
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-qpack-13

Published: 21 February 2020

Intended Status: Standards Track

Expires: 24 August 2020

Authors: C. Krasic

Netflix

M. Bishop

Akamai Technologies

A. Frindell, Ed.

Facebook

QPACK: Header Compression for HTTP/3

Abstract

This specification defines QPACK, a compression format for

efficiently representing HTTP header fields, to be used in HTTP/3.

This is a variation of HPACK header compression that seeks to reduce

head-of-line blocking.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-qpack.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://github.com/quicwg/base-drafts/labels/-qpack
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

1.2. Notational Conventions

2. Compression Process Overview

2.1. Encoder

2.1.1. Reference Tracking

2.1.2. Limits on Dynamic Table Insertions

2.1.3. Blocked Streams

2.1.4. Avoiding Flow Control Deadlocks

2.1.5. Known Received Count

2.2. Decoder

2.2.1. Blocked Decoding

2.2.2. State Synchronization

2.2.3. Invalid References

3. Header Tables

3.1. Static Table

3.2. Dynamic Table

3.2.1. Dynamic Table Size

3.2.2. Dynamic Table Capacity and Eviction

3.2.3. Maximum Dynamic Table Capacity

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.2.4. Absolute Indexing

3.2.5. Relative Indexing

3.2.6. Post-Base Indexing

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

4.1.2. String Literals

4.2. Encoder and Decoder Streams

4.3. Encoder Instructions

4.3.1. Set Dynamic Table Capacity

4.3.2. Insert With Name Reference

4.3.3. Insert Without Name Reference

4.3.4. Duplicate

4.4. Decoder Instructions

4.4.1. Header Acknowledgement

4.4.2. Stream Cancellation

4.4.3. Insert Count Increment

4.5. Header Block Representations

4.5.1. Header Block Prefix

4.5.2. Indexed Header Field

4.5.3. Indexed Header Field With Post-Base Index

4.5.4. Literal Header Field With Name Reference

4.5.5. Literal Header Field With Post-Base Name Reference

4.5.6. Literal Header Field Without Name Reference

5. Configuration

6. Error Handling

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7. Security Considerations

8. IANA Considerations

8.1. Settings Registration

8.2. Stream Type Registration

8.3. Error Code Registration

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Static Table

Appendix B. Sample One Pass Encoding Algorithm

Appendix C. Change Log

C.1. Since draft-ietf-quic-qpack-12

C.2. Since draft-ietf-quic-qpack-11

C.3. Since draft-ietf-quic-qpack-10

C.4. Since draft-ietf-quic-qpack-09

C.5. Since draft-ietf-quic-qpack-08

C.6. Since draft-ietf-quic-qpack-06

C.7. Since draft-ietf-quic-qpack-05

C.8. Since draft-ietf-quic-qpack-04

C.9. Since draft-ietf-quic-qpack-03

C.10. Since draft-ietf-quic-qpack-02

C.11. Since draft-ietf-quic-qpack-01

C.12. Since draft-ietf-quic-qpack-00

C.13. Since draft-ietf-quic-qcram-00

Acknowledgments

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Header field:

Header list:

Header block:

Encoder:

Decoder:

Absolute Index:

Base:

Insert Count:

1. Introduction

The QUIC transport protocol [QUIC-TRANSPORT] is designed to support

HTTP semantics, and its design subsumes many of the features of

HTTP/2 [RFC7540]. HTTP/2 uses HPACK [RFC7541] for header

compression. If HPACK were used for HTTP/3 [HTTP3], it would induce

head-of-line blocking due to built-in assumptions of a total

ordering across frames on all streams.

QPACK reuses core concepts from HPACK, but is redesigned to allow

correctness in the presence of out-of-order delivery, with

flexibility for implementations to balance between resilience

against head-of-line blocking and optimal compression ratio. The

design goals are to closely approach the compression ratio of HPACK

with substantially less head-of-line blocking under the same loss

conditions.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Definitions of terms that are used in this document:

A name-value pair sent as part of an HTTP message.

An ordered collection of header fields associated with

an HTTP message. A header list can contain multiple header fields

with the same name. It can also contain duplicate header fields.

The compressed representation of a header list.

An implementation which transforms a header list into a

header block.

An implementation which transforms a header block into a

header list.

A unique index for each entry in the dynamic table.

A reference point for relative and post-base indices.

References to dynamic table entries in header blocks are relative

to a Base.

The total number of entries inserted in the dynamic

table.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

x (A)

x (A+)

x ...

QPACK is a name, not an acronym.

1.2. Notational Conventions

Diagrams use the format described in Section 3.1 of [RFC2360], with

the following additional conventions:

Indicates that x is A bits long

Indicates that x uses the prefixed integer encoding defined

in Section 4.1.1, beginning with an A-bit prefix.

Indicates that x is variable-length and extends to the end of

the region.

2. Compression Process Overview

Like HPACK, QPACK uses two tables for associating header fields to

indices. The static table (Section 3.1) is predefined and contains

common header fields (some of them with an empty value). The dynamic

table (Section 3.2) is built up over the course of the connection

and can be used by the encoder to index header fields in the encoded

header lists.

QPACK defines unidirectional streams for sending instructions from

encoder to decoder and vice versa.

2.1. Encoder

An encoder converts a header list into a header block by emitting

either an indexed or a literal representation for each header field

in the list; see Section 4.5. Indexed representations achieve high

compression by replacing the literal name and possibly the value

with an index to either the static or dynamic table. References to

the static table and literal representations do not require any

dynamic state and never risk head-of-line blocking. References to

the dynamic table risk head-of-line blocking if the encoder has not

received an acknowledgement indicating the entry is available at the

decoder.

An encoder MAY insert any entry in the dynamic table it chooses; it

is not limited to header fields it is compressing.

QPACK preserves the ordering of header fields within each header

list. An encoder MUST emit header field representations in the order

they appear in the input header list.

QPACK is designed to contain the more complex state tracking to the

encoder, while the decoder is relatively simple.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.1.1. Reference Tracking

An encoder MUST ensure that a header block which references a

dynamic table entry is not processed by the decoder after the

referenced entry has been evicted. Hence the encoder needs to retain

information about each compressed header block that references the

dynamic table until that header block is acknowledged by the

decoder; see Section 4.4.1.

2.1.2. Limits on Dynamic Table Insertions

Inserting entries into the dynamic table might not be possible if

the table contains entries which cannot be evicted.

A dynamic table entry cannot be evicted immediately after insertion,

even if it has never been referenced. Once the insertion of a

dynamic table entry has been acknowledged and there are no

outstanding unacknowledged references to the entry, the entry

becomes evictable.

If the dynamic table does not contain enough room for a new entry

without evicting other entries, and the entries which would be

evicted are not evictable, the encoder MUST NOT insert that entry

into the dynamic table (including duplicates of existing entries).

In order to avoid this, an encoder that uses the dynamic table has

to keep track of whether each entry is currently evictable or not.

2.1.2.1. Avoiding Prohibited Insertions

To ensure that the encoder is not prevented from adding new entries,

the encoder can avoid referencing entries that are close to

eviction. Rather than reference such an entry, the encoder can emit

a Duplicate instruction (Section 4.3.4), and reference the duplicate

instead.

Determining which entries are too close to eviction to reference is

an encoder preference. One heuristic is to target a fixed amount of

available space in the dynamic table: either unused space or space

that can be reclaimed by evicting non-blocking entries. To achieve

this, the encoder can maintain a draining index, which is the

smallest absolute index (Section 3.2.4) in the dynamic table that it

will emit a reference for. As new entries are inserted, the encoder

increases the draining index to maintain the section of the table

that it will not reference. If the encoder does not create new

references to entries with an absolute index lower than the draining

index, the number of unacknowledged references to those entries will

eventually become zero, allowing them to be evicted.

¶

¶

¶

¶

¶

¶

Figure 1: Draining Dynamic Table Entries

2.1.3. Blocked Streams

Because QUIC does not guarantee order between data on different

streams, a decoder might encounter a header block that references a

dynamic table entry that it has not yet received.

Each header block contains a Required Insert Count (Section 4.5.1),

the lowest possible value for the Insert Count with which the header

block can be decoded. For a header block with references to the

dynamic table, the Required Insert Count is one larger than the

largest absolute index of all referenced dynamic table entries. For

a header block with no references to the dynamic table, the Required

Insert Count is zero.

When the decoder receives a header block with a Required Insert

Count greater than its own Insert Count, the stream cannot be

processed immediately, and is considered "blocked"; see Section

2.2.1.

The decoder specifies an upper bound on the number of streams which

can be blocked using the SETTINGS_QPACK_BLOCKED_STREAMS setting; see

Section 5. An encoder MUST limit the number of streams which could

become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all

times. If a decoder encounters more blocked streams than it promised

to support, it MUST treat this as a connection error of type

QPACK_DECOMPRESSION_FAILED.

Note that the decoder might not become blocked on every stream which

risks becoming blocked.

An encoder can decide whether to risk having a stream become

blocked. If permitted by the value of

SETTINGS_QPACK_BLOCKED_STREAMS, compression efficiency can often be

improved by referencing dynamic table entries that are still in

transit, but if there is loss or reordering the stream can become

blocked at the decoder. An encoder can avoid the risk of blocking by

only referencing dynamic table entries which have been acknowledged,

but this could mean using literals. Since literals make the header

 +----------+---------------------------------+--------+

 | Draining | Referenceable | Unused |

 | Entries | Entries | Space |

 +----------+---------------------------------+--------+

 ^ ^ ^

 | | |

 Dropping Draining Index Insertion Point

 Point

¶

¶

¶

¶

¶

block larger, this can result in the encoder becoming blocked on

congestion or flow control limits.

2.1.4. Avoiding Flow Control Deadlocks

Writing instructions on streams that are limited by flow control can

produce deadlocks.

A decoder might stop issuing flow control credit on the stream that

carries a header block until the necessary updates are received on

the encoder stream. If the granting of flow control credit on the

encoder stream (or the connection as a whole) depends on the

consumption and release of data on the stream carrying the header

block, a deadlock might result.

More generally, a stream containing a large instruction can become

deadlocked if the decoder withholds flow control credit until the

instruction is completely received.

To avoid these deadlocks, an encoder SHOULD avoid writing an

instruction unless sufficient stream and connection flow control

credit is available for the entire instruction.

2.1.5. Known Received Count

The Known Received Count is the total number of dynamic table

insertions and duplications acknowledged by the decoder. The encoder

tracks the Known Received Count in order to identify which dynamic

table entries can be referenced without potentially blocking a

stream. The decoder tracks the Known Received Count in order to be

able to send Insert Count Increment instructions.

A Header Acknowledgement instruction (Section 4.4.1) implies that

the decoder has received all dynamic table state necessary to

process corresponding the header block. If the Required Insert Count

of the acknowledged header block is greater than the current Known

Received Count, Known Received Count is updated to the value of the

Required Insert Count.

An Insert Count Increment instruction Section 4.4.3 increases the

Known Received Count by its Increment parameter. See Section 2.2.2.3

for guidance.

2.2. Decoder

As in HPACK, the decoder processes header blocks and emits the

corresponding header lists. It also processes instructions received

on the encoder stream that modify the dynamic table. Note that

header blocks and encoder stream instructions arrive on separate

streams. This is unlike HPACK, where header blocks can contain

¶

¶

¶

¶

¶

¶

¶

¶

instructions that modify the dynamic table, and there is no

dedicated stream of HPACK instructions.

The decoder MUST emit header fields in the order their

representations appear in the input header block.

2.2.1. Blocked Decoding

Upon receipt of a header block, the decoder examines the Required

Insert Count. When the Required Insert Count is less than or equal

to the decoder's Insert Count, the header block can be processed

immediately. Otherwise, the stream on which the header block was

received becomes blocked.

While blocked, header block data SHOULD remain in the blocked

stream's flow control window. A stream becomes unblocked when the

Insert Count becomes greater than or equal to the Required Insert

Count for all header blocks the decoder has started reading from the

stream.

When processing header blocks, the decoder expects the Required

Insert Count to exactly match the value defined in Section 2.1.3. If

it encounters a smaller value than expected, it MUST treat this as a

connection error of type QPACK_DECOMPRESSION_FAILED; see Section

2.2.3. If it encounters a larger value than expected, it MAY treat

this as a connection error of type QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

The decoder signals the following events by emitting decoder

instructions (Section 4.4) on the decoder stream.

2.2.2.1. Completed Processing of a Header Block

After the decoder finishes decoding a header block containing

dynamic table references, it MUST emit a Header Acknowledgement

instruction (Section 4.4.1). A stream may carry multiple header

blocks in the case of intermediate responses, trailers, and pushed

requests. The encoder interprets each Header Acknowledgement

instruction as acknowledging the earliest unacknowledged header

block containing dynamic table references sent on the given stream.

2.2.2.2. Abandonment of a Stream

When an endpoint receives a stream reset before the end of a stream

or before all header blocks are processed on that stream, or when it

abandons reading of a stream, it generates a Stream Cancellation

instruction; see Section 4.4.2. This signals to the encoder that all

references to the dynamic table on that stream are no longer

outstanding. A decoder with a maximum dynamic table capacity

¶

¶

¶

¶

¶

¶

¶

(Section 3.2.3) equal to zero MAY omit sending Stream Cancellations,

because the encoder cannot have any dynamic table references. An

encoder cannot infer from this instruction that any updates to the

dynamic table have been received.

The Header Acknowledgement and Stream Cancellation instructions

permit the encoder to remove references to entries in the dynamic

table. When an entry with absolute index lower than the Known

Received Count has zero references, then it is considered evictable;

see Section 2.1.2.

2.2.2.3. New Table Entries

After receiving new table entries on the encoder stream, the decoder

chooses when to emit Insert Count Increment instructions; see

Section 4.4.3. Emitting this instruction after adding each new

dynamic table entry will provide the timeliest feedback to the

encoder, but could be redundant with other decoder feedback. By

delaying an Insert Count Increment instruction, the decoder might be

able to coalesce multiple Insert Count Increment instructions, or

replace them entirely with Header Acknowledgements; see Section

4.4.1. However, delaying too long may lead to compression

inefficiencies if the encoder waits for an entry to be acknowledged

before using it.

2.2.3. Invalid References

If the decoder encounters a reference in a header block

representation to a dynamic table entry which has already been

evicted or which has an absolute index greater than or equal to the

declared Required Insert Count (Section 4.5.1), it MUST treat this

as a connection error of type QPACK_DECOMPRESSION_FAILED.

If the decoder encounters a reference in an encoder instruction to a

dynamic table entry which has already been evicted, it MUST treat

this as a connection error of type QPACK_ENCODER_STREAM_ERROR.

3. Header Tables

Unlike in HPACK, entries in the QPACK static and dynamic tables are

addressed separately. The following sections describe how entries in

each table are addressed.

3.1. Static Table

The static table consists of a predefined static list of header

fields, each of which has a fixed index over time. Its entries are

defined in Appendix A.

¶

¶

¶

¶

¶

¶

¶

All entries in the static table have a name and a value. However,

values can be empty (that is, have a length of 0). Each entry is

identified by a unique index.

Note that the QPACK static table is indexed from 0, whereas the

HPACK static table is indexed from 1.

When the decoder encounters an invalid static table index in a

header block representation it MUST treat this as a connection error

of type QPACK_DECOMPRESSION_FAILED. If this index is received on the

encoder stream, this MUST be treated as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

3.2. Dynamic Table

The dynamic table consists of a list of header fields maintained in

first-in, first-out order. Each HTTP/3 endpoint holds a dynamic

table that is initially empty. Entries are added by encoder

instructions received on the encoder stream; see Section 4.3.

The dynamic table can contain duplicate entries (i.e., entries with

the same name and same value). Therefore, duplicate entries MUST NOT

be treated as an error by the decoder.

Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size

The size of the dynamic table is the sum of the size of its entries.

The size of an entry is the sum of its name's length in bytes, its

value's length in bytes, and 32. The size of an entry is calculated

using the length of its name and value without Huffman encoding

applied.

3.2.2. Dynamic Table Capacity and Eviction

The encoder sets the capacity of the dynamic table, which serves as

the upper limit on its size. The initial capacity of the dynamic

table is zero. The encoder sends a Set Dynamic Table Capacity

instruction (Section 4.3.1) with a non-zero capacity to begin using

the dynamic table.

Before a new entry is added to the dynamic table, entries are

evicted from the end of the dynamic table until the size of the

dynamic table is less than or equal to (table capacity - size of new

entry). The encoder MUST NOT cause a dynamic table entry to be

evicted unless that entry is evictable; see Section 2.1.2. The new

entry is then added to the table. It is an error if the encoder

attempts to add an entry that is larger than the dynamic table

¶

¶

¶

¶

¶

¶

¶

¶

¶

capacity; the decoder MUST treat this as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

A new entry can reference an entry in the dynamic table that will be

evicted when adding this new entry into the dynamic table.

Implementations are cautioned to avoid deleting the referenced name

or value if the referenced entry is evicted from the dynamic table

prior to inserting the new entry.

Whenever the dynamic table capacity is reduced by the encoder

(Section 4.3.1), entries are evicted from the end of the dynamic

table until the size of the dynamic table is less than or equal to

the new table capacity. This mechanism can be used to completely

clear entries from the dynamic table by setting a capacity of 0,

which can subsequently be restored.

3.2.3. Maximum Dynamic Table Capacity

To bound the memory requirements of the decoder, the decoder limits

the maximum value the encoder is permitted to set for the dynamic

table capacity. In HTTP/3, this limit is determined by the value of

SETTINGS_QPACK_MAX_TABLE_CAPACITY sent by the decoder; see Section

5. The encoder MUST not set a dynamic table capacity that exceeds

this maximum, but it can choose to use a lower dynamic table

capacity; see Section 4.3.1.

For clients using 0-RTT data in HTTP/3, the server's maximum table

capacity is the remembered value of the setting, or zero if the

value was not previously sent. When the client's 0-RTT value of the

SETTING is zero, the server MAY set it to a non-zero value in its

SETTINGS frame. If the remembered value is non-zero, the server MUST

send the same non-zero value in its SETTINGS frame. If it specifies

any other value, or omits SETTINGS_QPACK_MAX_TABLE_CAPACITY from

SETTINGS, the encoder must treat this as a connection error of type

QPACK_DECODER_STREAM_ERROR.

For HTTP/3 servers and HTTP/3 clients when 0-RTT is not attempted or

is rejected, the maximum table capacity is 0 until the encoder

processes a SETTINGS frame with a non-zero value of

SETTINGS_QPACK_MAX_TABLE_CAPACITY.

When the maximum table capacity is zero, the encoder MUST NOT insert

entries into the dynamic table, and MUST NOT send any encoder

instructions on the encoder stream.

3.2.4. Absolute Indexing

Each entry possesses an absolute index which is fixed for the

lifetime of that entry. The first entry inserted has an absolute

index of "0"; indices increase by one with each insertion.

¶

¶

¶

¶

¶

¶

¶

¶

3.2.5. Relative Indexing

Relative indices begin at zero and increase in the opposite

direction from the absolute index. Determining which entry has a

relative index of "0" depends on the context of the reference.

In encoder instructions (Section 4.3), a relative index of "0"

refers to the most recently inserted value in the dynamic table.

Note that this means the entry referenced by a given relative index

will change while interpreting instructions on the encoder stream.

Figure 2: Example Dynamic Table Indexing - Encoder Stream

Unlike in encoder instructions, relative indices in header block

representations are relative to the Base at the beginning of the

header block; see Section 4.5.1. This ensures that references are

stable even if header blocks and dynamic table updates are processed

out of order.

In a header block a relative index of "0" refers to the entry with

absolute index equal to Base - 1.

¶

¶

 +-----+---------------+-------+

 | n-1 | ... | d | Absolute Index

 + - - +---------------+ - - - +

 | 0 | ... | n-d-1 | Relative Index

 +-----+---------------+-------+

 ^ |

 | V

Insertion Point Dropping Point

n = count of entries inserted

d = count of entries dropped

¶

¶

 Base

 |

 V

 +-----+-----+-----+-----+-------+

 | n-1 | n-2 | n-3 | ... | d | Absolute Index

 +-----+-----+ - +-----+ - +

 | 0 | ... | n-d-3 | Relative Index

 +-----+-----+-------+

n = count of entries inserted

d = count of entries dropped

In this example, Base = n - 2

Figure 3: Example Dynamic Table Indexing - Relative Index in Header

Block

3.2.6. Post-Base Indexing

Post-Base indices are used in header block instructions for entries

with absolute indices greater than or equal to Base, starting at 0

for the entry with absolute index equal to Base, and increasing in

the same direction as the absolute index.

Post-Base indices allow an encoder to process a header block in a

single pass and include references to entries added while processing

this (or other) header blocks.

Figure 4: Example Dynamic Table Indexing - Post-Base Index in Header

Block

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

The prefixed integer from Section 5.1 of [RFC7541] is used heavily

throughout this document. The format from [RFC7541] is used

unmodified. Note, however, that QPACK uses some prefix sizes not

actually used in HPACK.

QPACK implementations MUST be able to decode integers up to and

including 62 bits long.

4.1.2. String Literals

The string literal defined by Section 5.2 of [RFC7541] is also used

throughout. This string format includes optional Huffman encoding.

¶

¶

 Base

 |

 V

 +-----+-----+-----+-----+-----+

 | n-1 | n-2 | n-3 | ... | d | Absolute Index

 +-----+-----+-----+-----+-----+

 | 1 | 0 | Post-Base Index

 +-----+-----+

n = count of entries inserted

d = count of entries dropped

In this example, Base = n - 2

¶

¶

¶

HPACK defines string literals to begin on a byte boundary. They

begin with a single bit flag, denoted as 'H' in this document

(indicating whether the string is Huffman-coded), followed by the

Length encoded as a 7-bit prefix integer, and finally Length bytes

of data. When Huffman encoding is enabled, the Huffman table from

Appendix B of [RFC7541] is used without modification.

This document expands the definition of string literals and permits

them to begin other than on a byte boundary. An "N-bit prefix string

literal" begins with the same Huffman flag, followed by the length

encoded as an (N-1)-bit prefix integer. The prefix size, N, can have

a value between 2 and 8 inclusive. The remainder of the string

literal is unmodified.

A string literal without a prefix length noted is an 8-bit prefix

string literal and follows the definitions in [RFC7541] without

modification.

4.2. Encoder and Decoder Streams

QPACK defines two unidirectional stream types:

An encoder stream is a unidirectional stream of type 0x02. It

carries an unframed sequence of encoder instructions from encoder

to decoder.

A decoder stream is a unidirectional stream of type 0x03. It

carries an unframed sequence of decoder instructions from decoder

to encoder.

HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint

MUST initiate at most one encoder stream and at most one decoder

stream. Receipt of a second instance of either stream type MUST be

treated as a connection error of type HTTP_STREAM_CREATION_ERROR.

These streams MUST NOT be closed. Closure of either unidirectional

stream type MUST be treated as a connection error of type

HTTP_CLOSED_CRITICAL_STREAM.

An endpoint MAY avoid creating an encoder stream if it's not going

to be used (for example if its encoder doesn't wish to use the

dynamic table, or if the maximum size of the dynamic table permitted

by the peer is zero).

An endpoint MAY avoid creating a decoder stream if its decoder sets

the maximum capacity of the dynamic table to zero.

An endpoint MUST allow its peer to create an encoder stream and a

decoder stream even if the connection's settings prevent their use.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

4.3. Encoder Instructions

An encoder sends encoder instructions on the encoder stream to set

the capacity of the dynamic table and add dynamic table entries.

Instructions adding table entries can use existing entries to avoid

transmitting redundant information. The name can be transmitted as a

reference to an existing entry in the static or the dynamic table or

as a string literal. For entries which already exist in the dynamic

table, the full entry can also be used by reference, creating a

duplicate entry.

This section specifies the following encoder instructions.

4.3.1. Set Dynamic Table Capacity

An encoder informs the decoder of a change to the dynamic table

capacity using an instruction which begins with the '001' three-bit

pattern. This is followed by the new dynamic table capacity

represented as an integer with a 5-bit prefix; see Section 4.1.1.

Figure 5: Set Dynamic Table Capacity

The new capacity MUST be lower than or equal to the limit described

in Section 3.2.3. In HTTP/3, this limit is the value of the

SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (Section 5) received

from the decoder. The decoder MUST treat a new dynamic table

capacity value that exceeds this limit as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

Reducing the dynamic table capacity can cause entries to be evicted;

see Section 3.2.2. This MUST NOT cause the eviction of entries which

are not evictable; see Section 2.1.2. Changing the capacity of the

dynamic table is not acknowledged as this instruction does not

insert an entry.

4.3.2. Insert With Name Reference

An encoder adds an entry to the dynamic table where the header field

name matches the header field name of an entry stored in the static

or the dynamic table using an instruction that starts with the '1'

one-bit pattern. The second ('T') bit indicates whether the

reference is to the static or dynamic table. The 6-bit prefix

integer (Section 4.1.1) that follows is used to locate the table

entry for the header name. When T=1, the number represents the

¶

¶

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 0 | 0 | 1 | Capacity (5+) |

+---+---+---+-------------------+

¶

¶

static table index; when T=0, the number is the relative index of

the entry in the dynamic table.

The header name reference is followed by the header field value

represented as a string literal; see Section 4.1.2.

Figure 6: Insert Header Field -- Indexed Name

4.3.3. Insert Without Name Reference

An encoder adds an entry to the dynamic table where both the header

field name and the header field value are represented as string

literals using an instruction that starts with the '01' two-bit

pattern.

This is followed by the name represented as a 6-bit prefix string

literal, and the value represented as an 8-bit prefix string

literal; see Section 4.1.2.

Figure 7: Insert Header Field -- New Name

4.3.4. Duplicate

An encoder duplicates an existing entry in the dynamic table using

an instruction that begins with the '000' three-bit pattern. This is

followed by the relative index of the existing entry represented as

an integer with a 5-bit prefix; see Section 4.1.1.

¶

¶

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 1 | T | Name Index (6+) |

 +---+---+-----------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length bytes) |

 +-------------------------------+

¶

¶

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 1 | H | Name Length (5+) |

 +---+---+---+-------------------+

 | Name String (Length bytes) |

 +---+---------------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length bytes) |

 +-------------------------------+

¶

Figure 8: Duplicate

The existing entry is re-inserted into the dynamic table without

resending either the name or the value. This is useful to avoid

adding a reference to an older entry, which might block inserting

new entries.

4.4. Decoder Instructions

A decoder sends decoder instructions on the decoder stream to inform

the encoder about the processing of header blocks and table updates

to ensure consistency of the dynamic table.

This section specifies the following decoder instructions.

4.4.1. Header Acknowledgement

After processing a header block whose declared Required Insert Count

is not zero, the decoder emits a Header Acknowledgement instruction.

The instruction begins with the '1' one-bit pattern which is

followed by the header block's associated stream ID encoded as a 7-

bit prefix integer; see Section 4.1.1.

This instruction is used as described in Section 2.1.5 and in

Section 2.2.2.

Figure 9: Header Acknowledgement

If an encoder receives a Header Acknowledgement instruction

referring to a stream on which every header block with a non-zero

Required Insert Count has already been acknowledged, that MUST be

treated as a connection error of type QPACK_DECODER_STREAM_ERROR.

The Header Acknowledgement instruction might increase the Known

Received Count; see Section 2.1.5.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | Index (5+) |

 +---+---+---+-------------------+

¶

¶

¶

¶

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 1 | Stream ID (7+) |

+---+---------------------------+

¶

¶

4.4.2. Stream Cancellation

When a stream is reset or reading is abandoned, the decoder emits a

Stream Cancellation instruction. The instruction begins with the

'01' two-bit pattern, which is followed by the stream ID of the

affected stream encoded as a 6-bit prefix integer.

This instruction is used as described in Section 2.2.2.

Figure 10: Stream Cancellation

4.4.3. Insert Count Increment

The Insert Count Increment instruction begins with the '00' two-bit

pattern, followed by the Increment encoded as a 6-bit prefix

integer. This instruction increases the Known Received Count

(Section 2.1.5) by the value of the Increment parameter. The decoder

should send an Increment value that increases the Known Received

Count to the total number of dynamic table insertions and

duplications processed so far.

Figure 11: Insert Count Increment

An encoder that receives an Increment field equal to zero, or one

that increases the Known Received Count beyond what the encoder has

sent MUST treat this as a connection error of type

QPACK_DECODER_STREAM_ERROR.

4.5. Header Block Representations

A header block consists of a prefix and a possibly empty sequence of

representations defined in this section. Each representation

corresponds to a single header field. These representations

reference the static table or the dynamic table in a particular

state, but do not modify that state.

Header blocks are carried in frames on streams defined by the

enclosing protocol.

¶

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 0 | 1 | Stream ID (6+) |

+---+---+-----------------------+

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 0 | 0 | Increment (6+) |

+---+---+-----------------------+

¶

¶

¶

4.5.1. Header Block Prefix

Each header block is prefixed with two integers. The Required Insert

Count is encoded as an integer with an 8-bit prefix after the

encoding described in Section 4.5.1.1). The Base is encoded as a

sign bit ('S') and a Delta Base value with a 7-bit prefix; see

Section 4.5.1.2.

Figure 12: Header Block

4.5.1.1. Required Insert Count

Required Insert Count identifies the state of the dynamic table

needed to process the header block. Blocking decoders use the

Required Insert Count to determine when it is safe to process the

rest of the block.

The encoder transforms the Required Insert Count as follows before

encoding:

Here MaxEntries is the maximum number of entries that the dynamic

table can have. The smallest entry has empty name and value strings

and has the size of 32. Hence MaxEntries is calculated as

MaxTableCapacity is the maximum capacity of the dynamic table as

specified by the decoder; see Section 3.2.3.

This encoding limits the length of the prefix on long-lived

connections.

The decoder can reconstruct the Required Insert Count using an

algorithm such as the following. If the decoder encounters a value

of EncodedInsertCount that could not have been produced by a

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| Required Insert Count (8+) |

+---+---------------------------+

| S | Delta Base (7+) |

+---+---------------------------+

| Compressed Headers ...

+-------------------------------+

¶

¶

 if ReqInsertCount == 0:

 EncInsertCount = 0

 else:

 EncInsertCount = (ReqInsertCount mod (2 * MaxEntries)) + 1

¶

¶

 MaxEntries = floor(MaxTableCapacity / 32)¶

¶

¶

conformant encoder, it MUST treat this as a connection error of type

QPACK_DECOMPRESSION_FAILED.

TotalNumberOfInserts is the total number of inserts into the

decoder's dynamic table.

For example, if the dynamic table is 100 bytes, then the Required

Insert Count will be encoded modulo 6. If a decoder has received 10

inserts, then an encoded value of 3 indicates that the Required

Insert Count is 9 for the header block.

4.5.1.2. Base

The Base is used to resolve references in the dynamic table as

described in Section 3.2.5.

To save space, the Base is encoded relative to the Required Insert

Count using a one-bit sign ('S') and the Delta Base value. A sign

bit of 0 indicates that the Base is greater than or equal to the

value of the Required Insert Count; the decoder adds the value of

Delta Base to the Required Insert Count to determine the value of

the Base. A sign bit of 1 indicates that the Base is less than the

Required Insert Count; the decoder subtracts the value of Delta Base

from the Required Insert Count and also subtracts one to determine

the value of the Base. That is:

¶

¶

 FullRange = 2 * MaxEntries

 if EncodedInsertCount == 0:

 ReqInsertCount = 0

 else:

 if EncodedInsertCount > FullRange:

 Error

 MaxValue = TotalNumberOfInserts + MaxEntries

 # MaxWrapped is the largest possible value of

 # ReqInsertCount that is 0 mod 2*MaxEntries

 MaxWrapped = floor(MaxValue / FullRange) * FullRange

 ReqInsertCount = MaxWrapped + EncodedInsertCount - 1

 # If ReqInsertCount exceeds MaxValue, the Encoder's value

 # must have wrapped one fewer time

 if ReqInsertCount > MaxValue:

 if ReqInsertCount <= FullRange:

 Error

 ReqInsertCount -= FullRange

 # Value of 0 must be encoded as 0.

 if ReqInsertCount == 0:

 Error

¶

¶

¶

¶

A single-pass encoder determines the Base before encoding a header

block. If the encoder inserted entries in the dynamic table while

encoding the header block, Required Insert Count will be greater

than the Base, so the encoded difference is negative and the sign

bit is set to 1. If the header block did not reference the most

recent entry in the table and did not insert any new entries, the

Base will be greater than the Required Insert Count, so the delta

will be positive and the sign bit is set to 0.

An encoder that produces table updates before encoding a header

block might set Base to the value of Required Insert Count. In such

case, both the sign bit and the Delta Base will be set to zero.

A header block that does not reference the dynamic table can use any

value for the Base; setting Delta Base to zero is one of the most

efficient encodings.

For example, with a Required Insert Count of 9, a decoder receives

an S bit of 1 and a Delta Base of 2. This sets the Base to 6 and

enables post-base indexing for three entries. In this example, a

relative index of 1 refers to the 5th entry that was added to the

table; a post-base index of 1 refers to the 8th entry.

4.5.2. Indexed Header Field

An indexed header field representation identifies an entry in the

static table, or an entry in the dynamic table with an absolute

index less than the value of the Base.

Figure 13: Indexed Header Field

This representation starts with the '1' 1-bit pattern, followed by

the 'T' bit indicating whether the reference is into the static or

dynamic table. The 6-bit prefix integer (Section 4.1.1) that follows

is used to locate the table entry for the header field. When T=1,

the number represents the static table index; when T=0, the number

is the relative index of the entry in the dynamic table.

 if S == 0:

 Base = ReqInsertCount + DeltaBase

 else:

 Base = ReqInsertCount - DeltaBase - 1

¶

¶

¶

¶

¶

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 1 | T | Index (6+) |

+---+---+-----------------------+

¶

4.5.3. Indexed Header Field With Post-Base Index

An indexed header field with post-base index representation

identifies an entry in the dynamic table with an absolute index

greater than or equal to the value of the Base.

Figure 14: Indexed Header Field with Post-Base Index

This representation starts with the '0001' 4-bit pattern. This is

followed by the post-base index (Section 3.2.6) of the matching

header field, represented as an integer with a 4-bit prefix; see

Section 4.1.1.

4.5.4. Literal Header Field With Name Reference

A literal header field with name reference representation encodes a

header field where the header field name matches the header field

name of an entry in the static table, or the header field name of an

entry in the dynamic table with an absolute index less than the

value of the Base.

Figure 15: Literal Header Field With Name Reference

This representation starts with the '01' two-bit pattern. The

following bit, 'N', indicates whether an intermediary is permitted

to add this header to the dynamic header table on subsequent hops.

When the 'N' bit is set, the encoded header MUST always be encoded

with a literal representation. In particular, when a peer sends a

header field that it received represented as a literal header field

with the 'N' bit set, it MUST use a literal representation to

forward this header field. This bit is intended for protecting

header field values that are not to be put at risk by compressing

them; see Section 7 for more details.

¶

 0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| 0 | 0 | 0 | 1 | Index (4+) |

+---+---+---+---+---------------+

¶

¶

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 1 | N | T |Name Index (4+)|

 +---+---+---+---+---------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length bytes) |

 +-------------------------------+

¶

The fourth ('T') bit indicates whether the reference is to the

static or dynamic table. The 4-bit prefix integer (Section 4.1.1)

that follows is used to locate the table entry for the header name.

When T=1, the number represents the static table index; when T=0,

the number is the relative index of the entry in the dynamic table.

Only the header field name is taken from the dynamic table entry;

the header field value is encoded as an 8-bit prefix string literal;

see Section 4.1.2.

4.5.5. Literal Header Field With Post-Base Name Reference

A literal header field with post-base name reference representation

encodes a header field where the header field name matches the

header field name of a dynamic table entry with an absolute index

greater than or equal to the value of the Base.

Figure 16: Literal Header Field With Post-Base Name Reference

This representation starts with the '0000' four-bit pattern. The

fifth bit is the 'N' bit as described in Section 4.5.4. This is

followed by a post-base index of the dynamic table entry (Section

3.2.6) encoded as an integer with a 3-bit prefix; see Section 4.1.1.

Only the header field name is taken from the dynamic table entry;

the header field value is encoded as an 8-bit prefix string literal;

see Section 4.1.2.

4.5.6. Literal Header Field Without Name Reference

The literal header field without name reference representation

encodes a header field name and a header field value as string

literals.

¶

¶

¶

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | 0 | N |NameIdx(3+)|

 +---+---+---+---+---+-----------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length bytes) |

 +-------------------------------+

¶

¶

¶

SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x1):

SETTINGS_QPACK_BLOCKED_STREAMS (0x7):

QPACK_DECOMPRESSION_FAILED (0x200):

QPACK_ENCODER_STREAM_ERROR (0x201):

QPACK_DECODER_STREAM_ERROR (0x202):

Figure 17: Literal Header Field Without Name Reference

This representation begins with the '001' three-bit pattern. The

fourth bit is the 'N' bit as described in Section 4.5.4. The name

follows, represented as a 4-bit prefix string literal, then the

value, represented as an 8-bit prefix string literal; see Section

4.1.2.

5. Configuration

QPACK defines two settings which are included in the HTTP/3 SETTINGS

frame.

The default value is zero.

See Section 3.2 for usage. This is the equivalent of the

SETTINGS_HEADER_TABLE_SIZE from HTTP/2.

The default value is zero.

See Section 2.1.3.

6. Error Handling

The following error codes are defined for HTTP/3 to indicate

failures of QPACK which prevent the connection from continuing:

The decoder failed to interpret

a header block and is not able to continue decoding that header

block.

The decoder failed to interpret

an encoder instruction received on the encoder stream.

The encoder failed to interpret

a decoder instruction received on the decoder stream.

7. Security Considerations

TBD. Also see Section 7.1 of [RFC7541].

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 0 | 1 | N | H |NameLen(3+)|

 +---+---+---+---+---+-----------+

 | Name String (Length bytes) |

 +---+---------------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length bytes) |

 +-------------------------------+

¶

¶

¶

¶

¶

¶

¶

¶

¶

While the negotiated limit on the dynamic table size accounts for

much of the memory that can be consumed by a QPACK implementation,

data which cannot be immediately sent due to flow control is not

affected by this limit. Implementations should limit the size of

unsent data, especially on the decoder stream where flexibility to

choose what to send is limited. Possible responses to an excess of

unsent data might include limiting the ability of the peer to open

new streams, reading only from the encoder stream, or closing the

connection.

8. IANA Considerations

8.1. Settings Registration

This document specifies two settings. The entries in the following

table are registered in the "HTTP/3 Settings" registry established

in [HTTP3].

Setting Name Code Specification Default

QPACK_MAX_TABLE_CAPACITY 0x1 Section 5 0

QPACK_BLOCKED_STREAMS 0x7 Section 5 0

Table 1

8.2. Stream Type Registration

This document specifies two stream types. The entries in the

following table are registered in the "HTTP/3 Stream Type" registry

established in [HTTP3].

Stream Type Code Specification Sender

QPACK Encoder Stream 0x02 Section 4.2 Both

QPACK Decoder Stream 0x03 Section 4.2 Both

Table 2

8.3. Error Code Registration

This document specifies three error codes. The entries in the

following table are registered in the "HTTP/3 Error Code" registry

established in [HTTP3].

Name Code Description Specification

QPACK_DECOMPRESSION_FAILED 0x200
Decompression of a

header block failed
Section 6

QPACK_ENCODER_STREAM_ERROR 0x201
Error on the

encoder stream
Section 6

QPACK_DECODER_STREAM_ERROR 0x202
Error on the

decoder stream
Section 6

Table 3

¶

¶

¶

¶

[HTTP3]

[QUIC-TRANSPORT]

[RFC2119]

[RFC7541]

[RFC8174]

[RFC2360]

[RFC7540]

9. References

9.1. Normative References

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-26, 21 February 2020, <https://tools.ietf.org/

html/draft-ietf-quic-http-26>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-26,

21 February 2020, <https://tools.ietf.org/html/draft-

ietf-quic-transport-26>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/info/rfc7541>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

Scott, G., "Guide for Internet Standards Writers", BCP

22, RFC 2360, DOI 10.17487/RFC2360, June 1998, <https://

www.rfc-editor.org/info/rfc2360>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Appendix A. Static Table

Index Name Value

0 :authority

1 :path /

2 age 0

3 content-disposition

4 content-length 0

5 cookie

6 date

https://tools.ietf.org/html/draft-ietf-quic-http-26
https://tools.ietf.org/html/draft-ietf-quic-http-26
https://tools.ietf.org/html/draft-ietf-quic-transport-26
https://tools.ietf.org/html/draft-ietf-quic-transport-26
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540

Index Name Value

7 etag

8 if-modified-since

9 if-none-match

10 last-modified

11 link

12 location

13 referer

14 set-cookie

15 :method CONNECT

16 :method DELETE

17 :method GET

18 :method HEAD

19 :method OPTIONS

20 :method POST

21 :method PUT

22 :scheme http

23 :scheme https

24 :status 103

25 :status 200

26 :status 304

27 :status 404

28 :status 503

29 accept */*

30 accept application/dns-message

31 accept-encoding gzip, deflate, br

32 accept-ranges bytes

33
access-control-allow-

headers
cache-control

34
access-control-allow-

headers
content-type

35
access-control-allow-

origin
*

36 cache-control max-age=0

37 cache-control max-age=2592000

38 cache-control max-age=604800

39 cache-control no-cache

40 cache-control no-store

41 cache-control public, max-age=31536000

42 content-encoding br

43 content-encoding gzip

44 content-type application/dns-message

45 content-type application/javascript

46 content-type application/json

47 content-type application/x-www-form-urlencoded

48 content-type image/gif

Index Name Value

49 content-type image/jpeg

50 content-type image/png

51 content-type text/css

52 content-type text/html; charset=utf-8

53 content-type text/plain

54 content-type text/plain;charset=utf-8

55 range bytes=0-

56
strict-transport-

security
max-age=31536000

57
strict-transport-

security
max-age=31536000; includesubdomains

58
strict-transport-

security

max-age=31536000; includesubdomains;

preload

59 vary accept-encoding

60 vary origin

61 x-content-type-options nosniff

62 x-xss-protection 1; mode=block

63 :status 100

64 :status 204

65 :status 206

66 :status 302

67 :status 400

68 :status 403

69 :status 421

70 :status 425

71 :status 500

72 accept-language

73
access-control-allow-

credentials
FALSE

74
access-control-allow-

credentials
TRUE

75
access-control-allow-

headers
*

76
access-control-allow-

methods
get

77
access-control-allow-

methods
get, post, options

78
access-control-allow-

methods
options

79
access-control-expose-

headers
content-length

80
access-control-request-

headers
content-type

81
access-control-request-

method
get

82 post

Index Name Value

access-control-request-

method

83 alt-svc clear

84 authorization

85 content-security-policy
script-src 'none'; object-src 'none';

base-uri 'none'

86 early-data 1

87 expect-ct

88 forwarded

89 if-range

90 origin

91 purpose prefetch

92 server

93 timing-allow-origin *

94
upgrade-insecure-

requests
1

95 user-agent

96 x-forwarded-for

97 x-frame-options deny

98 x-frame-options sameorigin

Table 4

Appendix B. Sample One Pass Encoding Algorithm

Pseudo-code for single pass encoding, excluding handling of

duplicates, non-blocking mode, and reference tracking.¶

baseIndex = dynamicTable.baseIndex

largestReference = 0

for header in headers:

 staticIdx = staticTable.getIndex(header)

 if staticIdx:

 encodeIndexReference(streamBuffer, staticIdx)

 continue

 dynamicIdx = dynamicTable.getIndex(header)

 if !dynamicIdx:

 # No matching entry. Either insert+index or encode literal

 nameIdx = getNameIndex(header)

 if shouldIndex(header) and dynamicTable.canIndex(header):

 encodeLiteralWithIncrementalIndex(controlBuffer, nameIdx,

 header)

 dynamicTable.add(header)

 dynamicIdx = dynamicTable.baseIndex

 if !dynamicIdx:

 # Couldn't index it, literal

 if nameIdx <= staticTable.size:

 encodeLiteral(streamBuffer, nameIndex, header)

 else:

 # encode literal, possibly with nameIdx above baseIndex

 encodeDynamicLiteral(streamBuffer, nameIndex, baseIndex,

 header)

 largestReference = max(largestReference,

 dynamicTable.toAbsolute(nameIdx))

 else:

 # Dynamic index reference

 assert(dynamicIdx)

 largestReference = max(largestReference, dynamicIdx)

 # Encode dynamicIdx, possibly with dynamicIdx above baseIndex

 encodeDynamicIndexReference(streamBuffer, dynamicIdx,

 baseIndex)

encode the prefix

encodeInteger(prefixBuffer, 0x00, largestReference, 8)

if baseIndex >= largestReference:

 encodeInteger(prefixBuffer, 0, baseIndex - largestReference, 7)

else:

 encodeInteger(prefixBuffer, 0x80,

 largestReference - baseIndex, 7)

return controlBuffer, prefixBuffer + streamBuffer

¶

Appendix C. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

C.1. Since draft-ietf-quic-qpack-12

Editorial changes only

C.2. Since draft-ietf-quic-qpack-11

Editorial changes only

C.3. Since draft-ietf-quic-qpack-10

Editorial changes only

C.4. Since draft-ietf-quic-qpack-09

Decoders MUST emit Header Acknowledgements (#2939)

Updated error code for multiple encoder or decoder streams

(#2970)

Added explicit defaults for new SETTINGS (#2974)

C.5. Since draft-ietf-quic-qpack-08

Endpoints are permitted to create encoder and decoder streams

even if they can't use them (#2100, #2529)

Maximum values for settings removed (#2766, #2767)

C.6. Since draft-ietf-quic-qpack-06

Clarify initial dynamic table capacity maximums (#2276, #2330,

#2330)

C.7. Since draft-ietf-quic-qpack-05

Introduced the terms dynamic table capacity and maximum dynamic

table capacity.

Renamed SETTINGS_HEADER_TABLE_SIZE to

SETTINGS_QPACK_MAX_TABLE_CAPACITY.

C.8. Since draft-ietf-quic-qpack-04

Changed calculation of Delta Base Index to avoid an illegal value

(#2002, #2005)

¶

¶

¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

C.9. Since draft-ietf-quic-qpack-03

Change HTTP settings defaults (#2038)

Substantial editorial reorganization

C.10. Since draft-ietf-quic-qpack-02

Largest Reference encoded modulo MaxEntries (#1763)

New Static Table (#1355)

Table Size Update with Insert Count=0 is a connection error

(#1762)

Stream Cancellations are optional when

SETTINGS_HEADER_TABLE_SIZE=0 (#1761)

Implementations must handle 62 bit integers (#1760)

Different error types for each QPACK stream, other changes to

error handling (#1726)

Preserve header field order (#1725)

Initial table size is the maximum permitted when table is first

usable (#1642)

C.11. Since draft-ietf-quic-qpack-01

Only header blocks that reference the dynamic table are

acknowledged (#1603, #1605)

C.12. Since draft-ietf-quic-qpack-00

Renumbered instructions for consistency (#1471, #1472)

Decoder is allowed to validate largest reference (#1404, #1469)

Header block acknowledgments also acknowledge the associated

largest reference (#1370, #1400)

Added an acknowledgment for unread streams (#1371, #1400)

Removed framing from encoder stream (#1361,#1467)

Control streams use typed unidirectional streams rather than

fixed stream IDs (#910,#1359)

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

C.13. Since draft-ietf-quic-qcram-00

Separate instruction sets for table updates and header blocks

(#1235, #1142, #1141)

Reworked indexing scheme (#1176, #1145, #1136, #1130, #1125,

#1314)

Added mechanisms that support one-pass encoding (#1138, #1320)

Added a setting to control the number of blocked decoders (#238,

#1140, #1143)

Moved table updates and acknowledgments to dedicated streams

(#1121, #1122, #1238)

Acknowledgments

This draft draws heavily on the text of [RFC7541]. The indirect

input of those authors is gratefully acknowledged, as well as ideas

from:

Ryan Hamilton

Patrick McManus

Kazuho Oku

Biren Roy

Ian Swett

Dmitri Tikhonov

Buck's contribution was supported by Google during his employment

there.

A substantial portion of Mike's contribution was supported by

Microsoft during his employment there.

Authors' Addresses

Charles 'Buck' Krasic

Netflix

Email: ckrasic@netflix.com

Mike Bishop

Akamai Technologies

Email: mbishop@evequefou.be

*

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

mailto:ckrasic@netflix.com
mailto:mbishop@evequefou.be

Alan Frindell (editor)

Facebook

Email: afrind@fb.com

mailto:afrind@fb.com

	QPACK: Header Compression for HTTP/3
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions
	1.2. Notational Conventions

	2. Compression Process Overview
	2.1. Encoder
	2.1.1. Reference Tracking
	2.1.2. Limits on Dynamic Table Insertions
	2.1.2.1. Avoiding Prohibited Insertions

	2.1.3. Blocked Streams
	2.1.4. Avoiding Flow Control Deadlocks
	2.1.5. Known Received Count

	2.2. Decoder
	2.2.1. Blocked Decoding
	2.2.2. State Synchronization
	2.2.2.1. Completed Processing of a Header Block
	2.2.2.2. Abandonment of a Stream
	2.2.2.3. New Table Entries

	2.2.3. Invalid References

	3. Header Tables
	3.1. Static Table
	3.2. Dynamic Table
	3.2.1. Dynamic Table Size
	3.2.2. Dynamic Table Capacity and Eviction
	3.2.3. Maximum Dynamic Table Capacity
	3.2.4. Absolute Indexing
	3.2.5. Relative Indexing
	3.2.6. Post-Base Indexing

	4. Wire Format
	4.1. Primitives
	4.1.1. Prefixed Integers
	4.1.2. String Literals

	4.2. Encoder and Decoder Streams
	4.3. Encoder Instructions
	4.3.1. Set Dynamic Table Capacity
	4.3.2. Insert With Name Reference
	4.3.3. Insert Without Name Reference
	4.3.4. Duplicate

	4.4. Decoder Instructions
	4.4.1. Header Acknowledgement
	4.4.2. Stream Cancellation
	4.4.3. Insert Count Increment

	4.5. Header Block Representations
	4.5.1. Header Block Prefix
	4.5.1.1. Required Insert Count
	4.5.1.2. Base

	4.5.2. Indexed Header Field
	4.5.3. Indexed Header Field With Post-Base Index
	4.5.4. Literal Header Field With Name Reference
	4.5.5. Literal Header Field With Post-Base Name Reference
	4.5.6. Literal Header Field Without Name Reference

	5. Configuration
	6. Error Handling
	7. Security Considerations
	8. IANA Considerations
	8.1. Settings Registration
	8.2. Stream Type Registration
	8.3. Error Code Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Static Table
	Appendix B. Sample One Pass Encoding Algorithm
	Appendix C. Change Log
	C.1. Since draft-ietf-quic-qpack-12
	C.2. Since draft-ietf-quic-qpack-11
	C.3. Since draft-ietf-quic-qpack-10
	C.4. Since draft-ietf-quic-qpack-09
	C.5. Since draft-ietf-quic-qpack-08
	C.6. Since draft-ietf-quic-qpack-06
	C.7. Since draft-ietf-quic-qpack-05
	C.8. Since draft-ietf-quic-qpack-04
	C.9. Since draft-ietf-quic-qpack-03
	C.10. Since draft-ietf-quic-qpack-02
	C.11. Since draft-ietf-quic-qpack-01
	C.12. Since draft-ietf-quic-qpack-00
	C.13. Since draft-ietf-quic-qcram-00
	Acknowledgments
	Authors' Addresses

