
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-qlog-quic-events-04

Published: 13 February 2023

Intended Status: Standards Track

Expires: 17 August 2023

Authors: R. Marx, Ed.

Akamai

L. Niccolini, Ed.

Meta

M. Seemann, Ed.

Protocol Labs

L. Pardue, Ed.

Cloudflare

QUIC event definitions for qlog

Abstract

This document describes concrete qlog event definitions and their

metadata for QUIC events. These events can then be embedded in the

higher level schema defined in [QLOG-MAIN].

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Overview

2.1. Raw packet and frame information

2.2. Events not belonging to a single connection

3. QUIC Event Overview

4. Connectivity events

4.1. server_listening

4.2. connection_started

4.3. connection_closed

4.4. connection_id_updated

4.5. spin_bit_updated

4.6. connection_state_updated

4.7. MIGRATION-related events

4.8. mtu_updated

5. Transport events

5.1. version_information

5.2. alpn_information

5.3. parameters_set

5.4. parameters_restored

5.5. packet_sent

5.6. packet_received

5.7. packet_dropped

5.8. packet_buffered

5.9. packets_acked

5.10. datagrams_sent

5.11. datagrams_received

5.12. datagram_dropped

5.13. stream_state_updated

5.14. frames_processed

5.15. data_moved

6. Security Events

6.1. key_updated

6.2. key_discarded

7. Recovery events

7.1. parameters_set

7.2. metrics_updated

7.3. congestion_state_updated

7.4. loss_timer_updated

7.5. packet_lost

7.6. marked_for_retransmit

8. QUIC data field definitions

8.1. QuicVersion

8.2. ConnectionID

8.3. Owner

8.4. IPAddress and IPVersion

8.5. PacketType

8.6. PacketNumberSpace

8.7. PacketHeader

8.8. Token

8.9. Stateless Reset Token

8.10. KeyType

8.11. QUIC Frames

8.11.1. PaddingFrame

8.11.2. PingFrame

8.11.3. AckFrame

8.11.4. ResetStreamFrame

8.11.5. StopSendingFrame

8.11.6. CryptoFrame

8.11.7. NewTokenFrame

8.11.8. StreamFrame

8.11.9. MaxDataFrame

8.11.10. MaxStreamDataFrame

8.11.11. MaxStreamsFrame

8.11.12. DataBlockedFrame

8.11.13. StreamDataBlockedFrame

8.11.14. StreamsBlockedFrame

8.11.15. NewConnectionIDFrame

8.11.16. RetireConnectionIDFrame

8.11.17. PathChallengeFrame

8.11.18. PathResponseFrame

8.11.19. ConnectionCloseFrame

8.11.20. HandshakeDoneFrame

8.11.21. UnknownFrame

8.11.22. TransportError

8.11.23. ApplicationError

8.11.24. CryptoError

9. Security and Privacy Considerations

10. IANA Considerations

11. Normative References

Appendix A. Change Log

A.1. Since draft-ietf-qlog-quic-events-03:

A.2. Since draft-ietf-qlog-quic-events-02:

A.3. Since draft-ietf-qlog-quic-events-01:

A.4. Since draft-ietf-qlog-quic-events-00:

A.5. Since draft-marx-qlog-event-definitions-quic-h3-02:

A.6. Since draft-marx-qlog-event-definitions-quic-h3-01:

A.7. Since draft-marx-qlog-event-definitions-quic-h3-00:

Acknowledgements

Authors' Addresses

1. Introduction

This document describes the values of the qlog name ("category" +

"event") and "data" fields and their semantics for QUIC; see

[QUIC-TRANSPORT], [QUIC-RECOVERY], and [QUIC-TLS].

Note to RFC editor: Please remove the follow paragraphs in this

section before publication.

Feedback and discussion are welcome at https://github.com/quicwg/

qlog. Readers are advised to refer to the "editor's draft" at that

URL for an up-to-date version of this document.

Concrete examples of integrations of this schema in various

programming languages can be found at https://github.com/quiclog/

qlog/.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The event and data structure definitions in ths document are

expressed in the Concise Data Definition Language [CDDL] and its

extensions described in [QLOG-MAIN].

The following fields from [QLOG-MAIN] are imported and used: name,

category, type, data, group_id, protocol_type, importance, RawInfo,

and time-related fields.

2. Overview

This document describes how the QUIC protocol is can be expressed in

qlog using the schema defined in [QLOG-MAIN]. QUIC protocol events

are defined with a category, a name (the concatenation of "category"

and "event"), an "importance", an optional "trigger", and "data"

fields.

Some data fields use complex datastructures. These are represented

as enums or re-usable definitions, which are grouped together on the

bottom of this document for clarity.

When any event from this document is included in a qlog trace, the

"protocol_type" qlog array field MUST contain an entry with the

value "QUIC".

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/quicwg/qlog
https://github.com/quicwg/qlog
https://github.com/quiclog/qlog/
https://github.com/quiclog/qlog/

Note:

Note:

Note:

When the qlog "group_id" field is used, it is recommended to use

QUIC's Original Destination Connection ID (ODCID, the CID chosen by

the client when first contacting the server), as this is the only

value that does not change over the course of the connection and can

be used to link more advanced QUIC packets (e.g., Retry, Version

Negotiation) to a given connection. Similarly, the ODCID should be

used as the qlog filename or file identifier, potentially suffixed

by the vantagepoint type (For example, abcd1234_server.qlog would

contain the server-side trace of the connection with ODCID

abcd1234).

2.1. Raw packet and frame information

QUIC packets always include an AEAD authentication tag

("trailer") at the end. As this tag is always the same size for a

given connection (it depends on the used TLS cipher), this

document does not define a separate "RawInfo:aead_tag_length"

field here. Instead, this field is reflected in

"transport:parameters_set" and can be logged only once.

As QUIC uses trailers in packets, packet header_lengths can

be calculated as:

header_length = length - payload_length - aead_tag_length

For UDP datagrams, the calculation is simpler:

header_length = length - payload_length

In some cases, the length fields are also explicitly

reflected inside of packet headers. For example, the QUIC STREAM

frame has a "length" field indicating its payload size.

Similarly, the QUIC Long Header has a "length" field which is

equal to the payload length plus the packet number length. In

these cases, those fields are intentionally preserved in the

event definitions. Even though this can lead to duplicate data

when the full RawInfo is logged, it allows a more direct mapping

of the QUIC specifications to qlog, making it easier for users to

interpret.

2.2. Events not belonging to a single connection

For several types of events, it is sometimes impossible to tie them

to a specific conceptual QUIC connection (e.g., a packet_dropped

event triggered because the packet has an unknown connection_id in

the header). Since qlog events in a trace are typically associated

with a single connection, it is unclear how to log these events.

Ideally, implementers SHOULD create a separate, individual

"endpoint-level" trace file (or group_id value), not associated with

¶

¶

¶

¶

¶

¶

¶

¶

a specific connection (for example a "server.qlog" or group_id =

"client"), and log all events that do not belong to a single

connection to this grouping trace. However, this is not always

practical, depending on the implementation. Because the semantics of

most of these events are well-defined in the protocols and because

they are difficult to mis-interpret as belonging to a connection,

implementers MAY choose to log events not belonging to a particular

connection in any other trace, even those strongly associated with a

single connection.

Note that this can make it difficult to match logs from different

vantage points with each other. For example, from the client side,

it is easy to log connections with version negotiation or retry in

the same trace, while on the server they would most likely be logged

in separate traces. Servers can take extra efforts (and keep

additional state) to keep these events combined in a single trace

however (for example by also matching connections on their four-

tuple instead of just the connection ID).

3. QUIC Event Overview

QUIC connections consist of different phases and interaction events.

In order to model this, QUIC event types are divided into general

categories: connectivity (Section 4), security (Section 6),

transport Section 5, and recovery Section 7.

As described in Section 3.4.2 of [QLOG-MAIN], the qlog "name" field

is the concatenation of category and type.

Table 1 summarizes the name value of each event type that is defined

in this specification.

Name value Importance Definition

connectivity:server_listening Extra Section 4.1

connectivity:connection_started Base Section 4.2

connectivity:connection_closed Base Section 4.3

connectivity:connection_id_updated Base Section 4.4

connectivity:spin_bit_updated Base Section 4.5

connectivity:connection_state_updated Base Section 4.6

connectivity:mtu_updated Extra Section 4.8

transport:version_information Core Section 5.1

transport:alpn_information Core Section 5.2

transport:parameters_set Core Section 5.3

transport:parameters_restored Base Section 5.4

transport:packet_sent Core Section 5.5

transport:packet_received Core Section 5.6

transport:packet_dropped Base Section 5.7

transport:packet_buffered Base Section 5.8

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-04#section-3.4.2

Name value Importance Definition

transport:packets_acked Extra Section 5.9

transport:datagrams_sent Extra Section 5.10

transport:datagrams_received Extra Section 5.11

transport:datagram_dropped Extra Section 5.12

transport:stream_state_updated Base Section 5.13

transport:frames_processed Extra Section 5.14

transport:data_moved Base Section 5.15

security:key_updated Base Section 6.1

security:key_discarded Base Section 6.2

recovery:parameters_set Base Section 7.1

recovery:metrics_updated Core Section 7.2

recovery:congestion_state_updated Base Section 7.3

recovery:loss_timer_updated Extra Section 7.4

recovery:packet_lost Core Section 7.5

recovery:marked_for_retransmit Extra Section 7.6

Table 1: QUIC Events

QUIC events extend the $ProtocolEventBody extension point defined in

[QLOG-MAIN].

Figure 1: QuicEvents definition and ProtocolEventBody extension

¶

QuicEvents = ConnectivityServerListening /

 ConnectivityConnectionStarted /

 ConnectivityConnectionClosed /

 ConnectivityConnectionIDUpdated /

 ConnectivitySpinBitUpdated /

 ConnectivityConnectionStateUpdated /

 ConnectivityMTUUpdated /

 SecurityKeyUpdated / SecurityKeyDiscarded /

 TransportVersionInformation / TransportALPNInformation /

 TransportParametersSet / TransportParametersRestored /

 TransportPacketSent / TransportPacketReceived /

 TransportPacketDropped / TransportPacketBuffered /

 TransportPacketsAcked / TransportDatagramsSent /

 TransportDatagramsReceived / TransportDatagramDropped /

 TransportStreamStateUpdated / TransportFramesProcessed /

 TransportDataMoved /

 RecoveryParametersSet / RecoveryMetricsUpdated /

 RecoveryCongestionStateUpdated /

 RecoveryLossTimerUpdated /

 RecoveryPacketLost

$ProtocolEventBody /= QuicEvents

4. Connectivity events

4.1. server_listening

Importance: Extra

Emitted when the server starts accepting connections.

Definition:

Figure 2: ConnectivityServerListening definition

Note: some QUIC stacks do not handle sockets directly and are thus

unable to log IP and/or port information.

4.2. connection_started

Importance: Base

Used for both attempting (client-perspective) and accepting (server-

perspective) new connections. Note that this event has overlap with

connection_state_updated and this is a separate event mainly because

of all the additional data that should be logged.

Definition:

¶

¶

¶

ConnectivityServerListening = {

 ? ip_v4: IPAddress

 ? ip_v6: IPAddress

 ? port_v4: uint16

 ? port_v6: uint16

 ; the server will always answer client initials with a retry

 ; (no 1-RTT connection setups by choice)

 ? retry_required: bool

}

¶

¶

¶

¶

Figure 3: ConnectivityConnectionStarted definition

Note: some QUIC stacks do not handle sockets directly and are thus

unable to log IP and/or port information.

4.3. connection_closed

Importance: Base

Used for logging when a connection was closed, typically when an

error or timeout occurred. Note that this event has overlap with

connectivity:connection_state_updated, as well as the

CONNECTION_CLOSE frame. However, in practice, when analyzing large

deployments, it can be useful to have a single event representing a

connection_closed event, which also includes an additional reason

field to provide additional information. Additionally, it is useful

to log closures due to timeouts, which are difficult to reflect

using the other options.

In QUIC there are two main connection-closing error categories:

connection and application errors. They have well-defined error

codes and semantics. Next to these however, there can be internal

errors that occur that may or may not get mapped to the official

error codes in implementation-specific ways. As such, multiple error

codes can be set on the same event to reflect this.

Definition:

ConnectivityConnectionStarted = {

 ? ip_version: IPVersion

 src_ip: IPAddress

 dst_ip: IPAddress

 ; transport layer protocol

 ? protocol: text .default "QUIC"

 ? src_port: uint16

 ? dst_port: uint16

 ? src_cid: ConnectionID

 ? dst_cid: ConnectionID

}

¶

¶

¶

¶

¶

Figure 4: ConnectivityConnectionClosed definition

4.4. connection_id_updated

Importance: Base

This event is emitted when either party updates their current

Connection ID. As this typically happens only sparingly over the

course of a connection, this event allows loggers to be more

efficient than logging the observed CID with each packet in the

.header field of the "packet_sent" or "packet_received" events.

This is viewed from the perspective of the endpoint applying the new

id. As such, when the endpoint receives a new connection id from the

peer, it will see the dst_ fields are set. When the endpoint updates

its own connection id (e.g., NEW_CONNECTION_ID frame), it logs the

src_ fields.

Definition:

Figure 5: ConnectivityConnectionIDUpdated definition

ConnectivityConnectionClosed = {

 ; which side closed the connection

 ? owner: Owner

 ? connection_code: TransportError / CryptoError / uint32

 ? application_code: $ApplicationError / uint32

 ? internal_code: uint32

 ? reason: text

 ? trigger:

 "clean" /

 "handshake_timeout" /

 "idle_timeout" /

 ; this is called the "immediate close" in the QUIC RFC

 "error" /

 "stateless_reset" /

 "version_mismatch" /

 ; for example HTTP/3's GOAWAY frame

 "application"

}

¶

¶

¶

¶

ConnectivityConnectionIDUpdated = {

 owner: Owner

 ? old: ConnectionID

 ? new: ConnectionID

}

4.5. spin_bit_updated

Importance: Base

To be emitted when the spin bit changes value. It SHOULD NOT be

emitted if the spin bit is set without changing its value.

Definition:

Figure 6: ConnectivitySpinBitUpdated definition

4.6. connection_state_updated

Importance: Base

This event is used to track progress through QUIC's complex

handshake and connection close procedures. It is intended to provide

exhaustive options to log each state individually, but also provides

a more basic, simpler set for implementations less interested in

tracking each smaller state transition. As such, users should not

expect to see -all- these states reflected in all qlogs and

implementers should focus on support for the SimpleConnectionState

set.

Definition:

¶

¶

¶

ConnectivitySpinBitUpdated = {

 state: bool

}

¶

¶

¶

Figure 7: ConnectivityConnectionStateUpdated definition

These states correspond to the following transitions for both client

and server:

Client:

send initial

state = attempted

get initial

state = validated (not really "needed" at the client, but

somewhat useful to indicate progress nonetheless)

ConnectivityConnectionStateUpdated = {

 ? old: ConnectionState / SimpleConnectionState

 new: ConnectionState / SimpleConnectionState

}

ConnectionState =

 ; initial sent/received

 "attempted" /

 ; peer address validated by: client sent Handshake packet OR

 ; client used CONNID chosen by the server.

 ; transport-draft-32, section-8.1

 "peer_validated" /

 "handshake_started" /

 ; 1 RTT can be sent, but handshake isn't done yet

 "early_write" /

 ; TLS handshake complete: Finished received and sent

 ; tls-draft-32, section-4.1.1

 "handshake_complete" /

 ; HANDSHAKE_DONE sent/received (connection is now "active", 1RTT

 ; can be sent). tls-draft-32, section-4.1.2

 "handshake_confirmed" /

 "closing" /

 ; connection_close sent/received

 "draining" /

 ; draining period done, connection state discarded

 "closed"

SimpleConnectionState =

 "attempted" /

 "handshake_started" /

 "handshake_confirmed" /

 "closed"

¶

¶

* ¶

- ¶

* ¶

-

¶

Note:

get first Handshake packet

state = handshake_started

get Handshake packet containing ServerFinished

state = handshake_complete

send ClientFinished

state = early_write (1RTT can now be sent)

get HANDSHAKE_DONE

state = handshake_confirmed

Server:

get initial

state = attempted

send initial (TODO don't think this needs a separate state, since

some handshake will always be sent in the same flight as this?)

send handshake EE, CERT, CV, ...

state = handshake_started

send ServerFinished

state = early_write (1RTT can now be sent)

get first handshake packet / something using a server-issued CID

of min length

state = validated

get handshake packet containing ClientFinished

state = handshake_complete

send HANDSHAKE_DONE

state = handshake_confirmed

connection_state_changed with a new state of "attempted" is

the same conceptual event as the connection_started event above

from the client's perspective. Similarly, a state of "closing" or

"draining" corresponds to the connection_closed event.

* ¶

- ¶

* ¶

- ¶

* ¶

- ¶

* ¶

- ¶

¶

* ¶

- ¶

*

¶

* ¶

- ¶

* ¶

- ¶

*

¶

- ¶

* ¶

- ¶

* ¶

- ¶

¶

4.7. MIGRATION-related events

e.g., path_updated

TODO: read up on the draft how migration works and whether to best

fit this here or in TRANSPORT TODO: integrate https://

tools.ietf.org/html/draft-deconinck-quic-multipath-02

For now, infer from other connectivity events and path_challenge/

path_response frames

4.8. mtu_updated

Importance: Extra

Figure 8: ConnectivityMTUUpdated definition

This event indicates that the estimated Path MTU was updated. This

happens as part of the Path MTU discovery process.

5. Transport events

5.1. version_information

Importance: Core

QUIC endpoints each have their own list of of QUIC versions they

support. The client uses the most likely version in their first

initial. If the server does support that version, it replies with a

version_negotiation packet, containing supported versions. From

this, the client selects a version. This event aggregates all this

information in a single event type. It also allows logging of

supported versions at an endpoint without actual version negotiation

needing to happen.

Definition:

¶

¶

¶

¶

ConnectivityMTUUpdated = {

 ? old: uint16

 new: uint16

 ; at some point, MTU discovery stops, as a "good enough"

 ; packet size has been found

 ? done: bool .default false

}

¶

¶

¶

¶

Figure 9: TransportVersionInformation definition

Intended use:

When sending an initial, the client logs this event with

client_versions and chosen_version set

Upon receiving a client initial with a supported version, the

server logs this event with server_versions and chosen_version

set

Upon receiving a client initial with an unsupported version, the

server logs this event with server_versions set and

client_versions to the single-element array containing the

client's attempted version. The absence of chosen_version implies

no overlap was found.

Upon receiving a version negotiation packet from the server, the

client logs this event with client_versions set and

server_versions to the versions in the version negotiation packet

and chosen_version to the version it will use for the next

initial packet

5.2. alpn_information

Importance: Core

QUIC implementations each have their own list of application level

protocols and versions thereof they support. The client includes a

list of their supported options in its first initial as part of the

TLS Application Layer Protocol Negotiation (alpn) extension. If

there are common option(s), the server chooses the most optimal one

and communicates this back to the client. If not, the connection is

closed.

Definition:

TransportVersionInformation = {

 ? server_versions: [+ QuicVersion]

 ? client_versions: [+ QuicVersion]

 ? chosen_version: QuicVersion

}

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

TransportALPNInformation = {

 ? server_alpns: [* text]

 ? client_alpns: [* text]

 ? chosen_alpn: text

}

Figure 10: TransportALPNInformation definition

Intended use:

When sending an initial, the client logs this event with

client_alpns set

When receiving an initial with a supported alpn, the server logs

this event with server_alpns set, client_alpns equalling the

client-provided list, and chosen_alpn to the value it will send

back to the client.

When receiving an initial with an alpn, the client logs this

event with chosen_alpn to the received value.

Alternatively, a client can choose to not log the first event,

but wait for the receipt of the server initial to log this event

with both client_alpns and chosen_alpn set.

5.3. parameters_set

Importance: Core

This event groups settings from several different sources (transport

parameters, TLS ciphers, etc.) into a single event. This is done to

minimize the amount of events and to decouple conceptual setting

impacts from their underlying mechanism for easier high-level

reasoning.

All these settings are typically set once and never change. However,

they are typically set at different times during the connection, so

there will typically be several instances of this event with

different fields set.

Note that some settings have two variations (one set locally, one

requested by the remote peer). This is reflected in the "owner"

field. As such, this field MUST be correct for all settings included

a single event instance. If you need to log settings from two sides,

you MUST emit two separate event instances.

In the case of connection resumption and 0-RTT, some of the server's

parameters are stored up-front at the client and used for the

initial connection startup. They are later updated with the server's

reply. In these cases, utilize the separate parameters_restored

event to indicate the initial values, and this event to indicate the

updated values, as normal.

Definition:

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

TransportParametersSet = {

 ? owner: Owner

 ; true if valid session ticket was received

 ? resumption_allowed: bool

 ; true if early data extension was enabled on the TLS layer

 ? early_data_enabled: bool

 ; e.g., "AES_128_GCM_SHA256"

 ? tls_cipher: text

 ; depends on the TLS cipher, but it's easier to be explicit.

 ; in bytes

 ? aead_tag_length: uint8 .default 16

 ; transport parameters from the TLS layer:

 ? original_destination_connection_id: ConnectionID

 ? initial_source_connection_id: ConnectionID

 ? retry_source_connection_id: ConnectionID

 ? stateless_reset_token: StatelessResetToken

 ? disable_active_migration: bool

 ? max_idle_timeout: uint64

 ? max_udp_payload_size: uint32

 ? ack_delay_exponent: uint16

 ? max_ack_delay: uint16

 ? active_connection_id_limit: uint32

 ? initial_max_data: uint64

 ? initial_max_stream_data_bidi_local: uint64

 ? initial_max_stream_data_bidi_remote: uint64

 ? initial_max_stream_data_uni: uint64

 ? initial_max_streams_bidi: uint64

 ? initial_max_streams_uni: uint64

 ? preferred_address: PreferredAddress

}

PreferredAddress = {

 ip_v4: IPAddress

 ip_v6: IPAddress

 port_v4: uint16

 port_v6: uint16

 connection_id: ConnectionID

 stateless_reset_token: StatelessResetToken

}

Figure 11: TransportParametersSet definition

Additionally, this event can contain any number of unspecified

fields. This is to reflect setting of for example unknown (greased)

transport parameters or employed (proprietary) extensions.

5.4. parameters_restored

Importance: Base

When using QUIC 0-RTT, clients are expected to remember and restore

the server's transport parameters from the previous connection. This

event is used to indicate which parameters were restored and to

which values when utilizing 0-RTT. Note that not all transport

parameters should be restored (many are even prohibited from being

re-utilized). The ones listed here are the ones expected to be

useful for correct 0-RTT usage.

Definition:

Figure 12: TransportParametersRestored definition

Note that, like parameters_set above, this event can contain any

number of unspecified fields to allow for additional/custom

parameters.

5.5. packet_sent

Importance: Core

Definition:

¶

¶

¶

¶

TransportParametersRestored = {

 ? disable_active_migration: bool

 ? max_idle_timeout: uint64

 ? max_udp_payload_size: uint32

 ? active_connection_id_limit: uint32

 ? initial_max_data: uint64

 ? initial_max_stream_data_bidi_local: uint64

 ? initial_max_stream_data_bidi_remote: uint64,

 ? initial_max_stream_data_uni: uint64

 ? initial_max_streams_bidi: uint64

 ? initial_max_streams_uni: uint64

}

¶

¶

¶

Figure 13: TransportPacketSent definition

Note: The encryption_level and packet_number_space are not logged

explicitly: the header.packet_type specifies this by inference

(assuming correct implementation)

Note: for more details on "datagram_id", see Section 5.10. It is

only needed when keeping track of packet coalescing.

5.6. packet_received

Importance: Core

Definition:

TransportPacketSent = {

 header: PacketHeader

 ? frames: [* $QuicFrame]

 ? is_coalesced: bool .default false

 ; only if header.packet_type === "retry"

 ? retry_token: Token

 ; only if header.packet_type === "stateless_reset"

 ; is always 128 bits in length.

 ? stateless_reset_token: StatelessResetToken

 ; only if header.packet_type === "version_negotiation"

 ? supported_versions: [+ QuicVersion]

 ? raw: RawInfo

 ? datagram_id: uint32

 ? is_mtu_probe_packet: bool .default false

 ? trigger:

 ; draft-23 5.1.1

 "retransmit_reordered" /

 ; draft-23 5.1.2

 "retransmit_timeout" /

 ; draft-23 5.3.1

 "pto_probe" /

 ; draft-19 6.2

 "retransmit_crypto" /

 ; needed for some CCs to figure out bandwidth allocations

 ; when there are no normal sends

 "cc_bandwidth_probe"

}

¶

¶

¶

¶

Figure 14: TransportPacketReceived definition

Note: The encryption_level and packet_number_space are not logged

explicitly: the header.packet_type specifies this by inference

(assuming correct implementation)

Note: for more details on "datagram_id", see Section 5.10. It is

only needed when keeping track of packet coalescing.

5.7. packet_dropped

Importance: Base

This event indicates a QUIC-level packet was dropped.

The trigger field indicates a general reason category for dropping

the packet, while the details field can contain additional

implementation-specific information.

Definition:

TransportPacketReceived = {

 header: PacketHeader

 ? frames: [* $QuicFrame]

 ? is_coalesced: bool .default false

 ; only if header.packet_type === "retry"

 ? retry_token: Token

 ; only if header.packet_type === "stateless_reset"

 ; Is always 128 bits in length.

 ? stateless_reset_token: StatelessResetToken

 ; only if header.packet_type === "version_negotiation"

 ? supported_versions: [+ QuicVersion]

 ? raw: RawInfo

 ? datagram_id: uint32

 ? trigger:

 ; if packet was buffered because

 ; it couldn't be decrypted before

 "keys_available"

}

¶

¶

¶

¶

¶

¶

Figure 15: TransportPacketDropped definition

Some example situations for each of the trigger categories include:

internal_error: not initialized, out of memory

rejected: limits reached, DDoS protection, unwilling to track

more paths, duplicate packet

unsupported: unknown or unsupported version. See also

Section 2.2.

invalid: packet parsing or validation error

connection_unknown: packet does not relate to a known connection

or Connection ID

decryption_failure: decryption key was unavailable, decryption

failed

general: situations not clearly covered in the other categories

For more details on "datagram_id", see Section 5.10.

5.8. packet_buffered

Importance: Base

This event is emitted when a packet is buffered because it cannot be

processed yet. Typically, this is because the packet cannot be

TransportPacketDropped = {

 ; Primarily packet_type should be filled here,

 ; as other fields might not be decrypteable or parseable

 ? header: PacketHeader

 ? raw: RawInfo

 ? datagram_id: uint32

 ? details: {* text => any}

 ? trigger:

 "internal_error" /

 "rejected" /

 "unsupported" /

 "invalid" /

 "connection_unknown" /

 "decryption_failure" /

 "general"

}

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

¶

¶

parsed yet, and thus only the full packet contents can be logged

when it was parsed in a packet_received event.

Definition:

Figure 16: TransportPacketBuffered definition

Note: for more details on "datagram_id", see Section 5.10. It is

only needed when keeping track of packet coalescing.

5.9. packets_acked

Importance: Extra

This event is emitted when a (group of) sent packet(s) is

acknowledged by the remote peer for the first time. This information

could also be deduced from the contents of received ACK frames.

However, ACK frames require additional processing logic to determine

when a given packet is acknowledged for the first time, as QUIC uses

ACK ranges which can include repeated ACKs. Additionally, this event

can be used by implementations that do not log frame contents.

Definition:

Figure 17: TransportPacketsAcked definition

¶

¶

TransportPacketBuffered = {

 ; primarily packet_type and possible packet_number should be

 ; filled here as other elements might not be available yet

 ? header: PacketHeader

 ? raw: RawInfo

 ? datagram_id: uint32

 ? trigger:

 ; indicates the parser cannot keep up, temporarily buffers

 ; packet for later processing

 "backpressure" /

 ; if packet cannot be decrypted because the proper keys were

 ; not yet available

 "keys_unavailable"

}

¶

¶

¶

¶

TransportPacketsAcked = {

 ? packet_number_space: PacketNumberSpace

 ? packet_numbers: [+ uint64]

}

Note: if packet_number_space is omitted, it assumes the default

value of PacketNumberSpace.application_data, as this is by far the

most prevalent packet number space a typical QUIC connection will

use.

5.10. datagrams_sent

Importance: Extra

When one or more UDP-level datagrams are passed to the socket. This

is useful for determining how QUIC packet buffers are drained to the

OS.

Definition:

Figure 18: TransportDatagramsSent definition

Since QUIC implementations rarely control UDP logic directly, the

raw data excludes UDP-level headers in all fields.

The "datagram_id" is a qlog-specific concept to allow tracking of

QUIC packet coalescing inside UDP datagrams. Implementations can

assign a per-endpoint unique ID to each datagram, and reflect this

in other events to track QUIC packets through processing steps.

5.11. datagrams_received

Importance: Extra

When one or more UDP-level datagrams are received from the socket.

This is useful for determining how datagrams are passed to the user

space stack from the OS.

Definition:

¶

¶

¶

¶

TransportDatagramsSent = {

 ; to support passing multiple at once

 ? count: uint16

 ; The RawInfo fields do not include the UDP headers,

 ; only the UDP payload

 ? raw: [+ RawInfo]

 ? datagram_ids: [+ uint32]

}

¶

¶

¶

¶

¶

Figure 19: TransportDatagramsReceived definition

For more details on "datagram_ids", see Section 5.10.

5.12. datagram_dropped

Importance: Extra

When a UDP-level datagram is dropped. This is typically done if it

does not contain a valid QUIC packet. If it does, but the QUIC

packet is dropped for other reasons, packet_dropped (Section 5.7)

should be used instead.

Definition:

Figure 20: TransportDatagramDropped definition

5.13. stream_state_updated

Importance: Base

This event is emitted whenever the internal state of a QUIC stream

is updated, as described in QUIC transport draft-23 section 3. Most

of this can be inferred from several types of frames going over the

wire, but it's much easier to have explicit signals for these state

changes.

Definition:

TransportDatagramsReceived = {

 ; to support passing multiple at once

 ? count: uint16

 ; The RawInfo fields do not include the UDP headers,

 ; only the UDP payload

 ? raw: [+ RawInfo]

 ? datagram_ids: [+ uint32]

}

¶

¶

¶

¶

TransportDatagramDropped = {

 ; The RawInfo fields do not include the UDP headers,

 ; only the UDP payload

 ? raw: RawInfo

}

¶

¶

¶

Figure 21: TransportStreamStateUpdated definition

Note: QUIC implementations SHOULD mainly log the simplified

bidirectional (HTTP/2-alike) stream states (e.g., idle, open,

closed) instead of the more fine-grained stream states (e.g.,

data_sent, reset_received). These latter ones are mainly for more

in-depth debugging. Tools SHOULD be able to deal with both types

equally.

StreamType = "unidirectional" / "bidirectional"

TransportStreamStateUpdated = {

 stream_id: uint64

 ; mainly useful when opening the stream

 ? stream_type: StreamType

 ? old: StreamState

 new: StreamState

 ? stream_side: "sending" / "receiving"

}

StreamState =

 ; bidirectional stream states, draft-23 3.4.

 "idle" /

 "open" /

 "half_closed_local" /

 "half_closed_remote" /

 "closed" /

 ; sending-side stream states, draft-23 3.1.

 "ready" /

 "send" /

 "data_sent" /

 "reset_sent" /

 "reset_received" /

 ; receive-side stream states, draft-23 3.2.

 "receive" /

 "size_known" /

 "data_read" /

 "reset_read" /

 ; both-side states

 "data_received" /

 ; qlog-defined:

 ; memory actually freed

 "destroyed"

¶

5.14. frames_processed

Importance: Extra

This event's main goal is to prevent a large proliferation of

specific purpose events (e.g., packets_acknowledged,

flow_control_updated, stream_data_received). Implementations have

the opportunity to (selectively) log this type of signal without

having to log packet-level details (e.g., in packet_received). Since

for almost all cases, the effects of applying a frame to the

internal state of an implementation can be inferred from that

frame's contents, these events are aggregated into this single

"frames_processed" event.

Note: This event can be used to signal internal state change not

resulting directly from the actual "parsing" of a frame (e.g., the

frame could have been parsed, data put into a buffer, then later

processed, then logged with this event).

Note: Implementations logging "packet_received" and which include

all of the packet's constituent frames therein, are not expected to

emit this "frames_processed" event. Rather, implementations not

wishing to log full packets or that wish to explicitly convey extra

information about when frames are processed (if not directly tied to

their reception) can use this event.

Note: for some events, this approach will lose some information

(e.g., for which encryption level are packets being acknowledged?).

If this information is important, please use the packet_received

event instead.

Note: in some implementations, it can be difficult to log frames

directly, even when using packet_sent and packet_received events.

For these cases, this event also contains the direct packet_number

field, which can be used to more explicitly link this event to the

packet_sent/received events.

Definition:

Figure 22: TransportFramesProcessed definition

¶

¶

¶

¶

¶

¶

¶

TransportFramesProcessed = {

 frames: [* $QuicFrame]

 ? packet_number: uint64

}

5.15. data_moved

Importance: Base

Used to indicate when data moves between the different layers (for

example passing from the application protocol (e.g., HTTP) to QUIC

stream buffers and vice versa) or between the application protocol

(e.g., HTTP) and the actual user application on top (for example a

browser engine). This helps make clear the flow of data, how long

data remains in various buffers and the overheads introduced by

individual layers.

For example, this helps make clear whether received data on a QUIC

stream is moved to the application protocol immediately (for example

per received packet) or in larger batches (for example, all QUIC

packets are processed first and afterwards the application layer

reads from the streams with newly available data). This in turn can

help identify bottlenecks or scheduling problems.

Definition:

Figure 23: TransportDataMoved definition

6. Security Events

6.1. key_updated

Importance: Base

Note: secret_updated would be more correct, but in the draft it's

called KEY_UPDATE, so stick with that for consistency

Definition:

¶

¶

¶

¶

TransportDataMoved = {

 ? stream_id: uint64

 ? offset: uint64

 ; byte length of the moved data

 ? length: uint64

 ? from: "user" / "application" / "transport" / "network" / text

 ? to: "user" / "application" / "transport" / "network" / text

 ? raw: RawInfo

}

¶

¶

¶

Figure 24: SecurityKeyUpdated definition

6.2. key_discarded

Importance: Base

Definition:

Figure 25: SecurityKeyDiscarded definition

7. Recovery events

Note: most of the events in this category are kept generic to

support different recovery approaches and various congestion control

algorithms. Tool creators SHOULD make an effort to support and

visualize even unknown data in these events (e.g., plot unknown

congestion states by name on a timeline visualization).

SecurityKeyUpdated = {

 key_type: KeyType

 ? old: hexstring

 new: hexstring

 ; needed for 1RTT key updates

 ? generation: uint32

 ? trigger:

 ; (e.g., initial, handshake and 0-RTT keys

 ; are generated by TLS)

 "tls" /

 "remote_update" /

 "local_update"

}

¶

¶

SecurityKeyDiscarded = {

 key_type: KeyType

 ? key: hexstring

 ; needed for 1RTT key updates

 ? generation: uint32

 ? trigger:

 ; (e.g., initial, handshake and 0-RTT keys

 ; are generated by TLS)

 "tls" /

 "remote_update" /

 "local_update"

}

¶

7.1. parameters_set

Importance: Base

This event groups initial parameters from both loss detection and

congestion control into a single event. All these settings are

typically set once and never change. Implementation that do, for

some reason, change these parameters during execution, MAY emit the

parameters_set event twice.

Definition:

Figure 26: RecoveryParametersSet definition

Additionally, this event can contain any number of unspecified

fields to support different recovery approaches.

¶

¶

¶

RecoveryParametersSet = {

 ; Loss detection, see recovery draft-23, Appendix A.2

 ; in amount of packets

 ? reordering_threshold: uint16

 ; as RTT multiplier

 ? time_threshold: float32

 ; in ms

 timer_granularity: uint16

 ; in ms

 ? initial_rtt:float32

 ; congestion control, Appendix B.1.

 ; in bytes. Note: this could be updated after pmtud

 ? max_datagram_size: uint32

 ; in bytes

 ? initial_congestion_window: uint64

 ; Note: this could change when max_datagram_size changes

 ; in bytes

 ? minimum_congestion_window: uint64

 ? loss_reduction_factor: float32

 ; as PTO multiplier

 ? persistent_congestion_threshold: uint16

}

¶

7.2. metrics_updated

Importance: Core

This event is emitted when one or more of the observable recovery

metrics changes value. This event SHOULD group all possible metric

updates that happen at or around the same time in a single event

(e.g., if min_rtt and smoothed_rtt change at the same time, they

should be bundled in a single metrics_updated entry, rather than

split out into two). Consequently, a metrics_updated event is only

guaranteed to contain at least one of the listed metrics.

Definition:

Figure 27: RecoveryMetricsUpdated definition

Note: to make logging easier, implementations MAY log values even if

they are the same as previously reported values (e.g., two

subsequent RecoveryMetricsUpdated entries can both report the exact

same value for min_rtt). However, applications SHOULD try to log

only actual updates to values.

¶

¶

¶

RecoveryMetricsUpdated = {

 ; Loss detection, see recovery draft-23, Appendix A.3

 ; all following rtt fields are expressed in ms

 ? min_rtt: float32

 ? smoothed_rtt: float32

 ? latest_rtt: float32

 ? rtt_variance: float32

 ? pto_count: uint16

 ; Congestion control, Appendix B.2.

 ; in bytes

 ? congestion_window: uint64

 ? bytes_in_flight: uint64

 ; in bytes

 ? ssthresh: uint64

 ; qlog defined

 ; sum of all packet number spaces

 ? packets_in_flight: uint64

 ; in bits per second

 ? pacing_rate: uint64

}

¶

Additionally, this event can contain any number of unspecified

fields to support different recovery approaches.

7.3. congestion_state_updated

Importance: Base

This event signifies when the congestion controller enters a

significant new state and changes its behaviour. This event's

definition is kept generic to support different Congestion Control

algorithms. For example, for the algorithm defined in the Recovery

draft ("enhanced" New Reno), the following states are defined:

slow_start

congestion_avoidance

application_limited

recovery

Definition:

Figure 28: RecoveryCongestionStateUpdated definition

The "trigger" field SHOULD be logged if there are multiple ways in

which a state change can occur but MAY be omitted if a given state

can only be due to a single event occurring (e.g., slow start is

exited only when ssthresh is exceeded).

7.4. loss_timer_updated

Importance: Extra

This event is emitted when a recovery loss timer changes state. The

three main event types are:

set: the timer is set with a delta timeout for when it will

trigger next

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

RecoveryCongestionStateUpdated = {

 ? old: text

 new: text

 ? trigger:

 "persistent_congestion" /

 "ECN"

}

¶

¶

¶

*

¶

expired: when the timer effectively expires after the delta

timeout

cancelled: when a timer is cancelled (e.g., all outstanding

packets are acknowledged, start idle period)

Note: to indicate an active timer's timeout update, a new "set"

event is used.

Definition:

Figure 29: RecoveryLossTimerUpdated definition

TODO: how about CC algo's that use multiple timers? How generic do

these events need to be? Just support QUIC-style recovery from the

spec or broader?

TODO: read up on the loss detection logic in draft-27 onward and see

if this suffices

7.5. packet_lost

Importance: Core

This event is emitted when a packet is deemed lost by loss

detection.

Definition:

*

¶

*

¶

¶

¶

RecoveryLossTimerUpdated = {

 ; called "mode" in draft-23 A.9.

 ? timer_type: "ack" / "pto"

 ? packet_number_space: PacketNumberSpace

 event_type: "set" / "expired" / "cancelled"

 ; if event_type === "set": delta time is in ms from

 ; this event's timestamp until when the timer will trigger

 ? delta: float32

}

¶

¶

¶

¶

¶

Figure 30: RecoveryPacketLost definition

For this event, the "trigger" field SHOULD be set (for example to

one of the values below), as this helps tremendously in debugging.

7.6. marked_for_retransmit

Importance: Extra

This event indicates which data was marked for retransmit upon

detecting a packet loss (see packet_lost). Similar to our reasoning

for the "frames_processed" event, in order to keep the amount of

different events low, this signal is grouped into in a single event

based on existing QUIC frame definitions for all types of

retransmittable data.

Implementations retransmitting full packets or frames directly can

just log the constituent frames of the lost packet here (or do away

with this event and use the contents of the packet_lost event

instead). Conversely, implementations that have more complex logic

(e.g., marking ranges in a stream's data buffer as in-flight), or

that do not track sent frames in full (e.g., only stream offset +

length), can translate their internal behaviour into the appropriate

frame instance here even if that frame was never or will never be

put on the wire.

Note: much of this data can be inferred if implementations log

packet_sent events (e.g., looking at overlapping stream data offsets

and length, one can determine when data was retransmitted).

Definition:

RecoveryPacketLost = {

 ; should include at least the packet_type and packet_number

 ? header: PacketHeader

 ; not all implementations will keep track of full

 ; packets, so these are optional

 ? frames: [* $QuicFrame]

 ? is_mtu_probe_packet: bool .default false

 ? trigger:

 "reordering_threshold" /

 "time_threshold" /

 ; draft-23 section 5.3.1, MAY

 "pto_expired"

}

¶

¶

¶

¶

¶

¶

Figure 31: RecoveryMarkedForRetransmit definition

8. QUIC data field definitions

8.1. QuicVersion

Figure 32: QuicVersion definition

8.2. ConnectionID

Figure 33: ConnectionID definition

8.3. Owner

Figure 34: Owner definition

8.4. IPAddress and IPVersion

Figure 35: IPAddress definition

Figure 36: IPVersion definition

8.5. PacketType

Figure 37: PacketType definition

RecoveryMarkedForRetransmit = {

 frames: [+ $QuicFrame]

}

QuicVersion = hexstring

ConnectionID = hexstring

Owner = "local" / "remote"

; an IPAddress can either be a "human readable" form

; (e.g., "127.0.0.1" for v4 or

; "2001:0db8:85a3:0000:0000:8a2e:0370:7334" for v6) or

; use a raw byte-form (as the string forms can be ambiguous)

IPAddress = text / hexstring

IPVersion = "v4" / "v6"

PacketType = "initial" / "handshake" / "0RTT" / "1RTT" / "retry" /

 "version_negotiation" / "stateless_reset" / "unknown"

8.6. PacketNumberSpace

Figure 38: PacketNumberSpace definition

8.7. PacketHeader

Figure 39: PacketHeader definition

8.8. Token

PacketNumberSpace = "initial" / "handshake" / "application_data"

PacketHeader = {

 packet_type: PacketType

 ; only if packet_type === "initial" || "handshake" || "0RTT" ||

 ; "1RTT"

 ? packet_number: uint64

 ; the bit flags of the packet headers (spin bit, key update bit,

 ; etc. up to and including the packet number length bits

 ; if present

 ? flags: uint8

 ; only if packet_type === "initial"

 ? token: Token

 ; only if packet_type === "initial" || "handshake" || "0RTT"

 ; Signifies length of the packet_number plus the payload

 ? length: uint16

 ; only if present in the header

 ; if correctly using transport:connection_id_updated events,

 ; dcid can be skipped for 1RTT packets

 ? version: QuicVersion

 ? scil: uint8

 ? dcil: uint8

 ? scid: ConnectionID

 ? dcid: ConnectionID

}

Figure 40: Token definition

The token carried in an Initial packet can either be a retry token

from a Retry packet, or one originally provided by the server in a

NEW_TOKEN frame used when resuming a connection (e.g., for address

validation purposes). Retry and resumption tokens typically contain

encoded metadata to check the token's validity when it is used, but

this metadata and its format is implementation specific. For that,

this event includes a general-purpose "details" field.

8.9. Stateless Reset Token

Figure 41: Stateless Reset Token definition

The stateless reset token is carried in stateless reset packets, in

transport parameters and in NEW_CONNECTION_ID frames.

8.10. KeyType

Figure 42: KeyType definition

8.11. QUIC Frames

The generic $QuicFrame is defined here as a CDDL extension point (a

"socket" or "plug"). It can be extended to support additional QUIC

frame types.

Token = {

 ? type: "retry" / "resumption"

 ; decoded fields included in the token

 ; (typically: peer's IP address, creation time)

 ? details: {

 * text => any

 }

 ? raw: RawInfo

}

¶

StatelessResetToken = hexstring .size 16

¶

KeyType =

 "server_initial_secret" / "client_initial_secret" /

 "server_handshake_secret" / "client_handshake_secret" /

 "server_0rtt_secret" / "client_0rtt_secret" /

 "server_1rtt_secret" / "client_1rtt_secret"

¶

Figure 43: QuicFrame plug definition

The QUIC frame types defined in this document are as follows:

Figure 44: QuicBaseFrames definition

8.11.1. PaddingFrame

In QUIC, PADDING frames are simply identified as a single byte of

value 0. As such, each padding byte could be theoretically

interpreted and logged as an individual PaddingFrame.

However, as this leads to heavy logging overhead, implementations

SHOULD instead emit just a single PaddingFrame and set the

payload_length property to the amount of PADDING bytes/frames

included in the packet.

Figure 45: PaddingFrame definition

8.11.2. PingFrame

; The QuicFrame is any key-value map (e.g., JSON object)

$QuicFrame /= {

 * text => any

}

¶

QuicBaseFrames /=

 PaddingFrame / PingFrame / AckFrame / ResetStreamFrame /

 StopSendingFrame / CryptoFrame / NewTokenFrame / StreamFrame /

 MaxDataFrame / MaxStreamDataFrame / MaxStreamsFrame /

 DataBlockedFrame / StreamDataBlockedFrame / StreamsBlockedFrame /

 NewConnectionIDFrame / RetireConnectionIDFrame /

 PathChallengeFrame / PathResponseFrame / ConnectionCloseFrame /

 HandshakeDoneFrame / UnknownFrame

$QuicFrame /= QuicBaseFrames

¶

¶

PaddingFrame = {

 frame_type: "padding"

 ; total frame length, including frame header

 ? length: uint32

 payload_length: uint32

}

Figure 46: PingFrame definition

8.11.3. AckFrame

Figure 47: AckFrame definition

Note: the packet ranges in AckFrame.acked_ranges do not necessarily

have to be ordered (e.g., [[5,9],[1,4]] is a valid value).

Note: the two numbers in the packet range can be the same (e.g.,

[120,120] means that packet with number 120 was ACKed). However, in

that case, implementers SHOULD log [120] instead and tools MUST be

able to deal with both notations.

PingFrame = {

 frame_type: "ping"

 ; total frame length, including frame header

 ? length: uint32

 ? payload_length: uint32

}

; either a single number (e.g., [1]) or two numbers (e.g., [1,2]).

; For two numbers:

; the first number is "from": lowest packet number in interval

; the second number is "to": up to and including the highest

; packet number in the interval

AckRange = [1*2 uint64]

AckFrame = {

 frame_type: "ack"

 ; in ms

 ? ack_delay: float32

 ; e.g., looks like [[1,2],[4,5], [7], [10,22]] serialized

 ? acked_ranges: [+ AckRange]

 ; ECN (explicit congestion notification) related fields

 ; (not always present)

 ? ect1: uint64

 ? ect0:uint64

 ? ce: uint64

 ; total frame length, including frame header

 ? length: uint32

 ? payload_length: uint32

}

¶

¶

8.11.4. ResetStreamFrame

Figure 48: ResetStreamFrame definition

8.11.5. StopSendingFrame

Figure 49: StopSendingFrame definition

8.11.6. CryptoFrame

Figure 50: CryptoFrame definition

8.11.7. NewTokenFrame

ResetStreamFrame = {

 frame_type: "reset_stream"

 stream_id: uint64

 error_code: $ApplicationError / uint32

 ; in bytes

 final_size: uint64

 ; total frame length, including frame header

 ? length: uint32

 ? payload_length: uint32

}

StopSendingFrame = {

 frame_type: "stop_sending"

 stream_id: uint64

 error_code: $ApplicationError / uint32

 ; total frame length, including frame header

 ? length: uint32

 ? payload_length: uint32

}

CryptoFrame = {

 frame_type: "crypto"

 offset: uint64

 length: uint64

 ? payload_length: uint32

}

Figure 51: NewTokenFrame definition

8.11.8. StreamFrame

Figure 52: StreamFrame definition

8.11.9. MaxDataFrame

Figure 53: MaxDataFrame definition

8.11.10. MaxStreamDataFrame

NewTokenFrame = {

 frame_type: "new_token"

 token: Token

}

StreamFrame = {

 frame_type: "stream"

 stream_id: uint64

 ; These two MUST always be set

 ; If not present in the Frame type, log their default values

 offset: uint64

 length: uint64

 ; this MAY be set any time,

 ; but MUST only be set if the value is true

 ; if absent, the value MUST be assumed to be false

 ? fin: bool .default false

 ? raw: RawInfo

}

MaxDataFrame = {

 frame_type: "max_data"

 maximum: uint64

}

Figure 54: MaxStreamDataFrame definition

8.11.11. MaxStreamsFrame

Figure 55: MaxStreamsFrame definition

8.11.12. DataBlockedFrame

Figure 56: DataBlockedFrame definition

8.11.13. StreamDataBlockedFrame

Figure 57: StreamDataBlockedFrame definition

8.11.14. StreamsBlockedFrame

MaxStreamDataFrame = {

 frame_type: "max_stream_data"

 stream_id: uint64

 maximum: uint64

}

MaxStreamsFrame = {

 frame_type: "max_streams"

 stream_type: StreamType

 maximum: uint64

}

DataBlockedFrame = {

 frame_type: "data_blocked"

 limit: uint64

}

StreamDataBlockedFrame = {

 frame_type: "stream_data_blocked"

 stream_id: uint64

 limit: uint64

}

Figure 58: StreamsBlockedFrame definition

8.11.15. NewConnectionIDFrame

Figure 59: NewConnectionIDFrame definition

8.11.16. RetireConnectionIDFrame

Figure 60: RetireConnectionIDFrame definition

8.11.17. PathChallengeFrame

Figure 61: PathChallengeFrame definition

StreamsBlockedFrame = {

 frame_type: "streams_blocked"

 stream_type: StreamType

 limit: uint64

}

NewConnectionIDFrame = {

 frame_type: "new_connection_id"

 sequence_number: uint32

 retire_prior_to: uint32

 ; mainly used if e.g., for privacy reasons the full

 ; connection_id cannot be logged

 ? connection_id_length: uint8

 connection_id: ConnectionID

 ? stateless_reset_token: StatelessResetToken

}

RetireConnectionIDFrame = {

 frame_type: "retire_connection_id"

 sequence_number: uint32

}

PathChallengeFrame = {

 frame_type: "path_challenge"

 ; always 64-bit

 ? data: hexstring

}

8.11.18. PathResponseFrame

Figure 62: PathResponseFrame definition

8.11.19. ConnectionCloseFrame

The error_code_value field is the numerical value without VLIE

encoding. This is useful because some error types are spread out

over a range of codes (e.g., QUIC's crypto_error).

Figure 63: ConnectionCloseFrame definition

8.11.20. HandshakeDoneFrame

Figure 64: HandshakeDoneFrame definition

8.11.21. UnknownFrame

The frame_type_value field is the numerical value without VLIE

encoding.

PathResponseFrame = {

 frame_type: "path_response"

 ; always 64-bit

 ? data: hexstring

}

¶

ErrorSpace = "transport" / "application"

ConnectionCloseFrame = {

 frame_type: "connection_close"

 ? error_space: ErrorSpace

 ? error_code: TransportError / $ApplicationError / uint32

 ? error_code_value: uint64

 ? reason: text

 ; For known frame types, the appropriate "frame_type" string

 ; For unknown frame types, the hex encoded frame identifier value

 ? trigger_frame_type: uint64 / text

}

HandshakeDoneFrame = {

 frame_type: "handshake_done";

}

¶

Figure 65: UnknownFrame definition

8.11.22. TransportError

Figure 66: TransportError definition

8.11.23. ApplicationError

By definition, an application error is defined by the application-

level protocol running on top of QUIC (e.g., HTTP/3).

As such, it cannot be defined here directly. Applications MAY use

the provided extension point through the use of the CDDL "socket"

mechanism.

Application-level qlog definitions that wish to define new

ApplicationError strings MUST do so by extending the

$ApplicationError socket as such:

8.11.24. CryptoError

These errors are defined in the TLS document as "A TLS alert is

turned into a QUIC connection error by converting the one-byte alert

description into a QUIC error code. The alert description is added

to 0x100 to produce a QUIC error code from the range reserved for

CRYPTO_ERROR."

This approach maps badly to a pre-defined enum. As such, the

crypto_error string is defined as having a dynamic component here,

UnknownFrame = {

 frame_type: "unknown"

 frame_type_value: uint64

 ? raw: RawInfo

}

TransportError = "no_error" / "internal_error" /

 "connection_refused" / "flow_control_error" /

 "stream_limit_error" / "stream_state_error" /

 "final_size_error" / "frame_encoding_error" /

 "transport_parameter_error" / "connection_id_limit_error" /

 "protocol_violation" / "invalid_token" / "application_error" /

 "crypto_buffer_exceeded" / "key_update_error" /

 "aead_limit_reached" / "no_viable_path"

 ; there is no value to reflect CRYPTO_ERROR

 ; use the CryptoError type instead

¶

¶

¶

$ApplicationError /= "new_error_name" / "another_new_error_name"¶

¶

[CDDL]

[QLOG-MAIN]

[QUIC-RECOVERY]

[QUIC-TLS]

[QUIC-TRANSPORT]

[RFC2119]

which should include the hex-encoded and zero-padded value of the

TLS alert description.

Figure 67: CryptoError definition

9. Security and Privacy Considerations

The security and privacy considerations discussed in [QLOG-MAIN]

apply to this document as well.

10. IANA Considerations

TBD

11. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Marx, R., Niccolini, L., Seemann, M., and L. Pardue,

"Main logging schema for qlog", Work in Progress,

Internet-Draft, draft-ietf-quic-qlog-main-schema-04, 24

October 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-qlog-main-schema-04>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", RFC 9002, DOI

10.17487/RFC9002, May 2021, <https://www.rfc-editor.org/

rfc/rfc9002>.

Snijders, J., Heitz, J., Scudder, J., and A. Azimov,

"Extended BGP Administrative Shutdown Communication", RFC

9003, DOI 10.17487/RFC9003, January 2021, <https://

www.rfc-editor.org/rfc/rfc9003>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

; all strings from "crypto_error_0x100" to "crypto_error_0x1ff"

CryptoError = text .regexp "crypto_error_0x1[0-9a-f][0-9a-f]"

¶

¶

https://www.rfc-editor.org/rfc/rfc8610
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-04
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc9003
https://www.rfc-editor.org/rfc/rfc9003
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

[RFC8174]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Appendix A. Change Log

A.1. Since draft-ietf-qlog-quic-events-03:

Ensured consistent use of RawInfo to indicate raw wire bytes

(#243)

Renamed UnknownFrame:raw_frame_type to :frame_type_value (#54)

Renamed ConnectionCloseFrame:raw_error_code to :error_code_value

(#54)

Changed triggers for packet_dropped (#278)

Added entries to TransportError enum (#285)

Changed minimum_congestion_window to uint64 (#288)

A.2. Since draft-ietf-qlog-quic-events-02:

Renamed key_retired to key_discarded (#185)

Added fields and events for DPLPMTUD (#135)

Made packet_number optional in PacketHeader (#244)

Removed connection_retried event placeholder (#255)

Changed QuicFrame to a CDDL plug type (#257)

Moved data definitions out of the appendix into separate sections

Added overview Table of Contents

A.3. Since draft-ietf-qlog-quic-events-01:

Added Stateless Reset Token type (#122)

A.4. Since draft-ietf-qlog-quic-events-00:

Change the data definition language from TypeScript to CDDL

(#143)

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

A.5. Since draft-marx-qlog-event-definitions-quic-h3-02:

These changes were done in preparation of the adoption of the

drafts by the QUIC working group (#137)

Split QUIC and HTTP/3 events into two separate documents

Moved RawInfo, Importance, Generic events and Simulation events

to the main schema document.

Changed to/from value options of the data_moved event

A.6. Since draft-marx-qlog-event-definitions-quic-h3-01:

Major changes:

Moved data_moved from http to transport. Also made the "from" and

"to" fields flexible strings instead of an enum (#111,#65)

Moved packet_type fields to PacketHeader. Moved packet_size field

out of PacketHeader to RawInfo:length (#40)

Made events that need to log packet_type and packet_number use a

header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial

tokens (#94,#86,#117)

Moved separate general event categories into a single category

"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events

(#85,#75,#28)

Added parameters_restored events to help clarify 0-RTT behaviour

(#88)

Smaller changes:

Merged loss_timer events into one loss_timer_updated event

Field data types are now strongly defined (#10,#39,#36,#115)

Renamed qpack instruction_received and instruction_sent to

instruction_created and instruction_parsed (#114)

Updated qpack:dynamic_table_updated.update_type. It now has the

value "inserted" instead of "added" (#113)

*

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

Updated qpack:dynamic_table_updated. It now has an "owner" field

to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since

this was moved to be a generic property of the "data" field (#80)

Updated transport:connection_id_updated to be more in line with

other similar events. Also dropped importance from Core to Base

(#45)

Added length property to PaddingFrame (#34)

Added packet_number field to transport:frames_processed (#74)

Added a way to generically log packet header flags (first 8 bits)

to PacketHeader

Added additional guidance on which events to log in which

situations (#53)

Added "simulation:scenario" event to help indicate simulation

details

Added "packets_acked" event (#107)

Added "datagram_ids" to the datagram_X and packet_X events to

allow tracking of coalesced QUIC packets (#91)

Extended connection_state_updated with more fine-grained states

(#49)

A.7. Since draft-marx-qlog-event-definitions-quic-h3-00:

Event and category names are now all lowercase

Added many new events and their definitions

"type" fields have been made more specific (especially important

for PacketType fields, which are now called packet_type instead

of type)

Events are given an importance indicator (issue #22)

Event names are more consistent and use past tense (issue #21)

Triggers have been redefined as properties of the "data" field

and updated for most events (issue #23)

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

Acknowledgements

Much of the initial work by Robin Marx was done at the Hasselt and

KU Leuven Universities.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen

Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja

Kuehlewind, Jeremy Laine, Kazu Yamamoto, and Christian Huitema for

their feedback and suggestions.

Authors' Addresses

Robin Marx (editor)

Akamai

Email: rmarx@akamai.com

Luca Niccolini (editor)

Meta

Email: lniccolini@meta.com

Marten Seemann (editor)

Protocol Labs

Email: marten@protocol.ai

Lucas Pardue (editor)

Cloudflare

Email: lucaspardue.24.7@gmail.com

¶

¶

mailto:rmarx@akamai.com
mailto:lniccolini@meta.com
mailto:marten@protocol.ai
mailto:lucaspardue.24.7@gmail.com

	QUIC event definitions for qlog
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Overview
	2.1. Raw packet and frame information
	2.2. Events not belonging to a single connection

	3. QUIC Event Overview
	4. Connectivity events
	4.1. server_listening
	4.2. connection_started
	4.3. connection_closed
	4.4. connection_id_updated
	4.5. spin_bit_updated
	4.6. connection_state_updated
	4.7. MIGRATION-related events
	4.8. mtu_updated

	5. Transport events
	5.1. version_information
	5.2. alpn_information
	5.3. parameters_set
	5.4. parameters_restored
	5.5. packet_sent
	5.6. packet_received
	5.7. packet_dropped
	5.8. packet_buffered
	5.9. packets_acked
	5.10. datagrams_sent
	5.11. datagrams_received
	5.12. datagram_dropped
	5.13. stream_state_updated
	5.14. frames_processed
	5.15. data_moved

	6. Security Events
	6.1. key_updated
	6.2. key_discarded

	7. Recovery events
	7.1. parameters_set
	7.2. metrics_updated
	7.3. congestion_state_updated
	7.4. loss_timer_updated
	7.5. packet_lost
	7.6. marked_for_retransmit

	8. QUIC data field definitions
	8.1. QuicVersion
	8.2. ConnectionID
	8.3. Owner
	8.4. IPAddress and IPVersion
	8.5. PacketType
	8.6. PacketNumberSpace
	8.7. PacketHeader
	8.8. Token
	8.9. Stateless Reset Token
	8.10. KeyType
	8.11. QUIC Frames
	8.11.1. PaddingFrame
	8.11.2. PingFrame
	8.11.3. AckFrame
	8.11.4. ResetStreamFrame
	8.11.5. StopSendingFrame
	8.11.6. CryptoFrame
	8.11.7. NewTokenFrame
	8.11.8. StreamFrame
	8.11.9. MaxDataFrame
	8.11.10. MaxStreamDataFrame
	8.11.11. MaxStreamsFrame
	8.11.12. DataBlockedFrame
	8.11.13. StreamDataBlockedFrame
	8.11.14. StreamsBlockedFrame
	8.11.15. NewConnectionIDFrame
	8.11.16. RetireConnectionIDFrame
	8.11.17. PathChallengeFrame
	8.11.18. PathResponseFrame
	8.11.19. ConnectionCloseFrame
	8.11.20. HandshakeDoneFrame
	8.11.21. UnknownFrame
	8.11.22. TransportError
	8.11.23. ApplicationError
	8.11.24. CryptoError

	9. Security and Privacy Considerations
	10. IANA Considerations
	11. Normative References
	Appendix A. Change Log
	A.1. Since draft-ietf-qlog-quic-events-03:
	A.2. Since draft-ietf-qlog-quic-events-02:
	A.3. Since draft-ietf-qlog-quic-events-01:
	A.4. Since draft-ietf-qlog-quic-events-00:
	A.5. Since draft-marx-qlog-event-definitions-quic-h3-02:
	A.6. Since draft-marx-qlog-event-definitions-quic-h3-01:
	A.7. Since draft-marx-qlog-event-definitions-quic-h3-00:

	Acknowledgements
	Authors' Addresses

