
QUIC J. Iyengar, Ed.
Internet-Draft Fastly
Intended status: Standards Track I. Swett, Ed.
Expires: April 26, 2019 Google
 October 23, 2018

QUIC Loss Detection and Congestion Control
draft-ietf-quic-recovery-16

Abstract

 This document describes loss detection and congestion control
 mechanisms for QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-recovery [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Swett Expires April 26, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Loss Detection October 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Definitions 4
3. Design of the QUIC Transmission Machinery 4
3.1. Relevant Differences Between QUIC and TCP 5
3.1.1. Separate Packet Number Spaces 5
3.1.2. Monotonically Increasing Packet Numbers 6
3.1.3. No Reneging . 6
3.1.4. More ACK Ranges 6
3.1.5. Explicit Correction For Delayed ACKs 6

4. Loss Detection . 7
4.1. Computing the RTT estimate 7
4.2. Ack-based Detection 7
4.2.1. Fast Retransmit 7
4.2.2. Early Retransmit 8

4.3. Timer-based Detection 9
4.3.1. Crypto Retransmission Timeout 9
4.3.2. Tail Loss Probe 10
4.3.3. Retransmission Timeout 11

4.4. Generating Acknowledgements 12
4.4.1. Crypto Handshake Data 13
4.4.2. ACK Ranges . 13
4.4.3. Receiver Tracking of ACK Frames 13

4.5. Pseudocode . 14
4.5.1. Constants of interest 14
4.5.2. Variables of interest 14
4.5.3. Initialization 16
4.5.4. On Sending a Packet 16
4.5.5. On Receiving an Acknowledgment 17
4.5.6. On Packet Acknowledgment 19
4.5.7. Setting the Loss Detection Timer 19
4.5.8. On Timeout . 20
4.5.9. Detecting Lost Packets 21

4.6. Discussion . 22
5. Congestion Control . 22
5.1. Explicit Congestion Notification 23
5.2. Slow Start . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Iyengar & Swett Expires April 26, 2019 [Page 2]

Internet-Draft QUIC Loss Detection October 2018

5.3. Congestion Avoidance 23
5.4. Recovery Period . 23
5.5. Tail Loss Probe . 24
5.6. Retransmission Timeout 24
5.7. Pacing . 24
5.8. Pseudocode . 25
5.8.1. Constants of interest 25
5.8.2. Variables of interest 25
5.8.3. Initialization 26
5.8.4. On Packet Sent 26
5.8.5. On Packet Acknowledgement 26
5.8.6. On New Congestion Event 27
5.8.7. Process ECN Information 27
5.8.8. On Packets Lost 27
5.8.9. On Retransmission Timeout Verified 28

6. Security Considerations 28
6.1. Congestion Signals 28
6.2. Traffic Analysis . 28
6.3. Misreporting ECN Markings 28

7. IANA Considerations . 29
8. References . 29
8.1. Normative References 29
8.2. Informative References 29
8.3. URIs . 30

Appendix A. Change Log . 31
A.1. Since draft-ietf-quic-recovery-14 31
A.2. Since draft-ietf-quic-recovery-13 31
A.3. Since draft-ietf-quic-recovery-12 31
A.4. Since draft-ietf-quic-recovery-11 31
A.5. Since draft-ietf-quic-recovery-10 31
A.6. Since draft-ietf-quic-recovery-09 32
A.7. Since draft-ietf-quic-recovery-08 32
A.8. Since draft-ietf-quic-recovery-07 32
A.9. Since draft-ietf-quic-recovery-06 32
A.10. Since draft-ietf-quic-recovery-05 32
A.11. Since draft-ietf-quic-recovery-04 32
A.12. Since draft-ietf-quic-recovery-03 32
A.13. Since draft-ietf-quic-recovery-02 32
A.14. Since draft-ietf-quic-recovery-01 33
A.15. Since draft-ietf-quic-recovery-00 33
A.16. Since draft-iyengar-quic-loss-recovery-01 33

 Acknowledgments . 33
 Authors' Addresses . 33

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01

Iyengar & Swett Expires April 26, 2019 [Page 3]

Internet-Draft QUIC Loss Detection October 2018

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [QUIC-TRANSPORT].

 QUIC implements the spirit of known TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 ACK-only: Any packet containing only an ACK frame.

 In-flight: Packets are considered in-flight when they have been sent
 and neither acknowledged nor declared lost, and they are not ACK-
 only.

 Retransmittable Frames: All frames besides ACK or PADDING are
 considered retransmittable.

 Retransmittable Packets: Packets that contain retransmittable frames
 elicit an ACK from the receiver and are called retransmittable
 packets.

 Crypto Packets: Packets containing CRYPTO data sent in Initial or
 Handshake packets.

3. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 indicates the encryption level and includes a packet sequence number
 (referred to below as a packet number). The encryption level
 indicates the packet number space, as described in [QUIC-TRANSPORT].
 Packet numbers never repeat within a packet number space for the

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Swett Expires April 26, 2019 [Page 4]

Internet-Draft QUIC Loss Detection October 2018

 lifetime of a connection. Packet numbers monotonically increase
 within a space, preventing ambiguity.

 This design obviates the need for disambiguating between
 transmissions and retransmissions and eliminates significant
 complexity from QUIC's interpretation of TCP loss detection
 mechanisms.

 QUIC packets can contain multiple frames of different types. The
 recovery mechanisms ensure that data and frames that need reliable
 delivery are acknowledged or declared lost and sent in new packets as
 necessary. The types of frames contained in a packet affect recovery
 and congestion control logic:

 o All packets are acknowledged, though packets that contain only ACK
 and PADDING frames are not acknowledged immediately.

 o Long header packets that contain CRYPTO frames are critical to the
 performance of the QUIC handshake and use shorter timers for
 acknowledgement and retransmission.

 o Packets that contain only ACK frames do not count toward
 congestion control limits and are not considered in-flight. Note
 that this means PADDING frames cause packets to contribute toward
 bytes in flight without directly causing an acknowledgment to be
 sent.

3.1. Relevant Differences Between QUIC and TCP

 Readers familiar with TCP's loss detection and congestion control
 will find algorithms here that parallel well-known TCP ones.
 Protocol differences between QUIC and TCP however contribute to
 algorithmic differences. We briefly describe these protocol
 differences below.

3.1.1. Separate Packet Number Spaces

 QUIC uses separate packet number spaces for each encryption level,
 except 0-RTT and all generations of 1-RTT keys use the same packet
 number space. Separate packet number spaces ensures acknowledgement
 of packets sent with one level of encryption will not cause spurious
 retransmission of packets sent with a different encryption level.
 Congestion control and RTT measurement are unified across packet
 number spaces.

Iyengar & Swett Expires April 26, 2019 [Page 5]

Internet-Draft QUIC Loss Detection October 2018

3.1.2. Monotonically Increasing Packet Numbers

 TCP conflates transmission sequence number at the sender with
 delivery sequence number at the receiver, which results in
 retransmissions of the same data carrying the same sequence number,
 and consequently to problems caused by "retransmission ambiguity".
 QUIC separates the two: QUIC uses a packet number for transmissions,
 and any application data is sent in one or more streams, with
 delivery order determined by stream offsets encoded within STREAM
 frames.

 QUIC's packet number is strictly increasing, and directly encodes
 transmission order. A higher QUIC packet number signifies that the
 packet was sent later, and a lower QUIC packet number signifies that
 the packet was sent earlier. When a packet containing frames is
 deemed lost, QUIC rebundles necessary frames in a new packet with a
 new packet number, removing ambiguity about which packet is
 acknowledged when an ACK is received. Consequently, more accurate
 RTT measurements can be made, spurious retransmissions are trivially
 detected, and mechanisms such as Fast Retransmit can be applied
 universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers - a non-trivial
 task, especially when TCP timestamps are not available.

3.1.3. No Reneging

 QUIC ACKs contain information that is similar to TCP SACK, but QUIC
 does not allow any acked packet to be reneged, greatly simplifying
 implementations on both sides and reducing memory pressure on the
 sender.

3.1.4. More ACK Ranges

 QUIC supports many ACK ranges, opposed to TCP's 3 SACK ranges. In
 high loss environments, this speeds recovery, reduces spurious
 retransmits, and ensures forward progress without relying on
 timeouts.

3.1.5. Explicit Correction For Delayed ACKs

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the

Iyengar & Swett Expires April 26, 2019 [Page 6]

Internet-Draft QUIC Loss Detection October 2018

 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

4. Loss Detection

 QUIC senders use both ack information and timeouts to detect lost
 packets, and this section provides a description of these algorithms.
 Estimating the network round-trip time (RTT) is critical to these
 algorithms and is described first.

4.1. Computing the RTT estimate

 RTT is calculated when an ACK frame arrives by computing the
 difference between the current time and the time the largest newly
 acked packet was sent. If no packets are newly acknowledged, RTT
 cannot be calculated. When RTT is calculated, the ack delay field
 from the ACK frame SHOULD be subtracted from the RTT as long as the
 result is larger than the Min RTT. If the result is smaller than the
 min_rtt, the RTT should be used, but the ack delay field should be
 ignored.

 Like TCP, QUIC calculates both smoothed RTT and RTT variance similar
 to those specified in [RFC6298].

 Min RTT is the minimum RTT measured over the connection, prior to
 adjusting by ack delay. Ignoring ack delay for min RTT prevents
 intentional or unintentional underestimation of min RTT, which in
 turn prevents underestimating smoothed RTT.

4.2. Ack-based Detection

 Ack-based loss detection implements the spirit of TCP's Fast
 Retransmit [RFC5681], Early Retransmit [RFC5827], FACK, and SACK loss
 recovery [RFC6675]. This section provides an overview of how these
 algorithms are implemented in QUIC.

4.2.1. Fast Retransmit

 An unacknowledged packet is marked as lost when an acknowledgment is
 received for a packet that was sent a threshold number of packets
 (kReorderingThreshold) and/or a threshold amount of time after the
 unacknowledged packet. Receipt of the acknowledgement indicates that
 a later packet was received, while the reordering threshold provides
 some tolerance for reordering of packets in the network.

 The RECOMMENDED initial value for kReorderingThreshold is 3, based on
 TCP loss recovery [RFC5681] [RFC6675]. Some networks may exhibit

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Iyengar & Swett Expires April 26, 2019 [Page 7]

Internet-Draft QUIC Loss Detection October 2018

 higher degrees of reordering, causing a sender to detect spurious
 losses. Spuriously declaring packets lost leads to unnecessary
 retransmissions and may result in degraded performance due to the
 actions of the congestion controller upon detecting loss.
 Implementers MAY use algorithms developed for TCP, such as TCP-NCR
 [RFC4653], to improve QUIC's reordering resilience.

 QUIC implementations can use time-based loss detection to handle
 reordering based on time elapsed since the packet was sent. This may
 be used either as a replacement for a packet reordering threshold or
 in addition to it. The RECOMMENDED time threshold, expressed as a
 fraction of the round-trip time (kTimeReorderingFraction), is 1/8.

4.2.2. Early Retransmit

 Unacknowledged packets close to the tail may have fewer than
 kReorderingThreshold retransmittable packets sent after them. Loss
 of such packets cannot be detected via Fast Retransmit. To enable
 ack-based loss detection of such packets, receipt of an
 acknowledgment for the last outstanding retransmittable packet
 triggers the Early Retransmit process, as follows.

 If there are unacknowledged in-flight packets still pending, they
 should be marked as lost. To compensate for the reduced reordering
 resilience, the sender SHOULD set a timer for a small period of time.
 If the unacknowledged in-flight packets are not acknowledged during
 this time, then these packets MUST be marked as lost.

 An endpoint SHOULD set the timer such that a packet is marked as lost
 no earlier than 1.125 * max(SRTT, latest_RTT) since when it was sent.

 Using max(SRTT, latest_RTT) protects from the two following cases:

 o the latest RTT sample is lower than the SRTT, perhaps due to
 reordering where packet whose ack triggered the Early Retransit
 process encountered a shorter path;

 o the latest RTT sample is higher than the SRTT, perhaps due to a
 sustained increase in the actual RTT, but the smoothed SRTT has
 not yet caught up.

 The 1.125 multiplier increases reordering resilience. Implementers
 MAY experiment with using other multipliers, bearing in mind that a
 lower multiplier reduces reordering resilience and increases spurious
 retransmissions, and a higher multiplier increases loss recovery
 delay.

https://datatracker.ietf.org/doc/html/rfc4653

Iyengar & Swett Expires April 26, 2019 [Page 8]

Internet-Draft QUIC Loss Detection October 2018

 This mechanism is based on Early Retransmit for TCP [RFC5827].
 However, [RFC5827] does not include the timer described above. Early
 Retransmit is prone to spurious retransmissions due to its reduced
 reordering resilence without the timer. This observation led Linux
 TCP implementers to implement a timer for TCP as well, and this
 document incorporates this advancement.

4.3. Timer-based Detection

 Timer-based loss detection recovers from losses that cannot be
 handled by ack-based loss detection. It uses a single timer which
 switches between a crypto retransmission timer, a Tail Loss Probe
 timer and Retransmission Timeout mechanisms.

4.3.1. Crypto Retransmission Timeout

 Data in CRYPTO frames is critical to QUIC transport and crypto
 negotiation, so a more aggressive timeout is used to retransmit it.

 The initial crypto retransmission timeout SHOULD be set to twice the
 initial RTT.

 At the beginning, there are no prior RTT samples within a connection.
 Resumed connections over the same network SHOULD use the previous
 connection's final smoothed RTT value as the resumed connection's
 initial RTT. If no previous RTT is available, or if the network
 changes, the initial RTT SHOULD be set to 100ms. When an
 acknowledgement is received, a new RTT is computed and the timer
 SHOULD be set for twice the newly computed smoothed RTT.

 When crypto packets are sent, the sender MUST set a timer for the
 crypto timeout period. Upon timeout, the sender MUST retransmit all
 unacknowledged CRYPTO data if possible.

 Until the server has validated the client's address on the path, the
 number of bytes it can send is limited, as specified in
 [QUIC-TRANSPORT]. If not all unacknowledged CRYPTO data can be sent,
 then all unacknowledged CRYPTO data sent in Initial packets should be
 retransmitted. If no bytes can be sent, then no alarm should be
 armed until bytes have been received from the client.

 Because the server could be blocked until more packets are received,
 the client MUST start the crypto retransmission timer even if there
 is no unacknowledged CRYPTO data. If the timer expires and the
 client has no CRYPTO data to retransmit and does not have Handshake
 keys, it SHOULD send an Initial packet in a UDP datagram of at least
 1200 octets. If the client has Handshake keys, it SHOULD send a
 Handshake packet.

https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827

Iyengar & Swett Expires April 26, 2019 [Page 9]

Internet-Draft QUIC Loss Detection October 2018

 On each consecutive expiration of the crypto timer without receiving
 an acknowledgement for a new packet, the sender SHOULD double the
 crypto retransmission timeout and set a timer for this period.

 When crypto packets are outstanding, the TLP and RTO timers are not
 active.

4.3.1.1. Retry and Version Negotiation

 A Retry or Version Negotiation packet causes a client to send another
 Initial packet, effectively restarting the connection process.

 Either packet indicates that the Initial was received but not
 processed. Neither packet can be treated as an acknowledgment for
 the Initial, but they MAY be used to improve the RTT estimate.

4.3.2. Tail Loss Probe

 The algorithm described in this section is an adaptation of the Tail
 Loss Probe algorithm proposed for TCP [TLP].

 A packet sent at the tail is particularly vulnerable to slow loss
 detection, since acks of subsequent packets are needed to trigger
 ack-based detection. To ameliorate this weakness of tail packets,
 the sender schedules a timer when the last retransmittable packet
 before quiescence is transmitted. Upon timeout, a Tail Loss Probe
 (TLP) packet is sent to evoke an acknowledgement from the receiver.

 The timer duration, or Probe Timeout (PTO), is set based on the
 following conditions:

 o PTO SHOULD be scheduled for max(1.5*SRTT+MaxAckDelay,
 kMinTLPTimeout)

 o If RTO (Section 4.3.3) is earlier, schedule a TLP in its place.
 That is, PTO SHOULD be scheduled for min(RTO, PTO).

 QUIC includes MaxAckDelay in all probe timeouts, because it assumes
 the ack delay may come into play, regardless of the number of packets
 outstanding. TCP's TLP assumes if at least 2 packets are
 outstanding, acks will not be delayed.

 A PTO value of at least 1.5*SRTT ensures that the ACK is overdue.
 The 1.5 is based on [TLP], but implementations MAY experiment with
 other constants.

 To reduce latency, it is RECOMMENDED that the sender set and allow
 the TLP timer to fire twice before setting an RTO timer. In other

Iyengar & Swett Expires April 26, 2019 [Page 10]

Internet-Draft QUIC Loss Detection October 2018

 words, when the TLP timer expires the first time, a TLP packet is
 sent, and it is RECOMMENDED that the TLP timer be scheduled for a
 second time. When the TLP timer expires the second time, a second
 TLP packet is sent, and an RTO timer SHOULD be scheduled

Section 4.3.3.

 A TLP packet SHOULD carry new data when possible. If new data is
 unavailable or new data cannot be sent due to flow control, a TLP
 packet MAY retransmit unacknowledged data to potentially reduce
 recovery time. Since a TLP timer is used to send a probe into the
 network prior to establishing any packet loss, prior unacknowledged
 packets SHOULD NOT be marked as lost when a TLP timer expires.

 A sender may not know that a packet being sent is a tail packet.
 Consequently, a sender may have to arm or adjust the TLP timer on
 every sent retransmittable packet.

4.3.3. Retransmission Timeout

 A Retransmission Timeout (RTO) timer is the final backstop for loss
 detection. The algorithm used in QUIC is based on the RTO algorithm
 for TCP [RFC5681] and is additionally resilient to spurious RTO
 events [RFC5682].

 When the last TLP packet is sent, a timer is set for the RTO period.
 When this timer expires, the sender sends two packets, to evoke
 acknowledgements from the receiver, and restarts the RTO timer.

 Similar to TCP [RFC6298], the RTO period is set based on the
 following conditions:

 o When the final TLP packet is sent, the RTO period is set to
 max(SRTT + 4*RTTVAR + MaxAckDelay, kMinRTOTimeout)

 o When an RTO timer expires, the RTO period is doubled.

 The sender typically has incurred a high latency penalty by the time
 an RTO timer expires, and this penalty increases exponentially in
 subsequent consecutive RTO events. Sending a single packet on an RTO
 event therefore makes the connection very sensitive to single packet
 loss. Sending two packets instead of one significantly increases
 resilience to packet drop in both directions, thus reducing the
 probability of consecutive RTO events.

 QUIC's RTO algorithm differs from TCP in that the firing of an RTO
 timer is not considered a strong enough signal of packet loss, so
 does not result in an immediate change to congestion window or
 recovery state. An RTO timer expires only when there's a prolonged

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires April 26, 2019 [Page 11]

Internet-Draft QUIC Loss Detection October 2018

 period of network silence, which could be caused by a change in the
 underlying network RTT.

 QUIC also diverges from TCP by including MaxAckDelay in the RTO
 period. Since QUIC corrects for this delay in its SRTT and RTTVAR
 computations, it is necessary to add this delay explicitly in the TLP
 and RTO computation.

 When an acknowledgment is received for a packet sent on an RTO event,
 any unacknowledged packets with lower packet numbers than those
 acknowledged MUST be marked as lost. If an acknowledgement for a
 packet sent on an RTO is received at the same time packets sent prior
 to the first RTO are acknowledged, the RTO is considered spurious and
 standard loss detection rules apply.

 A packet sent when an RTO timer expires MAY carry new data if
 available or unacknowledged data to potentially reduce recovery time.
 Since this packet is sent as a probe into the network prior to
 establishing any packet loss, prior unacknowledged packets SHOULD NOT
 be marked as lost.

 A packet sent on an RTO timer MUST NOT be blocked by the sender's
 congestion controller. A sender MUST however count these bytes as
 additional bytes in flight, since this packet adds network load
 without establishing packet loss.

4.4. Generating Acknowledgements

 QUIC SHOULD delay sending acknowledgements in response to packets,
 but MUST NOT excessively delay acknowledgements of packets containing
 frames other than ACK. Specifically, implementations MUST attempt to
 enforce a maximum ack delay to avoid causing the peer spurious
 timeouts. The maximum ack delay is communicated in the
 "max_ack_delay" transport parameter and the default value is 25ms.

 An acknowledgement SHOULD be sent immediately upon receipt of a
 second packet but the delay SHOULD NOT exceed the maximum ack delay.
 QUIC recovery algorithms do not assume the peer generates an
 acknowledgement immediately when receiving a second full-packet.

 Out-of-order packets SHOULD be acknowledged more quickly, in order to
 accelerate loss recovery. The receiver SHOULD send an immediate ACK
 when it receives a new packet which is not one greater than the
 largest received packet number.

 Similarly, packets marked with the ECN Congestion Experienced (CE)
 codepoint in the IP header SHOULD be acknowledged immediately, to
 reduce the peer's response time to congestion events.

Iyengar & Swett Expires April 26, 2019 [Page 12]

Internet-Draft QUIC Loss Detection October 2018

 As an optimization, a receiver MAY process multiple packets before
 sending any ACK frames in response. In this case they can determine
 whether an immediate or delayed acknowledgement should be generated
 after processing incoming packets.

4.4.1. Crypto Handshake Data

 In order to quickly complete the handshake and avoid spurious
 retransmissions due to crypto retransmission timeouts, crypto packets
 SHOULD use a very short ack delay, such as 1ms. ACK frames MAY be
 sent immediately when the crypto stack indicates all data for that
 encryption level has been received.

4.4.2. ACK Ranges

 When an ACK frame is sent, one or more ranges of acknowledged packets
 are included. Including older packets reduces the chance of spurious
 retransmits caused by losing previously sent ACK frames, at the cost
 of larger ACK frames.

 ACK frames SHOULD always acknowledge the most recently received
 packets, and the more out-of-order the packets are, the more
 important it is to send an updated ACK frame quickly, to prevent the
 peer from declaring a packet as lost and spuriously retransmitting
 the frames it contains.

 Below is one recommended approach for determining what packets to
 include in an ACK frame.

4.4.3. Receiver Tracking of ACK Frames

 When a packet containing an ACK frame is sent, the largest
 acknowledged in that frame may be saved. When a packet containing an
 ACK frame is acknowledged, the receiver can stop acknowledging
 packets less than or equal to the largest acknowledged in the sent
 ACK frame.

 In cases without ACK frame loss, this algorithm allows for a minimum
 of 1 RTT of reordering. In cases with ACK frame loss, this approach
 does not guarantee that every acknowledgement is seen by the sender
 before it is no longer included in the ACK frame. Packets could be
 received out of order and all subsequent ACK frames containing them
 could be lost. In this case, the loss recovery algorithm may cause
 spurious retransmits, but the sender will continue making forward
 progress.

Iyengar & Swett Expires April 26, 2019 [Page 13]

Internet-Draft QUIC Loss Detection October 2018

4.5. Pseudocode

4.5.1. Constants of interest

 Constants used in loss recovery are based on a combination of RFCs,
 papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

 kMaxTLPs: Maximum number of tail loss probes before an RTO expires.
 The RECOMMENDED value is 2.

 kReorderingThreshold: Maximum reordering in packet number space
 before FACK style loss detection considers a packet lost. The
 RECOMMENDED value is 3.

 kTimeReorderingFraction: Maximum reordering in time space before
 time based loss detection considers a packet lost. In fraction of
 an RTT. The RECOMMENDED value is 1/8.

 kUsingTimeLossDetection: Whether time based loss detection is in
 use. If false, uses FACK style loss detection. The RECOMMENDED
 value is false.

 kMinTLPTimeout: Minimum time in the future a tail loss probe timer
 may be set for. The RECOMMENDED value is 10ms.

 kMinRTOTimeout: Minimum time in the future an RTO timer may be set
 for. The RECOMMENDED value is 200ms.

 kDelayedAckTimeout: The length of the peer's delayed ack timer. The
 RECOMMENDED value is 25ms.

 kInitialRtt: The RTT used before an RTT sample is taken. The
 RECOMMENDED value is 100ms.

4.5.2. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 loss_detection_timer: Multi-modal timer used for loss detection.

 crypto_count: The number of times all unacknowledged CRYPTO data has
 been retransmitted without receiving an ack.

 tlp_count: The number of times a tail loss probe has been sent
 without receiving an ack.

Iyengar & Swett Expires April 26, 2019 [Page 14]

Internet-Draft QUIC Loss Detection October 2018

 rto_count: The number of times an RTO has been sent without
 receiving an ack.

 largest_sent_before_rto: The last packet number sent prior to the
 first retransmission timeout.

 time_of_last_sent_retransmittable_packet: The time the most recent
 retransmittable packet was sent.

 time_of_last_sent_crypto_packet: The time the most recent crypto
 packet was sent.

 largest_sent_packet: The packet number of the most recently sent
 packet.

 largest_acked_packet: The largest packet number acknowledged in an
 ACK frame.

 latest_rtt: The most recent RTT measurement made when receiving an
 ack for a previously unacked packet.

 smoothed_rtt: The smoothed RTT of the connection, computed as
 described in [RFC6298]

 rttvar: The RTT variance, computed as described in [RFC6298]

 min_rtt: The minimum RTT seen in the connection, ignoring ack delay.

 max_ack_delay: The maximum amount of time by which the receiver
 intends to delay acknowledgments, in milliseconds. The actual
 ack_delay in a received ACK frame may be larger due to late
 timers, reordering, or lost ACKs.

 reordering_threshold: The largest packet number gap between the
 largest acknowledged retransmittable packet and an unacknowledged
 retransmittable packet before it is declared lost.

 time_reordering_fraction: The reordering window as a fraction of
 max(smoothed_rtt, latest_rtt).

 loss_time: The time at which the next packet will be considered lost
 based on early transmit or exceeding the reordering window in
 time.

 sent_packets: An association of packet numbers to information about
 them, including a number field indicating the packet number, a
 time field indicating the time a packet was sent, a boolean
 indicating whether the packet is ack-only, a boolean indicating

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires April 26, 2019 [Page 15]

Internet-Draft QUIC Loss Detection October 2018

 whether it counts towards bytes in flight, and a bytes field
 indicating the packet's size. sent_packets is ordered by packet
 number, and packets remain in sent_packets until acknowledged or
 lost. A sent_packets data structure is maintained per packet
 number space, and ACK processing only applies to a single space.

4.5.3. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

 loss_detection_timer.reset()
 crypto_count = 0
 tlp_count = 0
 rto_count = 0
 if (kUsingTimeLossDetection)
 reordering_threshold = infinite
 time_reordering_fraction = kTimeReorderingFraction
 else:
 reordering_threshold = kReorderingThreshold
 time_reordering_fraction = infinite
 loss_time = 0
 smoothed_rtt = 0
 rttvar = 0
 min_rtt = infinite
 largest_sent_before_rto = 0
 time_of_last_sent_retransmittable_packet = 0
 time_of_last_sent_crypto_packet = 0
 largest_sent_packet = 0

4.5.4. On Sending a Packet

 After any packet is sent, be it a new transmission or a rebundled
 transmission, the following OnPacketSent function is called. The
 parameters to OnPacketSent are as follows:

 o packet_number: The packet number of the sent packet.

 o ack_only: A boolean that indicates whether a packet contains only
 ACK or PADDING frame(s). If true, it is still expected an ack
 will be received for this packet, but it is not retransmittable.

 o in_flight: A boolean that indicates whether the packet counts
 towards bytes in flight.

 o is_crypto_packet: A boolean that indicates whether the packet
 contains cryptographic handshake messages critical to the
 completion of the QUIC handshake. In this version of QUIC, this

Iyengar & Swett Expires April 26, 2019 [Page 16]

Internet-Draft QUIC Loss Detection October 2018

 includes any packet with the long header that includes a CRYPTO
 frame.

 o sent_bytes: The number of bytes sent in the packet, not including
 UDP or IP overhead, but including QUIC framing overhead.

 Pseudocode for OnPacketSent follows:

 OnPacketSent(packet_number, ack_only, in_flight,
 is_crypto_packet, sent_bytes):
 largest_sent_packet = packet_number
 sent_packets[packet_number].packet_number = packet_number
 sent_packets[packet_number].time = now
 sent_packets[packet_number].ack_only = ack_only
 sent_packets[packet_number].in_flight = in_flight
 if !ack_only:
 if is_crypto_packet:
 time_of_last_sent_crypto_packet = now
 time_of_last_sent_retransmittable_packet = now
 OnPacketSentCC(sent_bytes)
 sent_packets[packet_number].bytes = sent_bytes
 SetLossDetectionTimer()

4.5.5. On Receiving an Acknowledgment

 When an ACK frame is received, it may newly acknowledge any number of
 packets.

 Pseudocode for OnAckReceived and UpdateRtt follow:

Iyengar & Swett Expires April 26, 2019 [Page 17]

Internet-Draft QUIC Loss Detection October 2018

 OnAckReceived(ack):
 largest_acked_packet = ack.largest_acked
 // If the largest acknowledged is newly acked,
 // update the RTT.
 if (sent_packets[ack.largest_acked]):
 latest_rtt = now - sent_packets[ack.largest_acked].time
 UpdateRtt(latest_rtt, ack.ack_delay)

 // Find all newly acked packets in this ACK frame
 newly_acked_packets = DetermineNewlyAckedPackets(ack)
 for acked_packet in newly_acked_packets:
 OnPacketAcked(acked_packet.packet_number)

 if !newly_acked_packets.empty():
 // Find the smallest newly acknowledged packet
 smallest_newly_acked =
 FindSmallestNewlyAcked(newly_acked_packets)
 // If any packets sent prior to RTO were acked, then the
 // RTO was spurious. Otherwise, inform congestion control.
 if (rto_count > 0 &&
 smallest_newly_acked > largest_sent_before_rto):
 OnRetransmissionTimeoutVerified(smallest_newly_acked)
 crypto_count = 0
 tlp_count = 0
 rto_count = 0

 DetectLostPackets(ack.largest_acked_packet)
 SetLossDetectionTimer()

 // Process ECN information if present.
 if (ACK frame contains ECN information):
 ProcessECN(ack)

 UpdateRtt(latest_rtt, ack_delay):
 // min_rtt ignores ack delay.
 min_rtt = min(min_rtt, latest_rtt)
 // Adjust for ack delay if it's plausible.
 if (latest_rtt - min_rtt > ack_delay):
 latest_rtt -= ack_delay
 // Based on {{RFC6298}}.
 if (smoothed_rtt == 0):
 smoothed_rtt = latest_rtt
 rttvar = latest_rtt / 2
 else:
 rttvar_sample = abs(smoothed_rtt - latest_rtt)
 rttvar = 3/4 * rttvar + 1/4 * rttvar_sample
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * latest_rtt

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires April 26, 2019 [Page 18]

Internet-Draft QUIC Loss Detection October 2018

4.5.6. On Packet Acknowledgment

 When a packet is acked for the first time, the following
 OnPacketAcked function is called. Note that a single ACK frame may
 newly acknowledge several packets. OnPacketAcked must be called once
 for each of these newly acked packets.

 OnPacketAcked takes one parameter, acked_packet, which is the struct
 of the newly acked packet.

 If this is the first acknowledgement following RTO, check if the
 smallest newly acknowledged packet is one sent by the RTO, and if so,
 inform congestion control of a verified RTO, similar to F-RTO
 [RFC5682].

 Pseudocode for OnPacketAcked follows:

 OnPacketAcked(acked_packet):
 if (!acked_packet.is_ack_only):
 OnPacketAckedCC(acked_packet)
 sent_packets.remove(acked_packet.packet_number)

4.5.7. Setting the Loss Detection Timer

 QUIC loss detection uses a single timer for all timer-based loss
 detection. The duration of the timer is based on the timer's mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionTimer defined below shows how the single
 timer is set.

 Pseudocode for SetLossDetectionTimer follows:

https://datatracker.ietf.org/doc/html/rfc5682

Iyengar & Swett Expires April 26, 2019 [Page 19]

Internet-Draft QUIC Loss Detection October 2018

 SetLossDetectionTimer():
 // Don't arm timer if there are no retransmittable packets
 // in flight.
 if (bytes_in_flight == 0):
 loss_detection_timer.cancel()
 return

 if (crypto packets are outstanding):
 // Crypto retransmission timer.
 if (smoothed_rtt == 0):
 timeout = 2 * kInitialRtt
 else:
 timeout = 2 * smoothed_rtt
 timeout = max(timeout, kMinTLPTimeout)
 timeout = timeout * (2 ^ crypto_count)
 loss_detection_timer.set(
 time_of_last_sent_crypto_packet + timeout)
 return
 if (loss_time != 0):
 // Early retransmit timer or time loss detection.
 timeout = loss_time -
 time_of_last_sent_retransmittable_packet
 else:
 // RTO or TLP timer
 // Calculate RTO duration
 timeout =
 smoothed_rtt + 4 * rttvar + max_ack_delay
 timeout = max(timeout, kMinRTOTimeout)
 timeout = timeout * (2 ^ rto_count)
 if (tlp_count < kMaxTLPs):
 // Tail Loss Probe
 tlp_timeout = max(1.5 * smoothed_rtt
 + max_ack_delay, kMinTLPTimeout)
 timeout = min(tlp_timeout, timeout)

 loss_detection_timer.set(
 time_of_last_sent_retransmittable_packet + timeout)

4.5.8. On Timeout

 When the loss detection timer expires, the timer's mode determines
 the action to be performed.

 Pseudocode for OnLossDetectionTimeout follows:

Iyengar & Swett Expires April 26, 2019 [Page 20]

Internet-Draft QUIC Loss Detection October 2018

 OnLossDetectionTimeout():
 if (crypto packets are outstanding):
 // Crypto retransmission timeout.
 RetransmitUnackedCryptoData()
 crypto_count++
 else if (loss_time != 0):
 // Early retransmit or Time Loss Detection
 DetectLostPackets(largest_acked_packet)
 else if (tlp_count < kMaxTLPs):
 // Tail Loss Probe.
 SendOnePacket()
 tlp_count++
 else:
 // RTO.
 if (rto_count == 0)
 largest_sent_before_rto = largest_sent_packet
 SendTwoPackets()
 rto_count++

 SetLossDetectionTimer()

4.5.9. Detecting Lost Packets

 Packets in QUIC are only considered lost once a larger packet number
 in the same packet number space is acknowledged. DetectLostPackets
 is called every time an ack is received and operates on the
 sent_packets for that packet number space. If the loss detection
 timer expires and the loss_time is set, the previous largest acked
 packet is supplied.

4.5.9.1. Pseudocode

 DetectLostPackets takes one parameter, acked, which is the largest
 acked packet.

 Pseudocode for DetectLostPackets follows:

Iyengar & Swett Expires April 26, 2019 [Page 21]

Internet-Draft QUIC Loss Detection October 2018

 DetectLostPackets(largest_acked):
 loss_time = 0
 lost_packets = {}
 delay_until_lost = infinite
 if (kUsingTimeLossDetection):
 delay_until_lost =
 (1 + time_reordering_fraction) *
 max(latest_rtt, smoothed_rtt)
 else if (largest_acked.packet_number == largest_sent_packet):
 // Early retransmit timer.
 delay_until_lost = 9/8 * max(latest_rtt, smoothed_rtt)
 foreach (unacked < largest_acked.packet_number):
 time_since_sent = now() - unacked.time_sent
 delta = largest_acked.packet_number - unacked.packet_number
 if (time_since_sent > delay_until_lost ||
 delta > reordering_threshold):
 sent_packets.remove(unacked.packet_number)
 if (!unacked.is_ack_only):
 lost_packets.insert(unacked)
 else if (loss_time == 0 && delay_until_lost != infinite):
 loss_time = now() + delay_until_lost - time_since_sent

 // Inform the congestion controller of lost packets and
 // lets it decide whether to retransmit immediately.
 if (!lost_packets.empty()):
 OnPacketsLost(lost_packets)

4.6. Discussion

 The majority of constants were derived from best common practices
 among widely deployed TCP implementations on the internet.
 Exceptions follow.

 A shorter delayed ack time of 25ms was chosen because longer delayed
 acks can delay loss recovery and for the small number of connections
 where less than packet per 25ms is delivered, acking every packet is
 beneficial to congestion control and loss recovery.

 The default initial RTT of 100ms was chosen because it is slightly
 higher than both the median and mean min_rtt typically observed on
 the public internet.

5. Congestion Control

 QUIC's congestion control is based on TCP NewReno [RFC6582]. NewReno
 is a congestion window based congestion control. QUIC specifies the
 congestion window in bytes rather than packets due to finer control
 and the ease of appropriate byte counting [RFC3465].

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc3465

Iyengar & Swett Expires April 26, 2019 [Page 22]

Internet-Draft QUIC Loss Detection October 2018

 QUIC hosts MUST NOT send packets if they would increase
 bytes_in_flight (defined in Section 5.8.2) beyond the available
 congestion window, unless the packet is a probe packet sent after the
 TLP or RTO timer expires, as described in Section 4.3.2 and

Section 4.3.3.

 Implementations MAY use other congestion control algorithms, and
 endpoints MAY use different algorithms from one another. The signals
 QUIC provides for congestion control are generic and are designed to
 support different algorithms.

5.1. Explicit Congestion Notification

 If a path has been verified to support ECN, QUIC treats a Congestion
 Experienced codepoint in the IP header as a signal of congestion.
 This document specifies an endpoint's response when its peer receives
 packets with the Congestion Experienced codepoint. As discussed in
 [RFC8311], endpoints are permitted to experiment with other response
 functions.

5.2. Slow Start

 QUIC begins every connection in slow start and exits slow start upon
 loss or upon increase in the ECN-CE counter. QUIC re-enters slow
 start anytime the congestion window is less than ssthresh, which
 typically only occurs after an RTO. While in slow start, QUIC
 increases the congestion window by the number of bytes acknowledged
 when each ack is processed.

5.3. Congestion Avoidance

 Slow start exits to congestion avoidance. Congestion avoidance in
 NewReno uses an additive increase multiplicative decrease (AIMD)
 approach that increases the congestion window by one maximum packet
 size per congestion window acknowledged. When a loss is detected,
 NewReno halves the congestion window and sets the slow start
 threshold to the new congestion window.

5.4. Recovery Period

 Recovery is a period of time beginning with detection of a lost
 packet or an increase in the ECN-CE counter. Because QUIC
 retransmits stream data and control frames, not packets, it defines
 the end of recovery as a packet sent after the start of recovery
 being acknowledged. This is slightly different from TCP's definition
 of recovery, which ends when the lost packet that started recovery is
 acknowledged.

https://datatracker.ietf.org/doc/html/rfc8311

Iyengar & Swett Expires April 26, 2019 [Page 23]

Internet-Draft QUIC Loss Detection October 2018

 The recovery period limits congestion window reduction to once per
 round trip. During recovery, the congestion window remains unchanged
 irrespective of new losses or increases in the ECN-CE counter.

5.5. Tail Loss Probe

 A TLP packet MUST NOT be blocked by the sender's congestion
 controller. The sender MUST however count these bytes as additional
 bytes-in-flight, since a TLP adds network load without establishing
 packet loss.

 Acknowledgement or loss of tail loss probes are treated like any
 other packet.

5.6. Retransmission Timeout

 When retransmissions are sent due to a retransmission timeout timer,
 no change is made to the congestion window until the next
 acknowledgement arrives. The retransmission timeout is considered
 spurious when this acknowledgement acknowledges packets sent prior to
 the first retransmission timeout. The retransmission timeout is
 considered valid when this acknowledgement acknowledges no packets
 sent prior to the first retransmission timeout. In this case, the
 congestion window MUST be reduced to the minimum congestion window
 and slow start is re-entered.

5.7. Pacing

 This document does not specify a pacer, but it is RECOMMENDED that a
 sender pace sending of all in-flight packets based on input from the
 congestion controller. For example, a pacer might distribute the
 congestion window over the SRTT when used with a window-based
 controller, and a pacer might use the rate estimate of a rate-based
 controller.

 An implementation should take care to architect its congestion
 controller to work well with a pacer. For instance, a pacer might
 wrap the congestion controller and control the availability of the
 congestion window, or a pacer might pace out packets handed to it by
 the congestion controller. Timely delivery of ACK frames is
 important for efficient loss recovery. Packets containing only ACK
 frames should therefore not be paced, to avoid delaying their
 delivery to the peer.

 As an example of a well-known and publicly available implementation
 of a flow pacer, implementers are referred to the Fair Queue packet
 scheduler (fq qdisc) in Linux (3.11 onwards).

Iyengar & Swett Expires April 26, 2019 [Page 24]

Internet-Draft QUIC Loss Detection October 2018

5.8. Pseudocode

5.8.1. Constants of interest

 Constants used in congestion control are based on a combination of
 RFCs, papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

 kMaxDatagramSize: The sender's maximum payload size. Does not
 include UDP or IP overhead. The max packet size is used for
 calculating initial and minimum congestion windows. The
 RECOMMENDED value is 1200 bytes.

 kInitialWindow: Default limit on the initial amount of outstanding
 data in bytes. Taken from [RFC6928]. The RECOMMENDED value is
 the minimum of 10 * kMaxDatagramSize and max(2* kMaxDatagramSize,
 14600)).

 kMinimumWindow: Minimum congestion window in bytes. The RECOMMENDED
 value is 2 * kMaxDatagramSize.

 kLossReductionFactor: Reduction in congestion window when a new loss
 event is detected. The RECOMMENDED value is 0.5.

5.8.2. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 ecn_ce_counter: The highest value reported for the ECN-CE counter by
 the peer in an ACK frame. This variable is used to detect
 increases in the reported ECN-CE counter.

 bytes_in_flight: The sum of the size in bytes of all sent packets
 that contain at least one retransmittable or PADDING frame, and
 have not been acked or declared lost. The size does not include
 IP or UDP overhead, but does include the QUIC header and AEAD
 overhead. Packets only containing ACK frames do not count towards
 bytes_in_flight to ensure congestion control does not impede
 congestion feedback.

 congestion_window: Maximum number of bytes-in-flight that may be
 sent.

 end_of_recovery: The largest packet number sent when QUIC detects a
 loss. When a larger packet is acknowledged, QUIC exits recovery.

https://datatracker.ietf.org/doc/html/rfc6928

Iyengar & Swett Expires April 26, 2019 [Page 25]

Internet-Draft QUIC Loss Detection October 2018

 ssthresh: Slow start threshold in bytes. When the congestion window
 is below ssthresh, the mode is slow start and the window grows by
 the number of bytes acknowledged.

5.8.3. Initialization

 At the beginning of the connection, initialize the congestion control
 variables as follows:

 congestion_window = kInitialWindow
 bytes_in_flight = 0
 end_of_recovery = 0
 ssthresh = infinite
 ecn_ce_counter = 0

5.8.4. On Packet Sent

 Whenever a packet is sent, and it contains non-ACK frames, the packet
 increases bytes_in_flight.

 OnPacketSentCC(bytes_sent):
 bytes_in_flight += bytes_sent

5.8.5. On Packet Acknowledgement

 Invoked from loss detection's OnPacketAcked and is supplied with
 acked_packet from sent_packets.

 InRecovery(packet_number):
 return packet_number <= end_of_recovery

 OnPacketAckedCC(acked_packet):
 // Remove from bytes_in_flight.
 bytes_in_flight -= acked_packet.bytes
 if (InRecovery(acked_packet.packet_number)):
 // Do not increase congestion window in recovery period.
 return
 if (congestion_window < ssthresh):
 // Slow start.
 congestion_window += acked_packet.bytes
 else:
 // Congestion avoidance.
 congestion_window += kMaxDatagramSize * acked_packet.bytes
 / congestion_window

Iyengar & Swett Expires April 26, 2019 [Page 26]

Internet-Draft QUIC Loss Detection October 2018

5.8.6. On New Congestion Event

 Invoked from ProcessECN and OnPacketsLost when a new congestion event
 is detected. Starts a new recovery period and reduces the congestion
 window.

 CongestionEvent(packet_number):
 // Start a new congestion event if packet_number
 // is larger than the end of the previous recovery epoch.
 if (!InRecovery(packet_number)):
 end_of_recovery = largest_sent_packet
 congestion_window *= kLossReductionFactor
 congestion_window = max(congestion_window, kMinimumWindow)
 ssthresh = congestion_window

5.8.7. Process ECN Information

 Invoked when an ACK frame with an ECN section is received from the
 peer.

 ProcessECN(ack):
 // If the ECN-CE counter reported by the peer has increased,
 // this could be a new congestion event.
 if (ack.ce_counter > ecn_ce_counter):
 ecn_ce_counter = ack.ce_counter
 // Start a new congestion event if the last acknowledged
 // packet is past the end of the previous recovery epoch.
 CongestionEvent(ack.largest_acked_packet)

5.8.8. On Packets Lost

 Invoked by loss detection from DetectLostPackets when new packets are
 detected lost.

 OnPacketsLost(lost_packets):
 // Remove lost packets from bytes_in_flight.
 for (lost_packet : lost_packets):
 bytes_in_flight -= lost_packet.bytes
 largest_lost_packet = lost_packets.last()

 // Start a new congestion epoch if the last lost packet
 // is past the end of the previous recovery epoch.
 CongestionEvent(largest_lost_packet.packet_number)

Iyengar & Swett Expires April 26, 2019 [Page 27]

Internet-Draft QUIC Loss Detection October 2018

5.8.9. On Retransmission Timeout Verified

 QUIC decreases the congestion window to the minimum value once the
 retransmission timeout has been verified and removes any packets sent
 before the newly acknowledged RTO packet.

 OnRetransmissionTimeoutVerified(packet_number)
 congestion_window = kMinimumWindow
 // Declare all packets prior to packet_number lost.
 for (sent_packet: sent_packets):
 if (sent_packet.packet_number < packet_number):
 bytes_in_flight -= sent_packet.bytes
 sent_packets.remove(sent_packet.packet_number)

6. Security Considerations

6.1. Congestion Signals

 Congestion control fundamentally involves the consumption of signals
 - both loss and ECN codepoints - from unauthenticated entities. On-
 path attackers can spoof or alter these signals. An attacker can
 cause endpoints to reduce their sending rate by dropping packets, or
 alter send rate by changing ECN codepoints.

6.2. Traffic Analysis

 Packets that carry only ACK frames can be heuristically identified by
 observing packet size. Acknowledgement patterns may expose
 information about link characteristics or application behavior.
 Endpoints can use PADDING frames or bundle acknowledgments with other
 frames to reduce leaked information.

6.3. Misreporting ECN Markings

 A receiver can misreport ECN markings to alter the congestion
 response of a sender. Suppressing reports of ECN-CE markings could
 cause a sender to increase their send rate. This increase could
 result in congestion and loss.

 A sender MAY attempt to detect suppression of reports by marking
 occasional packets that they send with ECN-CE. If a packet marked
 with ECN-CE is not reported as having been marked when the packet is
 acknowledged, the sender SHOULD then disable ECN for that path.

 Reporting additional ECN-CE markings will cause a sender to reduce
 their sending rate, which is similar in effect to advertising reduced
 connection flow control limits and so no advantage is gained by doing
 so.

Iyengar & Swett Expires April 26, 2019 [Page 28]

Internet-Draft QUIC Loss Detection October 2018

 Endpoints choose the congestion controller that they use. Though
 congestion controllers generally treat reports of ECN-CE markings as
 equivalent to loss [RFC8311], the exact response for each controller
 could be different. Failure to correctly respond to information
 about ECN markings is therefore difficult to detect.

7. IANA Considerations

 This document has no IANA actions. Yet.

8. References

8.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-16 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

8.2. Informative References

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, DOI 10.17487/RFC4653, August 2006,
 <https://www.rfc-editor.org/info/rfc4653>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/rfc3465
https://www.rfc-editor.org/info/rfc3465
https://datatracker.ietf.org/doc/html/rfc4653
https://www.rfc-editor.org/info/rfc4653
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681

Iyengar & Swett Expires April 26, 2019 [Page 29]

Internet-Draft QUIC Loss Detection October 2018

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <https://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <https://www.rfc-editor.org/info/rfc5827>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <https://www.rfc-editor.org/info/rfc6582>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), February 2013.

8.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-recovery

https://datatracker.ietf.org/doc/html/rfc5682
https://www.rfc-editor.org/info/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://www.rfc-editor.org/info/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6582
https://www.rfc-editor.org/info/rfc6582
https://datatracker.ietf.org/doc/html/rfc6675
https://www.rfc-editor.org/info/rfc6675
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery

Iyengar & Swett Expires April 26, 2019 [Page 30]

Internet-Draft QUIC Loss Detection October 2018

Appendix A. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

A.1. Since draft-ietf-quic-recovery-14

 o Used max_ack_delay from transport params (#1796, #1782)

 o Merge ACK and ACK_ECN (#1783)

A.2. Since draft-ietf-quic-recovery-13

 o Corrected the lack of ssthresh reduction in CongestionEvent
 pseudocode (#1598)

 o Considerations for ECN spoofing (#1426, #1626)

 o Clarifications for PADDING and congestion control (#837, #838,
 #1517, #1531, #1540)

 o Reduce early retransmission timer to RTT/8 (#945, #1581)

 o Packets are declared lost after an RTO is verified (#935, #1582)

A.3. Since draft-ietf-quic-recovery-12

 o Changes to manage separate packet number spaces and encryption
 levels (#1190, #1242, #1413, #1450)

 o Added ECN feedback mechanisms and handling; new ACK_ECN frame
 (#804, #805, #1372)

A.4. Since draft-ietf-quic-recovery-11

 No significant changes.

A.5. Since draft-ietf-quic-recovery-10

 o Improved text on ack generation (#1139, #1159)

 o Make references to TCP recovery mechanisms informational (#1195)

 o Define time_of_last_sent_handshake_packet (#1171)

 o Added signal from TLS the data it includes needs to be sent in a
 Retry packet (#1061, #1199)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10

Iyengar & Swett Expires April 26, 2019 [Page 31]

Internet-Draft QUIC Loss Detection October 2018

 o Minimum RTT (min_rtt) is initialized with an infinite value
 (#1169)

A.6. Since draft-ietf-quic-recovery-09

 No significant changes.

A.7. Since draft-ietf-quic-recovery-08

 o Clarified pacing and RTO (#967, #977)

A.8. Since draft-ietf-quic-recovery-07

 o Include Ack Delay in RTO(and TLP) computations (#981)

 o Ack Delay in SRTT computation (#961)

 o Default RTT and Slow Start (#590)

 o Many editorial fixes.

A.9. Since draft-ietf-quic-recovery-06

 No significant changes.

A.10. Since draft-ietf-quic-recovery-05

 o Add more congestion control text (#776)

A.11. Since draft-ietf-quic-recovery-04

 No significant changes.

A.12. Since draft-ietf-quic-recovery-03

 No significant changes.

A.13. Since draft-ietf-quic-recovery-02

 o Integrate F-RTO (#544, #409)

 o Add congestion control (#545, #395)

 o Require connection abort if a skipped packet was acknowledged
 (#415)

 o Simplify RTO calculations (#142, #417)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02

Iyengar & Swett Expires April 26, 2019 [Page 32]

Internet-Draft QUIC Loss Detection October 2018

A.14. Since draft-ietf-quic-recovery-01

 o Overview added to loss detection

 o Changes initial default RTT to 100ms

 o Added time-based loss detection and fixes early retransmit

 o Clarified loss recovery for handshake packets

 o Fixed references and made TCP references informative

A.15. Since draft-ietf-quic-recovery-00

 o Improved description of constants and ACK behavior

A.16. Since draft-iyengar-quic-loss-recovery-01

 o Adopted as base for draft-ietf-quic-recovery

 o Updated authors/editors list

 o Added table of contents

Acknowledgments

Authors' Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

 Ian Swett (editor)
 Google

 Email: ianswett@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery

Iyengar & Swett Expires April 26, 2019 [Page 33]

