
QUIC J. Iyengar, Ed.
Internet-Draft Fastly
Intended status: Standards Track I. Swett, Ed.
Expires: September 12, 2019 Google
 March 11, 2019

QUIC Loss Detection and Congestion Control
draft-ietf-quic-recovery-19

Abstract

 This document describes loss detection and congestion control
 mechanisms for QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-recovery [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Swett Expires September 12, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Loss Detection March 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Definitions 4
3. Design of the QUIC Transmission Machinery 5
3.1. Relevant Differences Between QUIC and TCP 5
3.1.1. Separate Packet Number Spaces 6
3.1.2. Monotonically Increasing Packet Numbers 6
3.1.3. No Reneging . 6
3.1.4. More ACK Ranges 6
3.1.5. Explicit Correction For Delayed ACKs 7

4. Generating Acknowledgements 7
4.1. Crypto Handshake Data 8
4.2. ACK Ranges . 8
4.3. Receiver Tracking of ACK Frames 8

5. Computing the RTT estimate 8
6. Loss Detection . 9
6.1. Acknowledgement-based Detection 9
6.1.1. Packet Threshold 10
6.1.2. Time Threshold 10

6.2. Crypto Retransmission Timeout 11
6.2.1. Retry and Version Negotiation 12
6.2.2. Discarding Keys and Packet State 12

6.3. Probe Timeout . 12
6.3.1. Computing PTO . 13
6.3.2. Sending Probe Packets 13
6.3.3. Loss Detection 14

6.4. Discussion . 14
7. Congestion Control . 15
7.1. Explicit Congestion Notification 15
7.2. Slow Start . 15
7.3. Congestion Avoidance 15
7.4. Recovery Period . 16
7.5. Ignoring Loss of Undecryptable Packets 16
7.6. Probe Timeout . 16
7.7. Persistent Congestion 16
7.8. Pacing . 17
7.9. Sending data after an idle period 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Iyengar & Swett Expires September 12, 2019 [Page 2]

Internet-Draft QUIC Loss Detection March 2019

7.10. Application Limited Sending 18
8. Security Considerations 18
8.1. Congestion Signals 18
8.2. Traffic Analysis . 19
8.3. Misreporting ECN Markings 19

9. IANA Considerations . 19
10. References . 19
10.1. Normative References 19
10.2. Informative References 20
10.3. URIs . 21

Appendix A. Loss Recovery Pseudocode 22
A.1. Tracking Sent Packets 22
A.1.1. Sent Packet Fields 22

A.2. Constants of interest 22
A.3. Variables of interest 23
A.4. Initialization . 24
A.5. On Sending a Packet 24
A.6. On Receiving an Acknowledgment 25
A.7. On Packet Acknowledgment 27
A.8. Setting the Loss Detection Timer 27
A.9. On Timeout . 29
A.10. Detecting Lost Packets 29

Appendix B. Congestion Control Pseudocode 30
B.1. Constants of interest 30
B.2. Variables of interest 31
B.3. Initialization . 32
B.4. On Packet Sent . 32
B.5. On Packet Acknowledgement 32
B.6. On New Congestion Event 33
B.7. Process ECN Information 33
B.8. On Packets Lost . 33

Appendix C. Change Log . 34
C.1. Since draft-ietf-quic-recovery-18 34
C.2. Since draft-ietf-quic-recovery-17 35
C.3. Since draft-ietf-quic-recovery-16 35
C.4. Since draft-ietf-quic-recovery-14 36
C.5. Since draft-ietf-quic-recovery-13 36
C.6. Since draft-ietf-quic-recovery-12 36
C.7. Since draft-ietf-quic-recovery-11 36
C.8. Since draft-ietf-quic-recovery-10 36
C.9. Since draft-ietf-quic-recovery-09 37
C.10. Since draft-ietf-quic-recovery-08 37
C.11. Since draft-ietf-quic-recovery-07 37
C.12. Since draft-ietf-quic-recovery-06 37
C.13. Since draft-ietf-quic-recovery-05 37
C.14. Since draft-ietf-quic-recovery-04 37
C.15. Since draft-ietf-quic-recovery-03 37
C.16. Since draft-ietf-quic-recovery-02 37

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02

Iyengar & Swett Expires September 12, 2019 [Page 3]

Internet-Draft QUIC Loss Detection March 2019

C.17. Since draft-ietf-quic-recovery-01 38
C.18. Since draft-ietf-quic-recovery-00 38
C.19. Since draft-iyengar-quic-loss-recovery-01 38

 Acknowledgments . 38
 Authors' Addresses . 38

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [QUIC-TRANSPORT].

 QUIC implements the spirit of existing TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 ACK-only: Any packet containing only one or more ACK frame(s).

 In-flight: Packets are considered in-flight when they have been sent
 and neither acknowledged nor declared lost, and they are not ACK-
 only.

 Ack-eliciting Frames: All frames besides ACK or PADDING are
 considered ack-eliciting.

 Ack-eliciting Packets: Packets that contain ack-eliciting frames
 elicit an ACK from the receiver within the maximum ack delay and
 are called ack-eliciting packets.

 Crypto Packets: Packets containing CRYPTO data sent in Initial or
 Handshake packets.

 Out-of-order Packets: Packets that do not increase the largest
 received packet number for its packet number space by exactly one.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Swett Expires September 12, 2019 [Page 4]

Internet-Draft QUIC Loss Detection March 2019

 Packets arrive out of order when earlier packets are lost or
 delayed.

3. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 indicates the encryption level and includes a packet sequence number
 (referred to below as a packet number). The encryption level
 indicates the packet number space, as described in [QUIC-TRANSPORT].
 Packet numbers never repeat within a packet number space for the
 lifetime of a connection. Packet numbers monotonically increase
 within a space, preventing ambiguity.

 This design obviates the need for disambiguating between
 transmissions and retransmissions and eliminates significant
 complexity from QUIC's interpretation of TCP loss detection
 mechanisms.

 QUIC packets can contain multiple frames of different types. The
 recovery mechanisms ensure that data and frames that need reliable
 delivery are acknowledged or declared lost and sent in new packets as
 necessary. The types of frames contained in a packet affect recovery
 and congestion control logic:

 o All packets are acknowledged, though packets that contain no ack-
 eliciting frames are only acknowledged along with ack-eliciting
 packets.

 o Long header packets that contain CRYPTO frames are critical to the
 performance of the QUIC handshake and use shorter timers for
 acknowledgement and retransmission.

 o Packets that contain only ACK frames do not count toward
 congestion control limits and are not considered in-flight.

 o PADDING frames cause packets to contribute toward bytes in flight
 without directly causing an acknowledgment to be sent.

3.1. Relevant Differences Between QUIC and TCP

 Readers familiar with TCP's loss detection and congestion control
 will find algorithms here that parallel well-known TCP ones.
 Protocol differences between QUIC and TCP however contribute to
 algorithmic differences. We briefly describe these protocol
 differences below.

Iyengar & Swett Expires September 12, 2019 [Page 5]

Internet-Draft QUIC Loss Detection March 2019

3.1.1. Separate Packet Number Spaces

 QUIC uses separate packet number spaces for each encryption level,
 except 0-RTT and all generations of 1-RTT keys use the same packet
 number space. Separate packet number spaces ensures acknowledgement
 of packets sent with one level of encryption will not cause spurious
 retransmission of packets sent with a different encryption level.
 Congestion control and round-trip time (RTT) measurement are unified
 across packet number spaces.

3.1.2. Monotonically Increasing Packet Numbers

 TCP conflates transmission order at the sender with delivery order at
 the receiver, which results in retransmissions of the same data
 carrying the same sequence number, and consequently leads to
 "retransmission ambiguity". QUIC separates the two: QUIC uses a
 packet number to indicate transmission order, and any application
 data is sent in one or more streams, with delivery order determined
 by stream offsets encoded within STREAM frames.

 QUIC's packet number is strictly increasing within a packet number
 space, and directly encodes transmission order. A higher packet
 number signifies that the packet was sent later, and a lower packet
 number signifies that the packet was sent earlier. When a packet
 containing ack-eliciting frames is detected lost, QUIC rebundles
 necessary frames in a new packet with a new packet number, removing
 ambiguity about which packet is acknowledged when an ACK is received.
 Consequently, more accurate RTT measurements can be made, spurious
 retransmissions are trivially detected, and mechanisms such as Fast
 Retransmit can be applied universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers - a non-trivial
 task, especially when TCP timestamps are not available.

3.1.3. No Reneging

 QUIC ACKs contain information that is similar to TCP SACK, but QUIC
 does not allow any acked packet to be reneged, greatly simplifying
 implementations on both sides and reducing memory pressure on the
 sender.

3.1.4. More ACK Ranges

 QUIC supports many ACK ranges, opposed to TCP's 3 SACK ranges. In
 high loss environments, this speeds recovery, reduces spurious

Iyengar & Swett Expires September 12, 2019 [Page 6]

Internet-Draft QUIC Loss Detection March 2019

 retransmits, and ensures forward progress without relying on
 timeouts.

3.1.5. Explicit Correction For Delayed ACKs

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the
 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

4. Generating Acknowledgements

 QUIC SHOULD delay sending acknowledgements in response to packets,
 but MUST NOT excessively delay acknowledgements of ack-eliciting
 packets. Specifically, implementations MUST attempt to enforce a
 maximum ack delay to avoid causing the peer spurious timeouts. The
 maximum ack delay is communicated in the "max_ack_delay" transport
 parameter and the default value is 25ms.

 An acknowledgement SHOULD be sent immediately upon receipt of a
 second ack-eliciting packet. QUIC recovery algorithms do not assume
 the peer sends an ACK immediately when receiving a second ack-
 eliciting packet.

 In order to accelerate loss recovery and reduce timeouts, the
 receiver SHOULD send an immediate ACK after it receives an out-of-
 order packet. It could send immediate ACKs for in-order packets for
 a period of time that SHOULD NOT exceed 1/8 RTT unless more out-of-
 order packets arrive. If every packet arrives out-of- order, then an
 immediate ACK SHOULD be sent for every received packet.

 Similarly, packets marked with the ECN Congestion Experienced (CE)
 codepoint in the IP header SHOULD be acknowledged immediately, to
 reduce the peer's response time to congestion events.

 As an optimization, a receiver MAY process multiple packets before
 sending any ACK frames in response. In this case the receiver can
 determine whether an immediate or delayed acknowledgement should be
 generated after processing incoming packets.

Iyengar & Swett Expires September 12, 2019 [Page 7]

Internet-Draft QUIC Loss Detection March 2019

4.1. Crypto Handshake Data

 In order to quickly complete the handshake and avoid spurious
 retransmissions due to crypto retransmission timeouts, crypto packets
 SHOULD use a very short ack delay, such as the local timer
 granularity. ACK frames MAY be sent immediately when the crypto
 stack indicates all data for that packet number space has been
 received.

4.2. ACK Ranges

 When an ACK frame is sent, one or more ranges of acknowledged packets
 are included. Including older packets reduces the chance of spurious
 retransmits caused by losing previously sent ACK frames, at the cost
 of larger ACK frames.

 ACK frames SHOULD always acknowledge the most recently received
 packets, and the more out-of-order the packets are, the more
 important it is to send an updated ACK frame quickly, to prevent the
 peer from declaring a packet as lost and spuriously retransmitting
 the frames it contains.

 Below is one recommended approach for determining what packets to
 include in an ACK frame.

4.3. Receiver Tracking of ACK Frames

 When a packet containing an ACK frame is sent, the largest
 acknowledged in that frame may be saved. When a packet containing an
 ACK frame is acknowledged, the receiver can stop acknowledging
 packets less than or equal to the largest acknowledged in the sent
 ACK frame.

 In cases without ACK frame loss, this algorithm allows for a minimum
 of 1 RTT of reordering. In cases with ACK frame loss and reordering,
 this approach does not guarantee that every acknowledgement is seen
 by the sender before it is no longer included in the ACK frame.
 Packets could be received out of order and all subsequent ACK frames
 containing them could be lost. In this case, the loss recovery
 algorithm may cause spurious retransmits, but the sender will
 continue making forward progress.

5. Computing the RTT estimate

 Round-trip time (RTT) is calculated when an ACK frame arrives by
 computing the difference between the current time and the time the
 largest acked packet was sent. An RTT sample MUST NOT be taken for a
 packet that is not newly acknowledged or not ack-eliciting.

Iyengar & Swett Expires September 12, 2019 [Page 8]

Internet-Draft QUIC Loss Detection March 2019

 When RTT is calculated, the ack delay field from the ACK frame SHOULD
 be limited to the max_ack_delay specified by the peer. Limiting
 ack_delay to max_ack_delay ensures a peer specifying an extremely
 small max_ack_delay doesn't cause more spurious timeouts than a peer
 that correctly specifies max_ack_delay. It SHOULD be subtracted from
 the RTT as long as the result is larger than the min_rtt. If the
 result is smaller than the min_rtt, the RTT should be used, but the
 ack delay field should be ignored.

 A sender calculates both smoothed RTT (SRTT) and RTT variance
 (RTTVAR) similar to those specified in [RFC6298], see Appendix A.6.

 A sender takes an RTT sample when an ACK frame is received that
 acknowledges a larger packet number than before (see Appendix A.6).
 A sender will take multiple RTT samples per RTT when multiple such
 ACK frames are received within an RTT. When multiple samples are
 generated within an RTT, the smoothed RTT and RTT variance could
 retain inadequate history, as suggested in [RFC6298]. Changing these
 computations is currently an open research question.

 min_rtt is the minimum RTT measured over the connection, prior to
 adjusting by ack delay. Ignoring ack delay for min RTT prevents
 intentional or unintentional underestimation of min RTT, which in
 turn prevents underestimating smoothed RTT.

6. Loss Detection

 QUIC senders use both ack information and timeouts to detect lost
 packets, and this section provides a description of these algorithms.

 If a packet is lost, the QUIC transport needs to recover from that
 loss, such as by retransmitting the data, sending an updated frame,
 or abandoning the frame. For more information, see Section 13.2 of
 [QUIC-TRANSPORT].

6.1. Acknowledgement-based Detection

 Acknowledgement-based loss detection implements the spirit of TCP's
 Fast Retransmit [RFC5681], Early Retransmit [RFC5827], FACK [FACK],
 SACK loss recovery [RFC6675], and RACK [RACK]. This section provides
 an overview of how these algorithms are implemented in QUIC.

 A packet is declared lost if it meets all the following conditions:

 o The packet is unacknowledged, in-flight, and was sent prior to an
 acknowledged packet.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675

Iyengar & Swett Expires September 12, 2019 [Page 9]

Internet-Draft QUIC Loss Detection March 2019

 o Either its packet number is kPacketThreshold smaller than an
 acknowledged packet (Section 6.1.1), or it was sent long enough in
 the past (Section 6.1.2).

 The acknowledgement indicates that a packet sent later was delivered,
 while the packet and time thresholds provide some tolerance for
 packet reordering.

 Spuriously declaring packets as lost leads to unnecessary
 retransmissions and may result in degraded performance due to the
 actions of the congestion controller upon detecting loss.
 Implementations that detect spurious retransmissions and increase the
 reordering threshold in packets or time MAY choose to start with
 smaller initial reordering thresholds to minimize recovery latency.

6.1.1. Packet Threshold

 The RECOMMENDED initial value for the packet reordering threshold
 (kPacketThreshold) is 3, based on best practices for TCP loss
 detection [RFC5681] [RFC6675].

 Some networks may exhibit higher degrees of reordering, causing a
 sender to detect spurious losses. Implementers MAY use algorithms
 developed for TCP, such as TCP-NCR [RFC4653], to improve QUIC's
 reordering resilience.

6.1.2. Time Threshold

 Once a later packet has been acknowledged, an endpoint SHOULD declare
 an earlier packet lost if it was sent a threshold amount of time in
 the past. The time threshold is computed as kTimeThreshold *
 max(SRTT, latest_RTT). If packets sent prior to the largest
 acknowledged packet cannot yet be declared lost, then a timer SHOULD
 be set for the remaining time.

 The RECOMMENDED time threshold (kTimeThreshold), expressed as a
 round-trip time multiplier, is 9/8.

 Using max(SRTT, latest_RTT) protects from the two following cases:

 o the latest RTT sample is lower than the SRTT, perhaps due to
 reordering where the acknowledgement encountered a shorter path;

 o the latest RTT sample is higher than the SRTT, perhaps due to a
 sustained increase in the actual RTT, but the smoothed SRTT has
 not yet caught up.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc4653

Iyengar & Swett Expires September 12, 2019 [Page 10]

Internet-Draft QUIC Loss Detection March 2019

 Implementations MAY experiment with absolute thresholds, thresholds
 from previous connections, adaptive thresholds, or including RTT
 variance. Smaller thresholds reduce reordering resilience and
 increase spurious retransmissions, and larger thresholds increase
 loss detection delay.

6.2. Crypto Retransmission Timeout

 Data in CRYPTO frames is critical to QUIC transport and crypto
 negotiation, so a more aggressive timeout is used to retransmit it.

 The initial crypto retransmission timeout SHOULD be set to twice the
 initial RTT.

 At the beginning, there are no prior RTT samples within a connection.
 Resumed connections over the same network SHOULD use the previous
 connection's final smoothed RTT value as the resumed connection's
 initial RTT. If no previous RTT is available, or if the network
 changes, the initial RTT SHOULD be set to 100ms. When an
 acknowledgement is received, a new RTT is computed and the timer
 SHOULD be set for twice the newly computed smoothed RTT.

 When a crypto packet is sent, the sender MUST set a timer for the
 crypto timeout period. This timer MUST be updated when a new crypto
 packet is sent. Upon timeout, the sender MUST retransmit all
 unacknowledged CRYPTO data if possible.

 Until the server has validated the client's address on the path, the
 amount of data it can send is limited, as specified in
 [QUIC-TRANSPORT]. If not all unacknowledged CRYPTO data can be sent,
 then all unacknowledged CRYPTO data sent in Initial packets should be
 retransmitted. If no data can be sent, then no alarm should be armed
 until data has been received from the client.

 Because the server could be blocked until more packets are received,
 the client MUST start the crypto retransmission timer even if there
 is no unacknowledged CRYPTO data. If the timer expires and the
 client has no CRYPTO data to retransmit and does not have Handshake
 keys, it SHOULD send an Initial packet in a UDP datagram of at least
 1200 bytes. If the client has Handshake keys, it SHOULD send a
 Handshake packet.

 On each consecutive expiration of the crypto timer without receiving
 an acknowledgement for a new packet, the sender SHOULD double the
 crypto retransmission timeout and set a timer for this period.

 When crypto packets are in flight, the probe timer (Section 6.3) is
 not active.

Iyengar & Swett Expires September 12, 2019 [Page 11]

Internet-Draft QUIC Loss Detection March 2019

6.2.1. Retry and Version Negotiation

 A Retry or Version Negotiation packet causes a client to send another
 Initial packet, effectively restarting the connection process and
 resetting congestion control and loss recovery state, including
 resetting any pending timers. Either packet indicates that the
 Initial was received but not processed. Neither packet can be
 treated as an acknowledgment for the Initial.

 The client MAY however compute an RTT estimate to the server as the
 time period from when the first Initial was sent to when a Retry or a
 Version Negotiation packet is received. The client MAY use this
 value to seed the RTT estimator for a subsequent connection attempt
 to the server.

6.2.2. Discarding Keys and Packet State

 When packet protection keys are discarded (see Section 4.9 of
 [QUIC-TLS]), all packets that were sent with those keys can no longer
 be acknowledged because their acknowledgements cannot be processed
 anymore. The sender MUST discard all recovery state associated with
 those packets and MUST remove them from the count of bytes in flight.

 Endpoints stop sending and receiving Initial packets once they start
 exchanging Handshake packets (see Section 17.2.2.1 of
 [QUIC-TRANSPORT]). At this point, recovery state for all in-flight
 Initial packets is discarded.

 When 0-RTT is rejected, recovery state for all in-flight 0-RTT
 packets is discarded.

 If a server accepts 0-RTT, but does not buffer 0-RTT packets that
 arrive before Initial packets, early 0-RTT packets will be declared
 lost, but that is expected to be infrequent.

 It is expected that keys are discarded after packets encrypted with
 them would be acknowledged or declared lost. Initial secrets however
 might be destroyed sooner, as soon as handshake keys are available
 (see Section 4.10 of [QUIC-TLS]).

6.3. Probe Timeout

 A Probe Timeout (PTO) triggers a probe packet when ack-eliciting data
 is in flight but an acknowledgement is not received within the
 expected period of time. A PTO enables a connection to recover from
 loss of tail packets or acks. The PTO algorithm used in QUIC
 implements the reliability functions of Tail Loss Probe [TLP] [RACK],
 RTO [RFC5681] and F-RTO algorithms for TCP [RFC5682], and the timeout

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682

Iyengar & Swett Expires September 12, 2019 [Page 12]

Internet-Draft QUIC Loss Detection March 2019

 computation is based on TCP's retransmission timeout period
 [RFC6298].

6.3.1. Computing PTO

 When an ack-eliciting packet is transmitted, the sender schedules a
 timer for the PTO period as follows:

 PTO = smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay

 kGranularity, smoothed_rtt, rttvar, and max_ack_delay are defined in
Appendix A.2 and Appendix A.3.

 The PTO period is the amount of time that a sender ought to wait for
 an acknowledgement of a sent packet. This time period includes the
 estimated network roundtrip-time (smoothed_rtt), the variance in the
 estimate (4*rttvar), and max_ack_delay, to account for the maximum
 time by which a receiver might delay sending an acknowledgement.

 The PTO value MUST be set to at least kGranularity, to avoid the
 timer expiring immediately.

 When a PTO timer expires, the sender probes the network as described
 in the next section. The PTO period MUST be set to twice its current
 value. This exponential reduction in the sender's rate is important
 because the PTOs might be caused by loss of packets or
 acknowledgements due to severe congestion.

 A sender computes its PTO timer every time an ack-eliciting packet is
 sent. A sender might choose to optimize this by setting the timer
 fewer times if it knows that more ack-eliciting packets will be sent
 within a short period of time.

6.3.2. Sending Probe Packets

 When a PTO timer expires, the sender MUST send one ack-eliciting
 packet as a probe. A sender MAY send up to two ack-eliciting
 packets, to avoid an expensive consecutive PTO expiration due to a
 single packet loss.

 Consecutive PTO periods increase exponentially, and as a result,
 connection recovery latency increases exponentially as packets
 continue to be dropped in the network. Sending two packets on PTO
 expiration increases resilience to packet drops, thus reducing the
 probability of consecutive PTO events.

 Probe packets sent on a PTO MUST be ack-eliciting. A probe packet
 SHOULD carry new data when possible. A probe packet MAY carry

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires September 12, 2019 [Page 13]

Internet-Draft QUIC Loss Detection March 2019

 retransmitted unacknowledged data when new data is unavailable, when
 flow control does not permit new data to be sent, or to
 opportunistically reduce loss recovery delay. Implementations MAY
 use alternate strategies for determining the content of probe
 packets, including sending new or retransmitted data based on the
 application's priorities.

 When the PTO timer expires multiple times and new data cannot be
 sent, implementations must choose between sending the same payload
 every time or sending different payloads. Sending the same payload
 may be simpler and ensures the highest priority frames arrive first.
 Sending different payloads each time reduces the chances of spurious
 retransmission.

 When a PTO timer expires, new or previously-sent data may not be
 available to send and packets may still be in flight. A sender can
 be blocked from sending new data in the future if packets are left in
 flight. Under these conditions, a sender SHOULD mark any packets
 still in flight as lost. If a sender wishes to establish delivery of
 packets still in flight, it MAY send an ack-eliciting packet and re-
 arm the PTO timer instead.

6.3.3. Loss Detection

 Delivery or loss of packets in flight is established when an ACK
 frame is received that newly acknowledges one or more packets.

 A PTO timer expiration event does not indicate packet loss and MUST
 NOT cause prior unacknowledged packets to be marked as lost. When an
 acknowledgement is received that newly acknowledges packets, loss
 detection proceeds as dictated by packet and time threshold
 mechanisms, see Section 6.1.

6.4. Discussion

 The majority of constants were derived from best common practices
 among widely deployed TCP implementations on the internet.
 Exceptions follow.

 A shorter delayed ack time of 25ms was chosen because longer delayed
 acks can delay loss recovery and for the small number of connections
 where less than packet per 25ms is delivered, acking every packet is
 beneficial to congestion control and loss recovery.

 The default initial RTT of 100ms was chosen because it is slightly
 higher than both the median and mean min_rtt typically observed on
 the public internet.

Iyengar & Swett Expires September 12, 2019 [Page 14]

Internet-Draft QUIC Loss Detection March 2019

7. Congestion Control

 QUIC's congestion control is based on TCP NewReno [RFC6582]. NewReno
 is a congestion window based congestion control. QUIC specifies the
 congestion window in bytes rather than packets due to finer control
 and the ease of appropriate byte counting [RFC3465].

 QUIC hosts MUST NOT send packets if they would increase
 bytes_in_flight (defined in Appendix B.2) beyond the available
 congestion window, unless the packet is a probe packet sent after a
 PTO timer expires, as described in Section 6.3.

 Implementations MAY use other congestion control algorithms, such as
 Cubic [RFC8312], and endpoints MAY use different algorithms from one
 another. The signals QUIC provides for congestion control are
 generic and are designed to support different algorithms.

7.1. Explicit Congestion Notification

 If a path has been verified to support ECN, QUIC treats a Congestion
 Experienced codepoint in the IP header as a signal of congestion.
 This document specifies an endpoint's response when its peer receives
 packets with the Congestion Experienced codepoint. As discussed in
 [RFC8311], endpoints are permitted to experiment with other response
 functions.

7.2. Slow Start

 QUIC begins every connection in slow start and exits slow start upon
 loss or upon increase in the ECN-CE counter. QUIC re-enters slow
 start anytime the congestion window is less than ssthresh, which
 typically only occurs after an PTO. While in slow start, QUIC
 increases the congestion window by the number of bytes acknowledged
 when each acknowledgment is processed.

7.3. Congestion Avoidance

 Slow start exits to congestion avoidance. Congestion avoidance in
 NewReno uses an additive increase multiplicative decrease (AIMD)
 approach that increases the congestion window by one maximum packet
 size per congestion window acknowledged. When a loss is detected,
 NewReno halves the congestion window and sets the slow start
 threshold to the new congestion window.

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc8311

Iyengar & Swett Expires September 12, 2019 [Page 15]

Internet-Draft QUIC Loss Detection March 2019

7.4. Recovery Period

 Recovery is a period of time beginning with detection of a lost
 packet or an increase in the ECN-CE counter. Because QUIC does not
 retransmit packets, it defines the end of recovery as a packet sent
 after the start of recovery being acknowledged. This is slightly
 different from TCP's definition of recovery, which ends when the lost
 packet that started recovery is acknowledged.

 The recovery period limits congestion window reduction to once per
 round trip. During recovery, the congestion window remains unchanged
 irrespective of new losses or increases in the ECN-CE counter.

7.5. Ignoring Loss of Undecryptable Packets

 During the handshake, some packet protection keys might not be
 available when a packet arrives. In particular, Handshake and 0-RTT
 packets cannot be processed until the Initial packets arrive, and
 1-RTT packets cannot be processed until the handshake completes.
 Endpoints MAY ignore the loss of Handshake, 0-RTT, and 1-RTT packets
 that might arrive before the peer has packet protection keys to
 process those packets.

7.6. Probe Timeout

 Probe packets MUST NOT be blocked by the congestion controller. A
 sender MUST however count these packets as being additionally in
 flight, since these packets add network load without establishing
 packet loss. Note that sending probe packets might cause the
 sender's bytes in flight to exceed the congestion window until an
 acknowledgement is received that establishes loss or delivery of
 packets.

7.7. Persistent Congestion

 When an ACK frame is received that establishes loss of all in-flight
 packets sent over a long enough period of time, the network is
 considered to be experiencing persistent congestion. Commonly, this
 can be established by consecutive PTOs, but since the PTO timer is
 reset when a new ack-eliciting packet is sent, an explicit duration
 must be used to account for those cases where PTOs do not occur or
 are substantially delayed. This duration is the equivalent of
 kPersistentCongestionThreshold consecutive PTOs, and is computed as
 follows: ~~~ (smoothed_rtt + 4 * rttvar + max_ack_delay) * ((2 ^
 kPersistentCongestionThreshold) - 1) ~~~

 For example, assume:

Iyengar & Swett Expires September 12, 2019 [Page 16]

Internet-Draft QUIC Loss Detection March 2019

 smoothed_rtt = 1 rttvar = 0 max_ack_delay = 0
 kPersistentCongestionThreshold = 2

 If an eck-eliciting packet is sent at time = 0, the following
 scenario would illustrate persistent congestion:

 +-----+------------------------+
 | t=0 | Send Pkt #1 (App Data) |
 +-----+------------------------+
 | t=1 | Send Pkt #2 (PTO 1) |
 | | |
 | t=3 | Send Pkt #3 (PTO 2) |
 | | |
 | t=7 | Send Pkt #4 (PTO 3) |
 | | |
 | t=8 | Recv ACK of Pkt #4 |
 +-----+------------------------+

 The first three packets are determined to be lost when the ACK of
 packet 4 is received at t=8. The congestion period is calculated as
 the time between the oldest and newest lost packets: (3 - 0) = 3.
 The duration for persistent congestion is equal to: (1 * ((2 ^
 kPersistentCongestionThreshold) - 1)) = 3. Because the threshold was
 reached and because none of the packets between the oldest and the
 newest packets are acknowledged, the network is considered to have
 experienced persistent congestion.

 When persistent congestion is established, the sender's congestion
 window MUST be reduced to the minimum congestion window
 (kMinimumWindow). This response of collapsing the congestion window
 on persistent congestion is functionally similar to a sender's
 response on a Retransmission Timeout (RTO) in TCP [RFC5681] after
 Tail Loss Probes (TLP) [TLP].

7.8. Pacing

 This document does not specify a pacer, but it is RECOMMENDED that a
 sender pace sending of all in-flight packets based on input from the
 congestion controller. For example, a pacer might distribute the
 congestion window over the SRTT when used with a window-based
 controller, and a pacer might use the rate estimate of a rate-based
 controller.

 An implementation should take care to architect its congestion
 controller to work well with a pacer. For instance, a pacer might
 wrap the congestion controller and control the availability of the
 congestion window, or a pacer might pace out packets handed to it by
 the congestion controller. Timely delivery of ACK frames is

https://datatracker.ietf.org/doc/html/rfc5681

Iyengar & Swett Expires September 12, 2019 [Page 17]

Internet-Draft QUIC Loss Detection March 2019

 important for efficient loss recovery. Packets containing only ACK
 frames should therefore not be paced, to avoid delaying their
 delivery to the peer.

 As an example of a well-known and publicly available implementation
 of a flow pacer, implementers are referred to the Fair Queue packet
 scheduler (fq qdisc) in Linux (3.11 onwards).

7.9. Sending data after an idle period

 A sender becomes idle if it ceases to send data and has no bytes in
 flight. A sender's congestion window MUST NOT increase while it is
 idle.

 When sending data after becoming idle, a sender MUST reset its
 congestion window to the initial congestion window (see Section 4.1
 of [RFC5681]), unless it paces the sending of packets. A sender MAY
 retain its congestion window if it paces the sending of any packets
 in excess of the initial congestion window.

 A sender MAY implement alternate mechanisms to update its congestion
 window after idle periods, such as those proposed for TCP in
 [RFC7661].

7.10. Application Limited Sending

 The congestion window should not be increased in slow start or
 congestion avoidance when it is not fully utilized. The congestion
 window could be under-utilized due to insufficient application data
 or flow control credit.

 A sender that paces packets (see Section 7.8) might delay sending
 packets and not fully utilize the congestion window due to this
 delay. A sender should not consider itself application limited if it
 would have fully utilized the congestion window without pacing delay.

8. Security Considerations

8.1. Congestion Signals

 Congestion control fundamentally involves the consumption of signals
 - both loss and ECN codepoints - from unauthenticated entities. On-
 path attackers can spoof or alter these signals. An attacker can
 cause endpoints to reduce their sending rate by dropping packets, or
 alter send rate by changing ECN codepoints.

https://datatracker.ietf.org/doc/html/rfc5681#section-4.1
https://datatracker.ietf.org/doc/html/rfc5681#section-4.1
https://datatracker.ietf.org/doc/html/rfc7661

Iyengar & Swett Expires September 12, 2019 [Page 18]

Internet-Draft QUIC Loss Detection March 2019

8.2. Traffic Analysis

 Packets that carry only ACK frames can be heuristically identified by
 observing packet size. Acknowledgement patterns may expose
 information about link characteristics or application behavior.
 Endpoints can use PADDING frames or bundle acknowledgments with other
 frames to reduce leaked information.

8.3. Misreporting ECN Markings

 A receiver can misreport ECN markings to alter the congestion
 response of a sender. Suppressing reports of ECN-CE markings could
 cause a sender to increase their send rate. This increase could
 result in congestion and loss.

 A sender MAY attempt to detect suppression of reports by marking
 occasional packets that they send with ECN-CE. If a packet marked
 with ECN-CE is not reported as having been marked when the packet is
 acknowledged, the sender SHOULD then disable ECN for that path.

 Reporting additional ECN-CE markings will cause a sender to reduce
 their sending rate, which is similar in effect to advertising reduced
 connection flow control limits and so no advantage is gained by doing
 so.

 Endpoints choose the congestion controller that they use. Though
 congestion controllers generally treat reports of ECN-CE markings as
 equivalent to loss [RFC8311], the exact response for each controller
 could be different. Failure to correctly respond to information
 about ECN markings is therefore difficult to detect.

9. IANA Considerations

 This document has no IANA actions. Yet.

10. References

10.1. Normative References

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", draft-ietf-quic-tls-19 (work in progress), March
 2019.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-19 (work in progress), March 2019.

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-19
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-19
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-19

Iyengar & Swett Expires September 12, 2019 [Page 19]

Internet-Draft QUIC Loss Detection March 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

10.2. Informative References

 [FACK] Mathis, M. and J. Mahdavi, "Forward Acknowledgement:
 Refining TCP Congestion Control", ACM SIGCOMM , August
 1996.

 [RACK] Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "RACK:
 a time-based fast loss detection algorithm for TCP",

draft-ietf-tcpm-rack-04 (work in progress), July 2018.

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, DOI 10.17487/RFC4653, August 2006,
 <https://www.rfc-editor.org/info/rfc4653>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <https://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <https://www.rfc-editor.org/info/rfc5827>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-04
https://datatracker.ietf.org/doc/html/rfc3465
https://www.rfc-editor.org/info/rfc3465
https://datatracker.ietf.org/doc/html/rfc4653
https://www.rfc-editor.org/info/rfc4653
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://www.rfc-editor.org/info/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://www.rfc-editor.org/info/rfc5827

Iyengar & Swett Expires September 12, 2019 [Page 20]

Internet-Draft QUIC Loss Detection March 2019

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <https://www.rfc-editor.org/info/rfc6582>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC7661] Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
 TCP to Support Rate-Limited Traffic", RFC 7661,
 DOI 10.17487/RFC7661, October 2015,
 <https://www.rfc-editor.org/info/rfc7661>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), February 2013.

10.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-recovery

https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6582
https://www.rfc-editor.org/info/rfc6582
https://datatracker.ietf.org/doc/html/rfc6675
https://www.rfc-editor.org/info/rfc6675
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc7661
https://www.rfc-editor.org/info/rfc7661
https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery

Iyengar & Swett Expires September 12, 2019 [Page 21]

Internet-Draft QUIC Loss Detection March 2019

Appendix A. Loss Recovery Pseudocode

 We now describe an example implementation of the loss detection
 mechanisms described in Section 6.

A.1. Tracking Sent Packets

 To correctly implement congestion control, a QUIC sender tracks every
 ack-eliciting packet until the packet is acknowledged or lost. It is
 expected that implementations will be able to access this information
 by packet number and crypto context and store the per-packet fields
 (Appendix A.1.1) for loss recovery and congestion control.

 After a packet is declared lost, it SHOULD be tracked for an amount
 of time comparable to the maximum expected packet reordering, such as
 1 RTT. This allows for detection of spurious retransmissions.

 Sent packets are tracked for each packet number space, and ACK
 processing only applies to a single space.

A.1.1. Sent Packet Fields

 packet_number: The packet number of the sent packet.

 ack_eliciting: A boolean that indicates whether a packet is ack-
 eliciting. If true, it is expected that an acknowledgement will
 be received, though the peer could delay sending the ACK frame
 containing it by up to the MaxAckDelay.

 in_flight: A boolean that indicates whether the packet counts
 towards bytes in flight.

 is_crypto_packet: A boolean that indicates whether the packet
 contains cryptographic handshake messages critical to the
 completion of the QUIC handshake. In this version of QUIC, this
 includes any packet with the long header that includes a CRYPTO
 frame.

 sent_bytes: The number of bytes sent in the packet, not including
 UDP or IP overhead, but including QUIC framing overhead.

 time_sent: The time the packet was sent.

A.2. Constants of interest

 Constants used in loss recovery are based on a combination of RFCs,
 papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

Iyengar & Swett Expires September 12, 2019 [Page 22]

Internet-Draft QUIC Loss Detection March 2019

 kPacketThreshold: Maximum reordering in packets before packet
 threshold loss detection considers a packet lost. The RECOMMENDED
 value is 3.

 kTimeThreshold: Maximum reordering in time before time threshold
 loss detection considers a packet lost. Specified as an RTT
 multiplier. The RECOMMENDED value is 9/8.

 kGranularity: Timer granularity. This is a system-dependent value.
 However, implementations SHOULD use a value no smaller than 1ms.

 kInitialRtt: The RTT used before an RTT sample is taken. The
 RECOMMENDED value is 100ms.

 kPacketNumberSpace: An enum to enumerate the three packet number
 spaces. ~~~ enum kPacketNumberSpace { Initial, Handshake,
 ApplicationData, } ~~~

A.3. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 loss_detection_timer: Multi-modal timer used for loss detection.

 crypto_count: The number of times all unacknowledged CRYPTO data has
 been retransmitted without receiving an ack.

 pto_count: The number of times a PTO has been sent without receiving
 an ack.

 time_of_last_sent_ack_eliciting_packet: The time the most recent
 ack-eliciting packet was sent.

 time_of_last_sent_crypto_packet: The time the most recent crypto
 packet was sent.

 largest_acked_packet[kPacketNumberSpace]: The largest packet number
 acknowledged in the packet number space so far.

 latest_rtt: The most recent RTT measurement made when receiving an
 ack for a previously unacked packet.

 smoothed_rtt: The smoothed RTT of the connection, computed as
 described in [RFC6298]

 rttvar: The RTT variance, computed as described in [RFC6298]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires September 12, 2019 [Page 23]

Internet-Draft QUIC Loss Detection March 2019

 min_rtt: The minimum RTT seen in the connection, ignoring ack delay.

 max_ack_delay: The maximum amount of time by which the receiver
 intends to delay acknowledgments, in milliseconds. The actual
 ack_delay in a received ACK frame may be larger due to late
 timers, reordering, or lost ACKs.

 loss_time[kPacketNumberSpace]: The time at which the next packet in
 that packet number space will be considered lost based on
 exceeding the reordering window in time.

 sent_packets[kPacketNumberSpace]: An association of packet numbers
 in a packet number space to information about them. Described in
 detail above in Appendix A.1.

A.4. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

 loss_detection_timer.reset()
 crypto_count = 0
 pto_count = 0
 smoothed_rtt = 0
 rttvar = 0
 min_rtt = infinite
 time_of_last_sent_ack_eliciting_packet = 0
 time_of_last_sent_crypto_packet = 0
 for pn_space in [Initial, Handshake, ApplicatonData]:
 largest_acked_packet[pn_space] = 0
 loss_time[pn_space] = 0

A.5. On Sending a Packet

 After a packet is sent, information about the packet is stored. The
 parameters to OnPacketSent are described in detail above in

Appendix A.1.1.

 Pseudocode for OnPacketSent follows:

Iyengar & Swett Expires September 12, 2019 [Page 24]

Internet-Draft QUIC Loss Detection March 2019

 OnPacketSent(packet_number, pn_space, ack_eliciting,
 in_flight, is_crypto_packet, sent_bytes):
 sent_packets[pn_space][packet_number].packet_number =
 packet_number
 sent_packets[pn_space][packet_number].time_sent = now
 sent_packets[pn_space][packet_number].ack_eliciting =
 ack_eliciting
 sent_packets[pn_space][packet_number].in_flight = in_flight
 if (in_flight):
 if (is_crypto_packet):
 time_of_last_sent_crypto_packet = now
 if (ack_eliciting):
 time_of_last_sent_ack_eliciting_packet = now
 OnPacketSentCC(sent_bytes)
 sent_packets[pn_space][packet_number].size = sent_bytes
 SetLossDetectionTimer()

A.6. On Receiving an Acknowledgment

 When an ACK frame is received, it may newly acknowledge any number of
 packets.

 Pseudocode for OnAckReceived and UpdateRtt follow:

Iyengar & Swett Expires September 12, 2019 [Page 25]

Internet-Draft QUIC Loss Detection March 2019

 OnAckReceived(ack, pn_space):
 largest_acked_packet[pn_space] =
 max(largest_acked_packet[pn_space], ack.largest_acked)

 // If the largest acknowledged is newly acked and
 // ack-eliciting, update the RTT.
 if (sent_packets[pn_space][ack.largest_acked] &&
 sent_packets[pn_space][ack.largest_acked].ack_eliciting):
 latest_rtt =
 now - sent_packets[pn_space][ack.largest_acked].time_sent
 UpdateRtt(latest_rtt, ack.ack_delay)

 // Process ECN information if present.
 if (ACK frame contains ECN information):
 ProcessECN(ack)

 // Find all newly acked packets in this ACK frame
 newly_acked_packets = DetermineNewlyAckedPackets(ack, pn_space)
 if (newly_acked_packets.empty()):
 return

 for acked_packet in newly_acked_packets:
 OnPacketAcked(acked_packet.packet_number, pn_space)

 DetectLostPackets(pn_space)

 crypto_count = 0
 pto_count = 0

 SetLossDetectionTimer()

 UpdateRtt(latest_rtt, ack_delay):
 // min_rtt ignores ack delay.
 min_rtt = min(min_rtt, latest_rtt)
 // Limit ack_delay by max_ack_delay
 ack_delay = min(ack_delay, max_ack_delay)
 // Adjust for ack delay if it's plausible.
 if (latest_rtt - min_rtt > ack_delay):
 latest_rtt -= ack_delay
 // Based on {{RFC6298}}.
 if (smoothed_rtt == 0):
 smoothed_rtt = latest_rtt
 rttvar = latest_rtt / 2
 else:
 rttvar_sample = abs(smoothed_rtt - latest_rtt)
 rttvar = 3/4 * rttvar + 1/4 * rttvar_sample
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * latest_rtt

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires September 12, 2019 [Page 26]

Internet-Draft QUIC Loss Detection March 2019

A.7. On Packet Acknowledgment

 When a packet is acknowledged for the first time, the following
 OnPacketAcked function is called. Note that a single ACK frame may
 newly acknowledge several packets. OnPacketAcked must be called once
 for each of these newly acknowledged packets.

 OnPacketAcked takes two parameters: acked_packet, which is the struct
 detailed in Appendix A.1.1, and the packet number space that this ACK
 frame was sent for.

 Pseudocode for OnPacketAcked follows:

 OnPacketAcked(acked_packet, pn_space):
 if (acked_packet.ack_eliciting):
 OnPacketAckedCC(acked_packet)
 sent_packets[pn_space].remove(acked_packet.packet_number)

A.8. Setting the Loss Detection Timer

 QUIC loss detection uses a single timer for all timeout loss
 detection. The duration of the timer is based on the timer's mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionTimer defined below shows how the single
 timer is set.

 This algorithm may result in the timer being set in the past,
 particularly if timers wake up late. Timers set in the past SHOULD
 fire immediately.

 Pseudocode for SetLossDetectionTimer follows:

Iyengar & Swett Expires September 12, 2019 [Page 27]

Internet-Draft QUIC Loss Detection March 2019

 // Returns the earliest loss_time and the packet number
 // space it's from. Returns 0 if all times are 0.
 GetEarliestLossTime():
 time = loss_time[Initial]
 space = Initial
 for pn_space in [Handshake, ApplicatonData]:
 if loss_time[pn_space] != 0 &&
 (time == 0 || loss_time[pn_space] < time):
 time = loss_time[pn_space];
 space = pn_space
 return time, space

 SetLossDetectionTimer():
 // Don't arm timer if there are no ack-eliciting packets
 // in flight.
 if (no ack-eliciting packets in flight):
 loss_detection_timer.cancel()
 return

 loss_time, _ = GetEarliestLossTime()
 if (loss_time != 0):
 // Time threshold loss detection.
 loss_detection_timer.update(loss_time)
 return

 if (crypto packets are in flight):
 // Crypto retransmission timer.
 if (smoothed_rtt == 0):
 timeout = 2 * kInitialRtt
 else:
 timeout = 2 * smoothed_rtt
 timeout = max(timeout, kGranularity)
 timeout = timeout * (2 ^ crypto_count)
 loss_detection_timer.update(
 time_of_last_sent_crypto_packet + timeout)
 return

 // Calculate PTO duration
 timeout =
 smoothed_rtt + max(4 * rttvar, kGranularity) + max_ack_delay
 timeout = timeout * (2 ^ pto_count)

 loss_detection_timer.update(
 time_of_last_sent_ack_eliciting_packet + timeout)

Iyengar & Swett Expires September 12, 2019 [Page 28]

Internet-Draft QUIC Loss Detection March 2019

A.9. On Timeout

 When the loss detection timer expires, the timer's mode determines
 the action to be performed.

 Pseudocode for OnLossDetectionTimeout follows:

 OnLossDetectionTimeout():
 loss_time, pn_space = GetEarliestLossTime()
 if (loss_time != 0):
 // Time threshold loss Detection
 DetectLostPackets(pn_space)
 // Retransmit crypto data if no packets were lost
 // and there are still crypto packets in flight.
 else if (crypto packets are in flight):
 // Crypto retransmission timeout.
 RetransmitUnackedCryptoData()
 crypto_count++
 else:
 // PTO
 SendOneOrTwoPackets()
 pto_count++

 SetLossDetectionTimer()

A.10. Detecting Lost Packets

 DetectLostPackets is called every time an ACK is received and
 operates on the sent_packets for that packet number space. If the
 loss detection timer expires and the loss_time is set, the previous
 largest acknowledged packet is supplied.

 Pseudocode for DetectLostPackets follows:

Iyengar & Swett Expires September 12, 2019 [Page 29]

Internet-Draft QUIC Loss Detection March 2019

 DetectLostPackets(pn_space):
 loss_time[pn_space] = 0
 lost_packets = {}
 loss_delay = kTimeThreshold * max(latest_rtt, smoothed_rtt)

 // Packets sent before this time are deemed lost.
 lost_send_time = now() - loss_delay

 // Packets with packet numbers before this are deemed lost.
 lost_pn = largest_acked_packet[pn_space] - kPacketThreshold

 foreach unacked in sent_packets:
 if (unacked.packet_number > largest_acked_packet[pn_space]):
 continue

 // Mark packet as lost, or set time when it should be marked.
 if (unacked.time_sent <= lost_send_time ||
 unacked.packet_number <= lost_pn):
 sent_packets.remove(unacked.packet_number)
 if (unacked.in_flight):
 lost_packets.insert(unacked)
 else:
 if (loss_time[pn_space] == 0):
 loss_time[pn_space] = unacked.time_sent + loss_delay
 else:
 loss_time[pn_space] = min(loss_time[pn_space],
 unacked.time_sent + loss_delay)

 // Inform the congestion controller of lost packets and
 // let it decide whether to retransmit immediately.
 if (!lost_packets.empty()):
 OnPacketsLost(lost_packets)

Appendix B. Congestion Control Pseudocode

 We now describe an example implementation of the congestion
 controller described in Section 7.

B.1. Constants of interest

 Constants used in congestion control are based on a combination of
 RFCs, papers, and common practice. Some may need to be changed or
 negotiated in order to better suit a variety of environments.

 kMaxDatagramSize: The sender's maximum payload size. Does not
 include UDP or IP overhead. The max packet size is used for
 calculating initial and minimum congestion windows. The
 RECOMMENDED value is 1200 bytes.

Iyengar & Swett Expires September 12, 2019 [Page 30]

Internet-Draft QUIC Loss Detection March 2019

 kInitialWindow: Default limit on the initial amount of data in
 flight, in bytes. Taken from [RFC6928], but increased slightly to
 account for the smaller 8 byte overhead of UDP vs 20 bytes for
 TCP. The RECOMMENDED value is the minimum of 10 *
 kMaxDatagramSize and max(2* kMaxDatagramSize, 14720)).

 kMinimumWindow: Minimum congestion window in bytes. The RECOMMENDED
 value is 2 * kMaxDatagramSize.

 kLossReductionFactor: Reduction in congestion window when a new loss
 event is detected. The RECOMMENDED value is 0.5.

 kPersistentCongestionThreshold: Number of consecutive PTOs required
 for persistent congestion to be established. The rationale for
 this threshold is to enable a sender to use initial PTOs for
 aggressive probing, as TCP does with Tail Loss Probe (TLP) [TLP]
 [RACK], before establishing persistent congestion, as TCP does
 with a Retransmission Timeout (RTO) [RFC5681]. The RECOMMENDED
 value for kPersistentCongestionThreshold is 2, which is equivalent
 to having two TLPs before an RTO in TCP.

B.2. Variables of interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 ecn_ce_counter: The highest value reported for the ECN-CE counter by
 the peer in an ACK frame. This variable is used to detect
 increases in the reported ECN-CE counter.

 bytes_in_flight: The sum of the size in bytes of all sent packets
 that contain at least one ack-eliciting or PADDING frame, and have
 not been acked or declared lost. The size does not include IP or
 UDP overhead, but does include the QUIC header and AEAD overhead.
 Packets only containing ACK frames do not count towards
 bytes_in_flight to ensure congestion control does not impede
 congestion feedback.

 congestion_window: Maximum number of bytes-in-flight that may be
 sent.

 recovery_start_time: The time when QUIC first detects a loss,
 causing it to enter recovery. When a packet sent after this time
 is acknowledged, QUIC exits recovery.

 ssthresh: Slow start threshold in bytes. When the congestion window
 is below ssthresh, the mode is slow start and the window grows by
 the number of bytes acknowledged.

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc5681

Iyengar & Swett Expires September 12, 2019 [Page 31]

Internet-Draft QUIC Loss Detection March 2019

B.3. Initialization

 At the beginning of the connection, initialize the congestion control
 variables as follows:

 congestion_window = kInitialWindow
 bytes_in_flight = 0
 recovery_start_time = 0
 ssthresh = infinite
 ecn_ce_counter = 0

B.4. On Packet Sent

 Whenever a packet is sent, and it contains non-ACK frames, the packet
 increases bytes_in_flight.

 OnPacketSentCC(bytes_sent):
 bytes_in_flight += bytes_sent

B.5. On Packet Acknowledgement

 Invoked from loss detection's OnPacketAcked and is supplied with the
 acked_packet from sent_packets.

 InRecovery(sent_time):
 return sent_time <= recovery_start_time

 OnPacketAckedCC(acked_packet):
 // Remove from bytes_in_flight.
 bytes_in_flight -= acked_packet.size
 if (InRecovery(acked_packet.time_sent)):
 // Do not increase congestion window in recovery period.
 return
 if (IsAppLimited())
 // Do not increase congestion_window if application
 // limited.
 return
 if (congestion_window < ssthresh):
 // Slow start.
 congestion_window += acked_packet.size
 else:
 // Congestion avoidance.
 congestion_window += kMaxDatagramSize * acked_packet.size
 / congestion_window

Iyengar & Swett Expires September 12, 2019 [Page 32]

Internet-Draft QUIC Loss Detection March 2019

B.6. On New Congestion Event

 Invoked from ProcessECN and OnPacketsLost when a new congestion event
 is detected. May start a new recovery period and reduces the
 congestion window.

 CongestionEvent(sent_time):
 // Start a new congestion event if the sent time is larger
 // than the start time of the previous recovery epoch.
 if (!InRecovery(sent_time)):
 recovery_start_time = Now()
 congestion_window *= kLossReductionFactor
 congestion_window = max(congestion_window, kMinimumWindow)
 ssthresh = congestion_window

B.7. Process ECN Information

 Invoked when an ACK frame with an ECN section is received from the
 peer.

 ProcessECN(ack):
 // If the ECN-CE counter reported by the peer has increased,
 // this could be a new congestion event.
 if (ack.ce_counter > ecn_ce_counter):
 ecn_ce_counter = ack.ce_counter
 // Start a new congestion event if the last acknowledged
 // packet was sent after the start of the previous
 // recovery epoch.
 CongestionEvent(sent_packets[ack.largest_acked].time_sent)

B.8. On Packets Lost

 Invoked by loss detection from DetectLostPackets when new packets are
 detected lost.

Iyengar & Swett Expires September 12, 2019 [Page 33]

Internet-Draft QUIC Loss Detection March 2019

 InPersistentCongestion(largest_lost_packet):
 pto = smoothed_rtt + max(4 * rttvar, kGranularity) +
 max_ack_delay
 congestion_period =
 pto * (2 ^ kPersistentCongestionThreshold - 1)
 // Determine if all packets in the window before the
 // newest lost packet, including the edges, are marked
 // lost
 return IsWindowLost(largest_lost_packet, congestion_period)

 OnPacketsLost(lost_packets):
 // Remove lost packets from bytes_in_flight.
 for (lost_packet : lost_packets):
 bytes_in_flight -= lost_packet.size
 largest_lost_packet = lost_packets.last()

 // Start a new congestion epoch if the last lost packet
 // is past the end of the previous recovery epoch.
 CongestionEvent(largest_lost_packet.time_sent)

 // Collapse congestion window if persistent congestion
 if (InPersistentCongestion(largest_lost_packet)):
 congestion_window = kMinimumWindow

Appendix C. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-recovery-18

 o Change IW byte limit to 14720 from 14600 (#2494)

 o Update PTO calculation to match RFC6298 (#2480, #2489, #2490)

 o Improve loss detection's description of multiple packet number
 spaces and pseudocode (#2485, #2451, #2417)

 o Declare persistent congestion even if non-probe packets are sent
 and don't make persistent congestion more aggressive than RTO
 verified was (#2365, #2244)

 o Move pseudocode to the appendices (#2408)

 o What to send on multiple PTOs (#2380)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-18
https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires September 12, 2019 [Page 34]

Internet-Draft QUIC Loss Detection March 2019

C.2. Since draft-ietf-quic-recovery-17

 o After Probe Timeout discard in-flight packets or send another
 (#2212, #1965)

 o Endpoints discard initial keys as soon as handshake keys are
 available (#1951, #2045)

 o 0-RTT state is discarded when 0-RTT is rejected (#2300)

 o Loss detection timer is cancelled when ack-eliciting frames are in
 flight (#2117, #2093)

 o Packets are declared lost if they are in flight (#2104)

 o After becoming idle, either pace packets or reset the congestion
 controller (#2138, 2187)

 o Process ECN counts before marking packets lost (#2142)

 o Mark packets lost before resetting crypto_count and pto_count
 (#2208, #2209)

 o Congestion and loss recovery state are discarded when keys are
 discarded (#2327)

C.3. Since draft-ietf-quic-recovery-16

 o Unify TLP and RTO into a single PTO; eliminate min RTO, min TLP
 and min crypto timeouts; eliminate timeout validation (#2114,
 #2166, #2168, #1017)

 o Redefine how congestion avoidance in terms of when the period
 starts (#1928, #1930)

 o Document what needs to be tracked for packets that are in flight
 (#765, #1724, #1939)

 o Integrate both time and packet thresholds into loss detection
 (#1969, #1212, #934, #1974)

 o Reduce congestion window after idle, unless pacing is used (#2007,
 #2023)

 o Disable RTT calculation for packets that don't elicit
 acknowledgment (#2060, #2078)

 o Limit ack_delay by max_ack_delay (#2060, #2099)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-16

Iyengar & Swett Expires September 12, 2019 [Page 35]

Internet-Draft QUIC Loss Detection March 2019

 o Initial keys are discarded once Handshake are avaialble (#1951,
 #2045)

 o Reorder ECN and loss detection in pseudocode (#2142)

 o Only cancel loss detection timer if ack-eliciting packets are in
 flight (#2093, #2117)

C.4. Since draft-ietf-quic-recovery-14

 o Used max_ack_delay from transport params (#1796, #1782)

 o Merge ACK and ACK_ECN (#1783)

C.5. Since draft-ietf-quic-recovery-13

 o Corrected the lack of ssthresh reduction in CongestionEvent
 pseudocode (#1598)

 o Considerations for ECN spoofing (#1426, #1626)

 o Clarifications for PADDING and congestion control (#837, #838,
 #1517, #1531, #1540)

 o Reduce early retransmission timer to RTT/8 (#945, #1581)

 o Packets are declared lost after an RTO is verified (#935, #1582)

C.6. Since draft-ietf-quic-recovery-12

 o Changes to manage separate packet number spaces and encryption
 levels (#1190, #1242, #1413, #1450)

 o Added ECN feedback mechanisms and handling; new ACK_ECN frame
 (#804, #805, #1372)

C.7. Since draft-ietf-quic-recovery-11

 No significant changes.

C.8. Since draft-ietf-quic-recovery-10

 o Improved text on ack generation (#1139, #1159)

 o Make references to TCP recovery mechanisms informational (#1195)

 o Define time_of_last_sent_handshake_packet (#1171)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10

Iyengar & Swett Expires September 12, 2019 [Page 36]

Internet-Draft QUIC Loss Detection March 2019

 o Added signal from TLS the data it includes needs to be sent in a
 Retry packet (#1061, #1199)

 o Minimum RTT (min_rtt) is initialized with an infinite value
 (#1169)

C.9. Since draft-ietf-quic-recovery-09

 No significant changes.

C.10. Since draft-ietf-quic-recovery-08

 o Clarified pacing and RTO (#967, #977)

C.11. Since draft-ietf-quic-recovery-07

 o Include Ack Delay in RTO(and TLP) computations (#981)

 o Ack Delay in SRTT computation (#961)

 o Default RTT and Slow Start (#590)

 o Many editorial fixes.

C.12. Since draft-ietf-quic-recovery-06

 No significant changes.

C.13. Since draft-ietf-quic-recovery-05

 o Add more congestion control text (#776)

C.14. Since draft-ietf-quic-recovery-04

 No significant changes.

C.15. Since draft-ietf-quic-recovery-03

 No significant changes.

C.16. Since draft-ietf-quic-recovery-02

 o Integrate F-RTO (#544, #409)

 o Add congestion control (#545, #395)

 o Require connection abort if a skipped packet was acknowledged
 (#415)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-02

Iyengar & Swett Expires September 12, 2019 [Page 37]

Internet-Draft QUIC Loss Detection March 2019

 o Simplify RTO calculations (#142, #417)

C.17. Since draft-ietf-quic-recovery-01

 o Overview added to loss detection

 o Changes initial default RTT to 100ms

 o Added time-based loss detection and fixes early retransmit

 o Clarified loss recovery for handshake packets

 o Fixed references and made TCP references informative

C.18. Since draft-ietf-quic-recovery-00

 o Improved description of constants and ACK behavior

C.19. Since draft-iyengar-quic-loss-recovery-01

 o Adopted as base for draft-ietf-quic-recovery

 o Updated authors/editors list

 o Added table of contents

Acknowledgments

Authors' Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

 Ian Swett (editor)
 Google

 Email: ianswett@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery

Iyengar & Swett Expires September 12, 2019 [Page 38]

