
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-qpack-18

Published: 25 September 2020

Intended Status: Standards Track

Expires: 29 March 2021

Authors: C. Krasic

Netflix

M. Bishop

Akamai Technologies

A. Frindell, Ed.

Facebook

QPACK: Header Compression for HTTP/3

Abstract

This specification defines QPACK, a compression format for

efficiently representing HTTP fields, to be used in HTTP/3. This is

a variation of HPACK compression that seeks to reduce head-of-line

blocking.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-qpack.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 March 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

mailto:quic@ietf.org
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://github.com/quicwg/base-drafts/labels/-qpack
https://datatracker.ietf.org/drafts/current/


This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  Conventions and Definitions

1.2.  Notational Conventions

2.  Compression Process Overview

2.1.  Encoder

2.1.1.  Limits on Dynamic Table Insertions

2.1.2.  Blocked Streams

2.1.3.  Avoiding Flow Control Deadlocks

2.1.4.  Known Received Count

2.2.  Decoder

2.2.1.  Blocked Decoding

2.2.2.  State Synchronization

2.2.3.  Invalid References

3.  Reference Tables

3.1.  Static Table

3.2.  Dynamic Table

3.2.1.  Dynamic Table Size

3.2.2.  Dynamic Table Capacity and Eviction

3.2.3.  Maximum Dynamic Table Capacity

3.2.4.  Absolute Indexing

3.2.5.  Relative Indexing

3.2.6.  Post-Base Indexing

4.  Wire Format

4.1.  Primitives

4.1.1.  Prefixed Integers

4.1.2.  String Literals

4.2.  Encoder and Decoder Streams

4.3.  Encoder Instructions

4.3.1.  Set Dynamic Table Capacity

4.3.2.  Insert With Name Reference

4.3.3.  Insert With Literal Name

4.3.4.  Duplicate

4.4.  Decoder Instructions

4.4.1.  Section Acknowledgement

4.4.2.  Stream Cancellation

4.4.3.  Insert Count Increment

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info


4.5.  Field Line Representations

4.5.1.  Encoded Field Section Prefix

4.5.2.  Indexed Field Line

4.5.3.  Indexed Field Line With Post-Base Index

4.5.4.  Literal Field Line With Name Reference

4.5.5.  Literal Field Line With Post-Base Name Reference

4.5.6.  Literal Field Line With Literal Name

5.  Configuration

6.  Error Handling

7.  Security Considerations

7.1.  Probing Dynamic Table State

7.2.  Applicability to QPACK and HTTP

7.3.  Mitigation

7.4.  Never-Indexed Literals

7.5.  Static Huffman Encoding

7.6.  Memory Consumption

7.7.  Implementation Limits

8.  IANA Considerations

8.1.  Settings Registration

8.2.  Stream Type Registration

8.3.  Error Code Registration

9.  References

9.1.  Normative References

9.2.  Informative References

Appendix A.  Static Table

Appendix B.  Encoding and Decoding Examples

B.1.  Literal Field Line With Name Reference

B.2.  Dynamic Table

B.3.  Speculative Insert

B.4.  Duplicate Instruction, Stream Cancellation

B.5.  Dynamic Table Insert, Eviction

Appendix C.  Sample One Pass Encoding Algorithm

Appendix D.  Change Log

D.1.  Since draft-ietf-quic-qpack-17

D.2.  Since draft-ietf-quic-qpack-16

D.3.  Since draft-ietf-quic-qpack-15

D.4.  Since draft-ietf-quic-qpack-14

D.5.  Since draft-ietf-quic-qpack-13

D.6.  Since draft-ietf-quic-qpack-12

D.7.  Since draft-ietf-quic-qpack-11

D.8.  Since draft-ietf-quic-qpack-10

D.9.  Since draft-ietf-quic-qpack-09

D.10. Since draft-ietf-quic-qpack-08

D.11. Since draft-ietf-quic-qpack-06

D.12. Since draft-ietf-quic-qpack-05

D.13. Since draft-ietf-quic-qpack-04

D.14. Since draft-ietf-quic-qpack-03

D.15. Since draft-ietf-quic-qpack-02

D.16. Since draft-ietf-quic-qpack-01

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



HTTP fields:

HTTP field line:

HTTP field value:

Field section:

D.17. Since draft-ietf-quic-qpack-00

D.18. Since draft-ietf-quic-qcram-00

Acknowledgments

Authors' Addresses

1. Introduction

The QUIC transport protocol ([QUIC-TRANSPORT]) is designed to

support HTTP semantics, and its design subsumes many of the features

of HTTP/2 ([RFC7540]). HTTP/2 uses HPACK ([RFC7541]) for compression

of the header and trailer sections. If HPACK were used for HTTP/3

([HTTP3]), it would induce head-of-line blocking for field sections

due to built-in assumptions of a total ordering across frames on all

streams.

QPACK reuses core concepts from HPACK, but is redesigned to allow

correctness in the presence of out-of-order delivery, with

flexibility for implementations to balance between resilience

against head-of-line blocking and optimal compression ratio. The

design goals are to closely approach the compression ratio of HPACK

with substantially less head-of-line blocking under the same loss

conditions.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Definitions of terms that are used in this document:

Metadata sent as part of an HTTP message. The term

encompasses both header and trailer fields. Colloquially, the

term "headers" has often been used to refer to HTTP header fields

and trailer fields; this document uses "fields" for generality.

A name-value pair sent as part of an HTTP field

section. See Section 5 of [SEMANTICS].

Data associated with a field name, composed from

all field line values with that field name in that section,

concatenated together and separated with commas.

An ordered collection of HTTP field lines associated

with an HTTP message. A field section can contain multiple field

lines with the same name. It can also contain duplicate field

lines. An HTTP message can include both header field and trailer

field sections.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Representation:

Encoder:

Decoder:

Absolute Index:

Base:

Insert Count:

x (A)

x (A+)

x ...

An instruction that represents a field line,

possibly by reference to the dynamic and static tables.

An implementation that encodes field sections.

An implementation that decodes encoded field sections.

A unique index for each entry in the dynamic table.

A reference point for relative and post-base indices.

Representations that reference dynamic table entries are relative

to a Base.

The total number of entries inserted in the dynamic

table.

QPACK is a name, not an acronym.

1.2. Notational Conventions

Diagrams use the format described in Section 3.1 of [RFC2360], with

the following additional conventions:

Indicates that x is A bits long

Indicates that x uses the prefixed integer encoding defined

in Section 4.1.1, beginning with an A-bit prefix.

Indicates that x is variable-length and extends to the end of

the region.

2. Compression Process Overview

Like HPACK, QPACK uses two tables for associating field lines

("headers") to indices. The static table (Section 3.1) is predefined

and contains common header field lines (some of them with an empty

value). The dynamic table (Section 3.2) is built up over the course

of the connection and can be used by the encoder to index both

header and trailer field lines in the encoded field sections.

QPACK defines unidirectional streams for sending instructions from

encoder to decoder and vice versa.

2.1. Encoder

An encoder converts a header or trailer field section into a series

of representations by emitting either an indexed or a literal

representation for each field line in the list; see Section 4.5.

Indexed representations achieve high compression by replacing the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



literal name and possibly the value with an index to either the

static or dynamic table. References to the static table and literal

representations do not require any dynamic state and never risk

head-of-line blocking. References to the dynamic table risk head-of-

line blocking if the encoder has not received an acknowledgement

indicating the entry is available at the decoder.

An encoder MAY insert any entry in the dynamic table it chooses; it

is not limited to field lines it is compressing.

QPACK preserves the ordering of field lines within each field

section. An encoder MUST emit field representations in the order

they appear in the input field section.

QPACK is designed to contain the more complex state tracking to the

encoder, while the decoder is relatively simple.

2.1.1. Limits on Dynamic Table Insertions

Inserting entries into the dynamic table might not be possible if

the table contains entries that cannot be evicted.

A dynamic table entry cannot be evicted immediately after insertion,

even if it has never been referenced. Once the insertion of a

dynamic table entry has been acknowledged and there are no

outstanding references to the entry in unacknowledged

representations, the entry becomes evictable. Note that references

on the encoder stream never preclude the eviction of an entry,

because those references are guaranteed to be processed before the

instruction evicting the entry.

If the dynamic table does not contain enough room for a new entry

without evicting other entries, and the entries that would be

evicted are not evictable, the encoder MUST NOT insert that entry

into the dynamic table (including duplicates of existing entries).

In order to avoid this, an encoder that uses the dynamic table has

to keep track of each dynamic table entry referenced by each field

section until those representations are acknowledged by the decoder;

see Section 4.4.1.

2.1.1.1. Avoiding Prohibited Insertions

To ensure that the encoder is not prevented from adding new entries,

the encoder can avoid referencing entries that are close to

eviction. Rather than reference such an entry, the encoder can emit

a Duplicate instruction (Section 4.3.4), and reference the duplicate

instead.

Determining which entries are too close to eviction to reference is

an encoder preference. One heuristic is to target a fixed amount of

¶

¶

¶

¶

¶

¶

¶

¶



available space in the dynamic table: either unused space or space

that can be reclaimed by evicting non-blocking entries. To achieve

this, the encoder can maintain a draining index, which is the

smallest absolute index (Section 3.2.4) in the dynamic table that it

will emit a reference for. As new entries are inserted, the encoder

increases the draining index to maintain the section of the table

that it will not reference. If the encoder does not create new

references to entries with an absolute index lower than the draining

index, the number of unacknowledged references to those entries will

eventually become zero, allowing them to be evicted.

Figure 1: Draining Dynamic Table Entries

2.1.2. Blocked Streams

Because QUIC does not guarantee order between data on different

streams, a decoder might encounter a representation that references

a dynamic table entry that it has not yet received.

Each encoded field section contains a Required Insert Count (Section

4.5.1), the lowest possible value for the Insert Count with which

the field section can be decoded. For a field section encoded using

references to the dynamic table, the Required Insert Count is one

larger than the largest absolute index of all referenced dynamic

table entries. For a field section encoded with no references to the

dynamic table, the Required Insert Count is zero.

When the decoder receives an encoded field section with a Required

Insert Count greater than its own Insert Count, the stream cannot be

processed immediately, and is considered "blocked"; see Section

2.2.1.

The decoder specifies an upper bound on the number of streams that

can be blocked using the SETTINGS_QPACK_BLOCKED_STREAMS setting; see

Section 5. An encoder MUST limit the number of streams that could

become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all

times. If a decoder encounters more blocked streams than it promised

to support, it MUST treat this as a connection error of type

QPACK_DECOMPRESSION_FAILED.

¶

   +--------+---------------------------------+----------+

   | Unused |          Referenceable          | Draining |

   | Space  |             Entries             | Entries  |

   +--------+---------------------------------+----------+

            ^                                 ^          ^

            |                                 |          |

      Insertion Point                 Draining Index  Dropping

                                                       Point

¶

¶

¶

¶



Note that the decoder might not become blocked on every stream that

risks becoming blocked.

An encoder can decide whether to risk having a stream become

blocked. If permitted by the value of

SETTINGS_QPACK_BLOCKED_STREAMS, compression efficiency can often be

improved by referencing dynamic table entries that are still in

transit, but if there is loss or reordering the stream can become

blocked at the decoder. An encoder can avoid the risk of blocking by

only referencing dynamic table entries that have been acknowledged,

but this could mean using literals. Since literals make the encoded

field section larger, this can result in the encoder becoming

blocked on congestion or flow control limits.

2.1.3. Avoiding Flow Control Deadlocks

Writing instructions on streams that are limited by flow control can

produce deadlocks.

A decoder might stop issuing flow control credit on the stream that

carries an encoded field section until the necessary updates are

received on the encoder stream. If the granting of flow control

credit on the encoder stream (or the connection as a whole) depends

on the consumption and release of data on the stream carrying the

encoded field section, a deadlock might result.

More generally, a stream containing a large instruction can become

deadlocked if the decoder withholds flow control credit until the

instruction is completely received.

To avoid these deadlocks, an encoder SHOULD avoid writing an

instruction unless sufficient stream and connection flow control

credit is available for the entire instruction.

2.1.4. Known Received Count

The Known Received Count is the total number of dynamic table

insertions and duplications acknowledged by the decoder. The encoder

tracks the Known Received Count in order to identify which dynamic

table entries can be referenced without potentially blocking a

stream. The decoder tracks the Known Received Count in order to be

able to send Insert Count Increment instructions.

A Section Acknowledgement instruction (Section 4.4.1) implies that

the decoder has received all dynamic table state necessary to decode

the field section. If the Required Insert Count of the acknowledged

field section is greater than the current Known Received Count,

Known Received Count is updated to the value of the Required Insert

Count.

¶

¶

¶

¶

¶

¶

¶

¶



An Insert Count Increment instruction (Section 4.4.3) increases the

Known Received Count by its Increment parameter. See Section 2.2.2.3

for guidance.

2.2. Decoder

As in HPACK, the decoder processes a series of representations and

emits the corresponding field sections. It also processes

instructions received on the encoder stream that modify the dynamic

table. Note that encoded field sections and encoder stream

instructions arrive on separate streams. This is unlike HPACK, where

encoded field sections (header blocks) can contain instructions that

modify the dynamic table, and there is no dedicated stream of HPACK

instructions.

The decoder MUST emit field lines in the order their representations

appear in the encoded field section.

2.2.1. Blocked Decoding

Upon receipt of an encoded field section, the decoder examines the

Required Insert Count. When the Required Insert Count is less than

or equal to the decoder's Insert Count, the field section can be

processed immediately. Otherwise, the stream on which the field

section was received becomes blocked.

While blocked, encoded field section data SHOULD remain in the

blocked stream's flow control window. A stream becomes unblocked

when the Insert Count becomes greater than or equal to the Required

Insert Count for all encoded field sections the decoder has started

reading from the stream.

When processing encoded field sections, the decoder expects the

Required Insert Count to equal the lowest possible value for the

Insert Count with which the field section can be decoded, as

prescribed in Section 2.1.2. If it encounters a Required Insert

Count smaller than expected, it MUST treat this as a connection

error of type QPACK_DECOMPRESSION_FAILED; see Section 2.2.3. If it

encounters a Required Insert Count larger than expected, it MAY

treat this as a connection error of type QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

The decoder signals the following events by emitting decoder

instructions (Section 4.4) on the decoder stream.

2.2.2.1. Completed Processing of a Field Section

After the decoder finishes decoding a field section encoded using

representations containing dynamic table references, it MUST emit a

¶

¶

¶

¶

¶

¶

¶



Section Acknowledgement instruction (Section 4.4.1). A stream may

carry multiple field sections in the case of intermediate responses,

trailers, and pushed requests. The encoder interprets each Section

Acknowledgement instruction as acknowledging the earliest

unacknowledged field section containing dynamic table references

sent on the given stream.

2.2.2.2. Abandonment of a Stream

When an endpoint receives a stream reset before the end of a stream

or before all encoded field sections are processed on that stream,

or when it abandons reading of a stream, it generates a Stream

Cancellation instruction; see Section 4.4.2. This signals to the

encoder that all references to the dynamic table on that stream are

no longer outstanding. A decoder with a maximum dynamic table

capacity (Section 3.2.3) equal to zero MAY omit sending Stream

Cancellations, because the encoder cannot have any dynamic table

references. An encoder cannot infer from this instruction that any

updates to the dynamic table have been received.

The Section Acknowledgement and Stream Cancellation instructions

permit the encoder to remove references to entries in the dynamic

table. When an entry with absolute index lower than the Known

Received Count has zero references, then it is considered evictable;

see Section 2.1.1.

2.2.2.3. New Table Entries

After receiving new table entries on the encoder stream, the decoder

chooses when to emit Insert Count Increment instructions; see 

Section 4.4.3. Emitting this instruction after adding each new

dynamic table entry will provide the timeliest feedback to the

encoder, but could be redundant with other decoder feedback. By

delaying an Insert Count Increment instruction, the decoder might be

able to coalesce multiple Insert Count Increment instructions, or

replace them entirely with Section Acknowledgements; see Section

4.4.1. However, delaying too long may lead to compression

inefficiencies if the encoder waits for an entry to be acknowledged

before using it.

2.2.3. Invalid References

If the decoder encounters a reference in a field line representation

to a dynamic table entry that has already been evicted or that has

an absolute index greater than or equal to the declared Required

Insert Count (Section 4.5.1), it MUST treat this as a connection

error of type QPACK_DECOMPRESSION_FAILED.

¶

¶

¶

¶

¶



If the decoder encounters a reference in an encoder instruction to a

dynamic table entry that has already been evicted, it MUST treat

this as a connection error of type QPACK_ENCODER_STREAM_ERROR.

3. Reference Tables

Unlike in HPACK, entries in the QPACK static and dynamic tables are

addressed separately. The following sections describe how entries in

each table are addressed.

3.1. Static Table

The static table consists of a predefined list of field lines, each

of which has a fixed index over time. Its entries are defined in 

Appendix A.

All entries in the static table have a name and a value. However,

values can be empty (that is, have a length of 0). Each entry is

identified by a unique index.

Note that the QPACK static table is indexed from 0, whereas the

HPACK static table is indexed from 1.

When the decoder encounters an invalid static table index in a field

line representation it MUST treat this as a connection error of type

QPACK_DECOMPRESSION_FAILED. If this index is received on the encoder

stream, this MUST be treated as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

3.2. Dynamic Table

The dynamic table consists of a list of field lines maintained in

first-in, first-out order. Each HTTP/3 endpoint holds a dynamic

table that is initially empty. Entries are added by encoder

instructions received on the encoder stream; see Section 4.3.

The dynamic table can contain duplicate entries (i.e., entries with

the same name and same value). Therefore, duplicate entries MUST NOT

be treated as an error by the decoder.

Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size

The size of the dynamic table is the sum of the size of its entries.

The size of an entry is the sum of its name's length in bytes, its

value's length in bytes, and 32. The size of an entry is calculated

using the length of its name and value without Huffman encoding

applied.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



3.2.2. Dynamic Table Capacity and Eviction

The encoder sets the capacity of the dynamic table, which serves as

the upper limit on its size. The initial capacity of the dynamic

table is zero. The encoder sends a Set Dynamic Table Capacity

instruction (Section 4.3.1) with a non-zero capacity to begin using

the dynamic table.

Before a new entry is added to the dynamic table, entries are

evicted from the end of the dynamic table until the size of the

dynamic table is less than or equal to (table capacity - size of new

entry). The encoder MUST NOT cause a dynamic table entry to be

evicted unless that entry is evictable; see Section 2.1.1. The new

entry is then added to the table. It is an error if the encoder

attempts to add an entry that is larger than the dynamic table

capacity; the decoder MUST treat this as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

A new entry can reference an entry in the dynamic table that will be

evicted when adding this new entry into the dynamic table.

Implementations are cautioned to avoid deleting the referenced name

or value if the referenced entry is evicted from the dynamic table

prior to inserting the new entry.

Whenever the dynamic table capacity is reduced by the encoder

(Section 4.3.1), entries are evicted from the end of the dynamic

table until the size of the dynamic table is less than or equal to

the new table capacity. This mechanism can be used to completely

clear entries from the dynamic table by setting a capacity of 0,

which can subsequently be restored.

3.2.3. Maximum Dynamic Table Capacity

To bound the memory requirements of the decoder, the decoder limits

the maximum value the encoder is permitted to set for the dynamic

table capacity. In HTTP/3, this limit is determined by the value of

SETTINGS_QPACK_MAX_TABLE_CAPACITY sent by the decoder; see Section

5. The encoder MUST NOT set a dynamic table capacity that exceeds

this maximum, but it can choose to use a lower dynamic table

capacity; see Section 4.3.1.

For clients using 0-RTT data in HTTP/3, the server's maximum table

capacity is the remembered value of the setting, or zero if the

value was not previously sent. When the client's 0-RTT value of the

SETTING is zero, the server MAY set it to a non-zero value in its

SETTINGS frame. If the remembered value is non-zero, the server MUST

send the same non-zero value in its SETTINGS frame. If it specifies

any other value, or omits SETTINGS_QPACK_MAX_TABLE_CAPACITY from

¶

¶

¶

¶

¶



SETTINGS, the encoder must treat this as a connection error of type

QPACK_DECODER_STREAM_ERROR.

For HTTP/3 servers and HTTP/3 clients when 0-RTT is not attempted or

is rejected, the maximum table capacity is 0 until the encoder

processes a SETTINGS frame with a non-zero value of

SETTINGS_QPACK_MAX_TABLE_CAPACITY.

When the maximum table capacity is zero, the encoder MUST NOT insert

entries into the dynamic table, and MUST NOT send any encoder

instructions on the encoder stream.

3.2.4. Absolute Indexing

Each entry possesses an absolute index that is fixed for the

lifetime of that entry. The first entry inserted has an absolute

index of "0"; indices increase by one with each insertion.

3.2.5. Relative Indexing

Relative indices begin at zero and increase in the opposite

direction from the absolute index. Determining which entry has a

relative index of "0" depends on the context of the reference.

In encoder instructions (Section 4.3), a relative index of "0"

refers to the most recently inserted value in the dynamic table.

Note that this means the entry referenced by a given relative index

will change while interpreting instructions on the encoder stream.

Figure 2: Example Dynamic Table Indexing - Encoder Stream

Unlike in encoder instructions, relative indices in field line

representations are relative to the Base at the beginning of the

encoded field section; see Section 4.5.1. This ensures that

references are stable even if encoded field sections and dynamic

table updates are processed out of order.

¶

¶

¶

¶

¶

¶

      +-----+---------------+-------+

      | n-1 |      ...      |   d   |  Absolute Index

      + - - +---------------+ - - - +

      |  0  |      ...      | n-d-1 |  Relative Index

      +-----+---------------+-------+

      ^                             |

      |                             V

Insertion Point               Dropping Point

n = count of entries inserted

d = count of entries dropped

¶



In a field line representation, a relative index of "0" refers to

the entry with absolute index equal to Base - 1.

Figure 3: Example Dynamic Table Indexing - Relative Index in

Representation

3.2.6. Post-Base Indexing

Post-Base indices are used in field line representations for entries

with absolute indices greater than or equal to Base, starting at 0

for the entry with absolute index equal to Base, and increasing in

the same direction as the absolute index.

Post-Base indices allow an encoder to process a field section in a

single pass and include references to entries added while processing

this (or other) field sections.

Figure 4: Example Dynamic Table Indexing - Post-Base Index in

Representation

¶

               Base

                |

                V

    +-----+-----+-----+-----+-------+

    | n-1 | n-2 | n-3 | ... |   d   |  Absolute Index

    +-----+-----+  -  +-----+   -   +

                |  0  | ... | n-d-3 |  Relative Index

                +-----+-----+-------+

n = count of entries inserted

d = count of entries dropped

In this example, Base = n - 2

¶

¶

               Base

                |

                V

    +-----+-----+-----+-----+-----+

    | n-1 | n-2 | n-3 | ... |  d  |  Absolute Index

    +-----+-----+-----+-----+-----+

    |  1  |  0  |                    Post-Base Index

    +-----+-----+

n = count of entries inserted

d = count of entries dropped

In this example, Base = n - 2



4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

The prefixed integer from Section 5.1 of [RFC7541] is used heavily

throughout this document. The format from [RFC7541] is used

unmodified. Note, however, that QPACK uses some prefix sizes not

actually used in HPACK.

QPACK implementations MUST be able to decode integers up to and

including 62 bits long.

4.1.2. String Literals

The string literal defined by Section 5.2 of [RFC7541] is also used

throughout. This string format includes optional Huffman encoding.

HPACK defines string literals to begin on a byte boundary. They

begin with a single bit flag, denoted as 'H' in this document

(indicating whether the string is Huffman-coded), followed by the

Length encoded as a 7-bit prefix integer, and finally Length bytes

of data. When Huffman encoding is enabled, the Huffman table from

Appendix B of [RFC7541] is used without modification.

This document expands the definition of string literals by

permitting them to begin other than on a byte boundary. An "N-bit

prefix string literal" begins with the same Huffman flag, followed

by the length encoded as an (N-1)-bit prefix integer. The prefix

size, N, can have a value between 2 and 8 inclusive. The remainder

of the string literal is unmodified.

A string literal without a prefix length noted is an 8-bit prefix

string literal and follows the definitions in [RFC7541] without

modification.

4.2. Encoder and Decoder Streams

QPACK defines two unidirectional stream types:

An encoder stream is a unidirectional stream of type 0x02. It

carries an unframed sequence of encoder instructions from encoder

to decoder.

A decoder stream is a unidirectional stream of type 0x03. It

carries an unframed sequence of decoder instructions from decoder

to encoder.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶



HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint

MUST initiate at most one encoder stream and at most one decoder

stream. Receipt of a second instance of either stream type MUST be

treated as a connection error of type H3_STREAM_CREATION_ERROR.

These streams MUST NOT be closed. Closure of either unidirectional

stream type MUST be treated as a connection error of type

H3_CLOSED_CRITICAL_STREAM.

An endpoint MAY avoid creating an encoder stream if it will not be

used (for example if its encoder does not wish to use the dynamic

table, or if the maximum size of the dynamic table permitted by the

peer is zero).

An endpoint MAY avoid creating a decoder stream if its decoder sets

the maximum capacity of the dynamic table to zero.

An endpoint MUST allow its peer to create an encoder stream and a

decoder stream even if the connection's settings prevent their use.

4.3. Encoder Instructions

An encoder sends encoder instructions on the encoder stream to set

the capacity of the dynamic table and add dynamic table entries.

Instructions adding table entries can use existing entries to avoid

transmitting redundant information. The name can be transmitted as a

reference to an existing entry in the static or the dynamic table or

as a string literal. For entries that already exist in the dynamic

table, the full entry can also be used by reference, creating a

duplicate entry.

4.3.1. Set Dynamic Table Capacity

An encoder informs the decoder of a change to the dynamic table

capacity using an instruction that begins with the '001' three-bit

pattern. This is followed by the new dynamic table capacity

represented as an integer with a 5-bit prefix; see Section 4.1.1.

Figure 5: Set Dynamic Table Capacity

The new capacity MUST be lower than or equal to the limit described

in Section 3.2.3. In HTTP/3, this limit is the value of the

SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (Section 5) received

from the decoder. The decoder MUST treat a new dynamic table

¶

¶

¶

¶

¶

¶

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 0 | 0 | 1 |   Capacity (5+)   |

+---+---+---+-------------------+



capacity value that exceeds this limit as a connection error of type

QPACK_ENCODER_STREAM_ERROR.

Reducing the dynamic table capacity can cause entries to be evicted;

see Section 3.2.2. This MUST NOT cause the eviction of entries that

are not evictable; see Section 2.1.1. Changing the capacity of the

dynamic table is not acknowledged as this instruction does not

insert an entry.

4.3.2. Insert With Name Reference

An encoder adds an entry to the dynamic table where the field name

matches the field name of an entry stored in the static or the

dynamic table using an instruction that starts with the '1' one-bit

pattern. The second ('T') bit indicates whether the reference is to

the static or dynamic table. The 6-bit prefix integer (Section

4.1.1) that follows is used to locate the table entry for the field

name. When T=1, the number represents the static table index; when

T=0, the number is the relative index of the entry in the dynamic

table.

The field name reference is followed by the field value represented

as a string literal; see Section 4.1.2.

Figure 6: Insert Field Line -- Indexed Name

4.3.3. Insert With Literal Name

An encoder adds an entry to the dynamic table where both the field

name and the field value are represented as string literals using an

instruction that starts with the '01' two-bit pattern.

This is followed by the name represented as a 6-bit prefix string

literal, and the value represented as an 8-bit prefix string

literal; see Section 4.1.2.

¶

¶

¶

¶

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 1 | T |    Name Index (6+)    |

   +---+---+-----------------------+

   | H |     Value Length (7+)     |

   +---+---------------------------+

   |  Value String (Length bytes)  |

   +-------------------------------+

¶

¶



Figure 7: Insert Field Line -- New Name

4.3.4. Duplicate

An encoder duplicates an existing entry in the dynamic table using

an instruction that begins with the '000' three-bit pattern. This is

followed by the relative index of the existing entry represented as

an integer with a 5-bit prefix; see Section 4.1.1.

Figure 8: Duplicate

The existing entry is re-inserted into the dynamic table without

resending either the name or the value. This is useful to avoid

adding a reference to an older entry, which might block inserting

new entries.

4.4. Decoder Instructions

A decoder sends decoder instructions on the decoder stream to inform

the encoder about the processing of field sections and table updates

to ensure consistency of the dynamic table.

4.4.1. Section Acknowledgement

After processing an encoded field section whose declared Required

Insert Count is not zero, the decoder emits a Section

Acknowledgement instruction. The instruction begins with the '1'

one-bit pattern, followed by the field section's associated stream

ID encoded as a 7-bit prefix integer; see Section 4.1.1.

This instruction is used as described in Section 2.1.4 and in 

Section 2.2.2.

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 0 | 1 | H | Name Length (5+)  |

   +---+---+---+-------------------+

   |  Name String (Length bytes)   |

   +---+---------------------------+

   | H |     Value Length (7+)     |

   +---+---------------------------+

   |  Value String (Length bytes)  |

   +-------------------------------+

¶

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 0 | 0 | 0 |    Index (5+)     |

   +---+---+---+-------------------+

¶

¶

¶

¶



Figure 9: Section Acknowledgement

If an encoder receives a Section Acknowledgement instruction

referring to a stream on which every encoded field section with a

non-zero Required Insert Count has already been acknowledged, this

MUST be treated as a connection error of type

QPACK_DECODER_STREAM_ERROR.

The Section Acknowledgement instruction might increase the Known

Received Count; see Section 2.1.4.

4.4.2. Stream Cancellation

When a stream is reset or reading is abandoned, the decoder emits a

Stream Cancellation instruction. The instruction begins with the

'01' two-bit pattern, followed by the stream ID of the affected

stream encoded as a 6-bit prefix integer.

This instruction is used as described in Section 2.2.2.

Figure 10: Stream Cancellation

4.4.3. Insert Count Increment

The Insert Count Increment instruction begins with the '00' two-bit

pattern, followed by the Increment encoded as a 6-bit prefix

integer. This instruction increases the Known Received Count

(Section 2.1.4) by the value of the Increment parameter. The decoder

should send an Increment value that increases the Known Received

Count to the total number of dynamic table insertions and

duplications processed so far.

Figure 11: Insert Count Increment

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 1 |      Stream ID (7+)       |

+---+---------------------------+

¶

¶

¶

¶

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 0 | 1 |     Stream ID (6+)    |

+---+---+-----------------------+

¶

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 0 | 0 |     Increment (6+)    |

+---+---+-----------------------+



An encoder that receives an Increment field equal to zero, or one

that increases the Known Received Count beyond what the encoder has

sent MUST treat this as a connection error of type

QPACK_DECODER_STREAM_ERROR.

4.5. Field Line Representations

An encoded field section consists of a prefix and a possibly empty

sequence of representations defined in this section. Each

representation corresponds to a single field line. These

representations reference the static table or the dynamic table in a

particular state, but do not modify that state.

Encoded field sections are carried in frames on streams defined by

the enclosing protocol.

4.5.1. Encoded Field Section Prefix

Each encoded field section is prefixed with two integers. The

Required Insert Count is encoded as an integer with an 8-bit prefix

using the encoding described in Section 4.5.1.1. The Base is encoded

as a sign bit ('S') and a Delta Base value with a 7-bit prefix; see 

Section 4.5.1.2.

Figure 12: Encoded Field Section

4.5.1.1. Required Insert Count

Required Insert Count identifies the state of the dynamic table

needed to process the encoded field section. Blocking decoders use

the Required Insert Count to determine when it is safe to process

the rest of the field section.

The encoder transforms the Required Insert Count as follows before

encoding:

¶

¶

¶

¶

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

|   Required Insert Count (8+)  |

+---+---------------------------+

| S |      Delta Base (7+)      |

+---+---------------------------+

|      Encoded Field Lines    ...

+-------------------------------+

¶

¶

   if ReqInsertCount == 0:

      EncInsertCount = 0

   else:

      EncInsertCount = (ReqInsertCount mod (2 * MaxEntries)) + 1

¶



Here MaxEntries is the maximum number of entries that the dynamic

table can have. The smallest entry has empty name and value strings

and has the size of 32. Hence MaxEntries is calculated as

MaxTableCapacity is the maximum capacity of the dynamic table as

specified by the decoder; see Section 3.2.3.

This encoding limits the length of the prefix on long-lived

connections.

The decoder can reconstruct the Required Insert Count using an

algorithm such as the following. If the decoder encounters a value

of EncodedInsertCount that could not have been produced by a

conformant encoder, it MUST treat this as a connection error of type

QPACK_DECOMPRESSION_FAILED.

TotalNumberOfInserts is the total number of inserts into the

decoder's dynamic table.

For example, if the dynamic table is 100 bytes, then the Required

Insert Count will be encoded modulo 6. If a decoder has received 10

inserts, then an encoded value of 4 indicates that the Required

Insert Count is 9 for the field section.

¶

   MaxEntries = floor( MaxTableCapacity / 32 )¶

¶

¶

¶

¶

   FullRange = 2 * MaxEntries

   if EncodedInsertCount == 0:

      ReqInsertCount = 0

   else:

      if EncodedInsertCount > FullRange:

         Error

      MaxValue = TotalNumberOfInserts + MaxEntries

      # MaxWrapped is the largest possible value of

      # ReqInsertCount that is 0 mod 2*MaxEntries

      MaxWrapped = floor(MaxValue / FullRange) * FullRange

      ReqInsertCount = MaxWrapped + EncodedInsertCount - 1

      # If ReqInsertCount exceeds MaxValue, the Encoder's value

      # must have wrapped one fewer time

      if ReqInsertCount > MaxValue:

         if ReqInsertCount <= FullRange:

            Error

         ReqInsertCount -= FullRange

      # Value of 0 must be encoded as 0.

      if ReqInsertCount == 0:

         Error

¶

¶



4.5.1.2. Base

The Base is used to resolve references in the dynamic table as

described in Section 3.2.5.

To save space, the Base is encoded relative to the Required Insert

Count using a one-bit sign ('S') and the Delta Base value. A sign

bit of 0 indicates that the Base is greater than or equal to the

value of the Required Insert Count; the decoder adds the value of

Delta Base to the Required Insert Count to determine the value of

the Base. A sign bit of 1 indicates that the Base is less than the

Required Insert Count; the decoder subtracts the value of Delta Base

from the Required Insert Count and also subtracts one to determine

the value of the Base. That is:

A single-pass encoder determines the Base before encoding a field

section. If the encoder inserted entries in the dynamic table while

encoding the field section and is referencing them, Required Insert

Count will be greater than the Base, so the encoded difference is

negative and the sign bit is set to 1. If the field section was not

encoded using representations that reference the most recent entry

in the table and did not insert any new entries, the Base will be

greater than the Required Insert Count, so the delta will be

positive and the sign bit is set to 0.

An encoder that produces table updates before encoding a field

section might set Base to the value of Required Insert Count. In

such case, both the sign bit and the Delta Base will be set to zero.

A field section that was encoded without references to the dynamic

table can use any value for the Base; setting Delta Base to zero is

one of the most efficient encodings.

For example, with a Required Insert Count of 9, a decoder receives

an S bit of 1 and a Delta Base of 2. This sets the Base to 6 and

enables post-base indexing for three entries. In this example, a

relative index of 1 refers to the 5th entry that was added to the

table; a post-base index of 1 refers to the 8th entry.

4.5.2. Indexed Field Line

An indexed field line representation identifies an entry in the

static table, or an entry in the dynamic table with an absolute

index less than the value of the Base.

¶

¶

   if S == 0:

      Base = ReqInsertCount + DeltaBase

   else:

      Base = ReqInsertCount - DeltaBase - 1

¶

¶

¶

¶

¶

¶



Figure 13: Indexed Field Line

This representation starts with the '1' 1-bit pattern, followed by

the 'T' bit indicating whether the reference is into the static or

dynamic table. The 6-bit prefix integer (Section 4.1.1) that follows

is used to locate the table entry for the field line. When T=1, the

number represents the static table index; when T=0, the number is

the relative index of the entry in the dynamic table.

4.5.3. Indexed Field Line With Post-Base Index

An indexed field line with post-base index representation identifies

an entry in the dynamic table with an absolute index greater than or

equal to the value of the Base.

Figure 14: Indexed Field Line with Post-Base Index

This representation starts with the '0001' 4-bit pattern. This is

followed by the post-base index (Section 3.2.6) of the matching

field line, represented as an integer with a 4-bit prefix; see 

Section 4.1.1.

4.5.4. Literal Field Line With Name Reference

A literal field line with name reference representation encodes a

field line where the field name matches the field name of an entry

in the static table, or the field name of an entry in the dynamic

table with an absolute index less than the value of the Base.

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 1 | T |      Index (6+)       |

+---+---+-----------------------+

¶

¶

  0   1   2   3   4   5   6   7

+---+---+---+---+---+---+---+---+

| 0 | 0 | 0 | 1 |  Index (4+)   |

+---+---+---+---+---------------+

¶

¶

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 0 | 1 | N | T |Name Index (4+)|

   +---+---+---+---+---------------+

   | H |     Value Length (7+)     |

   +---+---------------------------+

   |  Value String (Length bytes)  |

   +-------------------------------+



Figure 15: Literal Field Line With Name Reference

This representation starts with the '01' two-bit pattern. The

following bit, 'N', indicates whether an intermediary is permitted

to add this field line to the dynamic table on subsequent hops. When

the 'N' bit is set, the encoded field line MUST always be encoded

with a literal representation. In particular, when a peer sends a

field line that it received represented as a literal field line with

the 'N' bit set, it MUST use a literal representation to forward

this field line. This bit is intended for protecting field values

that are not to be put at risk by compressing them; see Section 7

for more details.

The fourth ('T') bit indicates whether the reference is to the

static or dynamic table. The 4-bit prefix integer (Section 4.1.1)

that follows is used to locate the table entry for the field name.

When T=1, the number represents the static table index; when T=0,

the number is the relative index of the entry in the dynamic table.

Only the field name is taken from the dynamic table entry; the field

value is encoded as an 8-bit prefix string literal; see Section

4.1.2.

4.5.5. Literal Field Line With Post-Base Name Reference

A literal field line with post-base name reference representation

encodes a field line where the field name matches the field name of

a dynamic table entry with an absolute index greater than or equal

to the value of the Base.

Figure 16: Literal Field Line With Post-Base Name Reference

This representation starts with the '0000' four-bit pattern. The

fifth bit is the 'N' bit as described in Section 4.5.4. This is

followed by a post-base index of the dynamic table entry (Section

3.2.6) encoded as an integer with a 3-bit prefix; see Section 4.1.1.

Only the field name is taken from the dynamic table entry; the field

value is encoded as an 8-bit prefix string literal; see Section

4.1.2.

¶

¶

¶

¶

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 0 | 0 | 0 | 0 | N |NameIdx(3+)|

   +---+---+---+---+---+-----------+

   | H |     Value Length (7+)     |

   +---+---------------------------+

   |  Value String (Length bytes)  |

   +-------------------------------+

¶

¶



SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x1):

SETTINGS_QPACK_BLOCKED_STREAMS (0x7):

4.5.6. Literal Field Line With Literal Name

The literal field line with literal name representation encodes a

field name and a field value as string literals.

Figure 17: Literal Field Line With Literal Name

This representation begins with the '001' three-bit pattern. The

fourth bit is the 'N' bit as described in Section 4.5.4. The name

follows, represented as a 4-bit prefix string literal, then the

value, represented as an 8-bit prefix string literal; see Section

4.1.2.

5. Configuration

QPACK defines two settings for the HTTP/3 SETTINGS frame:

The default value is zero.

See Section 3.2 for usage. This is the equivalent of the

SETTINGS_HEADER_TABLE_SIZE from HTTP/2.

The default value is zero.

See Section 2.1.2.

6. Error Handling

The following error codes are defined for HTTP/3 to indicate

failures of QPACK that prevent the stream or connection from

continuing:

¶

     0   1   2   3   4   5   6   7

   +---+---+---+---+---+---+---+---+

   | 0 | 0 | 1 | N | H |NameLen(3+)|

   +---+---+---+---+---+-----------+

   |  Name String (Length bytes)   |

   +---+---------------------------+

   | H |     Value Length (7+)     |

   +---+---------------------------+

   |  Value String (Length bytes)  |

   +-------------------------------+

¶

¶

¶

¶

¶



QPACK_DECOMPRESSION_FAILED (0x200):

QPACK_ENCODER_STREAM_ERROR (0x201):

QPACK_DECODER_STREAM_ERROR (0x202):

Note:

The decoder failed to interpret

an encoded field section and is not able to continue decoding

that field section.

The decoder failed to interpret

an encoder instruction received on the encoder stream.

The encoder failed to interpret

a decoder instruction received on the decoder stream.

7. Security Considerations

This section describes potential areas of security concern with

QPACK:

Use of compression as a length-based oracle for verifying guesses

about secrets that are compressed into a shared compression

context.

Denial of service resulting from exhausting processing or memory

capacity at a decoder.

7.1. Probing Dynamic Table State

QPACK reduces the encoded size of field sections by exploiting the

redundancy inherent in protocols like HTTP. The ultimate goal of

this is to reduce the amount of data that is required to send HTTP

requests or responses.

The compression context used to encode header and trailer fields can

be probed by an attacker who can both define fields to be encoded

and transmitted and observe the length of those fields once they are

encoded. When an attacker can do both, they can adaptively modify

requests in order to confirm guesses about the dynamic table state.

If a guess is compressed into a shorter length, the attacker can

observe the encoded length and infer that the guess was correct.

This is possible even over the Transport Layer Security Protocol

(TLS, see [TLS]), because while TLS provides confidentiality

protection for content, it only provides a limited amount of

protection for the length of that content.

Padding schemes only provide limited protection against an

attacker with these capabilities, potentially only forcing an

increased number of guesses to learn the length associated with a

given guess. Padding schemes also work directly against

compression by increasing the number of bits that are

transmitted.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶



Attacks like CRIME ([CRIME]) demonstrated the existence of these

general attacker capabilities. The specific attack exploited the

fact that DEFLATE ([RFC1951]) removes redundancy based on prefix

matching. This permitted the attacker to confirm guesses a character

at a time, reducing an exponential-time attack into a linear-time

attack.

7.2. Applicability to QPACK and HTTP

QPACK mitigates but does not completely prevent attacks modeled on

CRIME ([CRIME]) by forcing a guess to match an entire field line,

rather than individual characters. An attacker can only learn

whether a guess is correct or not, so is reduced to a brute force

guess for the field values associated with a given field name.

The viability of recovering specific field values therefore depends

on the entropy of values. As a result, values with high entropy are

unlikely to be recovered successfully. However, values with low

entropy remain vulnerable.

Attacks of this nature are possible any time that two mutually

distrustful entities control requests or responses that are placed

onto a single HTTP/3 connection. If the shared QPACK compressor

permits one entity to add entries to the dynamic table, and the

other to access those entries, then the state of the table can be

learned.

Having requests or responses from mutually distrustful entities

occurs when an intermediary either:

sends requests from multiple clients on a single connection

toward an origin server, or

takes responses from multiple origin servers and places them on a

shared connection toward a client.

Web browsers also need to assume that requests made on the same

connection by different web origins ([RFC6454]) are made by mutually

distrustful entities.

7.3. Mitigation

Users of HTTP that require confidentiality for header or trailer

fields can use values with entropy sufficient to make guessing

infeasible. However, this is impractical as a general solution

because it forces all users of HTTP to take steps to mitigate

attacks. It would impose new constraints on how HTTP is used.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶



Note:

Rather than impose constraints on users of HTTP, an implementation

of QPACK can instead constrain how compression is applied in order

to limit the potential for dynamic table probing.

An ideal solution segregates access to the dynamic table based on

the entity that is constructing the message. Field values that are

added to the table are attributed to an entity, and only the entity

that created a particular value can extract that value.

To improve compression performance of this option, certain entries

might be tagged as being public. For example, a web browser might

make the values of the Accept-Encoding header field available in all

requests.

An encoder without good knowledge of the provenance of field values

might instead introduce a penalty for many field lines with the same

field name and different values. This penalty could cause a large

number of attempts to guess a field value to result in the field not

being compared to the dynamic table entries in future messages,

effectively preventing further guesses.

Simply removing entries corresponding to the field from the

dynamic table can be ineffectual if the attacker has a reliable

way of causing values to be reinstalled. For example, a request

to load an image in a web browser typically includes the Cookie

header field (a potentially highly valued target for this sort of

attack), and web sites can easily force an image to be loaded,

thereby refreshing the entry in the dynamic table.

This response might be made inversely proportional to the length of

the field value. Disabling access to the dynamic table for a given

field name might occur for shorter values more quickly or with

higher probability than for longer values.

7.4. Never-Indexed Literals

Implementations can also choose to protect sensitive fields by not

compressing them and instead encoding their value as literals.

Refusing to insert a field line into the dynamic table is only

effective if doing so is avoided on all hops. The never-indexed

literal bit (see Section 4.5.4) can be used to signal to

intermediaries that a particular value was intentionally sent as a

literal.

An intermediary MUST NOT re-encode a value that uses a literal

representation with the 'N' bit set with another representation that

would index it. If QPACK is used for re-encoding, a literal

representation with the 'N' bit set MUST be used. If HPACK is used

¶

¶

¶

¶

¶

¶

¶

¶



for re-encoding, the never-indexed literal representation (see

Section 6.2.3 of [RFC7541]) MUST be used.

The choice to mark that a field value should never be indexed

depends on several factors. Since QPACK does not protect against

guessing an entire field value, short or low-entropy values are more

readily recovered by an adversary. Therefore, an encoder might

choose not to index values with low entropy.

An encoder might also choose not to index values for fields that are

considered to be highly valuable or sensitive to recovery, such as

the Cookie or Authorization header fields.

On the contrary, an encoder might prefer indexing values for fields

that have little or no value if they were exposed. For instance, a

User-Agent header field does not commonly vary between requests and

is sent to any server. In that case, confirmation that a particular

User-Agent value has been used provides little value.

Note that these criteria for deciding to use a never-indexed literal

representation will evolve over time as new attacks are discovered.

7.5. Static Huffman Encoding

There is no currently known attack against a static Huffman

encoding. A study has shown that using a static Huffman encoding

table created an information leakage, however this same study

concluded that an attacker could not take advantage of this

information leakage to recover any meaningful amount of information

(see [PETAL]).

7.6. Memory Consumption

An attacker can try to cause an endpoint to exhaust its memory.

QPACK is designed to limit both the peak and stable amounts of

memory allocated by an endpoint.

The amount of memory used by the encoder is limited by the protocol

using QPACK through the definition of the maximum size of the

dynamic table, and the maximum number of blocking streams. In HTTP/

3, these values are controlled by the decoder through the settings

parameters SETTINGS_QPACK_MAX_TABLE_CAPACITY and

SETTINGS_QPACK_BLOCKED_STREAMS, respectively (see Section 3.2.3 and 

Section 2.1.2). The limit on the size of the dynamic table takes

into account the size of the data stored in the dynamic table, plus

a small allowance for overhead. The limit on the number of blocked

streams is only a proxy for the maximum amount of memory required by

the decoder. The actual maximum amount of memory will depend on how

much memory the decoder uses to track each blocked stream.

¶

¶

¶

¶

¶

¶

¶

¶



A decoder can limit the amount of state memory used for the dynamic

table by setting an appropriate value for the maximum size of the

dynamic table. In HTTP/3, this is realized by setting an appropriate

value for the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter. An

encoder can limit the amount of state memory it uses by signaling a

lower dynamic table size than the decoder allows (see Section

3.2.2).

A decoder can limit the amount of state memory used for blocked

streams by setting an appropriate value for the maximum number of

blocked streams. In HTTP/3, this is realized by setting an

appropriate value for the QPACK_BLOCKED_STREAMS parameter. Streams

which risk becoming blocked consume no additional state memory on

the encoder.

An encoder allocates memory to track all dynamic table references in

unacknowledged field sections. An implementation can directly limit

the amount of state memory by only using as many references to the

dynamic table as it wishes to track; no signaling to the decoder is

required. However, limiting references to the dynamic table will

reduce compression effectiveness.

The amount of temporary memory consumed by an encoder or decoder can

be limited by processing field lines sequentially. A decoder

implementation does not need to retain a complete list of field

lines while decoding a field section. An encoder implementation does

not need to retain a complete list of field lines while encoding a

field section if it is using a single-pass algorithm. Note that it

might be necessary for an application to retain a complete list of

field lines for other reasons; even if QPACK does not force this to

occur, application constraints might make this necessary.

While the negotiated limit on the dynamic table size accounts for

much of the memory that can be consumed by a QPACK implementation,

data that cannot be immediately sent due to flow control is not

affected by this limit. Implementations should limit the size of

unsent data, especially on the decoder stream where flexibility to

choose what to send is limited. Possible responses to an excess of

unsent data might include limiting the ability of the peer to open

new streams, reading only from the encoder stream, or closing the

connection.

7.7. Implementation Limits

An implementation of QPACK needs to ensure that large values for

integers, long encoding for integers, or long string literals do not

create security weaknesses.

¶

¶

¶

¶

¶

¶



[HTTP3]

An implementation has to set a limit for the values it accepts for

integers, as well as for the encoded length; see Section 4.1.1. In

the same way, it has to set a limit to the length it accepts for

string literals; see Section 4.1.2.

8. IANA Considerations

8.1. Settings Registration

This document specifies two settings. The entries in the following

table are registered in the "HTTP/3 Settings" registry established

in [HTTP3].

Setting Name Code Specification Default

QPACK_MAX_TABLE_CAPACITY 0x1 Section 5 0

QPACK_BLOCKED_STREAMS 0x7 Section 5 0

Table 1

8.2. Stream Type Registration

This document specifies two stream types. The entries in the

following table are registered in the "HTTP/3 Stream Type" registry

established in [HTTP3].

Stream Type Code Specification Sender

QPACK Encoder Stream 0x02 Section 4.2 Both

QPACK Decoder Stream 0x03 Section 4.2 Both

Table 2

8.3. Error Code Registration

This document specifies three error codes. The entries in the

following table are registered in the "HTTP/3 Error Code" registry

established in [HTTP3].

Name Code Description Specification

QPACK_DECOMPRESSION_FAILED 0x200
Decoding of a field

section failed
Section 6

QPACK_ENCODER_STREAM_ERROR 0x201
Error on the

encoder stream
Section 6

QPACK_DECODER_STREAM_ERROR 0x202
Error on the

decoder stream
Section 6

Table 3

9. References

9.1. Normative References

¶

¶

¶

¶



[QUIC-TRANSPORT]

[RFC2119]

[RFC7541]

[RFC8174]

[SEMANTICS]

[CRIME]

[PETAL]

[RFC1951]

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-31, 25 September 2020, <https://tools.ietf.org/

html/draft-ietf-quic-http-31>. 

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-31, 

25 September 2020, <https://tools.ietf.org/html/draft-

ietf-quic-transport-31>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015, 

<https://www.rfc-editor.org/info/rfc7541>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Fielding, R., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-11, 27 August 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-httpbis-

semantics-11.txt>. 

9.2. Informative References

Wikipedia, "CRIME", May 2015, <http://en.wikipedia.org/w/

index.php?title=CRIME&oldid=660948120>. 

Tan, J. and J. Nahata, "PETAL: Preset Encoding Table

Information Leakage", April 2013, <http://

www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf>. 

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, DOI 10.17487/

https://tools.ietf.org/html/draft-ietf-quic-http-31
https://tools.ietf.org/html/draft-ietf-quic-http-31
https://tools.ietf.org/html/draft-ietf-quic-transport-31
https://tools.ietf.org/html/draft-ietf-quic-transport-31
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-semantics-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-semantics-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-semantics-11.txt
http://en.wikipedia.org/w/index.php?title=CRIME&oldid=660948120
http://en.wikipedia.org/w/index.php?title=CRIME&oldid=660948120
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf


[RFC2360]

[RFC6454]

[RFC7540]

[TLS]

RFC1951, May 1996, <https://www.rfc-editor.org/info/

rfc1951>. 

Scott, G., "Guide for Internet Standards Writers", BCP

22, RFC 2360, DOI 10.17487/RFC2360, June 1998, <https://

www.rfc-editor.org/info/rfc2360>. 

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>. 

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

Appendix A. Static Table

This table was generated by analyzing actual Internet traffic in

2018 and including the most common header fields, after filtering

out some unsupported and non-standard values. Due to this

methodology, some of the entries may be inconsistent or appear

multiple times with similar but not identical values. The order of

the entries is optimized to encode the most common header fields

with the smallest number of bytes.

Index Name Value

0 :authority

1 :path /

2 age 0

3 content-disposition

4 content-length 0

5 cookie

6 date

7 etag

8 if-modified-since

9 if-none-match

10 last-modified

11 link

12 location

13 referer

14 set-cookie

15 :method CONNECT

16 :method DELETE

¶

https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8446


Index Name Value

17 :method GET

18 :method HEAD

19 :method OPTIONS

20 :method POST

21 :method PUT

22 :scheme http

23 :scheme https

24 :status 103

25 :status 200

26 :status 304

27 :status 404

28 :status 503

29 accept */*

30 accept application/dns-message

31 accept-encoding gzip, deflate, br

32 accept-ranges bytes

33
access-control-allow-

headers
cache-control

34
access-control-allow-

headers
content-type

35
access-control-allow-

origin
*

36 cache-control max-age=0

37 cache-control max-age=2592000

38 cache-control max-age=604800

39 cache-control no-cache

40 cache-control no-store

41 cache-control public, max-age=31536000

42 content-encoding br

43 content-encoding gzip

44 content-type application/dns-message

45 content-type application/javascript

46 content-type application/json

47 content-type application/x-www-form-urlencoded

48 content-type image/gif

49 content-type image/jpeg

50 content-type image/png

51 content-type text/css

52 content-type text/html; charset=utf-8

53 content-type text/plain

54 content-type text/plain;charset=utf-8

55 range bytes=0-

56
strict-transport-

security
max-age=31536000

57
strict-transport-

security
max-age=31536000; includesubdomains



Index Name Value

58
strict-transport-

security

max-age=31536000; includesubdomains;

preload

59 vary accept-encoding

60 vary origin

61 x-content-type-options nosniff

62 x-xss-protection 1; mode=block

63 :status 100

64 :status 204

65 :status 206

66 :status 302

67 :status 400

68 :status 403

69 :status 421

70 :status 425

71 :status 500

72 accept-language

73
access-control-allow-

credentials
FALSE

74
access-control-allow-

credentials
TRUE

75
access-control-allow-

headers
*

76
access-control-allow-

methods
get

77
access-control-allow-

methods
get, post, options

78
access-control-allow-

methods
options

79
access-control-expose-

headers
content-length

80
access-control-request-

headers
content-type

81
access-control-request-

method
get

82
access-control-request-

method
post

83 alt-svc clear

84 authorization

85 content-security-policy
script-src 'none'; object-src 'none';

base-uri 'none'

86 early-data 1

87 expect-ct

88 forwarded

89 if-range

90 origin

91 purpose prefetch



Index Name Value

92 server

93 timing-allow-origin *

94
upgrade-insecure-

requests
1

95 user-agent

96 x-forwarded-for

97 x-frame-options deny

98 x-frame-options sameorigin

Table 4

Appendix B. Encoding and Decoding Examples

The following examples represent a series of exchanges between an

encoder and a decoder. The exchanges are designed to exercise most

QPACK instructions, and highlight potentially common patterns and

their impact on dynamic table state. The encoder sends three encoded

field sections containing one field line each, as wells as two

speculative inserts that are not referenced.

The state of the encoder's dynamic table is shown, along with its

current size. Each entry is shown with the Absolute Index of the

entry (Abs), the current number of outstanding encoded field

sections with references to that entry (Ref), along with the name

and value. Entries above the 'acknowledged' line have been

acknowledged by the decoder.

B.1. Literal Field Line With Name Reference

The encoder sends an encoded field section containing a literal

representation of a field with a static name reference.

B.2. Dynamic Table

The encoder sets the dynamic table capacity, inserts a header with a

dynamic name reference, then sends a potentially blocking, encoded

¶

¶

¶

Data                | Interpretation

                             | Encoder's Dynamic Table

Stream: 0

0000                | Required Insert Count = 0, Base = 0

510b 2f69 6e64 6578 | Literal Field Line with Name Reference

2e68 746d 6c        |  Static Table, Index=1

                    |  (:path=/index.html)

                              Abs Ref Name        Value

                              ^-- acknowledged --^

                              Size=0

¶



field section referencing this new entry. The decoder acknowledges

processing the encoded field section, which implicitly acknowledges

all dynamic table insertions up to the Required Insert Count.

B.3. Speculative Insert

The encoder inserts a header into the dynamic table with a literal

name. The decoder acknowledges receipt of the entry. The encoder

does not send any encoded field sections.

¶

Stream: Encoder

3fbd01              | Set Dynamic Table Capacity=220

c00f 7777 772e 6578 | Insert With Name Reference

616d 706c 652e 636f | Static Table, Index=0

6d                  |  (:authority=www.example.com)

c10c 2f73 616d 706c | Insert With Name Reference

652f 7061 7468      |  Static Table, Index=1

                    |  (:path=/sample/path)

                              Abs Ref Name        Value

                              ^-- acknowledged --^

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                              Size=106

Stream: 4

0381                | Required Insert Count = 2, Base = 0

10                  | Indexed Field Line With Post-Base Index

                    |  Absolute Index = Base(0) + Index(0) + 1 = 1

                    |  (:authority=www.example.com)

11                  | Indexed Field Line With Post-Base Index

                    |  Absolute Index = Base(0) + Index(1) + 1 = 2

                    |  (:path=/sample/path)

                              Abs Ref Name        Value

                              ^-- acknowledged --^

                               1   1  :authority  www.example.com

                               2   1  :path       /sample/path

                              Size=106

Stream: Decoder

84                  | Section Acknowledgement (stream=4)

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                              ^-- acknowledged --^

                              Size=106

¶

¶



B.4. Duplicate Instruction, Stream Cancellation

The encoder duplicates an existing entry in the dynamic table, then

sends an encoded field section referencing the dynamic table entries

including the duplicated entry. The decoder notifies the encoder

that the encoded field section was not processed by sending a stream

cancellation.

Stream: Encoder

4a63 7573 746f 6d2d | Insert With Literal Name

6b65 790c 6375 7374 |  (custom-key=custom-value)

6f6d 2d76 616c 7565 |

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                              ^-- acknowledged --^

                               3   0  custom-key  custom-value

                              Size=160

Stream: Decoder

01                  | Insert Count Increment (1)

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                               3   0  custom-key  custom-value

                              ^-- acknowledged --^

                              Size=160

¶

¶



B.5. Dynamic Table Insert, Eviction

The encoder inserts another header into the dynamic table, which

evicts the oldest entry. The encoder does not send any encoded field

sections.

Stream: Encoder

02                  | Duplicate (Relative Index=2)

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                               3   0  custom-key  custom-value

                              ^-- acknowledged --^

                               4   0  :authority  www.example.com

                              Size=217

Stream: 8

0500                | Required Insert Count = 4, Base = 4

80                  | Indexed Field Line, Dynamic Table

                    |  Absolute Index = Base(4) - Index(0) = 4

                    |  (:authority=www.example.com)

c1                  | Indexed Field Line, Static Table Index = 1

                    |  (:path=/)

81                  | Indexed Field Line, Dynamic Table

                    |  Absolute Index = Base(4) - Index(1) = 3

                    |  (custom-key=custom-value)

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                               3   1  custom-key  custom-value

                              ^-- acknowledged --^

                               4   1  :authority  www.example.com

                              Size=217

Stream: Decoder

48                  | Stream Cancellation (Stream=8)

                              Abs Ref Name        Value

                               1   0  :authority  www.example.com

                               2   0  :path       /sample/path

                               3   0  custom-key  custom-value

                              ^-- acknowledged --^

                               4   0  :authority  www.example.com

                              Size=215

¶

¶



Appendix C. Sample One Pass Encoding Algorithm

Pseudo-code for single pass encoding, excluding handling of

duplicates, non-blocking mode, available encoder stream flow control

and reference tracking.

Stream: Encoder

810d 6375 7374 6f6d | Insert With Name Reference

2d76 616c 7565 32   |  Dynamic Table, Absolute Index=2

                    |  (custom-key=custom-value2)

                              Abs Ref Name        Value

                               2   0  :path       /sample/path

                               3   0  custom-key  custom-value

                              ^-- acknowledged --^

                               4   0  :authority  www.example.com

                               5   0  custom-key  custom-value2

                              Size=215

¶

¶



base = dynamicTable.getInsertCount()

requiredInsertCount = 0

for line in field_lines:

  staticIndex = staticTable.findIndex(line)

  if staticIndex is not None:

    encodeIndexReference(streamBuffer, staticIndex)

    continue

  dynamicIndex = dynamicTable.findIndex(line)

  if dynamicIndex is None:

    # No matching entry.  Either insert+index or encode literal

    staticNameIndex = staticTable.findName(line.name)

    if staticNameIndex is None:

       dynamicNameIndex = dynamicTable.findName(line.name)

    if shouldIndex(line) and dynamicTable.canIndex(line):

      encodeInsert(encoderBuffer, staticNameIndex,

                   dynamicNameIndex, line)

      dynamicIndex = dynamicTable.add(line)

  if dynamicIndex is None:

    # Could not index it, literal

    if dynamicNameIndex is not None:

      # Encode literal with dynamic name, possibly above base

      encodeDynamicLiteral(streamBuffer, dynamicNameIndex,

                           base, line)

      requiredInsertCount = max(requiredInsertCount,

                                dynamicNameIndex)

    else:

      # Encodes a literal with a static name or literal name

      encodeLiteral(streamBuffer, staticNameIndex, line)

  else:

    # Dynamic index reference

    assert(dynamicIndex is not None)

    requiredInsertCount = max(requiredInsertCount, dynamicIndex)

    # Encode dynamicIndex, possibly above base

    encodeDynamicIndexReference(streamBuffer, dynamicIndex, base)

# encode the prefix

if requiredInsertCount == 0:

  encodeIndexReference(prefixBuffer, 0, 0, 8)

  encodeIndexReference(prefixBuffer, 0, 0, 7)

else:

  wireRIC = (

    requiredInsertCount

    % (2 * getMaxEntries(maxTableCapacity))

  ) + 1;

  encodeInteger(prefixBuffer, 0x00, wireRIC, 8)

  if base >= requiredInsertCount:



    encodeInteger(prefixBuffer, 0, base - requiredInsertCount, 7)

  else:

    encodeInteger(prefixBuffer, 0x80,

                  requiredInsertCount  - base - 1, 7)

return encoderBuffer, prefixBuffer + streamBuffer

¶



Appendix D. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

D.1. Since draft-ietf-quic-qpack-17

Editorial changes only

D.2. Since draft-ietf-quic-qpack-16

Editorial changes only

D.3. Since draft-ietf-quic-qpack-15

No changes

D.4. Since draft-ietf-quic-qpack-14

Added security considerations

D.5. Since draft-ietf-quic-qpack-13

No changes

D.6. Since draft-ietf-quic-qpack-12

Editorial changes only

D.7. Since draft-ietf-quic-qpack-11

Editorial changes only

D.8. Since draft-ietf-quic-qpack-10

Editorial changes only

D.9. Since draft-ietf-quic-qpack-09

Decoders MUST emit Header Acknowledgements (#2939)

Updated error code for multiple encoder or decoder streams

(#2970)

Added explicit defaults for new SETTINGS (#2974)

D.10. Since draft-ietf-quic-qpack-08

Endpoints are permitted to create encoder and decoder streams

even if they can't use them (#2100, #2529)

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

*

¶



Maximum values for settings removed (#2766, #2767)

D.11. Since draft-ietf-quic-qpack-06

Clarify initial dynamic table capacity maximums (#2276, #2330,

#2330)

D.12. Since draft-ietf-quic-qpack-05

Introduced the terms dynamic table capacity and maximum dynamic

table capacity.

Renamed SETTINGS_HEADER_TABLE_SIZE to

SETTINGS_QPACK_MAX_TABLE_CAPACITY.

D.13. Since draft-ietf-quic-qpack-04

Changed calculation of Delta Base Index to avoid an illegal value

(#2002, #2005)

D.14. Since draft-ietf-quic-qpack-03

Change HTTP settings defaults (#2038)

Substantial editorial reorganization

D.15. Since draft-ietf-quic-qpack-02

Largest Reference encoded modulo MaxEntries (#1763)

New Static Table (#1355)

Table Size Update with Insert Count=0 is a connection error

(#1762)

Stream Cancellations are optional when

SETTINGS_HEADER_TABLE_SIZE=0 (#1761)

Implementations must handle 62 bit integers (#1760)

Different error types for each QPACK stream, other changes to

error handling (#1726)

Preserve header field order (#1725)

Initial table size is the maximum permitted when table is first

usable (#1642)

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶



D.16. Since draft-ietf-quic-qpack-01

Only header blocks that reference the dynamic table are

acknowledged (#1603, #1605)

D.17. Since draft-ietf-quic-qpack-00

Renumbered instructions for consistency (#1471, #1472)

Decoder is allowed to validate largest reference (#1404, #1469)

Header block acknowledgments also acknowledge the associated

largest reference (#1370, #1400)

Added an acknowledgment for unread streams (#1371, #1400)

Removed framing from encoder stream (#1361,#1467)

Control streams use typed unidirectional streams rather than

fixed stream IDs (#910,#1359)

D.18. Since draft-ietf-quic-qcram-00

Separate instruction sets for table updates and header blocks

(#1235, #1142, #1141)

Reworked indexing scheme (#1176, #1145, #1136, #1130, #1125,

#1314)

Added mechanisms that support one-pass encoding (#1138, #1320)

Added a setting to control the number of blocked decoders (#238,

#1140, #1143)

Moved table updates and acknowledgments to dedicated streams

(#1121, #1122, #1238)

Acknowledgments

The IETF QUIC Working Group received an enormous amount of support

from many people.

The compression design team did substantial work exploring the

problem space and influencing the initial draft. The contributions

of design team members Roberto Peon, Martin Thomson, and Dmitri

Tikhonov are gratefully acknowledged.

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

¶



The following people also provided substantial contributions to this

document:

Bence Beky

Alessandro Ghedini

Ryan Hamilton

Robin Marx

Patrick McManus

奥  (Kazuho Oku)

Lucas Pardue

Biren Roy

Ian Swett

This draft draws heavily on the text of [RFC7541]. The indirect

input of those authors is also gratefully acknowledged.

Buck's contribution was supported by Google during his employment

there.

A portion of Mike's contribution was supported by Microsoft during

his employment there.

Authors' Addresses

Charles 'Buck' Krasic

Netflix

Email: ckrasic@netflix.com

Mike Bishop

Akamai Technologies

Email: mbishop@evequefou.be

Alan Frindell (editor)

Facebook

Email: afrind@fb.com

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

mailto:ckrasic@netflix.com
mailto:mbishop@evequefou.be
mailto:afrind@fb.com

	QPACK: Header Compression for HTTP/3
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions
	1.2. Notational Conventions

	2. Compression Process Overview
	2.1. Encoder
	2.1.1. Limits on Dynamic Table Insertions
	2.1.1.1. Avoiding Prohibited Insertions

	2.1.2. Blocked Streams
	2.1.3. Avoiding Flow Control Deadlocks
	2.1.4. Known Received Count

	2.2. Decoder
	2.2.1. Blocked Decoding
	2.2.2. State Synchronization
	2.2.2.1. Completed Processing of a Field Section
	2.2.2.2. Abandonment of a Stream
	2.2.2.3. New Table Entries

	2.2.3. Invalid References


	3. Reference Tables
	3.1. Static Table
	3.2. Dynamic Table
	3.2.1. Dynamic Table Size
	3.2.2. Dynamic Table Capacity and Eviction
	3.2.3. Maximum Dynamic Table Capacity
	3.2.4. Absolute Indexing
	3.2.5. Relative Indexing
	3.2.6. Post-Base Indexing


	4. Wire Format
	4.1. Primitives
	4.1.1. Prefixed Integers
	4.1.2. String Literals

	4.2. Encoder and Decoder Streams
	4.3. Encoder Instructions
	4.3.1. Set Dynamic Table Capacity
	4.3.2. Insert With Name Reference
	4.3.3. Insert With Literal Name
	4.3.4. Duplicate

	4.4. Decoder Instructions
	4.4.1. Section Acknowledgement
	4.4.2. Stream Cancellation
	4.4.3. Insert Count Increment

	4.5. Field Line Representations
	4.5.1. Encoded Field Section Prefix
	4.5.1.1. Required Insert Count
	4.5.1.2. Base

	4.5.2. Indexed Field Line
	4.5.3. Indexed Field Line With Post-Base Index
	4.5.4. Literal Field Line With Name Reference
	4.5.5. Literal Field Line With Post-Base Name Reference
	4.5.6. Literal Field Line With Literal Name


	5. Configuration
	6. Error Handling
	7. Security Considerations
	7.1. Probing Dynamic Table State
	7.2. Applicability to QPACK and HTTP
	7.3. Mitigation
	7.4. Never-Indexed Literals
	7.5. Static Huffman Encoding
	7.6. Memory Consumption
	7.7. Implementation Limits

	8. IANA Considerations
	8.1. Settings Registration
	8.2. Stream Type Registration
	8.3. Error Code Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Static Table
	Appendix B. Encoding and Decoding Examples
	B.1. Literal Field Line With Name Reference
	B.2. Dynamic Table
	B.3. Speculative Insert
	B.4. Duplicate Instruction, Stream Cancellation
	B.5. Dynamic Table Insert, Eviction
	Appendix C. Sample One Pass Encoding Algorithm
	Appendix D. Change Log
	D.1. Since draft-ietf-quic-qpack-17
	D.2. Since draft-ietf-quic-qpack-16
	D.3. Since draft-ietf-quic-qpack-15
	D.4. Since draft-ietf-quic-qpack-14
	D.5. Since draft-ietf-quic-qpack-13
	D.6. Since draft-ietf-quic-qpack-12
	D.7. Since draft-ietf-quic-qpack-11
	D.8. Since draft-ietf-quic-qpack-10
	D.9. Since draft-ietf-quic-qpack-09
	D.10. Since draft-ietf-quic-qpack-08
	D.11. Since draft-ietf-quic-qpack-06
	D.12. Since draft-ietf-quic-qpack-05
	D.13. Since draft-ietf-quic-qpack-04
	D.14. Since draft-ietf-quic-qpack-03
	D.15. Since draft-ietf-quic-qpack-02
	D.16. Since draft-ietf-quic-qpack-01
	D.17. Since draft-ietf-quic-qpack-00
	D.18. Since draft-ietf-quic-qcram-00
	Acknowledgments
	Authors' Addresses


