
QUIC C. Krasic
Internet-Draft Google, Inc
Intended status: Standards Track M. Bishop
Expires: November 24, 2018 Akamai Technologies
 A. Frindell, Ed.
 Facebook
 May 23, 2018

QPACK: Header Compression for HTTP over QUIC
draft-ietf-quic-qpack-00

Abstract

 This specification defines QPACK, a compression format for
 efficiently representing HTTP header fields, to be used in HTTP over
 QUIC. This is a variation of HPACK header compression that seeks to
 reduce head-of-line blocking.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-qpack [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2018.

Krasic, et al. Expires November 24, 2018 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QPACK May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Head-of-Line Blocking in HPACK 3
1.2. Avoiding Head-of-Line Blocking in HTTP/QUIC 4

2. Conventions and Definitions 5
2.1. Notational Conventions 5

3. Wire Format . 5
3.1. Primitives . 6
3.2. Indexing . 6
3.3. QPACK Encoder Stream 8
3.3.1. Insert With Name Reference 8
3.3.2. Insert Without Name Reference 9
3.3.3. Duplicate . 9
3.3.4. Dynamic Table Size Update 10

3.4. QPACK Decoder Stream 10
3.4.1. Table State Synchronize 11
3.4.2. Header Acknowledgement 11

3.5. Request and Push Streams 11
3.5.1. Header Data Prefix 12
3.5.2. Instructions . 12

4. Encoding Strategies . 15
4.1. Single pass encoding 15
4.2. Preventing Eviction Races 15
4.3. Reference Tracking 15
4.3.1. Blocked Eviction 16
4.3.2. Blocked Decoding 16

4.4. Speculative table updates 16
4.5. Sample One Pass Encoding Algorithm 17

5. Security Considerations 18
6. IANA Considerations . 18
7. References . 18
7.1. Normative References 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Krasic, et al. Expires November 24, 2018 [Page 2]

Internet-Draft QPACK May 2018

7.2. Informative References 18
7.3. URIs . 19

 Acknowledgments . 19
 Change Log . 19

B.1. Since draft-ietf-quic-qcram-00 19
 Authors' Addresses . 20

1. Introduction

 The QUIC transport protocol was designed from the outset to support
 HTTP semantics, and its design subsumes many of the features of
 HTTP/2. QUIC's stream multiplexing comes into some conflict with
 header compression. A key goal of the design of QUIC is to improve
 stream multiplexing relative to HTTP/2 by eliminating HoL (head of
 line) blocking, which can occur in HTTP/2. HoL blocking can happen
 because all HTTP/2 streams are multiplexed onto a single TCP
 connection with its in-order semantics. QUIC can maintain
 independence between streams because it implements core transport
 functionality in a fully stream-aware manner. However, the HTTP/QUIC
 mapping is still subject to HoL blocking if HPACK is used directly.
 HPACK exploits multiplexing for greater compression, shrinking the
 representation of headers that have appeared earlier on the same
 connection. In the context of QUIC, this imposes a vulnerability to
 HoL blocking (see Section 1.1).

 QUIC is described in [QUIC-TRANSPORT]. The HTTP/QUIC mapping is
 described in [QUIC-HTTP]. For a full description of HTTP/2, see
 [RFC7540]. The description of HPACK is [RFC7541], with important
 terminology in Section 1.3.

 QPACK modifies HPACK to allow correctness in the presence of out-of-
 order delivery, with flexibility for implementations to balance
 between resilience against HoL blocking and optimal compression
 ratio. The design goals are to closely approach the compression
 ratio of HPACK with substantially less head-of-line blocking under
 the same loss conditions.

 QPACK is intended to be a relatively non-intrusive extension to
 HPACK; an implementation should be easily shared within stacks
 supporting both HTTP/2 over (TLS+)TCP and HTTP/QUIC.

1.1. Head-of-Line Blocking in HPACK

 HPACK enables several types of header representations, one of which
 also adds the header to a dynamic table of header values. These
 values are then available for reuse in subsequent header blocks
 simply by referencing the entry number in the table.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qcram-00
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Krasic, et al. Expires November 24, 2018 [Page 3]

Internet-Draft QPACK May 2018

 If the packet containing a header is lost, that stream cannot
 complete header processing until the packet is retransmitted. This
 is unavoidable. However, other streams which rely on the state
 created by that packet _also_ cannot make progress. This is the
 problem which QUIC solves in general, but which is reintroduced by
 HPACK when the loss includes a HEADERS frame.

1.2. Avoiding Head-of-Line Blocking in HTTP/QUIC

 Because QUIC does not guarantee order between data on different
 streams, a header block might reference an entry in the dynamic table
 that has not yet been received.

 Each header block contains a Largest Reference (see Section 3.5.1)
 which identifies the table state necessary for decoding. If the
 greatest absolute index in the dynamic table is less than the value
 of the Largest Reference, the stream is considered "blocked." While
 blocked, header field data should remain in the blocked stream's flow
 control window. When the Largest Reference is zero, the frame
 contains no references to the dynamic table and can always be
 processed immediately. A stream becomes unblocked when the greatest
 absolute index in the dynamic table becomes greater than or equal to
 the Largest Reference for all header blocks the decoder has started
 reading from the stream.

 A decoder can permit the possibility of blocked streams by setting
 SETTINGS_QPACK_BLOCKED_STREAMS to a non-zero value. This setting
 specifies an upper bound on the number of streams which can be
 blocked.

 An encoder can decide whether to risk having a stream become blocked.
 If permitted by the value of SETTINGS_QPACK_BLOCKED_STREAMS,
 compression efficiency can be improved by referencing dynamic table
 entries that are still in transit, but if there is loss or reordering
 the stream can become blocked at the decoder. An encoder avoids the
 risk of blocking by only referencing dynamic table entries which have
 been acknowledged, but this means using literals. Since literals
 make the header block larger, this can result in the encoder becoming
 blocked on congestion or flow control limits.

 An encoder MUST limit the number of streams which could become
 blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all times.
 Note that the decoder might not actually become blocked on every
 stream which risks becoming blocked. If the decoder encounters more
 blocked streams than it promised to support, it SHOULD treat this as
 a stream error of type HTTP_QPACK_DECOMPRESSION_FAILED.

Krasic, et al. Expires November 24, 2018 [Page 4]

Internet-Draft QPACK May 2018

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 Header: A name-value pair sent as part of an HTTP message.

 Header set: The full collection of headers associated with an HTTP
 message.

 Header block: The compressed representation of a header set.

 Encoder: An implementation which transforms a header set into a
 header block.

 Decoder: An implementation which transforms a header block into a
 header set.

 QPACK is a name, not an acronym.

2.1. Notational Conventions

 Diagrams use the format described in Section 3.1 of [RFC2360], with
 the following additional conventions:

 x (A) Indicates that x is A bits long

 x (A+) Indicates that x uses the prefixed integer encoding defined
 in Section 5.1 of [RFC7541], beginning with an A-bit prefix.

 x ... Indicates that x is variable-length and extends to the end of
 the region.

3. Wire Format

 QPACK instructions occur in three locations, each of which uses a
 separate instruction space:

 o Table updates are carried by a unidirectional stream from encoder
 to decoder. Instructions on this stream modify the dynamic table
 state without generating output to any particular request.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2360#section-3.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Krasic, et al. Expires November 24, 2018 [Page 5]

Internet-Draft QPACK May 2018

 o Acknowledgements of table modifications and header processing are
 carried by a unidirectional stream from decoder to encoder.

 o Finally, the contents of HEADERS and PUSH_PROMISE frames on
 request streams reference the QPACK table state.

 This section describes the instructions which are possible on each
 stream type.

 All table updates occur on the control stream. Request streams only
 carry header blocks that do not modify the state of the table.

3.1. Primitives

 The prefixed integer from Section 5.1 of [RFC7541] is used heavily
 throughout this document. The string literal, defined by Section 5.2
 of [RFC7541], is used with the following modification.

 HPACK defines string literals to begin on a byte boundary. They
 begin with a single flag (indicating whether the string is Huffman-
 coded), followed by the Length encoded as a 7-bit prefix integer, and
 finally Length octets of data.

 QPACK permits strings to begin other than on a byte boundary. An
 "N-bit prefix string literal" begins with the same Huffman flag,
 followed by the length encoded as an (N-1)-bit prefix integer. The
 remainder of the string literal is unmodified.

 A string literal without a prefix length noted is an 8-bit prefix
 string literal and follows the definitions in [RFC7541] without
 modification.

3.2. Indexing

 Entries in the QPACK static and dynamic tables are addressed
 separately.

 Entries in the static table have the same indices at all times. The
 static table is defined in Appendix A of [RFC7541]. Note that
 because HPACK did not use zero-based references, there is no value at
 index zero of the static table.

 Entries are inserted into the dynamic table over time. Each entry
 possesses both an absolute index which is fixed for the lifetime of
 that entry and a relative index which changes over time based on the
 context of the reference. The first entry inserted has an absolute
 index of "1"; indices increase sequentially with each insertion.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541#appendix-A

Krasic, et al. Expires November 24, 2018 [Page 6]

Internet-Draft QPACK May 2018

 On the control stream, a relative index of "0" always refers to the
 most recently inserted value in the dynamic table. Note that this
 means the entry referenced by a given relative index can change while
 interpreting a HEADERS frame as new entries are inserted.

 +---+---------------+-------+
 | n | ... | d + 1 | Absolute Index
 + - +---------------+ - +
 | 0 | ... | n-d-1 | Relative Index
 +---+---------------+-------+
 ^ |
 | V
 Insertion Point Dropping Point

 n = count of entries inserted
 d = count of entries dropped

 Example Dynamic Table Indexing - Control Stream

 Because frames from request streams can be delivered out of order
 with instructions on the control stream, relative indices are
 relative to the Base Index at the beginning of the header block (see

Section 3.5.1). The Base Index is the absolute index of the entry
 which has the relative index of zero when interpreting the frame.
 The relative indices of entries do not change while interpreting
 headers on a request or push stream.

 Base Index
 |
 V
 +---+-----+-----+-----+-------+
 | n | n-1 | n-2 | ... | d+1 | Absolute Index
 +---+-----+ - +-----+ - +
 | 0 | ... | n-d-3 | Relative Index
 +-----+-----+-------+

 n = count of entries inserted
 d = count of entries dropped

 Example Dynamic Table Indexing - Request Stream

 Entries with an absolute index greater than a frame's Base Index can
 be referenced using specific Post-Base instructions. The relative
 indices of Post-Base references count up from Base Index.

Krasic, et al. Expires November 24, 2018 [Page 7]

Internet-Draft QPACK May 2018

 Base Index
 |
 V
 +---+-----+-----+-----+-----+
 | n | n-1 | n-2 | ... | d+1 | Absolute Index
 +---+-----+-----+-----+-----+
 | 1 | 0 | Post-Base Index
 +---+-----+

 n = count of entries inserted
 d = count of entries dropped

 Dynamic Table Indexing - Post-Base References

 If the decoder encounters a reference to an entry which has already
 been dropped from the table or which is greater than the declared
 Largest Reference, this MUST be treated as a stream error of type
 "HTTP_QPACK_DECOMPRESSION_FAILED" error code. If this reference
 occurs on the control stream, this MUST be treated as a session
 error.

3.3. QPACK Encoder Stream

 Table updates can add a table entry, possibly using existing entries
 to avoid transmitting redundant information. The name can be
 transmitted as a reference to an existing entry in the static or the
 dynamic table or as a string literal. For entries which already
 exist in the dynamic table, the full entry can also be used by
 reference, creating a duplicate entry.

 Each set of encoder instructions is prefaced by its length, encoded
 as a variable length integer with an 8-bit prefix. Instructions MUST
 NOT span more than one block.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Block Length (8+) |
 +-------------------------------+
 | Instruction Block (*) ...
 +-------------------------------+

 Encoder instruction block

3.3.1. Insert With Name Reference

 An addition to the header table where the header field name matches
 the header field name of an entry stored in the static table or the
 dynamic table starts with the '1' one-bit pattern. The "S" bit

Krasic, et al. Expires November 24, 2018 [Page 8]

Internet-Draft QPACK May 2018

 indicates whether the reference is to the static (S=1) or dynamic
 (S=0) table. The header field name is represented using the relative
 index of that entry, which is represented as an integer with a 6-bit
 prefix (see Section 5.1 of [RFC7541]).

 The header name reference is followed by the header field value
 represented as a string literal (see Section 5.2 of [RFC7541]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | S | Name Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- Indexed Name

3.3.2. Insert Without Name Reference

 An addition to the header table where both the header field name and
 the header field value are represented as string literals (see

Section 3.1) starts with the '01' two-bit pattern.

 The name is represented as a 6-bit prefix string literal, while the
 value is represented as an 8-bit prefix string literal.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | H | Name Length (5+) |
 +---+---+---+-------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- New Name

3.3.3. Duplicate

 Duplication of an existing entry in the dynamic table starts with the
 '000' three-bit pattern. The relative index of the existing entry is
 represented as an integer with a 5-bit prefix.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2

Krasic, et al. Expires November 24, 2018 [Page 9]

Internet-Draft QPACK May 2018

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | Index (5+) |
 +---+---+---+-------------------+

 Figure 1: Duplicate

 The existing entry is re-inserted into the dynamic table without
 resending either the name or the value. This is useful to mitigate
 the eviction of older entries which are frequently referenced, both
 to avoid the need to resend the header and to avoid the entry in the
 table blocking the ability to insert new headers.

3.3.4. Dynamic Table Size Update

 An encoder informs the decoder of a change to the size of the dynamic
 table using an instruction which begins with the '001' three-bit
 pattern. The new maximum table size is represented as an integer
 with a 5-bit prefix (see Section 5.1 of [RFC7541]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | Max size (5+) |
 +---+---+---+-------------------+

 Figure 2: Maximum Dynamic Table Size Change

 The new maximum size MUST be lower than or equal to the limit
 determined by the protocol using QPACK. A value that exceeds this
 limit MUST be treated as a decoding error. In HTTP/QUIC, this limit
 is the value of the SETTINGS_HEADER_TABLE_SIZE parameter (see
 [QUIC-HTTP]) received from the decoder.

 Reducing the maximum size of the dynamic table can cause entries to
 be evicted (see Section 4.3 of [RFC7541]). This MUST NOT cause the
 eviction of entries with outstanding references (see Section 4.3).

3.4. QPACK Decoder Stream

 The decoder stream carries information used to ensure consistency of
 the dynamic table. Information is sent from the QPACK decoder to the
 QPACK encoder; that is, the server informs the client about the
 processing of the client's header blocks and table updates, and the
 client informs the server about the processing of the server's header
 blocks and table updates.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-4.3

Krasic, et al. Expires November 24, 2018 [Page 10]

Internet-Draft QPACK May 2018

3.4.1. Table State Synchronize

 After processing a set of instructions on the encoder stream, the
 decoder will emit a Table State Synchronize instruction on the
 decoder stream. The instruction begins with the '1' one-bit pattern.
 The instruction specifies the total number of dynamic table inserts
 and duplications since the last Table State Synchronize, encoded as a
 7-bit prefix integer. The encoder uses this value to determine which
 table entries are vulnerable to head-of-line blocking. A decoder MAY
 coalesce multiple synchronization updates into a single update.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Insert Count (7+) |
 +---+---------------------------+

 Figure 3: Table Size Synchronize

3.4.2. Header Acknowledgement

 After processing a header block on a request or push stream, the
 decoder emits a Header Acknowledgement instruction on the decoder
 stream. The instruction begins with the '0' one-bit pattern and
 includes the request stream's stream ID, encoded as a 7-bit prefix
 integer. It is used by the peer's QPACK encoder to know when it is
 safe to evict an entry.

 The same Stream ID can be identified multiple times, as multiple
 header blocks can be sent on a single stream in the case of
 intermediate responses, trailers, and pushed requests. Since header
 frames on each stream are received and processed in order, this gives
 the encoder precise feedback on which header blocks within a stream
 have been fully processed.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | Stream ID (7+) |
 +---+---------------------------+

 Figure 4: Header Acknowledgement

3.5. Request and Push Streams

 HEADERS and PUSH_PROMISE frames on request and push streams reference
 the dynamic table in a particular state without modifying it. Frames
 on these streams emit the headers for an HTTP request or response.

Krasic, et al. Expires November 24, 2018 [Page 11]

Internet-Draft QPACK May 2018

3.5.1. Header Data Prefix

 Header data is prefixed with two integers, "Largest Reference" and
 "Base Index".

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Largest Reference (8+) |
 +---+---------------------------+
 | S | Delta Base Index (7+) |
 +---+---------------------------+
 | Compressed Headers ...
 +-------------------------------+

 Figure 5: Frame Payload

 "Largest Reference" identifies the largest absolute dynamic index
 referenced in the block. Blocking decoders use the Largest Reference
 to determine when it is safe to process the rest of the block.

 "Base Index" is used to resolve references in the dynamic table as
 described in Section 3.2. To save space, Base Index is encoded
 relative to Largest Reference using a one-bit sign flag.

 baseIndex = largestReference + deltaBaseIndex

 If the encoder inserted entries to the table while the encoding the
 block, Largest Reference will be greater than Base Index, so
 deltaBaseIndex will be negative and encoded with S=1. If the block
 did not reference the most recent entry in the table and did not
 insert any new entries, Largest Reference will be less than Base
 Index, so deltaBaseIndex will be positive and encoded with S=0. When
 Largest Reference and Base Index are equal, deltaBaseIndex is 0 and
 encoded with S=0.

3.5.2. Instructions

3.5.2.1. Indexed Header Field

 An indexed header field representation identifies an entry in either
 the static table or the dynamic table and causes that header field to
 be added to the decoded header list, as described in Section 3.2 of
 [RFC7541].

https://datatracker.ietf.org/doc/html/rfc7541#section-3.2
https://datatracker.ietf.org/doc/html/rfc7541#section-3.2

Krasic, et al. Expires November 24, 2018 [Page 12]

Internet-Draft QPACK May 2018

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | S | Index (6+) |
 +---+---+-----------------------+

 Indexed Header Field

 If the entry is in the static table, or in the dynamic table with an
 absolute index less than or equal to Base Index, this representation
 starts with the '1' 1-bit pattern, followed by the "S" bit indicating
 whether the reference is into the static (S=1) or dynamic (S=0)
 table. Finally, the relative index of the matching header field is
 represented as an integer with a 6-bit prefix (see Section 5.1 of
 [RFC7541]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 | 0 | Index (4+) |
 +---+---+-----------------------+

 Indexed Header Field

 If the entry is in the dynamic table with an absolute index greater
 than Base Index, the representation starts with the '0100' 4-bit
 pattern, followed by the post-base index (see Section 3.2) of the
 matching header field, represented as an integer with a 4-bit prefix
 (see Section 5.1 of [RFC7541]).

3.5.2.2. Literal Header Field With Name Reference

 A literal header field with a name reference represents a header
 where the header field name matches the header field name of an entry
 stored in the static table or the dynamic table.

 If the entry is in the static table, or in the dynamic table with an
 absolute index less than or equal to Base Index, this representation
 starts with the '00' two-bit pattern. If the entry is in the dynamic
 table with an absolute index greater than Base Index, the
 representation starts with the '0101' four-bit pattern.

 The following bit, 'N', indicates whether an intermediary is
 permitted to add this header to the dynamic header table on
 subsequent hops. When the 'N' bit is set, the encoded header MUST
 always be encoded with a literal representation. In particular, when
 a peer sends a header field that it received represented as a literal
 header field with the 'N' bit set, it MUST use a literal
 representation to forward this header field. This bit is intended

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Krasic, et al. Expires November 24, 2018 [Page 13]

Internet-Draft QPACK May 2018

 for protecting header field values that are not to be put at risk by
 compressing them (see Section 7.1 of [RFC7541] for more details).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | N | S |Name Index (4+)|
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field With Name Reference

 For entries in the static table or in the dynamic table with an
 absolute index less than or equal to Base Index, the header field
 name is represented using the relative index of that entry, which is
 represented as an integer with a 4-bit prefix (see Section 5.1 of
 [RFC7541]). The "S" bit indicates whether the reference is to the
 static (S=1) or dynamic (S=0) table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 | 1 | N |NameIdx(3+)|
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field With Post-Base Name Reference

 For entries in the dynamic table with an absolute index greater than
 Base Index, the header field name is represented using the post-base
 index of that entry (see Section 3.2) encoded as an integer with a
 3-bit prefix.

3.5.2.3. Literal Header Field Without Name Reference

 An addition to the header table where both the header field name and
 the header field value are represented as string literals (see

Section 3.1) starts with the '011' three-bit pattern.

 The fourth bit, 'N', indicates whether an intermediary is permitted
 to add this header to the dynamic header table on subsequent hops.
 When the 'N' bit is set, the encoded header MUST always be encoded
 with a literal representation. In particular, when a peer sends a
 header field that it received represented as a literal header field

https://datatracker.ietf.org/doc/html/rfc7541#section-7.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Krasic, et al. Expires November 24, 2018 [Page 14]

Internet-Draft QPACK May 2018

 with the 'N' bit set, it MUST use a literal representation to forward
 this header field. This bit is intended for protecting header field
 values that are not to be put at risk by compressing them (see

Section 7.1 of [RFC7541] for more details).

 The name is represented as a 4-bit prefix string literal, while the
 value is represented as an 8-bit prefix string literal.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 1 | N | H |NameLen(3+)|
 +---+---+---+-------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field Without Name Reference

4. Encoding Strategies

4.1. Single pass encoding

 An encoder making a single pass over a list of headers must choose
 Base Index before knowing Largest Reference. When trying to
 reference a header inserted to the table after encoding has begun,
 the entry is encoded with different instructions that tell the
 decoder to use an absolute index greater than the Base Index.

4.2. Preventing Eviction Races

 Due to out-of-order arrival, QPACK's eviction algorithm requires
 changes (relative to HPACK) to avoid the possibility that an indexed
 representation is decoded after the referenced entry has already been
 evicted. QPACK employs a two-phase eviction algorithm, in which the
 encoder will not evict entries that have outstanding (unacknowledged)
 references.

4.3. Reference Tracking

 An encoder MUST ensure that a header block which references a dynamic
 table entry is not received by the decoder after the referenced entry
 has already been evicted. An encoder also respects the limit set by
 the decoder on the number of streams that are allowed to become
 blocked. Even if the decoder is willing to tolerate blocked streams,
 the encoder might choose to avoid them in certain cases.

https://datatracker.ietf.org/doc/html/rfc7541#section-7.1

Krasic, et al. Expires November 24, 2018 [Page 15]

Internet-Draft QPACK May 2018

 In order to enable this, the encoder will need to track outstanding
 (unacknowledged) header blocks and table updates using feedback
 received from the decoder.

4.3.1. Blocked Eviction

 The encoder MUST NOT permit an entry to be evicted while a reference
 to that entry remains unacknowledged. If a new header to be inserted
 into the dynamic table would cause the eviction of such an entry, the
 encoder MUST NOT emit the insert instruction until the reference has
 been processed by the decoder and acknowledged.

 The encoder can emit a literal representation for the new header in
 order to avoid encoding delays, and MAY insert the header into the
 table later if desired.

 To ensure that the blocked eviction case is rare, references to the
 oldest entries in the dynamic table SHOULD be avoided. When one of
 the oldest entries in the table is still actively used for
 references, the encoder SHOULD emit an Duplicate representation
 instead (see Section 3.3.3).

4.3.2. Blocked Decoding

 For header blocks encoded in non-blocking mode, the encoder needs to
 forego indexed representations that refer to table updates which have
 not yet been acknowledged with Section 3.4. Since all table updates
 are processed in sequence on the control stream, an index into the
 dynamic table is sufficient to track which entries have been
 acknowledged.

 To track blocked streams, the necessary Base Index value for each
 stream can be used. Whenever the decoder processes a table update,
 it can begin decoding any blocked streams that now have their
 dependencies satisfied.

4.4. Speculative table updates

 Implementations can _speculatively_ send header frames on the HTTP
 Control Streams which are not needed for any current HTTP request or
 response. Such headers could be used strategically to improve
 performance. For instance, the encoder might decide to _refresh_ by
 sending Duplicate representations for popular header fields
 (Section 3.3.3), ensuring they have small indices and hence minimal
 size on the wire.

Krasic, et al. Expires November 24, 2018 [Page 16]

Internet-Draft QPACK May 2018

4.5. Sample One Pass Encoding Algorithm

 Pseudo-code for single pass encoding, excluding handling of
 duplicates, non-blocking mode, and reference tracking.

 baseIndex = dynamicTable.baseIndex
 largestReference = 0
 for header in headers:
 staticIdx = staticTable.getIndex(header)
 if staticIdx:
 encodeIndexReference(streamBuffer, staticIdx)
 continue

 dynamicIdx = dynamicTable.getIndex(header)
 if !dynamicIdx:
 # No matching entry. Either insert+index or encode literal
 nameIdx = getNameIndex(header)
 if shouldIndex(header) and dynamicTable.canIndex(header):
 encodeLiteralWithIncrementalIndex(controlBuffer, nameIdx,
 header)
 dynamicTable.add(header)
 dynamicIdx = dynamicTable.baseIndex

 if !dynamicIdx:
 # Couldn't index it, literal
 if nameIdx <= staticTable.size:
 encodeLiteral(streamBuffer, nameIndex, header)
 else:
 # encode literal, possibly with nameIdx above baseIndex
 encodeDynamicLiteral(streamBuffer, nameIndex, baseIndex,
 header)
 largestReference = max(largestReference,
 dynamicTable.toAbsolute(nameIdx))
 else:
 # Dynamic index reference
 assert(dynamicIdx)
 largestReference = max(largestReference, dynamicIdx)
 # Encode dynamicIdx, possibly with dynamicIdx above baseIndex
 encodeDynamicIndexReference(streamBuffer, dynamicIdx,
 baseIndex)

 # encode the prefix
 encodeInteger(prefixBuffer, 0x00, largestReference, 8)
 delta = largestReference - baseIndex
 sign = delta > 0 ? 0x80 : 0
 encodeInteger(prefixBuffer, sign, delta, 7)

 return controlBuffer, prefixBuffer + streamBuffer

Krasic, et al. Expires November 24, 2018 [Page 17]

Internet-Draft QPACK May 2018

5. Security Considerations

 TBD.

6. IANA Considerations

 None.

7. References

7.1. Normative References

 [QUIC-HTTP]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-12 (work in progress), April
 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [QUIC-TRANSPORT]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-11 (work
 in progress), April 2018.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <https://www.rfc-editor.org/info/rfc2360>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540

Krasic, et al. Expires November 24, 2018 [Page 18]

Internet-Draft QPACK May 2018

7.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-qpack

Acknowledgments

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 from:

 o Ryan Hamilton

 o Patrick McManus

 o Kazuho Oku

 o Biren Roy

 o Ian Swett

 o Dmitri Tikhonov

Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-qcram-00

 o Separate instruction sets for table updates and header blocks
 (#1235, #1142, #1141)

 o Reworked indexing scheme (#1176, #1145, #1136, #1130, #1125,
 #1314)

 o Added mechanisms that support one-pass encoding (#1138, #1320)

 o Added a setting to control the number of blocked decoders (#238,
 #1140, #1143)

 o Moved table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qcram-00

Krasic, et al. Expires November 24, 2018 [Page 19]

Internet-Draft QPACK May 2018

Authors' Addresses

 Charles 'Buck' Krasic
 Google, Inc

 Email: ckrasic@google.com

 Mike Bishop
 Akamai Technologies

 Email: mbishop@evequefou.be

 Alan Frindell (editor)
 Facebook

 Email: afrind@fb.com

Krasic, et al. Expires November 24, 2018 [Page 20]

