
QUIC C. Krasic
Internet-Draft Netflix
Intended status: Standards Track M. Bishop
Expires: May 7, 2020 Akamai Technologies
 A. Frindell, Ed.
 Facebook
 November 04, 2019

QPACK: Header Compression for HTTP/3
draft-ietf-quic-qpack-11

Abstract

 This specification defines QPACK, a compression format for
 efficiently representing HTTP header fields, to be used in HTTP/3.
 This is a variation of HPACK header compression that seeks to reduce
 head-of-line blocking.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-qpack [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Krasic, et al. Expires May 7, 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QPACK November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions and Definitions 4
1.2. Notational Conventions 4

2. Compression Process Overview 5
2.1. Encoder . 5
2.1.1. Reference Tracking 5
2.1.2. Blocked Dynamic Table Insertions 6
2.1.3. Blocked Streams 7
2.1.4. Known Received Count 8

2.2. Decoder . 8
2.2.1. Blocked Decoding 8
2.2.2. State Synchronization 9
2.2.3. Invalid References 10

3. Header Tables . 10
3.1. Static Table . 10
3.2. Dynamic Table . 11
3.2.1. Dynamic Table Size 11
3.2.2. Dynamic Table Capacity and Eviction 11
3.2.3. Maximum Dynamic Table Capacity 12
3.2.4. Absolute Indexing 12
3.2.5. Relative Indexing 12
3.2.6. Post-Base Indexing 13

4. Wire Format . 14
4.1. Primitives . 14
4.1.1. Prefixed Integers 14
4.1.2. String Literals 14

4.2. Encoder and Decoder Streams 15
4.3. Encoder Instructions 15
4.3.1. Set Dynamic Table Capacity 16
4.3.2. Insert With Name Reference 16
4.3.3. Insert Without Name Reference 17

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Krasic, et al. Expires May 7, 2020 [Page 2]

Internet-Draft QPACK November 2019

4.3.4. Duplicate . 17
4.4. Decoder Instructions 18
4.4.1. Header Acknowledgement 18
4.4.2. Stream Cancellation 18
4.4.3. Insert Count Increment 19

4.5. Header Block Representations 19
4.5.1. Header Block Prefix 19
4.5.2. Indexed Header Field 22
4.5.3. Indexed Header Field With Post-Base Index 22
4.5.4. Literal Header Field With Name Reference 23

 4.5.5. Literal Header Field With Post-Base Name Reference . 24
4.5.6. Literal Header Field Without Name Reference 24

5. Configuration . 25
6. Error Handling . 25
7. Security Considerations 26
8. IANA Considerations . 26
8.1. Settings Registration 26
8.2. Stream Type Registration 26
8.3. Error Code Registration 27

9. References . 27
9.1. Normative References 27
9.2. Informative References 28
9.3. URIs . 28

Appendix A. Static Table . 28
Appendix B. Sample One Pass Encoding Algorithm 33
Appendix C. Change Log . 35
C.1. Since draft-ietf-quic-qpack-10 35
C.2. Since draft-ietf-quic-qpack-09 35
C.3. Since draft-ietf-quic-qpack-08 35
C.4. Since draft-ietf-quic-qpack-06 35
C.5. Since draft-ietf-quic-qpack-05 35
C.6. Since draft-ietf-quic-qpack-04 35
C.7. Since draft-ietf-quic-qpack-03 35
C.8. Since draft-ietf-quic-qpack-02 36
C.9. Since draft-ietf-quic-qpack-01 36
C.10. Since draft-ietf-quic-qpack-00 36
C.11. Since draft-ietf-quic-qcram-00 36

 Acknowledgments . 37
 Authors' Addresses . 37

1. Introduction

 The QUIC transport protocol [QUIC-TRANSPORT] is designed to support
 HTTP semantics, and its design subsumes many of the features of
 HTTP/2 [RFC7540]. HTTP/2 uses HPACK [RFC7541] for header
 compression. If HPACK were used for HTTP/3 [HTTP3], it would induce
 head-of-line blocking due to built-in assumptions of a total ordering
 across frames on all streams.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qcram-00
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Krasic, et al. Expires May 7, 2020 [Page 3]

Internet-Draft QPACK November 2019

 QPACK reuses core concepts from HPACK, but is redesigned to allow
 correctness in the presence of out-of-order delivery, with
 flexibility for implementations to balance between resilience against
 head-of-line blocking and optimal compression ratio. The design
 goals are to closely approach the compression ratio of HPACK with
 substantially less head-of-line blocking under the same loss
 conditions.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 Header field: A name-value pair sent as part of an HTTP message.

 Header list: An ordered collection of header fields associated with
 an HTTP message. A header list can contain multiple header fields
 with the same name. It can also contain duplicate header fields.

 Header block: The compressed representation of a header list.

 Encoder: An implementation which transforms a header list into a
 header block.

 Decoder: An implementation which transforms a header block into a
 header list.

 Absolute Index: A unique index for each entry in the dynamic table.

 Base: A reference point for relative and post-base indices.
 References to dynamic table entries in header blocks are relative
 to a Base.

 Insert Count: The total number of entries inserted in the dynamic
 table.

 QPACK is a name, not an acronym.

1.2. Notational Conventions

 Diagrams use the format described in Section 3.1 of [RFC2360], with
 the following additional conventions:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2360#section-3.1

Krasic, et al. Expires May 7, 2020 [Page 4]

Internet-Draft QPACK November 2019

 x (A) Indicates that x is A bits long

 x (A+) Indicates that x uses the prefixed integer encoding defined
 in Section 4.1.1, beginning with an A-bit prefix.

 x ... Indicates that x is variable-length and extends to the end of
 the region.

2. Compression Process Overview

 Like HPACK, QPACK uses two tables for associating header fields to
 indices. The static table (see Section 3.1) is predefined and
 contains common header fields (some of them with an empty value).
 The dynamic table (see Section 3.2) is built up over the course of
 the connection and can be used by the encoder to index header fields
 in the encoded header lists.

 QPACK defines unidirectional streams for sending instructions from
 encoder to decoder and vice versa.

2.1. Encoder

 An encoder converts a header list into a header block by emitting
 either an indexed or a literal representation for each header field
 in the list (see Section 4.5). Indexed representations achieve high
 compression by replacing the literal name and possibly the value with
 an index to either the static or dynamic table. References to the
 static table and literal representations do not require any dynamic
 state and never risk head-of-line blocking. References to the
 dynamic table risk head-of-line blocking if the encoder has not
 received an acknowledgement indicating the entry is available at the
 decoder.

 An encoder MAY insert any entry in the dynamic table it chooses; it
 is not limited to header fields it is compressing.

 QPACK preserves the ordering of header fields within each header
 list. An encoder MUST emit header field representations in the order
 they appear in the input header list.

 QPACK is designed to contain the more complex state tracking to the
 encoder, while the decoder is relatively simple.

2.1.1. Reference Tracking

 An encoder MUST ensure that a header block which references a dynamic
 table entry is not processed by the decoder after the referenced
 entry has been evicted. Hence the encoder needs to retain

Krasic, et al. Expires May 7, 2020 [Page 5]

Internet-Draft QPACK November 2019

 information about each compressed header block that references the
 dynamic table until that header block is acknowledged by the decoder
 (see Section 4.4.1).

2.1.2. Blocked Dynamic Table Insertions

 A dynamic table entry is considered blocking and cannot be evicted
 until its insertion has been acknowledged and there are no
 outstanding unacknowledged references to the entry. In particular, a
 dynamic table entry that has never been referenced can still be
 blocking.

 An encoder MUST NOT insert an entry into the dynamic table (or
 duplicate an existing entry) if doing so would evict a blocking
 entry. In order to avoid this, an encoder that uses the dynamic
 table has to keep track of blocking entries.

 Note: A blocking entry is unrelated to a blocked stream, see
Section 2.1.3.

2.1.2.1. Avoiding Blocked Insertions

 To ensure that the encoder is not prevented from adding new entries,
 the encoder can avoid referencing entries that are close to eviction.
 Rather than reference such an entry, the encoder can emit a Duplicate
 instruction (see Section 4.3.4), and reference the duplicate instead.

 Determining which entries are too close to eviction to reference is
 an encoder preference. One heuristic is to target a fixed amount of
 available space in the dynamic table: either unused space or space
 that can be reclaimed by evicting non-blocking entries. To achieve
 this, the encoder can maintain a draining index, which is the
 smallest absolute index (see Section 3.2.4) in the dynamic table that
 it will emit a reference for. As new entries are inserted, the
 encoder increases the draining index to maintain the section of the
 table that it will not reference. If the encoder does not create new
 references to entries with an absolute index lower than the draining
 index, the number of unacknowledged references to those entries will
 eventually become zero, allowing them to be evicted.

Krasic, et al. Expires May 7, 2020 [Page 6]

Internet-Draft QPACK November 2019

 +----------+---------------------------------+--------+
 | Draining | Referenceable | Unused |
 | Entries | Entries | Space |
 +----------+---------------------------------+--------+
 ^ ^ ^
 | | |
 Dropping Draining Index Insertion Point
 Point

 Figure 1: Draining Dynamic Table Entries

2.1.3. Blocked Streams

 Because QUIC does not guarantee order between data on different
 streams, a decoder might encounter a header block that references a
 dynamic table entry that it has not yet received.

 Each header block contains a Required Insert Count (see
Section 4.5.1), the lowest possible value for the Insert Count with

 which the header block can be decoded. For a header block with
 references to the dynamic table, the Required Insert Count is one
 larger than the largest absolute index of all referenced dynamic
 table entries. For a header block with no references to the dynamic
 table, the Required Insert Count is zero.

 When the decoder receives a header block with a Required Insert Count
 greater than its own Insert Count, the stream cannot be processed
 immediately, and is considered "blocked" (see Section 2.2.1).

 The decoder specifies an upper bound on the number of streams which
 can be blocked using the SETTINGS_QPACK_BLOCKED_STREAMS setting (see

Section 5). An encoder MUST limit the number of streams which could
 become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all
 times. If a decoder encounters more blocked streams than it promised
 to support, it MUST treat this as a connection error of type
 HTTP_QPACK_DECOMPRESSION_FAILED.

 Note that the decoder might not become blocked on every stream which
 risks becoming blocked.

 An encoder can decide whether to risk having a stream become blocked.
 If permitted by the value of SETTINGS_QPACK_BLOCKED_STREAMS,
 compression efficiency can often be improved by referencing dynamic
 table entries that are still in transit, but if there is loss or
 reordering the stream can become blocked at the decoder. An encoder
 can avoid the risk of blocking by only referencing dynamic table
 entries which have been acknowledged, but this could mean using
 literals. Since literals make the header block larger, this can

Krasic, et al. Expires May 7, 2020 [Page 7]

Internet-Draft QPACK November 2019

 result in the encoder becoming blocked on congestion or flow control
 limits.

2.1.4. Known Received Count

 The Known Received Count is the total number of dynamic table
 insertions and duplications acknowledged by the decoder. The encoder
 tracks the Known Received Count in order to identify which dynamic
 table entries can be referenced without potentially blocking a
 stream. The decoder tracks the Known Received Count in order to be
 able to send Insert Count Increment instructions (see Section 4.4.3).

 If a header block was potentially blocking, the encoder infers from
 receiving a Header Acknowledgement instruction (Section 4.4.1) that
 the decoder has received all dynamic table state necessary to process
 that header block. If the Required Insert Count of the acknowledged
 header block is greater than the current Known Received Count, the
 encoder updates the Known Received Count to the value of the Required
 Insert Count of the acknowledged header block.

 To acknowledge dynamic table entries which are not referenced by
 header blocks, for example because the encoder or the decoder have
 chosen not to risk blocked streams, the decoder sends an Insert Count
 Increment instruction (see Section 4.4.3).

2.2. Decoder

 As in HPACK, the decoder processes header blocks and emits the
 corresponding header lists. It also processes instructions received
 on the encoder stream that modify the dynamic table. Note that
 header blocks and encoder stream instructions arrive on separate
 streams. This is unlike HPACK, where header blocks can contain
 instructions that modify the dynamic table, and there is no dedicated
 stream of HPACK instructions.

 The decoder MUST emit header fields in the order their
 representations appear in the input header block.

2.2.1. Blocked Decoding

 Upon receipt of a header block, the decoder examines the Required
 Insert Count. When the Required Insert Count is less than or equal
 to the decoder's Insert Count, the header block can be processed
 immediately. Otherwise, the stream on which the header block was
 received becomes blocked.

 While blocked, header block data SHOULD remain in the blocked
 stream's flow control window. A stream becomes unblocked when the

Krasic, et al. Expires May 7, 2020 [Page 8]

Internet-Draft QPACK November 2019

 Insert Count becomes greater than or equal to the Required Insert
 Count for all header blocks the decoder has started reading from the
 stream.

 When processing header blocks, the decoder expects the Required
 Insert Count to exactly match the value defined in Section 2.1.3. If
 it encounters a smaller value than expected, it MUST treat this as a
 connection error of type HTTP_QPACK_DECOMPRESSION_FAILED (see

Section 2.2.3). If it encounters a larger value than expected, it
 MAY treat this as a connection error of type
 HTTP_QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

 The decoder signals the following events by emitting decoder
 instructions (Section 4.4) on the decoder stream.

2.2.2.1. Completed Processing of a Header Block

 After the decoder finishes decoding a header block containing dynamic
 table references, it MUST emit a Header Acknowledgement instruction
 (Section 4.4.1). A stream may carry multiple header blocks in the
 case of intermediate responses, trailers, and pushed requests. The
 encoder interprets each Header Acknowledgement instruction as
 acknowledging the earliest unacknowledged header block containing
 dynamic table references sent on the given stream.

2.2.2.2. Abandonment of a Stream

 When an endpoint receives a stream reset before the end of a stream
 or before all header blocks are processed on that stream, or when it
 abandons reading of a stream, it generates a Stream Cancellation
 instruction (see Section 4.4.2). This signals to the encoder that
 all references to the dynamic table on that stream are no longer
 outstanding. A decoder with a maximum dynamic table capacity equal
 to zero (see Section 3.2.3) MAY omit sending Stream Cancellations,
 because the encoder cannot have any dynamic table references. An
 encoder cannot infer from this instruction that any updates to the
 dynamic table have been received.

 The Header Acknowledgement and Stream Cancellation instructions
 permit the encoder to remove references to entries in the dynamic
 table. When an entry with absolute index lower than the Known
 Received Count has zero references, then it is no longer considered
 blocking (see Section 2.1.2).

Krasic, et al. Expires May 7, 2020 [Page 9]

Internet-Draft QPACK November 2019

2.2.2.3. New Table Entries

 After receiving new table entries on the encoder stream, the decoder
 chooses when to emit Insert Count Increment instructions (see

Section 4.4.3). Emitting this instruction after adding each new
 dynamic table entry will provide the timeliest feedback to the
 encoder, but could be redundant with other decoder feedback. By
 delaying an Insert Count Increment instruction, the decoder might be
 able to coalesce multiple Insert Count Increment instructions, or
 replace them entirely with Header Acknowledgements (see

Section 4.4.1). However, delaying too long may lead to compression
 inefficiencies if the encoder waits for an entry to be acknowledged
 before using it.

2.2.3. Invalid References

 If the decoder encounters a reference in a header block
 representation to a dynamic table entry which has already been
 evicted or which has an absolute index greater than or equal to the
 declared Required Insert Count (see Section 4.5.1), it MUST treat
 this as a connection error of type "HTTP_QPACK_DECOMPRESSION_FAILED".

 If the decoder encounters a reference in an encoder instruction to a
 dynamic table entry which has already been evicted, it MUST treat
 this as a connection error of type "HTTP_QPACK_ENCODER_STREAM_ERROR".

3. Header Tables

 Unlike in HPACK, entries in the QPACK static and dynamic tables are
 addressed separately. The following sections describe how entries in
 each table are addressed.

3.1. Static Table

 The static table consists of a predefined static list of header
 fields, each of which has a fixed index over time. Its entries are
 defined in Appendix A.

 All entries in the static table have a name and a value. However,
 values can be empty (that is, have a length of 0). Each entry is
 identified by a unique index.

 Note that the QPACK static table is indexed from 0, whereas the HPACK
 static table is indexed from 1.

 When the decoder encounters an invalid static table index in a header
 block representation it MUST treat this as a connection error of type
 "HTTP_QPACK_DECOMPRESSION_FAILED". If this index is received on the

Krasic, et al. Expires May 7, 2020 [Page 10]

Internet-Draft QPACK November 2019

 encoder stream, this MUST be treated as a connection error of type
 "HTTP_QPACK_ENCODER_STREAM_ERROR".

3.2. Dynamic Table

 The dynamic table consists of a list of header fields maintained in
 first-in, first-out order. Each HTTP/3 endpoint holds a dynamic
 table that is initially empty. Entries are added by encoder
 instructions received on the encoder stream (see Section 4.3).

 The dynamic table can contain duplicate entries (i.e., entries with
 the same name and same value). Therefore, duplicate entries MUST NOT
 be treated as an error by the decoder.

 Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size

 The size of the dynamic table is the sum of the size of its entries.

 The size of an entry is the sum of its name's length in bytes, its
 value's length in bytes, and 32. The size of an entry is calculated
 using the length of its name and value without Huffman encoding
 applied.

3.2.2. Dynamic Table Capacity and Eviction

 The encoder sets the capacity of the dynamic table, which serves as
 the upper limit on its size. The initial capacity of the dynamic
 table is zero. The encoder sends a Set Dynamic Table Capacity
 instruction (Section 4.3.1) with a non-zero capacity to begin using
 the dynamic table.

 Before a new entry is added to the dynamic table, entries are evicted
 from the end of the dynamic table until the size of the dynamic table
 is less than or equal to (table capacity - size of new entry). The
 encoder MUST NOT cause a blocking dynamic table entry to be evicted
 (see Section 2.1.2). The new entry is then added to the table. It
 is an error if the encoder attempts to add an entry that is larger
 than the dynamic table capacity; the decoder MUST treat this as a
 connection error of type "HTTP_QPACK_ENCODER_STREAM_ERROR".

 A new entry can reference an entry in the dynamic table that will be
 evicted when adding this new entry into the dynamic table.
 Implementations are cautioned to avoid deleting the referenced name
 or value if the referenced entry is evicted from the dynamic table
 prior to inserting the new entry.

Krasic, et al. Expires May 7, 2020 [Page 11]

Internet-Draft QPACK November 2019

 Whenever the dynamic table capacity is reduced by the encoder (see
Section 4.3.1), entries are evicted from the end of the dynamic table

 until the size of the dynamic table is less than or equal to the new
 table capacity. This mechanism can be used to completely clear
 entries from the dynamic table by setting a capacity of 0, which can
 subsequently be restored.

3.2.3. Maximum Dynamic Table Capacity

 To bound the memory requirements of the decoder, the decoder limits
 the maximum value the encoder is permitted to set for the dynamic
 table capacity. In HTTP/3, this limit is determined by the value of
 SETTINGS_QPACK_MAX_TABLE_CAPACITY sent by the decoder (see

Section 5). The encoder MUST not set a dynamic table capacity that
 exceeds this maximum, but it can choose to use a lower dynamic table
 capacity (see Section 4.3.1).

 For clients using 0-RTT data in HTTP/3, the server's maximum table
 capacity is the remembered value of the setting, or zero if the value
 was not previously sent. When the client's 0-RTT value of the
 SETTING is zero, the server MAY set it to a non-zero value in its
 SETTINGS frame. If the remembered value is non-zero, the server MUST
 send the same non-zero value in its SETTINGS frame. If it specifies
 any other value, or omits SETTINGS_QPACK_MAX_TABLE_CAPACITY from
 SETTINGS, the encoder must treat this as a connection error of type
 "HTTP_QPACK_DECODER_STREAM_ERROR".

 For HTTP/3 servers and HTTP/3 clients when 0-RTT is not attempted or
 is rejected, the maximum table capacity is 0 until the encoder
 processes a SETTINGS frame with a non-zero value of
 SETTINGS_QPACK_MAX_TABLE_CAPACITY.

 When the maximum table capacity is zero, the encoder MUST NOT insert
 entries into the dynamic table, and MUST NOT send any encoder
 instructions on the encoder stream.

3.2.4. Absolute Indexing

 Each entry possesses an absolute index which is fixed for the
 lifetime of that entry. The first entry inserted has an absolute
 index of "0"; indices increase by one with each insertion.

3.2.5. Relative Indexing

 Relative indices begin at zero and increase in the opposite direction
 from the absolute index. Determining which entry has a relative
 index of "0" depends on the context of the reference.

Krasic, et al. Expires May 7, 2020 [Page 12]

Internet-Draft QPACK November 2019

 In encoder instructions (see Section 4.3), a relative index of "0"
 refers to the most recently inserted value in the dynamic table.
 Note that this means the entry referenced by a given relative index
 will change while interpreting instructions on the encoder stream.

 +-----+---------------+-------+
 | n-1 | ... | d | Absolute Index
 + - - +---------------+ - - - +
 | 0 | ... | n-d-1 | Relative Index
 +-----+---------------+-------+
 ^ |
 | V
 Insertion Point Dropping Point

 n = count of entries inserted
 d = count of entries dropped

 Example Dynamic Table Indexing - Encoder Stream

 Unlike in encoder instructions, relative indices in header block
 representations are relative to the Base at the beginning of the
 header block (see Section 4.5.1). This ensures that references are
 stable even if header blocks and dynamic table updates are processed
 out of order.

 In a header block a relative index of "0" refers to the entry with
 absolute index equal to Base - 1.

 Base
 |
 V
 +-----+-----+-----+-----+-------+
 | n-1 | n-2 | n-3 | ... | d | Absolute Index
 +-----+-----+ - +-----+ - +
 | 0 | ... | n-d-3 | Relative Index
 +-----+-----+-------+

 n = count of entries inserted
 d = count of entries dropped
 In this example, Base = n - 2

 Example Dynamic Table Indexing - Relative Index in Header Block

3.2.6. Post-Base Indexing

 Post-Base indices are used in header block instructions for entries
 with absolute indices greater than or equal to Base, starting at 0

Krasic, et al. Expires May 7, 2020 [Page 13]

Internet-Draft QPACK November 2019

 for the entry with absolute index equal to Base, and increasing in
 the same direction as the absolute index.

 Post-Base indices allow an encoder to process a header block in a
 single pass and include references to entries added while processing
 this (or other) header blocks.

 Base
 |
 V
 +-----+-----+-----+-----+-----+
 | n-1 | n-2 | n-3 | ... | d | Absolute Index
 +-----+-----+-----+-----+-----+
 | 1 | 0 | Post-Base Index
 +-----+-----+

 n = count of entries inserted
 d = count of entries dropped
 In this example, Base = n - 2

 Example Dynamic Table Indexing - Post-Base Index in Header Block

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

 The prefixed integer from Section 5.1 of [RFC7541] is used heavily
 throughout this document. The format from [RFC7541] is used
 unmodified. Note, however, that QPACK uses some prefix sizes not
 actually used in HPACK.

 QPACK implementations MUST be able to decode integers up to and
 including 62 bits long.

4.1.2. String Literals

 The string literal defined by Section 5.2 of [RFC7541] is also used
 throughout. This string format includes optional Huffman encoding.

 HPACK defines string literals to begin on a byte boundary. They
 begin with a single bit flag, denoted as 'H' in this document
 (indicating whether the string is Huffman-coded), followed by the
 Length encoded as a 7-bit prefix integer, and finally Length bytes of
 data. When Huffman encoding is enabled, the Huffman table from

Appendix B of [RFC7541] is used without modification.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#appendix-B

Krasic, et al. Expires May 7, 2020 [Page 14]

Internet-Draft QPACK November 2019

 This document expands the definition of string literals and permits
 them to begin other than on a byte boundary. An "N-bit prefix string
 literal" begins with the same Huffman flag, followed by the length
 encoded as an (N-1)-bit prefix integer. The prefix size, N, can have
 a value between 2 and 8 inclusive. The remainder of the string
 literal is unmodified.

 A string literal without a prefix length noted is an 8-bit prefix
 string literal and follows the definitions in [RFC7541] without
 modification.

4.2. Encoder and Decoder Streams

 QPACK defines two unidirectional stream types:

 o An encoder stream is a unidirectional stream of type "0x02". It
 carries an unframed sequence of encoder instructions from encoder
 to decoder.

 o A decoder stream is a unidirectional stream of type "0x03". It
 carries an unframed sequence of decoder instructions from decoder
 to encoder.

 HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint
 MUST initiate at most one encoder stream and at most one decoder
 stream. Receipt of a second instance of either stream type MUST be
 treated as a connection error of type HTTP_STREAM_CREATION_ERROR.
 These streams MUST NOT be closed. Closure of either unidirectional
 stream type MUST be treated as a connection error of type
 HTTP_CLOSED_CRITICAL_STREAM.

 An endpoint MAY avoid creating an encoder stream if it's not going to
 be used (for example if its encoder doesn't wish to use the dynamic
 table, or if the maximum size of the dynamic table permitted by the
 peer is zero).

 An endpoint MAY avoid creating a decoder stream if its decoder sets
 the maximum capacity of the dynamic table to zero.

 An endpoint MUST allow its peer to create an encoder stream and a
 decoder stream even if the connection's settings prevent their use.

4.3. Encoder Instructions

 An encoder sends encoder instructions on the encoder stream to set
 the capacity of the dynamic table and add dynamic table entries.
 Instructions adding table entries can use existing entries to avoid
 transmitting redundant information. The name can be transmitted as a

https://datatracker.ietf.org/doc/html/rfc7541

Krasic, et al. Expires May 7, 2020 [Page 15]

Internet-Draft QPACK November 2019

 reference to an existing entry in the static or the dynamic table or
 as a string literal. For entries which already exist in the dynamic
 table, the full entry can also be used by reference, creating a
 duplicate entry.

 This section specifies the following encoder instructions.

4.3.1. Set Dynamic Table Capacity

 An encoder informs the decoder of a change to the dynamic table
 capacity using an instruction which begins with the '001' three-bit
 pattern. This is followed by the new dynamic table capacity
 represented as an integer with a 5-bit prefix (see Section 4.1.1).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | Capacity (5+) |
 +---+---+---+-------------------+

 Figure 2: Set Dynamic Table Capacity

 The new capacity MUST be lower than or equal to the limit described
 in Section 3.2.3. In HTTP/3, this limit is the value of the
 SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (see Section 5) received
 from the decoder. The decoder MUST treat a new dynamic table
 capacity value that exceeds this limit as a connection error of type
 "HTTP_QPACK_ENCODER_STREAM_ERROR".

 Reducing the dynamic table capacity can cause entries to be evicted
 (see Section 3.2.2). This MUST NOT cause the eviction of blocking
 entries (see Section 2.1.2). Changing the capacity of the dynamic
 table is not acknowledged as this instruction does not insert an
 entry.

4.3.2. Insert With Name Reference

 An encoder adds an entry to the dynamic table where the header field
 name matches the header field name of an entry stored in the static
 or the dynamic table using an instruction that starts with the '1'
 one-bit pattern. The second ('T') bit indicates whether the
 reference is to the static or dynamic table. The 6-bit prefix
 integer (see Section 4.1.1) that follows is used to locate the table
 entry for the header name. When T=1, the number represents the
 static table index; when T=0, the number is the relative index of the
 entry in the dynamic table.

 The header name reference is followed by the header field value
 represented as a string literal (see Section 4.1.2).

Krasic, et al. Expires May 7, 2020 [Page 16]

Internet-Draft QPACK November 2019

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | T | Name Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Insert Header Field -- Indexed Name

4.3.3. Insert Without Name Reference

 An encoder adds an entry to the dynamic table where both the header
 field name and the header field value are represented as string
 literals using an instruction that starts with the '01' two-bit
 pattern.

 This is followed by the name represented as a 6-bit prefix string
 literal, and the value represented as an 8-bit prefix string literal
 (see Section 4.1.2).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | H | Name Length (5+) |
 +---+---+---+-------------------+
 | Name String (Length bytes) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Insert Header Field -- New Name

4.3.4. Duplicate

 An encoder duplicates an existing entry in the dynamic table using an
 instruction that begins with the '000' three-bit pattern. This is
 followed by the relative index of the existing entry represented as
 an integer with a 5-bit prefix (see Section 4.1.1.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | Index (5+) |
 +---+---+---+-------------------+

 Figure 3: Duplicate

Krasic, et al. Expires May 7, 2020 [Page 17]

Internet-Draft QPACK November 2019

 The existing entry is re-inserted into the dynamic table without
 resending either the name or the value. This is useful to avoid
 adding a reference to an older entry, which might block inserting new
 entries.

4.4. Decoder Instructions

 A decoder sends decoder instructions on the decoder stream to inform
 the encoder about the processing of header blocks and table updates
 to ensure consistency of the dynamic table.

 This section specifies the following decoder instructions.

4.4.1. Header Acknowledgement

 After processing a header block whose declared Required Insert Count
 is not zero, the decoder emits a Header Acknowledgement instruction.
 The instruction begins with the '1' one-bit pattern which is followed
 by the header block's associated stream ID encoded as a 7-bit prefix
 integer (see Section 4.1.1).

 This instruction is used as described in Section 2.1.4 and in
Section 2.2.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Stream ID (7+) |
 +---+---------------------------+

 Figure 4: Header Acknowledgement

 If an encoder receives a Header Acknowledgement instruction referring
 to a stream on which every header block with a non-zero Required
 Insert Count has already been acknowledged, that MUST be treated as a
 connection error of type "HTTP_QPACK_DECODER_STREAM_ERROR".

4.4.2. Stream Cancellation

 When a stream is reset or reading is abandoned, the decoder emits a
 Stream Cancellation instruction. The instruction begins with the
 '01' two-bit pattern, which is followed by the stream ID of the
 affected stream encoded as a 6-bit prefix integer.

 This instruction is used as described in Section 2.2.2.

Krasic, et al. Expires May 7, 2020 [Page 18]

Internet-Draft QPACK November 2019

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Stream ID (6+) |
 +---+---+-----------------------+

 Figure 5: Stream Cancellation

4.4.3. Insert Count Increment

 The Insert Count Increment instruction begins with the '00' two-bit
 pattern, followed by the Increment encoded as a 6-bit prefix integer.
 The value of the Increment is the total number of dynamic table
 insertions and duplications processed by the decoder since the last
 time it sent a Header Acknowledgement instruction that increased the
 Known Received Count (see Section 2.1.4) or an Insert Count Increment
 instruction. The encoder uses this value to update the Known
 Received Count, as described in Section 2.2.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | Increment (6+) |
 +---+---+-----------------------+

 Figure 6: Insert Count Increment

 An encoder that receives an Increment field equal to zero, or one
 that increases the Known Received Count beyond what the encoder has
 sent MUST treat this as a connection error of type
 "HTTP_QPACK_DECODER_STREAM_ERROR".

4.5. Header Block Representations

 A header block consists of a prefix and a possibly empty sequence of
 representations defined in this section. Each representation
 corresponds to a single header field. These representations
 reference the static table or the dynamic table in a particular
 state, but do not modify that state.

 Header blocks are carried in frames on streams defined by the
 enclosing protocol.

4.5.1. Header Block Prefix

 Each header block is prefixed with two integers. The Required Insert
 Count is encoded as an integer with an 8-bit prefix after the
 encoding described in Section 4.5.1.1). The Base is encoded as a
 sign bit ('S') and a Delta Base value with a 7-bit prefix (see

Section 4.5.1.2).

Krasic, et al. Expires May 7, 2020 [Page 19]

Internet-Draft QPACK November 2019

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Required Insert Count (8+) |
 +---+---------------------------+
 | S | Delta Base (7+) |
 +---+---------------------------+
 | Compressed Headers ...
 +-------------------------------+

 Figure 7: Header Block

4.5.1.1. Required Insert Count

 Required Insert Count identifies the state of the dynamic table
 needed to process the header block. Blocking decoders use the
 Required Insert Count to determine when it is safe to process the
 rest of the block.

 The encoder transforms the Required Insert Count as follows before
 encoding:

 if ReqInsertCount == 0:
 EncInsertCount = 0
 else:
 EncInsertCount = (ReqInsertCount mod (2 * MaxEntries)) + 1

 Here "MaxEntries" is the maximum number of entries that the dynamic
 table can have. The smallest entry has empty name and value strings
 and has the size of 32. Hence "MaxEntries" is calculated as

 MaxEntries = floor(MaxTableCapacity / 32)

 "MaxTableCapacity" is the maximum capacity of the dynamic table as
 specified by the decoder (see Section 3.2.3).

 This encoding limits the length of the prefix on long-lived
 connections.

 The decoder can reconstruct the Required Insert Count using an
 algorithm such as the following. If the decoder encounters a value
 of EncodedInsertCount that could not have been produced by a
 conformant encoder, it MUST treat this as a connection error of type
 "HTTP_QPACK_DECOMPRESSION_FAILED".

 TotalNumberOfInserts is the total number of inserts into the
 decoder's dynamic table.

Krasic, et al. Expires May 7, 2020 [Page 20]

Internet-Draft QPACK November 2019

 FullRange = 2 * MaxEntries
 if EncodedInsertCount == 0:
 ReqInsertCount = 0
 else:
 if EncodedInsertCount > FullRange:
 Error
 MaxValue = TotalNumberOfInserts + MaxEntries

 # MaxWrapped is the largest possible value of
 # ReqInsertCount that is 0 mod 2*MaxEntries
 MaxWrapped = floor(MaxValue / FullRange) * FullRange
 ReqInsertCount = MaxWrapped + EncodedInsertCount - 1

 # If ReqInsertCount exceeds MaxValue, the Encoder's value
 # must have wrapped one fewer time
 if ReqInsertCount > MaxValue:
 if ReqInsertCount <= FullRange:
 Error
 ReqInsertCount -= FullRange

 # Value of 0 must be encoded as 0.
 if ReqInsertCount == 0:
 Error

 For example, if the dynamic table is 100 bytes, then the Required
 Insert Count will be encoded modulo 6. If a decoder has received 10
 inserts, then an encoded value of 3 indicates that the Required
 Insert Count is 9 for the header block.

4.5.1.2. Base

 The "Base" is used to resolve references in the dynamic table as
 described in Section 3.2.5.

 To save space, the Base is encoded relative to the Required Insert
 Count using a one-bit sign ('S') and the "Delta Base" value. A sign
 bit of 0 indicates that the Base is greater than or equal to the
 value of the Required Insert Count; the decoder adds the value of
 Delta Base to the Required Insert Count to determine the value of the
 Base. A sign bit of 1 indicates that the Base is less than the
 Required Insert Count; the decoder subtracts the value of Delta Base
 from the Required Insert Count and also subtracts one to determine
 the value of the Base. That is:

 if S == 0:
 Base = ReqInsertCount + DeltaBase
 else:
 Base = ReqInsertCount - DeltaBase - 1

Krasic, et al. Expires May 7, 2020 [Page 21]

Internet-Draft QPACK November 2019

 A single-pass encoder determines the Base before encoding a header
 block. If the encoder inserted entries in the dynamic table while
 encoding the header block, Required Insert Count will be greater than
 the Base, so the encoded difference is negative and the sign bit is
 set to 1. If the header block did not reference the most recent
 entry in the table and did not insert any new entries, the Base will
 be greater than the Required Insert Count, so the delta will be
 positive and the sign bit is set to 0.

 An encoder that produces table updates before encoding a header block
 might set Base to the value of Required Insert Count. In such case,
 both the sign bit and the Delta Base will be set to zero.

 A header block that does not reference the dynamic table can use any
 value for the Base; setting Delta Base to zero is one of the most
 efficient encodings.

 For example, with a Required Insert Count of 9, a decoder receives an
 S bit of 1 and a Delta Base of 2. This sets the Base to 6 and
 enables post-base indexing for three entries. In this example, a
 relative index of 1 refers to the 5th entry that was added to the
 table; a post-base index of 1 refers to the 8th entry.

4.5.2. Indexed Header Field

 An indexed header field representation identifies an entry in the
 static table, or an entry in the dynamic table with an absolute index
 less than the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | T | Index (6+) |
 +---+---+-----------------------+

 Indexed Header Field

 This representation starts with the '1' 1-bit pattern, followed by
 the 'T' bit indicating whether the reference is into the static or
 dynamic table. The 6-bit prefix integer (see Section 4.1.1) that
 follows is used to locate the table entry for the header field. When
 T=1, the number represents the static table index; when T=0, the
 number is the relative index of the entry in the dynamic table.

4.5.3. Indexed Header Field With Post-Base Index

 An indexed header field with post-base index representation
 identifies an entry in the dynamic table with an absolute index
 greater than or equal to the Base.

Krasic, et al. Expires May 7, 2020 [Page 22]

Internet-Draft QPACK November 2019

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | Index (4+) |
 +---+---+---+---+---------------+

 Indexed Header Field with Post-Base Index

 This representation starts with the '0001' 4-bit pattern. This is
 followed by the post-base index (see Section 3.2.6) of the matching
 header field, represented as an integer with a 4-bit prefix (see

Section 4.1.1).

4.5.4. Literal Header Field With Name Reference

 A literal header field with name reference representation encodes a
 header field where the header field name matches the header field
 name of an entry in the static table, or the header field name of an
 entry in the dynamic table with an absolute index less than the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | N | T |Name Index (4+)|
 +---+---+---+---+---------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Literal Header Field With Name Reference

 This representation starts with the '01' two-bit pattern. The
 following bit, 'N', indicates whether an intermediary is permitted to
 add this header to the dynamic header table on subsequent hops. When
 the 'N' bit is set, the encoded header MUST always be encoded with a
 literal representation. In particular, when a peer sends a header
 field that it received represented as a literal header field with the
 'N' bit set, it MUST use a literal representation to forward this
 header field. This bit is intended for protecting header field
 values that are not to be put at risk by compressing them (see

Section 7 for more details).

 The fourth ('T') bit indicates whether the reference is to the static
 or dynamic table. The 4-bit prefix integer (see Section 4.1.1) that
 follows is used to locate the table entry for the header name. When
 T=1, the number represents the static table index; when T=0, the
 number is the relative index of the entry in the dynamic table.

Krasic, et al. Expires May 7, 2020 [Page 23]

Internet-Draft QPACK November 2019

 Only the header field name is taken from the dynamic table entry; the
 header field value is encoded as an 8-bit prefix string literal (see

Section 4.1.2).

4.5.5. Literal Header Field With Post-Base Name Reference

 A literal header field with post-base name reference representation
 encodes a header field where the header field name matches the header
 field name of a dynamic table entry with an absolute index greater
 than or equal to the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | N |NameIdx(3+)|
 +---+---+---+---+---+-----------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Literal Header Field With Post-Base Name Reference

 This representation starts with the '0000' four-bit pattern. The
 fifth bit is the 'N' bit as described in Section 4.5.4. This is
 followed by a post-base index of the dynamic table entry (see

Section 3.2.6) encoded as an integer with a 3-bit prefix (see
Section 4.1.1).

 Only the header field name is taken from the dynamic table entry; the
 header field value is encoded as an 8-bit prefix string literal (see

Section 4.1.2).

4.5.6. Literal Header Field Without Name Reference

 The literal header field without name reference representation
 encodes a header field name and a header field value as string
 literals.

Krasic, et al. Expires May 7, 2020 [Page 24]

Internet-Draft QPACK November 2019

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | N | H |NameLen(3+)|
 +---+---+---+---+---+-----------+
 | Name String (Length bytes) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Literal Header Field Without Name Reference

 This representation begins with the '001' three-bit pattern. The
 fourth bit is the 'N' bit as described in Section 4.5.4. The name
 follows, represented as a 4-bit prefix string literal, then the
 value, represented as an 8-bit prefix string literal (see

Section 4.1.2).

5. Configuration

 QPACK defines two settings which are included in the HTTP/3 SETTINGS
 frame.

 SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x1): The default value is zero.
 See Section 3.2 for usage. This is the equivalent of the
 SETTINGS_HEADER_TABLE_SIZE from HTTP/2.

 SETTINGS_QPACK_BLOCKED_STREAMS (0x7): The default value is zero.
 See Section 2.1.3.

6. Error Handling

 The following error codes are defined for HTTP/3 to indicate failures
 of QPACK which prevent the connection from continuing:

 HTTP_QPACK_DECOMPRESSION_FAILED (0x200): The decoder failed to
 interpret a header block and is not able to continue decoding that
 header block.

 HTTP_QPACK_ENCODER_STREAM_ERROR (0x201): The decoder failed to
 interpret an encoder instruction received on the encoder stream.

 HTTP_QPACK_DECODER_STREAM_ERROR (0x202): The encoder failed to
 interpret a decoder instruction received on the decoder stream.

Krasic, et al. Expires May 7, 2020 [Page 25]

Internet-Draft QPACK November 2019

7. Security Considerations

 TBD. Also see Section 7.1 of [RFC7541].

 While the negotiated limit on the dynamic table size accounts for
 much of the memory that can be consumed by a QPACK implementation,
 data which cannot be immediately sent due to flow control is not
 affected by this limit. Implementations should limit the size of
 unsent data, especially on the decoder stream where flexibility to
 choose what to send is limited. Possible responses to an excess of
 unsent data might include limiting the ability of the peer to open
 new streams, reading only from the encoder stream, or closing the
 connection.

8. IANA Considerations

8.1. Settings Registration

 This document specifies two settings. The entries in the following
 table are registered in the "HTTP/3 Settings" registry established in
 [HTTP3].

 +--------------------------+------+---------------+---------+
 | Setting Name | Code | Specification | Default |
 +--------------------------+------+---------------+---------+
 | QPACK_MAX_TABLE_CAPACITY | 0x1 | Section 5 | 0 |
 | | | | |
 | QPACK_BLOCKED_STREAMS | 0x7 | Section 5 | 0 |
 +--------------------------+------+---------------+---------+

8.2. Stream Type Registration

 This document specifies two stream types. The entries in the
 following table are registered in the "HTTP/3 Stream Type" registry
 established in [HTTP3].

 +----------------------+------+---------------+--------+
 | Stream Type | Code | Specification | Sender |
 +----------------------+------+---------------+--------+
 | QPACK Encoder Stream | 0x02 | Section 4.2 | Both |
 | | | | |
 | QPACK Decoder Stream | 0x03 | Section 4.2 | Both |
 +----------------------+------+---------------+--------+

https://datatracker.ietf.org/doc/html/rfc7541#section-7.1

Krasic, et al. Expires May 7, 2020 [Page 26]

Internet-Draft QPACK November 2019

8.3. Error Code Registration

 This document specifies three error codes. The entries in the
 following table are registered in the "HTTP/3 Error Code" registry
 established in [HTTP3].

 +-----------------------------+-------+--------------+--------------+
 | Name | Code | Description | Specificatio |
 | | | | n |
 +-----------------------------+-------+--------------+--------------+
HTTP_QPACK_DECOMPRESSION_FA	0x200	Decompressio	Section 6
ILED		n of a	
		header block	
		failed	
HTTP_QPACK_ENCODER_STREAM_E	0x201	Error on the	Section 6
RROR		encoder	
		stream	
HTTP_QPACK_DECODER_STREAM_E	0x202	Error on the	Section 6
RROR		decoder	
		stream	
 +-----------------------------+-------+--------------+--------------+

9. References

9.1. Normative References

 [HTTP3] Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-24 (work in progress),
 November 2019.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-24 (work in progress), November 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-24
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541

Krasic, et al. Expires May 7, 2020 [Page 27]

Internet-Draft QPACK November 2019

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <https://www.rfc-editor.org/info/rfc2360>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

9.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-qpack

Appendix A. Static Table

 +------+-----------------------------+------------------------------+
 | Inde | Name | Value |
 | x | | |
 +------+-----------------------------+------------------------------+
0	:authority	
1	:path	/
2	age	0
3	content-disposition	
4	content-length	0
5	cookie	
6	date	
7	etag	
8	if-modified-since	
9	if-none-match	

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack

Krasic, et al. Expires May 7, 2020 [Page 28]

Internet-Draft QPACK November 2019

10	last-modified	
11	link	
12	location	
13	referer	
14	set-cookie	
15	:method	CONNECT
16	:method	DELETE
17	:method	GET
18	:method	HEAD
19	:method	OPTIONS
20	:method	POST
21	:method	PUT
22	:scheme	http
23	:scheme	https
24	:status	103
25	:status	200
26	:status	304
27	:status	404
28	:status	503
29	accept	*/*
30	accept	application/dns-message
31	accept-encoding	gzip, deflate, br
32	accept-ranges	bytes
33	access-control-allow-	cache-control

Krasic, et al. Expires May 7, 2020 [Page 29]

Internet-Draft QPACK November 2019

	headers	
34	access-control-allow-	content-type
	headers	
35	access-control-allow-origin	*
36	cache-control	max-age=0
37	cache-control	max-age=2592000
38	cache-control	max-age=604800
39	cache-control	no-cache
40	cache-control	no-store
41	cache-control	public, max-age=31536000
42	content-encoding	br
43	content-encoding	gzip
44	content-type	application/dns-message
45	content-type	application/javascript
46	content-type	application/json
47	content-type	application/x-www-form-
		urlencoded
48	content-type	image/gif
49	content-type	image/jpeg
50	content-type	image/png
51	content-type	text/css
52	content-type	text/html; charset=utf-8
53	content-type	text/plain
54	content-type	text/plain;charset=utf-8
55	range	bytes=0-

Krasic, et al. Expires May 7, 2020 [Page 30]

Internet-Draft QPACK November 2019

56	strict-transport-security	max-age=31536000
57	strict-transport-security	max-age=31536000;
		includesubdomains
58	strict-transport-security	max-age=31536000;
		includesubdomains; preload
59	vary	accept-encoding
60	vary	origin
61	x-content-type-options	nosniff
62	x-xss-protection	1; mode=block
63	:status	100
64	:status	204
65	:status	206
66	:status	302
67	:status	400
68	:status	403
69	:status	421
70	:status	425
71	:status	500
72	accept-language	
73	access-control-allow-	FALSE
	credentials	
74	access-control-allow-	TRUE
	credentials	
75	access-control-allow-	*
	headers	
76	access-control-allow-	get
	methods	

Krasic, et al. Expires May 7, 2020 [Page 31]

Internet-Draft QPACK November 2019

77	access-control-allow-	get, post, options
	methods	
78	access-control-allow-	options
	methods	
79	access-control-expose-	content-length
	headers	
80	access-control-request-	content-type
	headers	
81	access-control-request-	get
	method	
82	access-control-request-	post
	method	
83	alt-svc	clear
84	authorization	
85	content-security-policy	script-src 'none'; object-
		src 'none'; base-uri 'none'
86	early-data	1
87	expect-ct	
88	forwarded	
89	if-range	
90	origin	
91	purpose	prefetch
92	server	
93	timing-allow-origin	*
94	upgrade-insecure-requests	1
95	user-agent	
96	x-forwarded-for	
97	x-frame-options	deny

Krasic, et al. Expires May 7, 2020 [Page 32]

Internet-Draft QPACK November 2019

 | | | |
 | 98 | x-frame-options | sameorigin |
 +------+-----------------------------+------------------------------+

Appendix B. Sample One Pass Encoding Algorithm

 Pseudo-code for single pass encoding, excluding handling of
 duplicates, non-blocking mode, and reference tracking.

Krasic, et al. Expires May 7, 2020 [Page 33]

Internet-Draft QPACK November 2019

 baseIndex = dynamicTable.baseIndex
 largestReference = 0
 for header in headers:
 staticIdx = staticTable.getIndex(header)
 if staticIdx:
 encodeIndexReference(streamBuffer, staticIdx)
 continue

 dynamicIdx = dynamicTable.getIndex(header)
 if !dynamicIdx:
 # No matching entry. Either insert+index or encode literal
 nameIdx = getNameIndex(header)
 if shouldIndex(header) and dynamicTable.canIndex(header):
 encodeLiteralWithIncrementalIndex(controlBuffer, nameIdx,
 header)
 dynamicTable.add(header)
 dynamicIdx = dynamicTable.baseIndex

 if !dynamicIdx:
 # Couldn't index it, literal
 if nameIdx <= staticTable.size:
 encodeLiteral(streamBuffer, nameIndex, header)
 else:
 # encode literal, possibly with nameIdx above baseIndex
 encodeDynamicLiteral(streamBuffer, nameIndex, baseIndex,
 header)
 largestReference = max(largestReference,
 dynamicTable.toAbsolute(nameIdx))
 else:
 # Dynamic index reference
 assert(dynamicIdx)
 largestReference = max(largestReference, dynamicIdx)
 # Encode dynamicIdx, possibly with dynamicIdx above baseIndex
 encodeDynamicIndexReference(streamBuffer, dynamicIdx,
 baseIndex)

 # encode the prefix
 encodeInteger(prefixBuffer, 0x00, largestReference, 8)
 if baseIndex >= largestReference:
 encodeInteger(prefixBuffer, 0, baseIndex - largestReference, 7)
 else:
 encodeInteger(prefixBuffer, 0x80,
 largestReference - baseIndex, 7)

 return controlBuffer, prefixBuffer + streamBuffer

Krasic, et al. Expires May 7, 2020 [Page 34]

Internet-Draft QPACK November 2019

Appendix C. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

C.1. Since draft-ietf-quic-qpack-10

 Editorial changes

C.2. Since draft-ietf-quic-qpack-09

 o Decoders MUST emit Header Acknowledgements (#2939)

 o Updated error code for multiple encoder or decoder streams (#2970)

 o Added explicit defaults for new SETTINGS (#2974)

C.3. Since draft-ietf-quic-qpack-08

 o Endpoints are permitted to create encoder and decoder streams even
 if they can't use them (#2100, #2529)

 o Maximum values for settings removed (#2766, #2767)

C.4. Since draft-ietf-quic-qpack-06

 o Clarify initial dynamic table capacity maximums (#2276, #2330,
 #2330)

C.5. Since draft-ietf-quic-qpack-05

 o Introduced the terms dynamic table capacity and maximum dynamic
 table capacity.

 o Renamed SETTINGS_HEADER_TABLE_SIZE to
 SETTINGS_QPACK_MAX_TABLE_CAPACITY.

C.6. Since draft-ietf-quic-qpack-04

 o Changed calculation of Delta Base Index to avoid an illegal value
 (#2002, #2005)

C.7. Since draft-ietf-quic-qpack-03

 o Change HTTP settings defaults (#2038)

 o Substantial editorial reorganization

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-03

Krasic, et al. Expires May 7, 2020 [Page 35]

Internet-Draft QPACK November 2019

C.8. Since draft-ietf-quic-qpack-02

 o Largest Reference encoded modulo MaxEntries (#1763)

 o New Static Table (#1355)

 o Table Size Update with Insert Count=0 is a connection error
 (#1762)

 o Stream Cancellations are optional when
 SETTINGS_HEADER_TABLE_SIZE=0 (#1761)

 o Implementations must handle 62 bit integers (#1760)

 o Different error types for each QPACK stream, other changes to
 error handling (#1726)

 o Preserve header field order (#1725)

 o Initial table size is the maximum permitted when table is first
 usable (#1642)

C.9. Since draft-ietf-quic-qpack-01

 o Only header blocks that reference the dynamic table are
 acknowledged (#1603, #1605)

C.10. Since draft-ietf-quic-qpack-00

 o Renumbered instructions for consistency (#1471, #1472)

 o Decoder is allowed to validate largest reference (#1404, #1469)

 o Header block acknowledgments also acknowledge the associated
 largest reference (#1370, #1400)

 o Added an acknowledgment for unread streams (#1371, #1400)

 o Removed framing from encoder stream (#1361,#1467)

 o Control streams use typed unidirectional streams rather than fixed
 stream IDs (#910,#1359)

C.11. Since draft-ietf-quic-qcram-00

 o Separate instruction sets for table updates and header blocks
 (#1235, #1142, #1141)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qcram-00

Krasic, et al. Expires May 7, 2020 [Page 36]

Internet-Draft QPACK November 2019

 o Reworked indexing scheme (#1176, #1145, #1136, #1130, #1125,
 #1314)

 o Added mechanisms that support one-pass encoding (#1138, #1320)

 o Added a setting to control the number of blocked decoders (#238,
 #1140, #1143)

 o Moved table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

Acknowledgments

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 from:

 o Ryan Hamilton

 o Patrick McManus

 o Kazuho Oku

 o Biren Roy

 o Ian Swett

 o Dmitri Tikhonov

 Buck's contribution was supported by Google during his employment
 there.

 A substantial portion of Mike's contribution was supported by
 Microsoft during his employment there.

Authors' Addresses

 Charles 'Buck' Krasic
 Netflix

 Email: ckrasic@netflix.com

 Mike Bishop
 Akamai Technologies

 Email: mbishop@evequefou.be

https://datatracker.ietf.org/doc/html/rfc7541

Krasic, et al. Expires May 7, 2020 [Page 37]

Internet-Draft QPACK November 2019

 Alan Frindell (editor)
 Facebook

 Email: afrind@fb.com

Krasic, et al. Expires May 7, 2020 [Page 38]

