
QUIC J. Iyengar, Ed.
Internet-Draft Fastly
Intended status: Standards Track I. Swett, Ed.
Expires: October 19, 2018 Google
 April 17, 2018

QUIC Loss Detection and Congestion Control
draft-ietf-quic-recovery-11

Abstract

 This document describes loss detection and congestion control
 mechanisms for QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-recovery [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 19, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Swett Expires October 19, 2018 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Loss Detection April 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 4

2. Design of the QUIC Transmission Machinery 4
2.1. Relevant Differences Between QUIC and TCP 4
2.1.1. Monotonically Increasing Packet Numbers 5
2.1.2. No Reneging . 5
2.1.3. More ACK Ranges 5
2.1.4. Explicit Correction For Delayed ACKs 5

3. Loss Detection . 6
3.1. Computing the RTT estimate 6
3.2. Ack-based Detection 6
3.2.1. Fast Retransmit 6
3.2.2. Early Retransmit 7

3.3. Timer-based Detection 8
3.3.1. Handshake Timeout 8
3.3.2. Tail Loss Probe 9
3.3.3. Retransmission Timeout 10

3.4. Generating Acknowledgements 11
3.4.1. ACK Ranges . 11
3.4.2. Receiver Tracking of ACK Frames 12

3.5. Pseudocode . 12
3.5.1. Constants of interest 12
3.5.2. Variables of interest 13
3.5.3. Initialization 14
3.5.4. On Sending a Packet 15
3.5.5. On Ack Receipt 16
3.5.6. On Packet Acknowledgment 17
3.5.7. Setting the Loss Detection Alarm 18
3.5.8. On Alarm Firing 20
3.5.9. Detecting Lost Packets 20

3.6. Discussion . 21
4. Congestion Control . 22
4.1. Slow Start . 22
4.2. Congestion Avoidance 22
4.3. Recovery Period . 22
4.4. Tail Loss Probe . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Iyengar & Swett Expires October 19, 2018 [Page 2]

Internet-Draft QUIC Loss Detection April 2018

4.5. Retransmission Timeout 23
4.6. Pacing . 23
4.7. Pseudocode . 24
4.7.1. Constants of interest 24
4.7.2. Variables of interest 24
4.7.3. Initialization 24
4.7.4. On Packet Sent 25
4.7.5. On Packet Acknowledgement 25
4.7.6. On Packets Lost 25
4.7.7. On Retransmission Timeout Verified 26

5. IANA Considerations . 26
6. References . 26
6.1. Normative References 26
6.2. Informative References 26
6.3. URIs . 27

Appendix A. Acknowledgments 28
Appendix B. Change Log . 28
B.1. Since draft-ietf-quic-recovery-10 28
B.2. Since draft-ietf-quic-recovery-09 28
B.3. Since draft-ietf-quic-recovery-08 28
B.4. Since draft-ietf-quic-recovery-07 28
B.5. Since draft-ietf-quic-recovery-06 28
B.6. Since draft-ietf-quic-recovery-05 29
B.7. Since draft-ietf-quic-recovery-04 29
B.8. Since draft-ietf-quic-recovery-03 29
B.9. Since draft-ietf-quic-recovery-02 29
B.10. Since draft-ietf-quic-recovery-01 29
B.11. Since draft-ietf-quic-recovery-00 29
B.12. Since draft-iyengar-quic-loss-recovery-01 29

 Authors' Addresses . 30

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [QUIC-TRANSPORT].

 QUIC implements the spirit of known TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01

Iyengar & Swett Expires October 19, 2018 [Page 3]

Internet-Draft QUIC Loss Detection April 2018

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 includes a packet sequence number (referred to below as a packet
 number). These packet numbers never repeat in the lifetime of a
 connection, and are monotonically increasing, which prevents
 ambiguity. This fundamental design decision obviates the need for
 disambiguating between transmissions and retransmissions and
 eliminates significant complexity from QUIC's interpretation of TCP
 loss detection mechanisms.

 Every packet may contain several frames. We outline the frames that
 are important to the loss detection and congestion control machinery
 below.

 o Retransmittable frames are those that count towards bytes in
 flight and need acknowledgement. The most common are STREAM
 frames, which typically contain application data.

 o Retransmittable packets are those that contain at least one
 retransmittable frame.

 o Crypto handshake data is sent on stream 0, and uses the
 reliability machinery of QUIC underneath.

 o ACK frames contain acknowledgment information. ACK frames contain
 one or more ranges of acknowledged packets.

2.1. Relevant Differences Between QUIC and TCP

 Readers familiar with TCP's loss detection and congestion control
 will find algorithms here that parallel well-known TCP ones.
 Protocol differences between QUIC and TCP however contribute to
 algorithmic differences. We briefly describe these protocol
 differences below.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Swett Expires October 19, 2018 [Page 4]

Internet-Draft QUIC Loss Detection April 2018

2.1.1. Monotonically Increasing Packet Numbers

 TCP conflates transmission sequence number at the sender with
 delivery sequence number at the receiver, which results in
 retransmissions of the same data carrying the same sequence number,
 and consequently to problems caused by "retransmission ambiguity".
 QUIC separates the two: QUIC uses a packet number for transmissions,
 and any data that is to be delivered to the receiving application(s)
 is sent in one or more streams, with delivery order determined by
 stream offsets encoded within STREAM frames.

 QUIC's packet number is strictly increasing, and directly encodes
 transmission order. A higher QUIC packet number signifies that the
 packet was sent later, and a lower QUIC packet number signifies that
 the packet was sent earlier. When a packet containing frames is
 deemed lost, QUIC rebundles necessary frames in a new packet with a
 new packet number, removing ambiguity about which packet is
 acknowledged when an ACK is received. Consequently, more accurate
 RTT measurements can be made, spurious retransmissions are trivially
 detected, and mechanisms such as Fast Retransmit can be applied
 universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers - a non-trivial
 task, especially when TCP timestamps are not available.

2.1.2. No Reneging

 QUIC ACKs contain information that is similar to TCP SACK, but QUIC
 does not allow any acked packet to be reneged, greatly simplifying
 implementations on both sides and reducing memory pressure on the
 sender.

2.1.3. More ACK Ranges

 QUIC supports many ACK ranges, opposed to TCP's 3 SACK ranges. In
 high loss environments, this speeds recovery, reduces spurious
 retransmits, and ensures forward progress without relying on
 timeouts.

2.1.4. Explicit Correction For Delayed ACKs

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the

Iyengar & Swett Expires October 19, 2018 [Page 5]

Internet-Draft QUIC Loss Detection April 2018

 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

3. Loss Detection

 QUIC senders use both ack information and timeouts to detect lost
 packets, and this section provides a description of these algorithms.
 Estimating the network round-trip time (RTT) is critical to these
 algorithms and is described first.

3.1. Computing the RTT estimate

 RTT is calculated when an ACK frame arrives by computing the
 difference between the current time and the time the largest newly
 acked packet was sent. If no packets are newly acknowledged, RTT
 cannot be calculated. When RTT is calculated, the ack delay field
 from the ACK frame SHOULD be subtracted from the RTT as long as the
 result is larger than the Min RTT. If the result is smaller than the
 min_rtt, the RTT should be used, but the ack delay field should be
 ignored.

 Like TCP, QUIC calculates both smoothed RTT and RTT variance similar
 to those specified in [RFC6298].

 Min RTT is the minimum RTT measured over the connection, prior to
 adjusting by ack delay. Ignoring ack delay for min RTT prevents
 intentional or unintentional underestimation of min RTT, which in
 turn prevents underestimating smoothed RTT.

3.2. Ack-based Detection

 Ack-based loss detection implements the spirit of TCP's Fast
 Retransmit [RFC5681], Early Retransmit [RFC5827], FACK, and SACK loss
 recovery [RFC6675]. This section provides an overview of how these
 algorithms are implemented in QUIC.

3.2.1. Fast Retransmit

 An unacknowledged packet is marked as lost when an acknowledgment is
 received for a packet that was sent a threshold number of packets
 (kReorderingThreshold) after the unacknowledged packet. Receipt of
 the ack indicates that a later packet was received, while
 kReorderingThreshold provides some tolerance for reordering of
 packets in the network.

 The RECOMMENDED initial value for kReorderingThreshold is 3.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675

Iyengar & Swett Expires October 19, 2018 [Page 6]

Internet-Draft QUIC Loss Detection April 2018

 We derive this default from recommendations for TCP loss recovery
 [RFC5681] [RFC6675]. It is possible for networks to exhibit higher
 degrees of reordering, causing a sender to detect spurious losses.
 Detecting spurious losses leads to unnecessary retransmissions and
 may result in degraded performance due to the actions of the
 congestion controller upon detecting loss. Implementers MAY use
 algorithms developed for TCP, such as TCP-NCR [RFC4653], to improve
 QUIC's reordering resilience, though care should be taken to map TCP
 specifics to QUIC correctly. Similarly, using time-based loss
 detection to deal with reordering, such as in PR-TCP, should be more
 readily usable in QUIC. Making QUIC deal with such networks is
 important open research, and implementers are encouraged to explore
 this space.

3.2.2. Early Retransmit

 Unacknowledged packets close to the tail may have fewer than
 kReorderingThreshold retransmittable packets sent after them. Loss
 of such packets cannot be detected via Fast Retransmit. To enable
 ack-based loss detection of such packets, receipt of an
 acknowledgment for the last outstanding retransmittable packet
 triggers the Early Retransmit process, as follows.

 If there are unacknowledged retransmittable packets still pending,
 they should be marked as lost. To compensate for the reduced
 reordering resilience, the sender SHOULD set an alarm for a small
 period of time. If the unacknowledged retransmittable packets are
 not acknowledged during this time, then these packets MUST be marked
 as lost.

 An endpoint SHOULD set the alarm such that a packet is marked as lost
 no earlier than 1.25 * max(SRTT, latest_RTT) since when it was sent.

 Using max(SRTT, latest_RTT) protects from the two following cases:

 o the latest RTT sample is lower than the SRTT, perhaps due to
 reordering where packet whose ack triggered the Early Retransit
 process encountered a shorter path;

 o the latest RTT sample is higher than the SRTT, perhaps due to a
 sustained increase in the actual RTT, but the smoothed SRTT has
 not yet caught up.

 The 1.25 multiplier increases reordering resilience. Implementers
 MAY experiment with using other multipliers, bearing in mind that a
 lower multiplier reduces reordering resilience and increases spurious
 retransmissions, and a higher multipler increases loss recovery
 delay.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc4653

Iyengar & Swett Expires October 19, 2018 [Page 7]

Internet-Draft QUIC Loss Detection April 2018

 This mechanism is based on Early Retransmit for TCP [RFC5827].
 However, [RFC5827] does not include the alarm described above. Early
 Retransmit is prone to spurious retransmissions due to its reduced
 reordering resilence without the alarm. This observation led Linux
 TCP implementers to implement an alarm for TCP as well, and this
 document incorporates this advancement.

3.3. Timer-based Detection

 Timer-based loss detection implements a handshake retransmission
 timer that is optimized for QUIC as well as the spirit of TCP's Tail
 Loss Probe and Retransmission Timeout mechanisms.

3.3.1. Handshake Timeout

 Handshake packets, which contain STREAM frames for stream 0, are
 critical to QUIC transport and crypto negotiation, so a separate
 alarm is used for them.

 The initial handshake timeout SHOULD be set to twice the initial RTT.

 At the beginning, there are no prior RTT samples within a connection.
 Resumed connections over the same network SHOULD use the previous
 connection's final smoothed RTT value as the resumed connection's
 initial RTT.

 If no previous RTT is available, or if the network changes, the
 initial RTT SHOULD be set to 100ms.

 When a handshake packet is sent, the sender SHOULD set an alarm for
 the handshake timeout period.

 When the alarm fires, the sender MUST retransmit all unacknowledged
 handshake data, by calling RetransmitAllUnackedHandshakeData(). On
 each consecutive firing of the handshake alarm, the sender SHOULD
 double the handshake timeout and set an alarm for this period.

 When an acknowledgement is received for a handshake packet, the new
 RTT is computed and the alarm SHOULD be set for twice the newly
 computed smoothed RTT.

 Handshake data may be cancelled by handshake state transitions. In
 particular, all non-protected data SHOULD no longer be transmitted
 once packet protection is available.

 (TODO: Work this section some more. Add text on client vs. server,
 and on stateless retry.)

https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827

Iyengar & Swett Expires October 19, 2018 [Page 8]

Internet-Draft QUIC Loss Detection April 2018

3.3.2. Tail Loss Probe

 The algorithm described in this section is an adaptation of the Tail
 Loss Probe algorithm proposed for TCP [TLP].

 A packet sent at the tail is particularly vulnerable to slow loss
 detection, since acks of subsequent packets are needed to trigger
 ack-based detection. To ameliorate this weakness of tail packets,
 the sender schedules an alarm when the last retransmittable packet
 before quiescence is transmitted. When this alarm fires, a Tail Loss
 Probe (TLP) packet is sent to evoke an acknowledgement from the
 receiver.

 The alarm duration, or Probe Timeout (PTO), is set based on the
 following conditions:

 o PTO SHOULD be scheduled for max(1.5*SRTT+MaxAckDelay,
 kMinTLPTimeout)

 o If RTO (Section 3.3.3) is earlier, schedule a TLP alarm in its
 place. That is, PTO SHOULD be scheduled for min(RTO, PTO).

 MaxAckDelay is the maximum ack delay supplied in an incoming ACK
 frame. MaxAckDelay excludes ack delays that aren't included in an
 RTT sample because they're too large and excludes those which
 reference an ack-only packet.

 QUIC diverges from TCP by calculating MaxAckDelay dynamically,
 instead of assuming a constant delayed ack timeout for all
 connections. QUIC includes this in all probe timeouts, because it
 assume the ack delay may come into play, regardless of the number of
 packets outstanding. TCP's TLP assumes if at least 2 packets are
 outstanding, acks will not be delayed.

 A PTO value of at least 1.5*SRTT ensures that the ACK is overdue.
 The 1.5 is based on [TLP], but implementations MAY experiment with
 other constants.

 To reduce latency, it is RECOMMENDED that the sender set and allow
 the TLP alarm to fire twice before setting an RTO alarm. In other
 words, when the TLP alarm fires the first time, a TLP packet is sent,
 and it is RECOMMENDED that the TLP alarm be scheduled for a second
 time. When the TLP alarm fires the second time, a second TLP packet
 is sent, and an RTO alarm SHOULD be scheduled Section 3.3.3.

 A TLP packet SHOULD carry new data when possible. If new data is
 unavailable or new data cannot be sent due to flow control, a TLP
 packet MAY retransmit unacknowledged data to potentially reduce

Iyengar & Swett Expires October 19, 2018 [Page 9]

Internet-Draft QUIC Loss Detection April 2018

 recovery time. Since a TLP alarm is used to send a probe into the
 network prior to establishing any packet loss, prior unacknowledged
 packets SHOULD NOT be marked as lost when a TLP alarm fires.

 A sender may not know that a packet being sent is a tail packet.
 Consequently, a sender may have to arm or adjust the TLP alarm on
 every sent retransmittable packet.

3.3.3. Retransmission Timeout

 A Retransmission Timeout (RTO) alarm is the final backstop for loss
 detection. The algorithm used in QUIC is based on the RTO algorithm
 for TCP [RFC5681] and is additionally resilient to spurious RTO
 events [RFC5682].

 When the last TLP packet is sent, an alarm is scheduled for the RTO
 period. When this alarm fires, the sender sends two packets, to
 evoke acknowledgements from the receiver, and restarts the RTO alarm.

 Similar to TCP [RFC6298], the RTO period is set based on the
 following conditions:

 o When the final TLP packet is sent, the RTO period is set to
 max(SRTT + 4*RTTVAR + MaxAckDelay, kMinRTOTimeout)

 o When an RTO alarm fires, the RTO period is doubled.

 The sender typically has incurred a high latency penalty by the time
 an RTO alarm fires, and this penalty increases exponentially in
 subsequent consecutive RTO events. Sending a single packet on an RTO
 event therefore makes the connection very sensitive to single packet
 loss. Sending two packets instead of one significantly increases
 resilience to packet drop in both directions, thus reducing the
 probability of consecutive RTO events.

 QUIC's RTO algorithm differs from TCP in that the firing of an RTO
 alarm is not considered a strong enough signal of packet loss, so
 does not result in an immediate change to congestion window or
 recovery state. An RTO alarm fires only when there's a prolonged
 period of network silence, which could be caused by a change in the
 underlying network RTT.

 QUIC also diverges from TCP by including MaxAckDelay in the RTO
 period. QUIC is able to explicitly model delay at the receiver via
 the ack delay field in the ACK frame. Since QUIC corrects for this
 delay in its SRTT and RTTVAR computations, it is necessary to add
 this delay explicitly in the TLP and RTO computation.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires October 19, 2018 [Page 10]

Internet-Draft QUIC Loss Detection April 2018

 When an acknowledgment is received for a packet sent on an RTO event,
 any unacknowledged packets with lower packet numbers than those
 acknowledged MUST be marked as lost.

 A packet sent when an RTO alarm fires MAY carry new data if available
 or unacknowledged data to potentially reduce recovery time. Since
 this packet is sent as a probe into the network prior to establishing
 any packet loss, prior unacknowledged packets SHOULD NOT be marked as
 lost.

 A packet sent on an RTO alarm MUST NOT be blocked by the sender's
 congestion controller. A sender MUST however count these bytes as
 additional bytes in flight, since this packet adds network load
 without establishing packet loss.

3.4. Generating Acknowledgements

 QUIC SHOULD delay sending acknowledgements in response to packets,
 but MUST NOT excessively delay acknowledgements of packets containing
 non-ack frames. Specifically, implementaions MUST attempt to enforce
 a maximum ack delay to avoid causing the peer spurious timeouts. The
 default maximum ack delay in QUIC is 25ms.

 An acknowledgement MAY be sent for every second full-sized packet, as
 TCP does [RFC5681], or may be sent less frequently, as long as the
 delay does not exceed the maximum ack delay. QUIC recovery
 algorithms do not assume the peer generates an acknowledgement
 immediately when receiving a second full-sized packet.

 Out-of-order packets SHOULD be acknowledged more quickly, in order to
 accelerate loss recovery. The receiver SHOULD send an immediate ACK
 when it receives a new packet which is not one greater than the
 largest received packet number.

 As an optimization, a receiver MAY process multiple packets before
 sending any ACK frames in response. In this case they can determine
 whether an immediate or delayed acknowledgement should be generated
 after processing incoming packets.

3.4.1. ACK Ranges

 When an ACK frame is sent, one or more ranges of acknowledged packets
 are included. Including older packets reduces the chance of spurious
 retransmits caused by losing previously sent ACK frames, at the cost
 of larger ACK frames.

 ACK frames SHOULD always acknowledge the most recently received
 packets, and the more out-of-order the packets are, the more

https://datatracker.ietf.org/doc/html/rfc5681

Iyengar & Swett Expires October 19, 2018 [Page 11]

Internet-Draft QUIC Loss Detection April 2018

 important it is to send an updated ACK frame quickly, to prevent the
 peer from declaring a packet as lost and spuriusly retransmitting the
 frames it contains.

 Below is one recommended approach for determining what packets to
 include in an ACK frame.

3.4.2. Receiver Tracking of ACK Frames

 When a packet containing an ACK frame is sent, the largest
 acknowledged in that frame may be saved. When a packet containing an
 ACK frame is acknowledged, the receiver can stop acknowledging
 packets less than or equal to the largest acknowledged in the sent
 ACK frame.

 In cases without ACK frame loss, this algorithm allows for a minimum
 of 1 RTT of reordering. In cases with ACK frame loss, this approach
 does not guarantee that every acknowledgement is seen by the sender
 before it is no longer included in the ACK frame. Packets could be
 received out of order and all subsequent ACK frames containing them
 could be lost. In this case, the loss recovery algorithm may cause
 spurious retransmits, but the sender will continue making forward
 progress.

3.5. Pseudocode

3.5.1. Constants of interest

 Constants used in loss recovery are based on a combination of RFCs,
 papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

 kMaxTLPs (default 2): Maximum number of tail loss probes before an
 RTO fires.

 kReorderingThreshold (default 3): Maximum reordering in packet
 number space before FACK style loss detection considers a packet
 lost.

 kTimeReorderingFraction (default 1/8): Maximum reordering in time
 space before time based loss detection considers a packet lost.
 In fraction of an RTT.

 kUsingTimeLossDetection (default false): Whether time based loss
 detection is in use. If false, uses FACK style loss detection.

 kMinTLPTimeout (default 10ms): Minimum time in the future a tail
 loss probe alarm may be set for.

Iyengar & Swett Expires October 19, 2018 [Page 12]

Internet-Draft QUIC Loss Detection April 2018

 kMinRTOTimeout (default 200ms): Minimum time in the future an RTO
 alarm may be set for.

 kDelayedAckTimeout (default 25ms): The length of the peer's delayed
 ack timer.

 kDefaultInitialRtt (default 100ms): The default RTT used before an
 RTT sample is taken.

3.5.2. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 loss_detection_alarm: Multi-modal alarm used for loss detection.

 handshake_count: The number of times the handshake packets have been
 retransmitted without receiving an ack.

 tlp_count: The number of times a tail loss probe has been sent
 without receiving an ack.

 rto_count: The number of times an rto has been sent without
 receiving an ack.

 largest_sent_before_rto: The last packet number sent prior to the
 first retransmission timeout.

 time_of_last_sent_retransmittable_packet: The time the most recent
 retransmittable packet was sent.

 time_of_last_sent_handshake_packet: The time the most recent packet
 containing handshake data was sent.

 largest_sent_packet: The packet number of the most recently sent
 packet.

 largest_acked_packet: The largest packet number acknowledged in an
 ACK frame.

 latest_rtt: The most recent RTT measurement made when receiving an
 ack for a previously unacked packet.

 smoothed_rtt: The smoothed RTT of the connection, computed as
 described in [RFC6298]

 rttvar: The RTT variance, computed as described in [RFC6298]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires October 19, 2018 [Page 13]

Internet-Draft QUIC Loss Detection April 2018

 min_rtt: The minimum RTT seen in the connection, ignoring ack delay.

 max_ack_delay: The maximum ack delay in an incoming ACK frame for
 this connection. Excludes ack delays for ack only packets and
 those that create an RTT sample less than min_rtt.

 reordering_threshold: The largest packet number gap between the
 largest acked retransmittable packet and an unacknowledged
 retransmittable packet before it is declared lost.

 time_reordering_fraction: The reordering window as a fraction of
 max(smoothed_rtt, latest_rtt).

 loss_time: The time at which the next packet will be considered lost
 based on early transmit or exceeding the reordering window in
 time.

 sent_packets: An association of packet numbers to information about
 them, including a number field indicating the packet number, a
 time field indicating the time a packet was sent, a boolean
 indicating whether the packet is ack only, and a bytes field
 indicating the packet's size. sent_packets is ordered by packet
 number, and packets remain in sent_packets until acknowledged or
 lost.

3.5.3. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

Iyengar & Swett Expires October 19, 2018 [Page 14]

Internet-Draft QUIC Loss Detection April 2018

 loss_detection_alarm.reset()
 handshake_count = 0
 tlp_count = 0
 rto_count = 0
 if (kUsingTimeLossDetection)
 reordering_threshold = infinite
 time_reordering_fraction = kTimeReorderingFraction
 else:
 reordering_threshold = kReorderingThreshold
 time_reordering_fraction = infinite
 loss_time = 0
 smoothed_rtt = 0
 rttvar = 0
 min_rtt = infinite
 max_ack_delay = 0
 largest_sent_before_rto = 0
 time_of_last_sent_retransmittable_packet = 0
 time_of_last_sent_handshake_packet = 0
 largest_sent_packet = 0

3.5.4. On Sending a Packet

 After any packet is sent, be it a new transmission or a rebundled
 transmission, the following OnPacketSent function is called. The
 parameters to OnPacketSent are as follows:

 o packet_number: The packet number of the sent packet.

 o is_ack_only: A boolean that indicates whether a packet only
 contains an ACK frame. If true, it is still expected an ack will
 be received for this packet, but it is not retransmittable.

 o is_handshake_packet: A boolean that indicates whether a packet
 contains handshake data.

 o sent_bytes: The number of bytes sent in the packet, not including
 UDP or IP overhead, but including QUIC framing overhead.

 Pseudocode for OnPacketSent follows:

Iyengar & Swett Expires October 19, 2018 [Page 15]

Internet-Draft QUIC Loss Detection April 2018

 OnPacketSent(packet_number, is_ack_only, is_handshake_packet,
 sent_bytes):
 largest_sent_packet = packet_number
 sent_packets[packet_number].packet_number = packet_number
 sent_packets[packet_number].time = now
 sent_packets[packet_number].ack_only = is_ack_only
 if !is_ack_only:
 if is_handshake_packet:
 time_of_last_sent_handshake_packet = now
 time_of_last_sent_retransmittable_packet = now
 OnPacketSentCC(sent_bytes)
 sent_packets[packet_number].bytes = sent_bytes
 SetLossDetectionAlarm()

3.5.5. On Ack Receipt

 When an ack is received, it may acknowledge 0 or more packets.

 Pseudocode for OnAckReceived and UpdateRtt follow:

Iyengar & Swett Expires October 19, 2018 [Page 16]

Internet-Draft QUIC Loss Detection April 2018

 OnAckReceived(ack):
 largest_acked_packet = ack.largest_acked
 // If the largest acked is newly acked, update the RTT.
 if (sent_packets[ack.largest_acked]):
 latest_rtt = now - sent_packets[ack.largest_acked].time
 UpdateRtt(latest_rtt, ack.ack_delay)
 // Find all newly acked packets.
 for acked_packet in DetermineNewlyAckedPackets():
 OnPacketAcked(acked_packet.packet_number)

 DetectLostPackets(ack.largest_acked_packet)
 SetLossDetectionAlarm()

 UpdateRtt(latest_rtt, ack_delay):
 // min_rtt ignores ack delay.
 min_rtt = min(min_rtt, latest_rtt)
 // Adjust for ack delay if it's plausible.
 if (latest_rtt - min_rtt > ack_delay):
 latest_rtt -= ack_delay
 // Only save into max ack delay if it's used
 // for rtt calculation and is not ack only.
 if (!sent_packets[ack.largest_acked].ack_only)
 max_ack_delay = max(max_ack_delay, ack_delay)
 // Based on {{RFC6298}}.
 if (smoothed_rtt == 0):
 smoothed_rtt = latest_rtt
 rttvar = latest_rtt / 2
 else:
 rttvar_sample = abs(smoothed_rtt - latest_rtt)
 rttvar = 3/4 * rttvar + 1/4 * rttvar_sample
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * latest_rtt

3.5.6. On Packet Acknowledgment

 When a packet is acked for the first time, the following
 OnPacketAcked function is called. Note that a single ACK frame may
 newly acknowledge several packets. OnPacketAcked must be called once
 for each of these newly acked packets.

 OnPacketAcked takes one parameter, acked_packet, which is the struct
 of the newly acked packet.

 If this is the first acknowledgement following RTO, check if the
 smallest newly acknowledged packet is one sent by the RTO, and if so,
 inform congestion control of a verified RTO, similar to F-RTO
 [RFC5682]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5682

Iyengar & Swett Expires October 19, 2018 [Page 17]

Internet-Draft QUIC Loss Detection April 2018

 Pseudocode for OnPacketAcked follows:

 OnPacketAcked(acked_packet):
 if (!acked_packet.is_ack_only):
 OnPacketAckedCC(acked_packet)
 // If a packet sent prior to RTO was acked, then the RTO
 // was spurious. Otherwise, inform congestion control.
 if (rto_count > 0 &&
 acked_packet.packet_number > largest_sent_before_rto)
 OnRetransmissionTimeoutVerified()
 handshake_count = 0
 tlp_count = 0
 rto_count = 0
 sent_packets.remove(acked_packet.packet_number)

3.5.7. Setting the Loss Detection Alarm

 QUIC loss detection uses a single alarm for all timer-based loss
 detection. The duration of the alarm is based on the alarm's mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionAlarm defined below shows how the single
 timer is set based on the alarm mode.

3.5.7.1. Handshake Alarm

 When a connection has unacknowledged handshake data, the handshake
 alarm is set and when it expires, all unacknowledgedd handshake data
 is retransmitted.

 When stateless rejects are in use, the connection is considered
 immediately closed once a reject is sent, so no timer is set to
 retransmit the reject.

 Version negotiation packets are always stateless, and MUST be sent
 once per handshake packet that uses an unsupported QUIC version, and
 MAY be sent in response to 0RTT packets.

3.5.7.2. Tail Loss Probe and Retransmission Alarm

 Tail loss probes [TLP] and retransmission timeouts [RFC6298] are an
 alarm based mechanism to recover from cases when there are
 outstanding retransmittable packets, but an acknowledgement has not
 been received in a timely manner.

 The TLP and RTO timers are armed when there is not unacknowledged
 handshake data. The TLP alarm is set until the max number of TLP
 packets have been sent, and then the RTO timer is set.

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires October 19, 2018 [Page 18]

Internet-Draft QUIC Loss Detection April 2018

3.5.7.3. Early Retransmit Alarm

 Early retransmit [RFC5827] is implemented with a 1/4 RTT timer. It
 is part of QUIC's time based loss detection, but is always enabled,
 even when only packet reordering loss detection is enabled.

3.5.7.4. Pseudocode

 Pseudocode for SetLossDetectionAlarm follows:

 SetLossDetectionAlarm():
 // Don't arm the alarm if there are no packets with
 // retransmittable data in flight.
 if (bytes_in_flight == 0):
 loss_detection_alarm.cancel()
 return

 if (handshake packets are outstanding):
 // Handshake retransmission alarm.
 if (smoothed_rtt == 0):
 alarm_duration = 2 * kDefaultInitialRtt
 else:
 alarm_duration = 2 * smoothed_rtt
 alarm_duration = max(alarm_duration + max_ack_delay,
 kMinTLPTimeout)
 alarm_duration = alarm_duration * (2 ^ handshake_count)
 loss_detection_alarm.set(
 time_of_last_sent_handshake_packet + alarm_duration)
 return;
 else if (loss_time != 0):
 // Early retransmit timer or time loss detection.
 alarm_duration = loss_time -
 time_of_last_sent_retransmittable_packet
 else:
 // RTO or TLP alarm
 // Calculate RTO duration
 alarm_duration =
 smoothed_rtt + 4 * rttvar + max_ack_delay
 alarm_duration = max(alarm_duration, kMinRTOTimeout)
 alarm_duration = alarm_duration * (2 ^ rto_count)
 if (tlp_count < kMaxTLPs):
 // Tail Loss Probe
 tlp_alarm_duration = max(1.5 * smoothed_rtt
 + max_ack_delay, kMinTLPTimeout)
 alarm_duration = min(tlp_alarm_duration, alarm_duration)

 loss_detection_alarm.set(
 time_of_last_sent_retransmittable_packet + alarm_duration)

https://datatracker.ietf.org/doc/html/rfc5827

Iyengar & Swett Expires October 19, 2018 [Page 19]

Internet-Draft QUIC Loss Detection April 2018

3.5.8. On Alarm Firing

 QUIC uses one loss recovery alarm, which when set, can be in one of
 several modes. When the alarm fires, the mode determines the action
 to be performed.

 Pseudocode for OnLossDetectionAlarm follows:

 OnLossDetectionAlarm():
 if (handshake packets are outstanding):
 // Handshake retransmission alarm.
 RetransmitAllUnackedHandshakeData()
 handshake_count++
 else if (loss_time != 0):
 // Early retransmit or Time Loss Detection
 DetectLostPackets(largest_acked_packet)
 else if (tlp_count < kMaxTLPs):
 // Tail Loss Probe.
 SendOnePacket()
 tlp_count++
 else:
 // RTO.
 if (rto_count == 0)
 largest_sent_before_rto = largest_sent_packet
 SendTwoPackets()
 rto_count++

 SetLossDetectionAlarm()

3.5.9. Detecting Lost Packets

 Packets in QUIC are only considered lost once a larger packet number
 is acknowledged. DetectLostPackets is called every time an ack is
 received. If the loss detection alarm fires and the loss_time is
 set, the previous largest acked packet is supplied.

3.5.9.1. Handshake Packets

 The receiver MUST close the connection with an error of type
 OPTIMISTIC_ACK when receiving an unprotected packet that acks
 protected packets. The receiver MUST trust protected acks for
 unprotected packets, however. Aside from this, loss detection for
 handshake packets when an ack is processed is identical to other
 packets.

Iyengar & Swett Expires October 19, 2018 [Page 20]

Internet-Draft QUIC Loss Detection April 2018

3.5.9.2. Pseudocode

 DetectLostPackets takes one parameter, acked, which is the largest
 acked packet.

 Pseudocode for DetectLostPackets follows:

 DetectLostPackets(largest_acked):
 loss_time = 0
 lost_packets = {}
 delay_until_lost = infinite
 if (kUsingTimeLossDetection):
 delay_until_lost =
 (1 + time_reordering_fraction) *
 max(latest_rtt, smoothed_rtt)
 else if (largest_acked.packet_number == largest_sent_packet):
 // Early retransmit alarm.
 delay_until_lost = 5/4 * max(latest_rtt, smoothed_rtt)
 foreach (unacked < largest_acked.packet_number):
 time_since_sent = now() - unacked.time_sent
 delta = largest_acked.packet_number - unacked.packet_number
 if (time_since_sent > delay_until_lost ||
 delta > reordering_threshold):
 sent_packets.remove(unacked.packet_number)
 if (!unacked.is_ack_only):
 lost_packets.insert(unacked)
 else if (loss_time == 0 && delay_until_lost != infinite):
 loss_time = now() + delay_until_lost - time_since_sent

 // Inform the congestion controller of lost packets and
 // lets it decide whether to retransmit immediately.
 if (!lost_packets.empty()):
 OnPacketsLost(lost_packets)

3.6. Discussion

 The majority of constants were derived from best common practices
 among widely deployed TCP implementations on the internet.
 Exceptions follow.

 A shorter delayed ack time of 25ms was chosen because longer delayed
 acks can delay loss recovery and for the small number of connections
 where less than packet per 25ms is delivered, acking every packet is
 beneficial to congestion control and loss recovery.

 The default initial RTT of 100ms was chosen because it is slightly
 higher than both the median and mean min_rtt typically observed on
 the public internet.

Iyengar & Swett Expires October 19, 2018 [Page 21]

Internet-Draft QUIC Loss Detection April 2018

4. Congestion Control

 QUIC's congestion control is based on TCP NewReno [RFC6582]
 congestion control to determine the congestion window. QUIC
 congestion control is specified in bytes due to finer control and the
 ease of appropriate byte counting [RFC3465].

 QUIC hosts MUST NOT send packets if they would increase
 bytes_in_flight (defined in Section 4.7.2) beyond the available
 congestion window, unless the packet is a probe packet sent after the
 TLP or RTO alarm fires, as described in Section 3.3.2 and

Section 3.3.3.

4.1. Slow Start

 QUIC begins every connection in slow start and exits slow start upon
 loss. QUIC re-enters slow start anytime the congestion window is
 less than sshthresh, which typically only occurs after an RTO. While
 in slow start, QUIC increases the congestion window by the number of
 acknowledged bytes when each ack is processed.

4.2. Congestion Avoidance

 Slow start exits to congestion avoidance. Congestion avoidance in
 NewReno uses an additive increase multiplicative decrease (AIMD)
 approach that increases the congestion window by one MSS of bytes per
 congestion window acknowledged. When a loss is detected, NewReno
 halves the congestion window and sets the slow start threshold to the
 new congestion window.

4.3. Recovery Period

 Recovery is a period of time beginning with detection of a lost
 packet. Because QUIC retransmits stream data and control frames, not
 packets, it defines the end of recovery as a packet sent after the
 start of recovery being acknowledged. This is slightly different
 from TCP's definition of recovery ending when the lost packet that
 started recovery is acknowledged.

 During recovery, the congestion window is not increased or decreased.
 As such, multiple lost packets only decrease the congestion window
 once as long as they're lost before exiting recovery. This causes
 QUIC to decrease the congestion window multiple times if
 retransmisions are lost, but limits the reduction to once per round
 trip.

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc3465

Iyengar & Swett Expires October 19, 2018 [Page 22]

Internet-Draft QUIC Loss Detection April 2018

4.4. Tail Loss Probe

 A TLP packet MUST NOT be blocked by the sender's congestion
 controller. The sender MUST however count these bytes as additional
 bytes-in-flight, since a TLP adds network load without establishing
 packet loss.

 Acknowledgement or loss of tail loss probes are treated like any
 other packet.

4.5. Retransmission Timeout

 When retransmissions are sent due to a retransmission timeout alarm,
 no change is made to the congestion window until the next
 acknowledgement arrives. The retransmission timeout is considered
 spurious when this acknowledgement acknowledges packets sent prior to
 the first retransmission timeout. The retransmission timeout is
 considered valid when this acknowledgement acknowledges no packets
 sent prior to the first retransmission timeout. In this case, the
 congestion window MUST be reduced to the minimum congestion window
 and slow start is re-entered.

4.6. Pacing

 This document does not specify a pacer, but it is RECOMMENDED that a
 sender pace sending of all retransmittable packets based on input
 from the congestion controller. For example, a pacer might
 distribute the congestion window over the SRTT when used with a
 window-based controller, and a pacer might use the rate estimate of a
 rate-based controller.

 An implementation should take care to architect its congestion
 controller to work well with a pacer. For instance, a pacer might
 wrap the congestion controller and control the availability of the
 congestion window, or a pacer might pace out packets handed to it by
 the congestion controller. Timely delivery of ACK frames is
 important for efficient loss recovery. Packets containing only ACK
 frames should therefore not be paced, to avoid delaying their
 delivery to the peer.

 As an example of a well-known and publicly available implementation
 of a flow pacer, implementers are referred to the Fair Queue packet
 scheduler (fq qdisc) in Linux (3.11 onwards).

Iyengar & Swett Expires October 19, 2018 [Page 23]

Internet-Draft QUIC Loss Detection April 2018

4.7. Pseudocode

4.7.1. Constants of interest

 Constants used in congestion control are based on a combination of
 RFCs, papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

 kDefaultMss (default 1460 bytes): The default max packet size used
 for calculating default and minimum congestion windows.

 kInitialWindow (default 10 * kDefaultMss): Default limit on the
 amount of outstanding data in bytes.

 kMinimumWindow (default 2 * kDefaultMss): Default minimum congestion
 window.

 kLossReductionFactor (default 0.5): Reduction in congestion window
 when a new loss event is detected.

4.7.2. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 bytes_in_flight: The sum of the size in bytes of all sent packets
 that contain at least one retransmittable frame, and have not been
 acked or declared lost. The size does not include IP or UDP
 overhead. Packets only containing ACK frames do not count towards
 bytes_in_flight to ensure congestion control does not impede
 congestion feedback.

 congestion_window: Maximum number of bytes-in-flight that may be
 sent.

 end_of_recovery: The largest packet number sent when QUIC detects a
 loss. When a larger packet is acknowledged, QUIC exits recovery.

 ssthresh: Slow start threshold in bytes. When the congestion window
 is below ssthresh, the mode is slow start and the window grows by
 the number of bytes acknowledged.

4.7.3. Initialization

 At the beginning of the connection, initialize the congestion control
 variables as follows:

Iyengar & Swett Expires October 19, 2018 [Page 24]

Internet-Draft QUIC Loss Detection April 2018

 congestion_window = kInitialWindow
 bytes_in_flight = 0
 end_of_recovery = 0
 ssthresh = infinite

4.7.4. On Packet Sent

 Whenever a packet is sent, and it contains non-ACK frames, the packet
 increases bytes_in_flight.

 OnPacketSentCC(bytes_sent):
 bytes_in_flight += bytes_sent

4.7.5. On Packet Acknowledgement

 Invoked from loss detection's OnPacketAcked and is supplied with
 acked_packet from sent_packets.

 InRecovery(packet_number)
 return packet_number <= end_of_recovery

 OnPacketAckedCC(acked_packet):
 // Remove from bytes_in_flight.
 bytes_in_flight -= acked_packet.bytes
 if (InRecovery(acked_packet.packet_number)):
 // Do not increase congestion window in recovery period.
 return
 if (congestion_window < ssthresh):
 // Slow start.
 congestion_window += acked_packet.bytes
 else:
 // Congestion avoidance.
 congestion_window +=
 kDefaultMss * acked_packet.bytes / congestion_window

4.7.6. On Packets Lost

 Invoked by loss detection from DetectLostPackets when new packets are
 detected lost.

Iyengar & Swett Expires October 19, 2018 [Page 25]

Internet-Draft QUIC Loss Detection April 2018

 OnPacketsLost(lost_packets):
 // Remove lost packets from bytes_in_flight.
 for (lost_packet : lost_packets):
 bytes_in_flight -= lost_packet.bytes
 largest_lost_packet = lost_packets.last()
 // Start a new recovery epoch if the lost packet is larger
 // than the end of the previous recovery epoch.
 if (!InRecovery(largest_lost_packet.packet_number)):
 end_of_recovery = largest_sent_packet
 congestion_window *= kLossReductionFactor
 congestion_window = max(congestion_window, kMinimumWindow)
 ssthresh = congestion_window

4.7.7. On Retransmission Timeout Verified

 QUIC decreases the congestion window to the minimum value once the
 retransmission timeout has been verified.

 OnRetransmissionTimeoutVerified()
 congestion_window = kMinimumWindow

5. IANA Considerations

 This document has no IANA actions. Yet.

6. References

6.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-11 (work in progress), April 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc3465
https://www.rfc-editor.org/info/rfc3465

Iyengar & Swett Expires October 19, 2018 [Page 26]

Internet-Draft QUIC Loss Detection April 2018

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, DOI 10.17487/RFC4653, August 2006,
 <https://www.rfc-editor.org/info/rfc4653>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <https://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <https://www.rfc-editor.org/info/rfc5827>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <https://www.rfc-editor.org/info/rfc6582>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), February 2013.

6.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

https://datatracker.ietf.org/doc/html/rfc4653
https://www.rfc-editor.org/info/rfc4653
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://www.rfc-editor.org/info/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://www.rfc-editor.org/info/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6582
https://www.rfc-editor.org/info/rfc6582
https://datatracker.ietf.org/doc/html/rfc6675
https://www.rfc-editor.org/info/rfc6675
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg

Iyengar & Swett Expires October 19, 2018 [Page 27]

Internet-Draft QUIC Loss Detection April 2018

 [3] https://github.com/quicwg/base-drafts/labels/-recovery

Appendix A. Acknowledgments

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-recovery-10

 o Improved text on ack generation (#1139, #1159)

 o Make references to TCP recovery mechanisms informational (#1195)

 o Define time_of_last_sent_handshake_packet (#1171)

 o Added signal from TLS the data it includes needs to be sent in a
 Retry packet (#1061, #1199)

 o Minimum RTT (min_rtt) is initialized with an infinite value
 (#1169)

B.2. Since draft-ietf-quic-recovery-09

 No significant changes.

B.3. Since draft-ietf-quic-recovery-08

 o Clarified pacing and RTO (#967, #977)

B.4. Since draft-ietf-quic-recovery-07

 o Include Ack Delay in RTO(and TLP) computations (#981)

 o Ack Delay in SRTT computation (#961)

 o Default RTT and Slow Start (#590)

 o Many editorial fixes.

B.5. Since draft-ietf-quic-recovery-06

 No significant changes.

https://github.com/quicwg/base-drafts/labels/-recovery
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06

Iyengar & Swett Expires October 19, 2018 [Page 28]

Internet-Draft QUIC Loss Detection April 2018

B.6. Since draft-ietf-quic-recovery-05

 o Add more congestion control text (#776)

B.7. Since draft-ietf-quic-recovery-04

 No significant changes.

B.8. Since draft-ietf-quic-recovery-03

 No significant changes.

B.9. Since draft-ietf-quic-recovery-02

 o Integrate F-RTO (#544, #409)

 o Add congestion control (#545, #395)

 o Require connection abort if a skipped packet was acknowledged
 (#415)

 o Simplify RTO calculations (#142, #417)

B.10. Since draft-ietf-quic-recovery-01

 o Overview added to loss detection

 o Changes initial default RTT to 100ms

 o Added time-based loss detection and fixes early retransmit

 o Clarified loss recovery for handshake packets

 o Fixed references and made TCP references informative

B.11. Since draft-ietf-quic-recovery-00

 o Improved description of constants and ACK behavior

B.12. Since draft-iyengar-quic-loss-recovery-01

 o Adopted as base for draft-ietf-quic-recovery

 o Updated authors/editors list

 o Added table of contents

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery

Iyengar & Swett Expires October 19, 2018 [Page 29]

Internet-Draft QUIC Loss Detection April 2018

Authors' Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

 Ian Swett (editor)
 Google

 Email: ianswett@google.com

Iyengar & Swett Expires October 19, 2018 [Page 30]

