offset": 150

 },

 "common_fields": {

 "ODCID": "abcde1234",

 "time_format": "absolute"

 },

 "vantage_point": {

 "name": "backend-67",

 "type": "server"

 },

 "events": [...]

}

¶

¶

¶

¶

Figure 11: Configuration example

3.3.1.1. time_offset

The time_offset field indicates by how many milliseconds the

starting time of the current trace should be offset. This is useful

when comparing logs taken from various systems, where clocks might

not be perfectly synchronous. Users could use manual tools or

automated logic to align traces in time and the found optimal

offsets can be stored in this field for future usage. The default

value is 0.

3.3.1.2. original_uris

The original_uris field is used when merging multiple individual

qlog files or other source files (e.g., when converting .pcaps to

qlog). It allows to keep better track where certain data came from.

It is a simple array of strings. It is an array instead of a single

string, since a single qlog trace can be made up out of an

aggregation of multiple component qlog traces as well. The default

value is an empty array.

3.3.1.3. custom fields

Tools can add optional custom metadata to the "configuration" field

to store state and make it easier to share specific data viewpoints

and view configurations.

Two examples from the qvis toolset are shown in Figure 12.

{

 "time_offset": 150,

 "original_uris": [

 "https://example.org/trace1.qlog",

 "https://example.org/trace2.qlog"

]

}

¶

¶

¶

¶

https://qvis.edm.uhasselt.be

Figure 12: Custom configuration fields example

3.3.2. vantage_point

The vantage_point field describes the vantage point from which the

trace originates, see Figure 13. Each trace can have only a single

vantage_point and thus all events in a trace MUST BE from the

perspective of this vantage_point. To include events from multiple

vantage_points, implementers can for example include multiple

traces, split by vantage_point, in a single qlog file.

Definitions:

VantagePoint = {

 ? name: text

 type: VantagePointType

 ? flow: VantagePointType

}

; client = endpoint which initiates the connection

; server = endpoint which accepts the connection

; network = observer in between client and server

VantagePointType = "client" / "server" / "network" / "unknown"

Figure 13: VantagePoint definition

JSON serialization examples:

{

 "configuration" : {

 "qvis" : {

 "congestion_graph": {

 "startX": 1000,

 "endX": 2000,

 "focusOnEventIndex": 124

 }

 "sequence_diagram" : {

 "focusOnEventIndex": 555

 }

 }

 }

}

¶

¶

¶

Figure 14: VantagePoint example

The flow field is only required if the type is "network" (for

example, the trace is generated from a packet capture). It is used

to disambiguate events like "packet sent" and "packet received".

This is indicated explicitly because for multiple reasons (e.g.,

privacy) data from which the flow direction can be otherwise

inferred (e.g., IP addresses) might not be present in the logs.

Meaning of the different values for the flow field: * "client"

indicates that this vantage point follows client data flow semantics

(a "packet sent" event goes in the direction of the server). *

"server" indicates that this vantage point follow server data flow

semantics (a "packet sent" event goes in the direction of the

client). * "unknown" indicates that the flow's direction is unknown.

Depending on the context, tools confronted with "unknown" values in

the vantage_point can either try to heuristically infer the

semantics from protocol-level domain knowledge (e.g., in QUIC, the

client always sends the first packet) or give the user the option to

switch between client and server perspectives manually.

3.4. Field name semantics

Inside of the "events" field of a qlog trace is a list of events

logged by the endpoint. Each event is specified as a generic object

with a number of member fields and their associated data. Depending

on the protocol and use case, the exact member field names and their

formats can differ across implementations. This section lists the

main, pre-defined and reserved field names with specific semantics

and expected corresponding value formats.

Each qlog event at minimum requires the "time" (Section 3.4.1),

"name" (Section 3.4.2) and "data" (Section 3.4.3) fields. Other

typical fields are "time_format" (Section 3.4.1), "protocol_type"

(Section 3.4.4), "trigger" (Section 3.4.5), and "group_id" Section

3.4.6. As especially these later fields typically have identical

values across individual event instances, they are normally logged

separately in the "common_fields" (Section 3.4.7).

{

 "name": "aioquic client",

 "type": "client",

}

{

 "name": "wireshark trace",

 "type": "network",

 "flow": "client"

}

¶

¶

¶

¶

¶

The specific values for each of these fields and their semantics are

defined in separate documents, specific per protocol or use case.

For example: event definitions for QUIC, HTTP/3 and QPACK can be

found in [QLOG-QUIC] and [QLOG-H3].

Other fields are explicitly allowed by the qlog approach, and tools

SHOULD allow for the presence of unknown event fields, but their

semantics depend on the context of the log usage (e.g., for QUIC,

the ODCID field is used), see [QLOG-QUIC].

An example of a qlog event with its component fields is shown in

Figure 15.

Definition:

Event = {

 time: float64

 name: text

 data: $ProtocolEventBody

 ? time_format: TimeFormat

 ? protocol_type: ProtocolType

 ? group_id: GroupID

 ; events can contain any amount of custom fields

 * text => any

}

Figure 15: Event definition

JSON serialization:

Figure 16: Event example

¶

¶

¶

¶

¶

{

 time: 1553986553572,

 name: "transport:packet_sent",

 data: { ... }

 protocol_type: ["QUIC","HTTP3"],

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 time_format: "absolute",

 ODCID: "127ecc830d98f9d54a42c4f0842aa87e181a",

}

3.4.1. Timestamps

The "time" field indicates the timestamp at which the event occured.

Its value is typically the Unix timestamp since the 1970 epoch

(number of milliseconds since midnight UTC, January 1, 1970,

ignoring leap seconds). However, qlog supports two more succint

timestamps formats to allow reducing file size. The employed format

is indicated in the "time_format" field, which allows one of three

values: "absolute", "delta" or "relative".

Definition:

TimeFormat = "absolute" / "delta" / "relative"

Figure 17: TimeFormat definition

Absolute: Include the full absolute timestamp with each event.

This approach uses the largest amount of characters. This is also

the default value of the "time_format" field.

Delta: Delta-encode each time value on the previously logged

value. The first event in a trace typically logs the full

absolute timestamp. This approach uses the least amount of

characters.

Relative: Specify a full "reference_time" timestamp (typically

this is done up-front in "common_fields", see Section 3.4.7) and

include only relatively-encoded values based on this

reference_time with each event. The "reference_time" value is

typically the first absolute timestamp. This approach uses a

medium amount of characters.

The first option is good for stateless loggers, the second and third

for stateful loggers. The third option is generally preferred, since

it produces smaller files while being easier to reason about. An

example for each option can be seen in Figure 18.

Figure 18: Three different approaches for logging timestamps

¶

¶

*

¶

*

¶

*

¶

¶

The absolute approach will use:

1500, 1505, 1522, 1588

The delta approach will use:

1500, 5, 17, 66

The relative approach will:

- set the reference_time to 1500 in "common_fields"

- use: 0, 5, 22, 88

One of these options is typically chosen for the entire trace (put

differently: each event has the same value for the "time_format"

field). Each event MUST include a timestamp in the "time" field.

Events in each individual trace SHOULD be logged in strictly

ascending timestamp order (though not necessarily absolute value,

for the "delta" format). Tools CAN sort all events on the timestamp

before processing them, though are not required to (as this could

impose a significant processing overhead). This can be a problem

especially for multi-threaded and/or streaming loggers, who could

consider using a separate postprocesser to order qlog events in time

if a tool do not provide this feature.

Timestamps do not have to use the UNIX epoch timestamp as their

reference. For example for privacy considerations, any initial

reference timestamps (for example "endpoint uptime in ms" or "time

since connection start in ms") can be chosen. Tools SHOULD NOT

assume the ability to derive the absolute Unix timestamp from qlog

traces, nor allow on them to relatively order events across two or

more separate traces (in this case, clock drift should also be taken

into account).

3.4.2. Category and Event Type

Events differ mainly in the type of metadata associated with them.

To help identify a given event and how to interpret its metadata in

the "data" field (see Section 3.4.3), each event has an associated

"name" field. This can be considered as a concatenation of two other

fields, namely event "category" and event "type".

Category allows a higher-level grouping of events per specific event

type. For example for QUIC and HTTP/3, the different categories

could be "transport", "http", "qpack", and "recovery". Within these

categories, the event Type provides additional granularity. For

example for QUIC and HTTP/3, within the "transport" Category, there

would be "packet_sent" and "packet_received" events.

Logging category and type separately conceptually allows for fast

and high-level filtering based on category and the re-use of event

types across categories. However, it also considerably inflates the

log size and this flexibility is not used extensively in practice at

the time of writing.

As such, the default approach in qlog is to concatenate both field

values using the ":" character in the "name" field, as can be seen

in Figure 19. As such, qlog category and type names MUST NOT include

this character.

¶

¶

¶

¶

¶

¶

¶

Figure 19: Ways of logging category, type and name of an event.

Certain serializations CAN emit category and type as separate

fields, and qlog tools SHOULD be able to deal with both the

concatenated "name" field, and the separate "category" and "type"

fields. Text-based serializations however are encouraged to employ

the concatenated "name" field for efficiency.

3.4.3. Data

The data field is a generic object. It contains the per-event

metadata and its form and semantics are defined per specific sort of

event. For example, data field value definitons for QUIC and HTTP/3

can be found in [QLOG-QUIC] and [QLOG-H3].

This field is defined here as a CDDL extension point (a "socket" or

"plug") named $ProtocolEventBody. Other documents MUST properly

extend this extension point when defining new data field content

options to enable automated validation of aggregated qlog schemas.

The only common field defined for the data field is the trigger

field, which is discussed in Section 3.4.5.

Definition:

; The ProtocolEventBody is any key-value map (e.g., JSON object)

; only the optional trigger field is defined in this document

$ProtocolEventBody /= {

 ? trigger: text

 * text => any

}

; event documents are intended to extend this socket by using:

; NewProtocolEvents = EventType1 / EventType2 / ... / EventTypeN

; $ProtocolEventBody /= NewProtocolEvents

Figure 20: ProtocolEventBody definition

JSON serialization using separate fields:

{

 "category": "transport",

 "type": "packet_sent"

}

JSON serialization using ":" concatenated field:

{

 "name": "transport:packet_sent"

}

¶

¶

¶

¶

¶

One purely illustrative example for a QUIC "packet_sent" event is

shown in Figure 21:

Figure 21: Example of the 'data' field for a QUIC packet_sent event

3.4.4. protocol_type

The "protocol_type" array field indicates to which protocols (or

protocol "stacks") this event belongs. This allows a single qlog

file to aggregate traces of different protocols (e.g., a web server

offering both TCP+HTTP/2 and QUIC+HTTP/3 connections).

Definition:

ProtocolType = [+ text]

Figure 22: ProtocolType definition

For example, QUIC and HTTP/3 events have the "QUIC" and "HTTP3"

protocol_type entry values, see [QLOG-QUIC] and [QLOG-H3].

¶

TransportPacketSent = {

 ? packet_size: uint16

 header: PacketHeader

 ? frames:[* QuicFrame]

 ? trigger: "pto_probe" / "retransmit_timeout" / "bandwidth_probe"

}

could be serialized as

{

 packet_size: 1280,

 header: {

 packet_type: "1RTT",

 packet_number: 123

 },

 frames: [

 {

 frame_type: "stream",

 length: 1000,

 offset: 456

 },

 {

 frame_type: "padding"

 }

]

}

¶

¶

¶

Typically however, all events in a single trace are of the same few

protocols, and this array field is logged once in "common_fields",

see Section 3.4.7.

3.4.5. Triggers

Sometimes, additional information is needed in the case where a

single event can be caused by a variety of other events. In the

normal case, the context of the surrounding log messages gives a

hint as to which of these other events was the cause. However, in

highly-parallel and optimized implementations, corresponding log

messages might separated in time. Another option is to explicitly

indicate these "triggers" in a high-level way per-event to get more

fine-grained information without much additional overhead.

In qlog, the optional "trigger" field contains a string value

describing the reason (if any) for this event instance occuring, see

Section 3.4.3. While this "trigger" field could be a property of the

qlog Event itself, it is instead a property of the "data" field

instead. This choice was made because many event types do not

include a trigger value, and having the field at the Event-level

would cause overhead in some serializations. Additional information

on the trigger can be added in the form of additional member fields

of the "data" field value, yet this is highly implementation-

specific, as are the trigger field's string values.

One purely illustrative example of some potential triggers for

QUIC's "packet_dropped" event is shown in Figure 23:

Figure 23: Trigger example

3.4.6. group_id

As discussed in Section 3.3, a single qlog file can contain several

traces taken from different vantage points. However, a single trace

from one endpoint can also contain events from a variety of sources.

For example, a server implementation might choose to log events for

all incoming connections in a single large (streamed) qlog file. As

such, we need a method for splitting up events belonging to separate

logical entities.

¶

¶

¶

¶

TransportPacketDropped = {

 ? packet_type: PacketType

 ? raw_length: uint16

 ? trigger: "key_unavailable" / "unknown_connection_id" /

 "decrypt_error" / "unsupported_version"

}

¶

The simplest way to perform this splitting is by associating a

"group identifier" to each event that indicates to which conceptual

"group" each event belongs. A post-processing step can then extract

events per group. However, this group identifier can be highly

protocol and context-specific. In the example above, we might use

QUIC's "Original Destination Connection ID" to uniquely identify a

connection. As such, they might add a "ODCID" field to each event.

However, a middlebox logging IP or TCP traffic might rather use

four-tuples to identify connections, and add a "four_tuple" field.

As such, to provide consistency and ease of tooling in cross-

protocol and cross-context setups, qlog instead defines the common

"group_id" field, which contains a string value. Implementations are

free to use their preferred string serialization for this field, so

long as it contains a unique value per logical group. Some examples

can be seen in Figure 25.

Definition:

GroupID = text

Figure 24: GroupID definition

JSON serialization example for events grouped by four tuples and

QUIC connection IDs:

Figure 25: GroupID example

Note that in some contexts (for example a Multipath transport

protocol) it might make sense to add additional contextual per-event

¶

¶

¶

¶

events: [

 {

 time: 1553986553579,

 protocol_type: ["TCP", "TLS", "HTTP2"],

 group_id: "ip1=2001:67c:1232:144:9498:6df6:f450:110b,

 ip2=2001:67c:2b0:1c1::198,port1=59105,port2=80",

 name: "transport:packet_received",

 data: { ... },

 },

 {

 time: 1553986553581,

 protocol_type: ["QUIC","HTTP3"],

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 name: "transport:packet_sent",

 data: { ... },

 }

]

fields (for example "path_id"), rather than use the group_id field

for that purpose.

Note also that, typically, a single trace only contains events

belonging to a single logical group (for example, an individual QUIC

connection). As such, instead of logging the "group_id" field with

an identical value for each event instance, this field is typically

logged once in "common_fields", see Section 3.4.7.

3.4.7. common_fields

As discussed in the previous sections, information for a typical

qlog event varies in three main fields: "time", "name" and

associated data. Additionally, there are also several more advanced

fields that allow mixing events from different protocols and

contexts inside of the same trace (for example "protocol_type" and

"group_id"). In most "normal" use cases however, the values of these

advanced fields are consistent for each event instance (for example,

a single trace contains events for a single QUIC connection).

To reduce file size and making logging easier, qlog uses the

"common_fields" list to indicate those fields and their values that

are shared by all events in this component trace. This prevents

these fields from being logged for each individual event. An example

of this is shown in Figure 26.

¶

¶

¶

¶

JSON serialization with repeated field values

per-event instance:

{

 events: [{

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: ["QUIC","HTTP3"],

 time_format: "relative",

 reference_time: 1553986553572,

 time: 2,

 name: "transport:packet_received",

 data: { ... }

 },{

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: ["QUIC","HTTP3"],

 time_format: "relative",

 reference_time: 1553986553572,

 time: 7,

 name: "http:frame_parsed",

 data: { ... }

 }

]

}

JSON serialization with repeated field values instead

extracted to common_fields:

{

 common_fields: {

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: ["QUIC","HTTP3"],

 time_format: "relative",

 reference_time: 1553986553572

 },

 events: [

 {

 time: 2,

 name: "transport:packet_received",

 data: { ... }

 },{

 7,

 name: "http:frame_parsed",

 data: { ... }

 }

]

}

Figure 26: CommonFields example

The "common_fields" field is a generic dictionary of key-value

pairs, where the key is always a string and the value can be of any

type, but is typically also a string or number. As such, unknown

entries in this dictionary MUST be disregarded by the user and tools

(i.e., the presence of an uknown field is explicitly NOT an error).

The list of default qlog fields that are typically logged in

common_fields (as opposed to as individual fields per event

instance) are shown in the listing below:

Definition:

CommonFields = {

 ? time_format: TimeFormat

 ? reference_time: float64

 ? protocol_type: ProtocolType

 ? group_id: GroupID

 * text => any

}

Figure 27: CommonFields definition

Tools MUST be able to deal with these fields being defined either on

each event individually or combined in common_fields. Note that if

at least one event in a trace has a different value for a given

field, this field MUST NOT be added to common_fields but instead

defined on each event individually. Good example of such fields are

"time" and "data", who are divergent by nature.

4. Guidelines for event definition documents

This document only defines the main schema for the qlog format. This

is intended to be used together with specific, per-protocol event

definitions that specify the name (category + type) and data needed

for each individual event. This is with the intent to allow the qlog

main schema to be easily re-used for several protocols. Examples

include the QUIC event definitions [QLOG-QUIC] and HTTP/3 and QPACK

event definitions [QLOG-H3].

This section defines some basic annotations and concepts the

creators of event definition documents SHOULD follow to ensure a

measure of consistency, making it easier for qlog implementers to

extrapolate from one protocol to another.

¶

¶

¶

¶

¶

¶

4.1. Event design guidelines

TODO: pending QUIC working group discussion. This text reflects the

initial (qlog draft 01 and 02) setup.

There are several ways of defining qlog events. In practice, we have

seen two main types used so far: a) those that map directly to

concepts seen in the protocols (e.g., packet_sent) and b) those that

act as aggregating events that combine data from several possible

protocol behaviours or code paths into one (e.g., parameters_set).

The latter are typically used as a means to reduce the amount of

unique event definitions, as reflecting each possible protocol event

as a separate qlog entity would cause an explosion of event types.

Additionally, logging duplicate data is typically prevented as much

as possible. For example, packet header values that remain

consistent across many packets are split into separate events (for

example spin_bit_updated or connection_id_updated for QUIC).

Finally, we have typically refrained from adding additional state

change events if those state changes can be directly inferred from

data on the wire (for example flow control limit changes) if the

implementation is bug-free and spec-compliant. Exceptions have been

made for common events that benefit from being easily identifiable

or individually logged (for example packets_acked).

4.2. Event importance indicators

Depending on how events are designed, it may be that several events

allow the logging of similar or overlapping data. For example the

separate QUIC connection_started event overlaps with the more

generic connection_state_updated. In these cases, it is not always

clear which event should be logged or used, and which event should

take precedence if e.g., both are present and provide conflicting

information.

To aid in this decision making, we recommend that each event SHOULD

have an "importance indicator" with one of three values, in

decreasing order of importance and exptected usage:

Core

Base

Extra

The "Core" events are the events that SHOULD be present in all qlog

files for a given protocol. These are typically tied to basic packet

and frame parsing and creation, as well as listing basic internal

metrics. Tool implementers SHOULD expect and add support for these

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

events, though SHOULD NOT expect all Core events to be present in

each qlog trace.

The "Base" events add additional debugging options and CAN be

present in qlog files. Most of these can be implicitly inferred from

data in Core events (if those contain all their properties), but for

many it is better to log the events explicitly as well, making it

clearer how the implementation behaves. These events are for example

tied to passing data around in buffers, to how internal state

machines change and help show when decisions are actually made based

on received data. Tool implementers SHOULD at least add support for

showing the contents of these events, if they do not handle them

explicitly.

The "Extra" events are considered mostly useful for low-level

debugging of the implementation, rather than the protocol. They

allow more fine-grained tracking of internal behaviour. As such,

they CAN be present in qlog files and tool implementers CAN add

support for these, but they are not required to.

Note that in some cases, implementers might not want to log for

example data content details in the "Core" events due to performance

or privacy considerations. In this case, they SHOULD use (a subset

of) relevant "Base" events instead to ensure usability of the qlog

output. As an example, implementations that do not log QUIC

packet_received events and thus also not which (if any) ACK frames

the packet contains, SHOULD log packets_acked events instead.

Finally, for event types whose data (partially) overlap with other

event types' definitions, where necessary the event definition

document should include explicit guidance on which to use in

specific situations.

4.3. Custom fields

Event definition documents are free to define new category and event

types, top-level fields (e.g., a per-event field indicating its

privacy properties or path_id in multipath protocols), as well as

values for the "trigger" property within the "data" field, or other

member fields of the "data" field, as they see fit.

They however SHOULD NOT expect non-specialized tools to recognize or

visualize this custom data. However, tools SHOULD make an effort to

visualize even unknown data if possible in the specific tool's

context. If they do not, they MUST ignore these unknown fields.

5. Generic events and data classes

There are some event types and data classes that are common across

protocols, applications and use cases that benefit from being

¶

¶

¶

¶

¶

¶

¶

Note:

Note:

defined in a single location. This section specifies such common

definitions.

5.1. Raw packet and frame information

While qlog is a more high-level logging format, it also allows the

inclusion of most raw wire image information, such as byte lengths

and even raw byte values. This can be useful when for example

investigating or tuning packetization behaviour or determining

encoding/framing overheads. However, these fields are not always

necessary and can take up considerable space if logged for each

packet or frame. They can also have a considerable privacy and

security impact. As such, they are grouped in a separate optional

field called "raw" of type RawInfo (where applicable).

Definition:

RawInfo = {

 ; the full byte length of the entity (e.g., packet or frame),

 ; including headers and trailers

 ? length: uint64

 ; the byte length of the entity's payload,

 ; without headers or trailers

 ? payload_length: uint64

 ; the contents of the full entity,

 ; including headers and trailers

 ? data: hexstring

}

Figure 28: RawInfo definition

The RawInfo:data field can be truncated for privacy or

security purposes (for example excluding payload data), see

Section 6.1.2. In this case, the length properties should still

indicate the non-truncated lengths.

We do not specify explicit header_length or trailer_length

fields. In most protocols, header_length can be calculated by

subtracing the payload_length from the length (e.g., if

trailer_length is always 0). In protocols with trailers (e.g.,

QUIC's AEAD tag), event definitions documents SHOULD define other

ways of logging the trailer_length to make the header_length

calculation possible.

The exact definitions entities, headers, trailers and payloads

depend on the protocol used. If this is non-trivial, event

¶

¶

¶

¶

¶

Note:

definitions documents SHOULD include a clear explanation of how

entities are mapped into the RawInfo structure.

Relatedly, many modern protocols use Variable-Length Integer

Encoded (VLIE) values in their headers, which are of a dynamic

length. Because of this, we cannot deterministally reconstruct

the header encoding/length from non-RawInfo qlog data, as

implementations might not necessarily employ the most efficient

VLIE scheme for all values. As such, to make exact size-analysis

possible, implementers should use explicit lengths in RawInfo

rather than reconstructing them from other qlog data. Similarly,

tool developers should only utilize RawInfo (and related

information) in such tools to prevent errors.

5.2. Generic events

In typical logging setups, users utilize a discrete number of well-

defined logging categories, levels or severities to log freeform

(string) data. This generic events category replicates this approach

to allow implementations to fully replace their existing text-based

logging by qlog. This is done by providing events to log generic

strings for the typical well-known logging levels (error, warning,

info, debug, verbose).

For the events defined below, the "category" is "generic" and their

"type" is the name of the heading in lowercase (e.g., the "name" of

the error event is "generic:error").

5.2.1. error

Importance: Core

Used to log details of an internal error that might not get

reflected on the wire.

Definition:

GenericError = {

 ? code: uint64

 ? message: text

}

Figure 29: GenericError definition

5.2.2. warning

Importance: Base

¶

¶

¶

¶

¶

¶

¶

¶

Used to log details of an internal warning that might not get

reflected on the wire.

Definition:

GenericWarning = {

 ? code: uint64

 ? message: text

}

Figure 30: GenericWarning definition

5.2.3. info

Importance: Extra

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Definition:

GenericInfo = {

 message: text

}

Figure 31: GenericInfo definition

5.2.4. debug

Importance: Extra

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Definition:

GenericDebug = {

 message: text

}

Figure 32: GenericDebug definition

5.2.5. verbose

Importance: Extra

¶

¶

¶

¶

¶

¶

¶

¶

¶

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Definition:

GenericVerbose = {

 message: text

}

Figure 33: GenericVerbose definition

5.3. Simulation events

When evaluating a protocol implementation, one typically sets up a

series of interoperability or benchmarking tests, in which the test

situations can change over time. For example, the network bandwidth

or latency can vary during the test, or the network can be fully

disable for a short time. In these setups, it is useful to know when

exactly these conditions are triggered, to allow for proper

correlation with other events.

For the events defined below, the "category" is "simulation" and

their "type" is the name of the heading in lowercase (e.g., the

"name" of the scenario event is "simulation:scenario").

5.3.1. scenario

Importance: Extra

Used to specify which specific scenario is being tested at this

particular instance. This could also be reflected in the top-level

qlog's summary or configuration fields, but having a separate event

allows easier aggregation of several simulations into one trace

(e.g., split by group_id).

Definition:

SimulationScenario = {

 ? name: text

 ? details: {* text => any }

}

Figure 34: SimulationScenario definition

5.3.2. marker

Importance: Extra

¶

¶

¶

¶

¶

¶

¶

¶

Used to indicate when specific emulation conditions are triggered at

set times (e.g., at 3 seconds in 2% packet loss is introduced, at

10s a NAT rebind is triggered).

Definition:

SimulationMarker = {

 ? type: text

 ? message: text

}

Figure 35: SimulationMarker definition

6. Serializing qlog

This document and other related qlog schema definitions are

intentionally serialization-format agnostic. This means that

implementers themselves can choose how to represent and serialize

qlog data practically on disk or on the wire. Some examples of

possible formats are JSON, CBOR, CSV, protocol buffers, flatbuffers,

etc.

All these formats make certain tradeoffs between flexibility and

efficiency, with textual formats like JSON typically being more

flexible but also less efficient than binary formats like protocol

buffers. The format choice will depend on the practical use case of

the qlog user. For example, for use in day to day debugging, a

plaintext readable (yet relatively large) format like JSON is

probably preferred. However, for use in production, a more optimized

yet restricted format can be better. In this latter case, it will be

more difficult to achieve interoperability between qlog

implementations of various protocol stacks, as some custom or

tweaked events from one might not be compatible with the format of

the other. This will also reflect in tooling: not all tools will

support all formats.

This being said, the authors prefer JSON as the basis for storing

qlog, as it retains full flexibility and maximum interoperability.

Storage overhead can be managed well in practice by employing

compression. For this reason, this document details how to

practically transform qlog schema definitions to [JSON], its subset

[I-JSON], and its streamable derivative [JSON-Text-Sequences]s. We

discuss concrete options to bring down JSON size and processing

overheads in Section 6.3.

As depending on the employed format different deserializers/parsers

should be used, the "qlog_format" field is used to indicate the

chosen serialization approach. This field is always a string, but

can be made hierarchical by the use of the "." separator between

¶

¶

¶

¶

¶

entries. For example, a value of "JSON.optimizationA" can indicate

that a default JSON format is being used, but that a certain

optimization of type A was applied to the file as well (see also

Section 6.3).

6.1. qlog to JSON mapping

When mapping qlog to normal JSON, the "qlog_format" field MUST have

the value "JSON". This is also the default qlog serialization and

default value of this field.

When using normal JSON serialization, the file extension/suffix

SHOULD be ".qlog" and the Media Type (if any) SHOULD be

"application/qlog+json" per [RFC6839].

JSON files by definition ([RFC8259]) MUST utilize the UTF-8

encoding, both for the file itself and the string values.

While not specifically required by the JSON specification, all qlog

field names in a JSON serialization MUST be lowercase.

In order to serialize CDDL-based qlog event and data structure

definitions to JSON, the official CDDL-to-JSON mapping defined in

Appendix E of [CDDL] SHOULD be employed.

6.1.1. I-JSON

For some use cases, it should be taken into account that not all

popular JSON parsers support the full JSON format. Especially for

parsers integrated with the JavaScript programming language (e.g.,

Web browsers, NodeJS), users are recommended to stick to a JSON

subset dubbed [I-JSON] (or Internet-JSON).

One of the key limitations of JavaScript and thus I-JSON is that it

cannot represent full 64-bit integers in standard operating mode

(i.e., without using BigInt extensions), instead being limited to

the range of [-(2**53)+1, (2**53)-1]. In these circumstances,

Appendix E of [CDDL] recommends defining new CDDL types for int64

and uint64 that limit their values to this range.

While this can be sensible and workable for most use cases, some

protocols targeting qlog serialization (e.g., QUIC, HTTP/3), might

require full uint64 variables in some (rare) circumstances. In these

situations, it should be allowed to also use the string-based

representation of uint64 values alongside the numerical

representation. Concretely, the following definition of uint64

should override the original and (web-based) tools should take into

account that a uint64 field can be either a number or string.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 36: Custom uint64 definition for I-JSON

6.1.2. Truncated values

For some use cases (e.g., limiting file size, privacy), it can be

necessary not to log a full raw blob (using the hexstring type) but

instead a truncated value (for example, only the first 100 bytes of

an HTTP response body to be able to discern which file it actually

contained). In these cases, the original byte-size length cannot be

obtained from the serialized value directly.

As such, all qlog schema definitions SHOULD include a separate,

length-indicating field for all fields of type hexstring they

specify, see for example Section 5.1. This not only ensures the

original length can always be retrieved, but also allows the

omission of any raw value bytes of the field completely (e.g., out

of privacy or security considerations).

To reduce overhead however and in the case the full raw value is

logged, the extra length-indicating field can be left out. As such,

tools MUST be able to deal with this situation and derive the length

of the field from the raw value if no separate length-indicating

field is present. The main possible permutations are shown by

example in Figure 37.

uint64 = text / uint .size 8

¶

¶

¶

Figure 37: Example for serializing truncated hexstrings

6.2. qlog to JSON Text Sequences mapping

One of the downsides of using pure JSON is that it is inherently a

non-streamable format. Put differently, it is not possible to simply

append new qlog events to a log file without "closing" this file at

the end by appending "]}]}". Without these closing tags, most JSON

parsers will be unable to parse the file entirely. As most platforms

do not provide a standard streaming JSON parser (which would be able

to deal with this problem), this document also provides a qlog

mapping to a streamable JSON format called JSON Text Sequences

(JSON-SEQ) ([RFC7464]).

When mapping qlog to JSON-SEQ, the "qlog_format" field MUST have the

value "JSON-SEQ".

When using JSON-SEQ serialization, the file extension/suffix SHOULD

be ".sqlog" (for "streaming" qlog) and the Media Type (if any)

SHOULD be "application/qlog+json-seq" per [RFC8091].

JSON Text Sequences are very similar to JSON, except that JSON

objects are serialized as individual records, each prefixed by an

// both the full raw value and its length are present

// (length is redundant)

{

 "raw_length": 5,

 "raw": "051428abff"

}

// only the raw value is present, indicating it

// represents the fields full value the byte

// length is obtained by calculating raw.length / 2

{

 "raw": "051428abff"

}

// only the length field is present, meaning the

// value was omitted

{

 "raw_length": 5,

}

// both fields are present and the lengths do not match:

// the value was truncated to the first three bytes.

{

 "raw_length": 5,

 "raw": "051428"

}

¶

¶

¶

ASCII Record Separator (<RS>, 0x1E), and each ending with an ASCII

Line Feed character (\n, 0x0A). Note that each record can also

contain any amount of newlines in its body, as long as it ends with

a newline character before the next <RS> character.

Each qlog event is serialized and interpreted as an individual JSON

Text Sequence record, and can simply be appended as a new object at

the back of an event stream or log file. Put differently, unlike

default JSON, it does not require a file to be wrapped as a full

object with "{ ... }" or "[...]".

For this to work, some qlog definitions have to be adjusted however.

Mainly, events are no longer part of the "events" array in the Trace

object, but are instead logged separately from the qlog "header", as

indicated by the TraceSeq object in Figure 38. Additionally, qlog's

JSON-SEQ mapping does not allow logging multiple individual traces

in a single qlog file. As such, the QlogFile:traces field is

replaced by the singular QlogFileSeq:trace field, see Figure 39. An

example can be seen in Figure 40. Note that the "group_id" field can

still be used on a per-event basis to include events from

conceptually different sources in a single JSON-SEQ qlog file.

Definition:

TraceSeq = {

 ? title: text

 ? description: text

 ? configuration: Configuration

 ? common_fields: CommonFields

 ? vantage_point: VantagePoint

}

Figure 38: TraceSeq definition

Definition:

QlogFileSeq = {

 qlog_format: "JSON-SEQ"

 qlog_version: text

 ? title: text

 ? description: text

 ? summary: Summary

 trace: TraceSeq

}

Figure 39: QlogFileSeq definition

¶

¶

¶

¶

¶

JSON-SEQ serialization examples:

Figure 40: Top-level element

Note: while not specifically required by the JSON-SEQ specification,

all qlog field names in a JSON-SEQ serialization MUST be lowercase.

In order to serialize all other CDDL-based qlog event and data

structure definitions to JSON-SEQ, the official CDDL-to-JSON mapping

defined in Appendix E of [CDDL] SHOULD still be employed.

6.2.1. Supporting JSON Text Sequences in tooling

Note that JSON Text Sequences are not supported in most default

programming environments (unlike normal JSON). However, several

custom JSON-SEQ parsing libraries exist in most programming

languages that can be used and the format is easy enough to parse

with existing implementations (i.e., by splitting the file into its

¶

// list of qlog events, serialized in accordance with RFC 7464,

// starting with a Record Separator character and ending with a

// newline.

// For display purposes, Record Separators are rendered as <RS>

<RS>{

 "qlog_version": "0.3",

 "qlog_format": "JSON-SEQ",

 "title": "Name of JSON Text Sequence qlog file (short)",

 "description": "Description for this trace file (long)",

 "summary": {

 ...

 },

 "trace": {

 "common_fields": {

 "protocol_type": ["QUIC","HTTP3"],

 "group_id":"127ecc830d98f9d54a42c4f0842aa87e181a",

 "time_format":"relative",

 "reference_time": 1553986553572

 },

 "vantage_point": {

 "name":"backend-67",

 "type":"server"

 }

 }

}

<RS>{"time": 2, "name": "transport:parameters_set", "data": { ... } }

<RS>{"time": 7, "name": "transport:packet_sent", "data": { ... } }

...

¶

¶

component records and feeding them to a normal JSON parser

individually, as each record by itself is a valid JSON object).

6.3. Other optimizated formatting options

Both the JSON and JSON-SEQ formatting options described above are

serviceable in general small to medium scale (debugging) setups.

However, these approaches tend to be relatively verbose, leading to

larger file sizes. Additionally, generalized JSON(-SEQ)

(de)serialization performance is typically (slightly) lower than

that of more optimized and predictable formats. Both aspects make

these formats more challenging (though still practical) to use in

large scale setups.

During the development of qlog, we compared a multitude of

alternative formatting and optimization options. The results of this

study are summarized on the qlog github repository. The rest of this

section discusses some of these approaches implementations could

choose and the expected gains and tradeoffs inherent therein. Tools

SHOULD support mainly the compression options listed in Section

6.3.2, as they provide the largest wins for the least cost overall.

Over time, specific qlog formats and encodings can be created that

more formally define and combine some of the discussed optimizations

or add new ones. We choose to define these schemes in separate

documents to keep the main qlog definition clean and generalizable,

as not all contexts require the same performance or flexibility as

others and qlog is intended to be a broadly usable and extensible

format (for example more flexibility is needed in earlier stages of

protocol development, while more performance is typically needed in

later stages). This is also the main reason why the general qlog

format is the less optimized JSON instead of a more performant

option.

To be able to easily distinguish between these options in qlog

compatible tooling (without the need to have the user provide out-

of-band information or to (heuristically) parse and process files in

a multitude of ways, see also Section 8), we recommend using

explicit file extensions to indicate specific formats. As there are

no standards in place for this type of extension to format mapping,

we employ a commonly used scheme here. Our approach is to list the

applied optimizations in the extension in ascending order of

application (e.g., if a qlog file is first optimized with technique

A and then compressed with technique B, the resulting file would

have the extension ".(s)qlog.A.B"). This allows tooling to start at

the back of the extension to "undo" applied optimizations to finally

arrive at the expected qlog representation.

¶

¶

¶

¶

¶

https://qlog.edm.uhasselt.be/anrw/
https://github.com/quiclog/internet-drafts/issues/30#issuecomment-617675097

6.3.1. Data structure optimizations

The first general category of optimizations is to alter the

representation of data within an JSON(-SEQ) qlog file to reduce file

size.

The first option is to employ a scheme similar to the CSV (comma

separated value [RFC4180]) format, which utilizes the concept of

column "headers" to prevent repeating field names for each datapoint

instance. Concretely for JSON qlog, several field names are repeated

with each event (i.e., time, name, data). These names could be

extracted into a separate list, after which qlog events could be

serialized as an array of values, as opposed to a full object. This

approach was a key part of the original qlog format (prior to

draft-02) using the "event_fields" field. However, tests showed that

this optimization only provided a mean file size reduction of 5%

(100MB to 95MB) while significantly increasing the implementation

complexity, and this approach was abandoned in favor of the default

JSON setup. Implementations using this format should not employ a

separate file extension (as it still uses JSON), but rather employ a

new value of "JSON.namedheaders" (or "JSON-SEQ.namedheaders") for

the "qlog_format" field (see Section 3).

The second option is to replace field values and/or names with

indices into a (dynamic) lookup table. This is a common compression

technique and can provide significant file size reductions (up to

50% in our tests, 100MB to 50MB). However, this approach is even

more difficult to implement efficiently and requires either

including the (dynamic) table in the resulting file (an approach

taken by for example Chromium's NetLog format) or defining a

(static) table up-front and sharing this between implementations.

Implementations using this approach should not employ a separate

file extension (as it still uses JSON), but rather employ a new

value of "JSON.dictionary" (or "JSON-SEQ.dictionary") for the

"qlog_format" field (see Section 3).

As both options either proved difficult to implement, reduced qlog

file readability, and provided too little improvement compared to

other more straightforward options (for example Section 6.3.2),

these schemes are not inherently part of qlog.

6.3.2. Compression

The second general category of optimizations is to utilize a

(generic) compression scheme for textual data. As qlog in the JSON(-

SEQ) format typically contains a large amount of repetition, off-

the-shelf (text) compression techniques typically succeed very well

in bringing down file sizes (regularly with up to two orders of

magnitude in our tests, even for "fast" compression levels). As

¶

¶

¶

¶

https://www.chromium.org/developers/design-documents/network-stack/netlog

such, utilizing compression is recommended before attempting other

optimization options, even though this might (somewhat) increase

processing costs due to the additional compression step.

The first option is to use GZIP compression ([RFC1952]). This

generic compression scheme provides multiple compression levels

(providing a trade-off between compression speed and size

reduction). Utilized at level 6 (a medium setting thought to be

applicable for streaming compression of a qlog stream in commodity

devices), gzip compresses qlog JSON files to 7% of their initial

size on average (100MB to 7MB). For this option, the file extension

.(s)qlog.gz SHOULD BE used. The "qlog_format" field should still

reflect the original JSON formatting of the qlog data (e.g., "JSON"

or "JSON-SEQ").

The second option is to use Brotli compression ([RFC7932]). While

similar to gzip, this more recent compression scheme provides a

better efficiency. It also allows multiple compression levels.

Utilized at level 4 (a medium setting thought to be applicable for

streaming compression of a qlog stream in commodity devices), brotli

compresses qlog JSON files to 7% of their initial size on average

(100MB to 7MB). For this option, the file extension .(s)qlog.br

SHOULD BE used. The "qlog_format" field should still reflect the

original JSON formatting of the qlog data (e.g., "JSON" or "JSON-

SEQ").

Other compression algorithms of course exist (for example xz, zstd,

and lz4). We mainly recommend gzip and brotli because of their

tweakable behaviour and wide support in web-based environments,

which we envision as the main tooling ecosystem (see also Section

8).

6.3.3. Binary formats

The third general category of optimizations is to use a more

optimized (often binary) format instead of the textual JSON format.

This approach inherently produces smaller files and often has better

(de)serialization performance. However, the resultant files are no

longer human readable and some formats require hard tradeoffs

between flexibility for performance.

The first option is to use the CBOR (Concise Binary Object

Representation [RFC7049]) format. For our purposes, CBOR can be

viewed as a straighforward binary variant of JSON. As such, existing

JSON qlog files can be trivially converted to and from CBOR (though

slightly more work is needed for JSON-SEQ qlogs to convert them to

CBOR-SEQ, see [RFC8742]). While CBOR thus does retain the full qlog

flexibility, it only provides a 25% file size reduction (100MB to

75MB) compared to textual JSON(-SEQ). As CBOR support in programming

¶

¶

¶

¶

¶

environments is not as widespread as that of textual JSON and the

format lacks human readability, CBOR was not chosen as the default

qlog format. For this option, the file extension .(s)qlog.cbor

SHOULD BE used. The "qlog_format" field should still reflect the

original JSON formatting of the qlog data (e.g., "JSON" or "JSON-

SEQ"). The media type should indicate both whether JSON or JSON Text

Sequences are used, as well as whether CBOR or CBOR Sequences are

used (see the table below).

A second option is to use a more specialized binary format, such as

Protocol Buffers (protobuf). This format is battle-tested, has

support for optional fields and has libraries in most programming

languages. Still, it is significantly less flexible than textual

JSON or CBOR, as it relies on a separate, pre-defined schema (a

.proto file). As such, it it not possible to (easily) log new event

types in protobuf files without adjusting this schema as well, which

has its own practical challenges. As qlog is intended to be a

flexible, general purpose format, this type of format was not chosen

as its basic serialization. The lower flexibility does lead to

significantly reduced file sizes. Our straightforward mapping of the

qlog main schema and QUIC/HTTP3 event types to protobuf created qlog

files 24% as large as the raw JSON equivalents (100MB to 24MB). For

this option, the file extension .(s)qlog.protobuf SHOULD BE used.

The "qlog_format" field should reflect the different internal

format, for example: "qlog_format": "protobuf".

Note that binary formats can (and should) also be used in

conjunction with compression (see Section 6.3.2). For example, CBOR

compresses well (to about 6% of the original textual JSON size

(100MB to 6MB) for both gzip and brotli) and so does protobuf (5%

(gzip) to 3% (brotli)). However, these gains are similar to the ones

achieved by simply compression the textual JSON equivalents directly

(7%, see Section 6.3.2). As such, since compression is still needed

to achieve optimal file size reductions event with binary formats,

we feel the more flexible compressed textual JSON options are a

better default for the qlog format in general.

6.3.4. Overview and summary

In summary, textual JSON was chosen as the main qlog format due to

its high flexibility and because its inefficiencies can be largely

solved by the utilization of compression techniques (which are

needed to achieve optimal results with other formats as well).

Still, qlog implementers are free to define other qlog formats

depending on their needs and context of use. These formats should be

described in their own documents, the discussion in this document

mainly acting as inspiration and high-level guidance. Implementers

¶

¶

¶

¶

https://developers.google.com/protocol-buffers

are encouraged to add concrete qlog formats and definitions to the

designated public repository.

The following table provides an overview of all the discussed qlog

formatting options with examples:

format qlog_format extension media type

JSON Section 6.1 JSON .qlog
application/

qlog+json

JSON Text

Sequences Section

6.2

JSON-SEQ .sqlog
application/

qlog+json-seq

named headers

Section 6.3.1

JSON(-

SEQ).namedheaders
.(s)qlog

application/

qlog+json(-

seq)

dictionary Section

6.3.1

JSON(-

SEQ).dictionary
.(s)qlog

application/

qlog+json(-

seq)

CBOR Section 6.3.3 JSON(-SEQ) .(s)qlog.cbor

application/

qlog+json(-

seq)+cbor(-

seq)

protobuf Section

6.3.3
protobuf .qlog.protobuf

NOT SPECIFIED

BY IANA

gzip Section 6.3.2 no change .gz suffix
application/

gzip

brotli Section

6.3.2
no change .br suffix

NOT SPECIFIED

BY IANA

Table 1

6.4. Conversion between formats

As discussed in the previous sections, a qlog file can be serialized

in a multitude of formats, each of which can conceivably be

transformed into or from one another without loss of information.

For example, a number of JSON-SEQ streamed qlogs could be combined

into a JSON formatted qlog for later processing. Similarly, a

captured binary qlog could be transformed to JSON for easier

interpretation and sharing.

Secondly, we can also consider other structured logging approaches

that contain similar (though typically not identical) data to qlog,

like raw packet capture files (for example .pcap files from tcpdump)

or endpoint-specific logging formats (for example the NetLog format

in Google Chrome). These are sometimes the only options, if an

implementation cannot or will not support direct qlog output for any

reason, but does provide other internal or external (e.g.,

SSLKEYLOGFILE export to allow decryption of packet captures) logging

¶

¶

¶

https://github.com/quiclog/qlog
https://github.com/quiclog/qlog

options For this second category, a (partial) transformation from/to

qlog can also be defined.

As such, when defining a new qlog serialization format or wanting to

utilize qlog-compatible tools with existing codebases lacking qlog

support, it is recommended to define and provide a concrete mapping

from one format to default JSON-serialized qlog. Several of such

mappings exist. Firstly, [pcap2qlog]((https://github.com/quiclog/

pcap2qlog) transforms QUIC and HTTP/3 packet capture files to qlog.

Secondly, netlog2qlog converts chromium's internal dictionary-

encoded JSON format to qlog. Finally, quictrace2qlog converts the

older quictrace format to JSON qlog. Tools can then easily integrate

with these converters (either by incorporating them directly or for

example using them as a (web-based) API) so users can provide

different file types with ease. For example, the qvis toolsuite

supports a multitude of formats and qlog serializations.

7. Methods of access and generation

Different implementations will have different ways of generating and

storing qlogs. However, there is still value in defining a few

default ways in which to steer this generation and access of the

results.

7.1. Set file output destination via an environment variable

To provide users control over where and how qlog files are created,

we define two environment variables. The first, QLOGFILE, indicates

a full path to where an individual qlog file should be stored. This

path MUST include the full file extension. The second, QLOGDIR, sets

a general directory path in which qlog files should be placed. This

path MUST include the directory separator character at the end.

In general, QLOGDIR should be preferred over QLOGFILE if an endpoint

is prone to generate multiple qlog files. This can for example be

the case for a QUIC server implementation that logs each QUIC

connection in a separate qlog file. An alternative that uses

QLOGFILE would be a QUIC server that logs all connections in a

single file and uses the "group_id" field (Section 3.4.6) to allow

post-hoc separation of events.

Implementations SHOULD provide support for QLOGDIR and MAY provide

support for QLOGFILE.

When using QLOGDIR, it is up to the implementation to choose an

appropriate naming scheme for the qlog files themselves. The chosen

scheme will typically depend on the context or protocols used. For

example, for QUIC, it is recommended to use the Original Destination

Connection ID (ODCID), followed by the vantage point type of the

¶

¶

¶

¶

¶

¶

https://github.com/quiclog/qvis/tree/master/visualizations/src/components/filemanager/netlogconverter
https://github.com/quiclog/quictrace2qlog
https://qvis.edm.uhasselt.be

logging endpoint. Examples of all options for QUIC are shown in

Figure 41.

Figure 41: Environment variable examples for a QUIC implementation

7.2. Access logs via a well-known endpoint

After generation, qlog implementers MAY make available generated

logs and traces on an endpoint (typically the server) via the

following .well-known URI:

.well-known/qlog/IDENTIFIER.extension

The IDENTIFIER variable depends on the context and the protocol. For

example for QUIC, the lowercase Original Destination Connection ID

(ODCID) is recommended, as it can uniquely identify a connection.

Additionally, the extension depends on the chosen format (see

Section 6.3.4). For example, for a QUIC connection with ODCID

"abcde", the endpoint for fetching its default JSON-formatted .qlog

file would be:

.well-known/qlog/abcde.qlog

¶

Command: QLOGFILE=/srv/qlogs/client.qlog quicclientbinary

Should result in the the quicclientbinary executable logging a

single qlog file named client.qlog in the /srv/qlogs directory.

This is for example useful in tests when the client sets up

just a single connection and then exits.

Command: QLOGDIR=/srv/qlogs/ quicserverbinary

Should result in the quicserverbinary executable generating

several logs files, one for each QUIC connection.

Given two QUIC connections, with ODCID values "abcde" and

"12345" respectively, this would result in two files:

/srv/qlogs/abcde_server.qlog

/srv/qlogs/12345_server.qlog

Command: QLOGFILE=/srv/qlogs/server.qlog quicserverbinary

Should result in the the quicserverbinary executable logging

a single qlog file named server.qlog in the /srv/qlogs directory.

Given that the server handled two QUIC connections before it was

shut down, with ODCID values "abcde" and "12345" respectively,

this would result in event instances in the qlog file being

tagged with the "group_id" field with values "abcde" and "12345".

¶

¶

¶

¶

Implementers SHOULD allow users to fetch logs for a given connection

on a 2nd, separate connection. This helps prevent pollution of the

logs by fetching them over the same connection that one wishes to

observe through the log. Ideally, for the QUIC use case, the logs

should also be approachable via an HTTP/2 or HTTP/1.1 endpoint

(i.e., on TCP port 443), to for example aid debugging in the case

where QUIC/UDP is blocked on the network.

qlog implementers SHOULD NOT enable this .well-known endpoint in

typical production settings to prevent (malicious) users from

downloading logs from other connections. Implementers are advised to

disable this endpoint by default and require specific actions from

the end users to enable it (and potentially qlog itself).

Implementers MUST also take into account the general privacy and

security guidelines discussed in Section 9 before exposing qlogs to

outside actors.

8. Tooling requirements

Tools ingestion qlog MUST indicate which qlog version(s), qlog

format(s), compression methods and potentially other input file

formats (for example .pcap) they support. Tools SHOULD at least

support .qlog files in the default JSON format (Section 6.1).

Additionally, they SHOULD indicate exactly which values for and

properties of the name (category and type) and data fields they look

for to execute their logic. Tools SHOULD perform a (high-level)

check if an input qlog file adheres to the expected qlog schema. If

a tool determines a qlog file does not contain enough supported

information to correctly execute the tool's logic, it SHOULD

generate a clear error message to this effect.

Tools MUST NOT produce breaking errors for any field names and/or

values in the qlog format that they do not recognize. Tools SHOULD

indicate even unknown event occurences within their context (e.g.,

marking unknown events on a timeline for manual interpretation by

the user).

Tool authors should be aware that, depending on the logging

implementation, some events will not always be present in all

traces. For example, using a circular logging buffer of a fixed

size, it could be that the earliest events (e.g., connection setup

events) are later overwritten by "newer" events. Alternatively, some

events can be intentionally omitted out of privacy or file size

considerations. Tool authors are encouraged to make their tools

robust enough to still provide adequate output for incomplete logs.

¶

¶

¶

¶

¶

[CDDL]

[I-JSON]

[JSON]

[JSON-Text-Sequences]

[QLOG-H3]

[QLOG-QUIC]

9. Security and privacy considerations

TODO : discuss privacy and security considerations (e.g., what NOT

to log, what to strip out of a log before sharing, ...)

TODO: strip out/don't log IPs, ports, specific CIDs, raw user data,

exact times, HTTP HEADERS (or at least :path), SNI values

TODO: see if there is merit in encrypting the logs and having the

server choose an encryption key (e.g., sent in transport parameters)

Good initial reference: Christian Huitema's blogpost

10. IANA Considerations

TODO: primarily the .well-known URI

11. References

11.1. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/rfc/rfc7493>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

Williams, N., "JavaScript Object Notation (JSON) Text

Sequences", RFC 7464, DOI 10.17487/RFC7464, February

2015, <https://www.rfc-editor.org/rfc/rfc7464>.

Marx, R., Ed., Niccolini, L., Ed., and M. Seemann, Ed.,

"HTTP/3 and QPACK event definitions for qlog", Work in

Progress, Internet-Draft, draft-ietf-quic-qlog-h3-

events-01, <https://datatracker.ietf.org/doc/html/draft-

ietf-quic-qlog-h3-events-01>.

Marx, R., Ed., Niccolini, L., Ed., and M. Seemann, Ed.,

"QUIC event definitions for qlog", Work in Progress,

Internet-Draft, draft-ietf-quic-qlog-quic-events-01,

¶

¶

¶

¶

¶

https://huitema.wordpress.com/2020/07/21/scrubbing-quic-logs-for-privacy/
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc7464
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-h3-events-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-h3-events-01

[RFC1952]

[RFC4180]

[RFC6839]

[RFC7049]

[RFC7464]

[RFC7932]

[RFC8091]

[RFC8259]

[RFC2119]

[RFC8742]

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

qlog-quic-events-01>.

Deutsch, P., "GZIP file format specification version

4.3", RFC 1952, DOI 10.17487/RFC1952, May 1996, <https://

www.rfc-editor.org/rfc/rfc1952>.

Shafranovich, Y., "Common Format and MIME Type for Comma-

Separated Values (CSV) Files", RFC 4180, DOI 10.17487/

RFC4180, October 2005, <https://www.rfc-editor.org/rfc/

rfc4180>.

Hansen, T. and A. Melnikov, "Additional Media Type

Structured Syntax Suffixes", RFC 6839, DOI 10.17487/

RFC6839, January 2013, <https://www.rfc-editor.org/rfc/

rfc6839>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/rfc/rfc7049>.

Williams, N., "JavaScript Object Notation (JSON) Text

Sequences", RFC 7464, DOI 10.17487/RFC7464, February

2015, <https://www.rfc-editor.org/rfc/rfc7464>.

Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data

Format", RFC 7932, DOI 10.17487/RFC7932, July 2016,

<https://www.rfc-editor.org/rfc/rfc7932>.

Wilde, E., "A Media Type Structured Syntax Suffix for

JSON Text Sequences", RFC 8091, DOI 10.17487/RFC8091,

February 2017, <https://www.rfc-editor.org/rfc/rfc8091>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

11.2. Informative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/rfc/rfc8742>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-01
https://www.rfc-editor.org/rfc/rfc1952
https://www.rfc-editor.org/rfc/rfc1952
https://www.rfc-editor.org/rfc/rfc4180
https://www.rfc-editor.org/rfc/rfc4180
https://www.rfc-editor.org/rfc/rfc6839
https://www.rfc-editor.org/rfc/rfc6839
https://www.rfc-editor.org/rfc/rfc7049
https://www.rfc-editor.org/rfc/rfc7464
https://www.rfc-editor.org/rfc/rfc7932
https://www.rfc-editor.org/rfc/rfc8091
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8742

Appendix A. Change Log

A.1. Since draft-ietf-quic-qlog-main-schema-01:

Change the data definition language from TypeScript to CDDL

(#143)

A.2. Since draft-ietf-quic-qlog-main-schema-00:

Changed the streaming serialization format from NDJSON to JSON

Text Sequences (#172)

Added Media Type definitions for various qlog formats (#158)

Changed to semantic versioning

A.3. Since draft-marx-qlog-main-schema-draft-02:

These changes were done in preparation of the adoption of the

drafts by the QUIC working group (#137)

Moved RawInfo, Importance, Generic events and Simulation events

to this document.

Added basic event definition guidelines

Made protocol_type an array instead of a string (#146)

A.4. Since draft-marx-qlog-main-schema-01:

Decoupled qlog from the JSON format and described a mapping

instead (#89)

Data types are now specified in this document and proper

definitions for fields were added in this format

64-bit numbers can now be either strings or numbers, with a

preference for numbers (#10)

binary blobs are now logged as lowercase hex strings (#39,

#36)

added guidance to add length-specifiers for binary blobs

(#102)

Removed "time_units" from Configuration. All times are now in ms

instead (#95)

Removed the "event_fields" setup for a more straightforward JSON

format (#101,#89)

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

-

¶

-

¶

-

¶

-

¶

*

¶

*

¶

Added a streaming option using the NDJSON format (#109,#2,#106)

Described optional optimization options for implementers (#30)

Added QLOGDIR and QLOGFILE environment variables, clarified the

.well-known URL usage (#26,#33,#51)

Overall tightened up the text and added more examples

A.5. Since draft-marx-qlog-main-schema-00:

All field names are now lowercase (e.g., category instead of

CATEGORY)

Triggers are now properties on the "data" field value, instead of

separate field types (#23)

group_ids in common_fields is now just also group_id

Appendix B. Design Variations

Quic-trace takes a slightly different approach based on

protocolbuffers.

Spindump also defines a custom text-based format for in-network

measurements

Wireshark also has a QUIC dissector and its results can be

transformed into a json output format using tshark.

The idea is that qlog is able to encompass the use cases for both of

these alternate designs and that all tooling converges on the qlog

standard.

Appendix C. Acknowledgements

Much of the initial work by Robin Marx was done at Hasselt

University.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen

Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja

Kuehlewind, Jeremy Laine and Lucas Pardue for their feedback and

suggestions.

Authors' Addresses

Robin Marx (editor)

KU Leuven

Email: robin.marx@kuleuven.be

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

https://github.com/google/quic-trace
https://github.com/EricssonResearch/spindump
https://www.wireshark.org/
mailto:robin.marx@kuleuven.be

Luca Niccolini (editor)

Facebook

Email: lniccolini@fb.com

Marten Seemann (editor)

Protocol Labs

Email: marten@protocol.ai

mailto:lniccolini@fb.com
mailto:marten@protocol.ai

	Main logging schema for qlog
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.1.1. Schema definition
	1.1.2. Serialization

	2. Design goals
	3. The high level qlog schema
	3.1. Summary
	3.2. traces
	3.3. Individual Trace containers
	3.3.1. Configuration
	3.3.1.1. time_offset
	3.3.1.2. original_uris
	3.3.1.3. custom fields

	3.3.2. vantage_point

	3.4. Field name semantics
	3.4.1. Timestamps
	3.4.2. Category and Event Type
	3.4.3. Data
	3.4.4. protocol_type
	3.4.5. Triggers
	3.4.6. group_id
	3.4.7. common_fields

	4. Guidelines for event definition documents
	4.1. Event design guidelines
	4.2. Event importance indicators
	4.3. Custom fields

	5. Generic events and data classes
	5.1. Raw packet and frame information
	5.2. Generic events
	5.2.1. error
	5.2.2. warning
	5.2.3. info
	5.2.4. debug
	5.2.5. verbose

	5.3. Simulation events
	5.3.1. scenario
	5.3.2. marker

	6. Serializing qlog
	6.1. qlog to JSON mapping
	6.1.1. I-JSON
	6.1.2. Truncated values

	6.2. qlog to JSON Text Sequences mapping
	6.2.1. Supporting JSON Text Sequences in tooling

	6.3. Other optimizated formatting options
	6.3.1. Data structure optimizations
	6.3.2. Compression
	6.3.3. Binary formats
	6.3.4. Overview and summary

	6.4. Conversion between formats

	7. Methods of access and generation
	7.1. Set file output destination via an environment variable
	7.2. Access logs via a well-known endpoint

	8. Tooling requirements
	9. Security and privacy considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Change Log
	A.1. Since draft-ietf-quic-qlog-main-schema-01:
	A.2. Since draft-ietf-quic-qlog-main-schema-00:
	A.3. Since draft-marx-qlog-main-schema-draft-02:
	A.4. Since draft-marx-qlog-main-schema-01:
	A.5. Since draft-marx-qlog-main-schema-00:

	Appendix B. Design Variations
	Appendix C. Acknowledgements
	Authors' Addresses

