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Abstract

   This document describes loss detection and congestion control
   mechanisms for QUIC.

Note to Readers

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

   Working Group information can be found at https://github.com/quicwg
   [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-recovery [3].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 12, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   QUIC is a new multiplexed and secure transport atop UDP.  QUIC builds
   on decades of transport and security experience, and implements
   mechanisms that make it attractive as a modern general-purpose
   transport.  The QUIC protocol is described in [QUIC-TRANSPORT].

   QUIC implements the spirit of existing TCP loss recovery mechanisms,
   described in RFCs, various Internet-drafts, and also those prevalent
   in the Linux TCP implementation.  This document describes QUIC
   congestion control and loss recovery, and where applicable,
   attributes the TCP equivalent in RFCs, Internet-drafts, academic
   papers, and/or TCP implementations.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Definitions of terms that are used in this document:

   ACK-only:  Any packet containing only one or more ACK frame(s).

   In-flight:  Packets are considered in-flight when they have been sent
      and neither acknowledged nor declared lost, and they are not ACK-
      only.

   Ack-eliciting Frames:  All frames besides ACK or PADDING are
      considered ack-eliciting.

   Ack-eliciting Packets:  Packets that contain ack-eliciting frames
      elicit an ACK from the receiver within the maximum ack delay and
      are called ack-eliciting packets.

   Crypto Packets:  Packets containing CRYPTO data sent in Initial or
      Handshake packets.

   Out-of-order Packets:  Packets that do not increase the largest
      received packet number for its packet number space by exactly one.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-00
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
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      Packets arrive out of order when earlier packets are lost or
      delayed.

3.  Design of the QUIC Transmission Machinery

   All transmissions in QUIC are sent with a packet-level header, which
   indicates the encryption level and includes a packet sequence number
   (referred to below as a packet number).  The encryption level
   indicates the packet number space, as described in [QUIC-TRANSPORT].
   Packet numbers never repeat within a packet number space for the
   lifetime of a connection.  Packet numbers monotonically increase
   within a space, preventing ambiguity.

   This design obviates the need for disambiguating between
   transmissions and retransmissions and eliminates significant
   complexity from QUIC's interpretation of TCP loss detection
   mechanisms.

   QUIC packets can contain multiple frames of different types.  The
   recovery mechanisms ensure that data and frames that need reliable
   delivery are acknowledged or declared lost and sent in new packets as
   necessary.  The types of frames contained in a packet affect recovery
   and congestion control logic:

   o  All packets are acknowledged, though packets that contain no ack-
      eliciting frames are only acknowledged along with ack-eliciting
      packets.

   o  Long header packets that contain CRYPTO frames are critical to the
      performance of the QUIC handshake and use shorter timers for
      acknowledgement and retransmission.

   o  Packets that contain only ACK frames do not count toward
      congestion control limits and are not considered in-flight.

   o  PADDING frames cause packets to contribute toward bytes in flight
      without directly causing an acknowledgment to be sent.

3.1.  Relevant Differences Between QUIC and TCP

   Readers familiar with TCP's loss detection and congestion control
   will find algorithms here that parallel well-known TCP ones.
   Protocol differences between QUIC and TCP however contribute to
   algorithmic differences.  We briefly describe these protocol
   differences below.
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3.1.1.  Separate Packet Number Spaces

   QUIC uses separate packet number spaces for each encryption level,
   except 0-RTT and all generations of 1-RTT keys use the same packet
   number space.  Separate packet number spaces ensures acknowledgement
   of packets sent with one level of encryption will not cause spurious
   retransmission of packets sent with a different encryption level.
   Congestion control and round-trip time (RTT) measurement are unified
   across packet number spaces.

3.1.2.  Monotonically Increasing Packet Numbers

   TCP conflates transmission order at the sender with delivery order at
   the receiver, which results in retransmissions of the same data
   carrying the same sequence number, and consequently leads to
   "retransmission ambiguity".  QUIC separates the two: QUIC uses a
   packet number to indicate transmission order, and any application
   data is sent in one or more streams, with delivery order determined
   by stream offsets encoded within STREAM frames.

   QUIC's packet number is strictly increasing within a packet number
   space, and directly encodes transmission order.  A higher packet
   number signifies that the packet was sent later, and a lower packet
   number signifies that the packet was sent earlier.  When a packet
   containing ack-eliciting frames is detected lost, QUIC rebundles
   necessary frames in a new packet with a new packet number, removing
   ambiguity about which packet is acknowledged when an ACK is received.
   Consequently, more accurate RTT measurements can be made, spurious
   retransmissions are trivially detected, and mechanisms such as Fast
   Retransmit can be applied universally, based only on packet number.

   This design point significantly simplifies loss detection mechanisms
   for QUIC.  Most TCP mechanisms implicitly attempt to infer
   transmission ordering based on TCP sequence numbers - a non-trivial
   task, especially when TCP timestamps are not available.

3.1.3.  No Reneging

   QUIC ACKs contain information that is similar to TCP SACK, but QUIC
   does not allow any acked packet to be reneged, greatly simplifying
   implementations on both sides and reducing memory pressure on the
   sender.

3.1.4.  More ACK Ranges

   QUIC supports many ACK ranges, opposed to TCP's 3 SACK ranges.  In
   high loss environments, this speeds recovery, reduces spurious
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   retransmits, and ensures forward progress without relying on
   timeouts.

3.1.5.  Explicit Correction For Delayed ACKs

   QUIC ACKs explicitly encode the delay incurred at the receiver
   between when a packet is received and when the corresponding ACK is
   sent.  This allows the receiver of the ACK to adjust for receiver
   delays, specifically the delayed ack timer, when estimating the path
   RTT.  This mechanism also allows a receiver to measure and report the
   delay from when a packet was received by the OS kernel, which is
   useful in receivers which may incur delays such as context-switch
   latency before a userspace QUIC receiver processes a received packet.

4.  Generating Acknowledgements

   QUIC SHOULD delay sending acknowledgements in response to packets,
   but MUST NOT excessively delay acknowledgements of ack-eliciting
   packets.  Specifically, implementations MUST attempt to enforce a
   maximum ack delay to avoid causing the peer spurious timeouts.  The
   maximum ack delay is communicated in the "max_ack_delay" transport
   parameter and the default value is 25ms.

   An acknowledgement SHOULD be sent immediately upon receipt of a
   second ack-eliciting packet.  QUIC recovery algorithms do not assume
   the peer sends an ACK immediately when receiving a second ack-
   eliciting packet.

   In order to accelerate loss recovery and reduce timeouts, the
   receiver SHOULD send an immediate ACK after it receives an out-of-
   order packet.  It could send immediate ACKs for in-order packets for
   a period of time that SHOULD NOT exceed 1/8 RTT unless more out-of-
   order packets arrive.  If every packet arrives out-of- order, then an
   immediate ACK SHOULD be sent for every received packet.

   Similarly, packets marked with the ECN Congestion Experienced (CE)
   codepoint in the IP header SHOULD be acknowledged immediately, to
   reduce the peer's response time to congestion events.

   As an optimization, a receiver MAY process multiple packets before
   sending any ACK frames in response.  In this case the receiver can
   determine whether an immediate or delayed acknowledgement should be
   generated after processing incoming packets.
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4.1.  Crypto Handshake Data

   In order to quickly complete the handshake and avoid spurious
   retransmissions due to crypto retransmission timeouts, crypto packets
   SHOULD use a very short ack delay, such as the local timer
   granularity.  ACK frames MAY be sent immediately when the crypto
   stack indicates all data for that packet number space has been
   received.

4.2.  ACK Ranges

   When an ACK frame is sent, one or more ranges of acknowledged packets
   are included.  Including older packets reduces the chance of spurious
   retransmits caused by losing previously sent ACK frames, at the cost
   of larger ACK frames.

   ACK frames SHOULD always acknowledge the most recently received
   packets, and the more out-of-order the packets are, the more
   important it is to send an updated ACK frame quickly, to prevent the
   peer from declaring a packet as lost and spuriously retransmitting
   the frames it contains.

   Below is one recommended approach for determining what packets to
   include in an ACK frame.

4.3.  Receiver Tracking of ACK Frames

   When a packet containing an ACK frame is sent, the largest
   acknowledged in that frame may be saved.  When a packet containing an
   ACK frame is acknowledged, the receiver can stop acknowledging
   packets less than or equal to the largest acknowledged in the sent
   ACK frame.

   In cases without ACK frame loss, this algorithm allows for a minimum
   of 1 RTT of reordering.  In cases with ACK frame loss and reordering,
   this approach does not guarantee that every acknowledgement is seen
   by the sender before it is no longer included in the ACK frame.
   Packets could be received out of order and all subsequent ACK frames
   containing them could be lost.  In this case, the loss recovery
   algorithm may cause spurious retransmits, but the sender will
   continue making forward progress.

5.  Computing the RTT estimate

   Round-trip time (RTT) is calculated when an ACK frame arrives by
   computing the difference between the current time and the time the
   largest acked packet was sent.  An RTT sample MUST NOT be taken for a
   packet that is not newly acknowledged or not ack-eliciting.
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   When RTT is calculated, the ack delay field from the ACK frame SHOULD
   be limited to the max_ack_delay specified by the peer.  Limiting
   ack_delay to max_ack_delay ensures a peer specifying an extremely
   small max_ack_delay doesn't cause more spurious timeouts than a peer
   that correctly specifies max_ack_delay.  It SHOULD be subtracted from
   the RTT as long as the result is larger than the min_rtt.  If the
   result is smaller than the min_rtt, the RTT should be used, but the
   ack delay field should be ignored.

   A sender calculates both smoothed RTT (SRTT) and RTT variance
   (RTTVAR) similar to those specified in [RFC6298], see Appendix A.6.

   A sender takes an RTT sample when an ACK frame is received that
   acknowledges a larger packet number than before (see Appendix A.6).
   A sender will take multiple RTT samples per RTT when multiple such
   ACK frames are received within an RTT.  When multiple samples are
   generated within an RTT, the smoothed RTT and RTT variance could
   retain inadequate history, as suggested in [RFC6298].  Changing these
   computations is currently an open research question.

   min_rtt is the minimum RTT measured over the connection, prior to
   adjusting by ack delay.  Ignoring ack delay for min RTT prevents
   intentional or unintentional underestimation of min RTT, which in
   turn prevents underestimating smoothed RTT.

6.  Loss Detection

   QUIC senders use both ack information and timeouts to detect lost
   packets, and this section provides a description of these algorithms.

   If a packet is lost, the QUIC transport needs to recover from that
   loss, such as by retransmitting the data, sending an updated frame,
   or abandoning the frame.  For more information, see Section 13.2 of
   [QUIC-TRANSPORT].

6.1.  Acknowledgement-based Detection

   Acknowledgement-based loss detection implements the spirit of TCP's
   Fast Retransmit [RFC5681], Early Retransmit [RFC5827], FACK [FACK],
   SACK loss recovery [RFC6675], and RACK [RACK].  This section provides
   an overview of how these algorithms are implemented in QUIC.

   A packet is declared lost if it meets all the following conditions:

   o  The packet is unacknowledged, in-flight, and was sent prior to an
      acknowledged packet.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675


Iyengar & Swett        Expires September 12, 2019               [Page 9]



Internet-Draft             QUIC Loss Detection                March 2019

   o  Either its packet number is kPacketThreshold smaller than an
      acknowledged packet (Section 6.1.1), or it was sent long enough in
      the past (Section 6.1.2).

   The acknowledgement indicates that a packet sent later was delivered,
   while the packet and time thresholds provide some tolerance for
   packet reordering.

   Spuriously declaring packets as lost leads to unnecessary
   retransmissions and may result in degraded performance due to the
   actions of the congestion controller upon detecting loss.
   Implementations that detect spurious retransmissions and increase the
   reordering threshold in packets or time MAY choose to start with
   smaller initial reordering thresholds to minimize recovery latency.

6.1.1.  Packet Threshold

   The RECOMMENDED initial value for the packet reordering threshold
   (kPacketThreshold) is 3, based on best practices for TCP loss
   detection [RFC5681] [RFC6675].

   Some networks may exhibit higher degrees of reordering, causing a
   sender to detect spurious losses.  Implementers MAY use algorithms
   developed for TCP, such as TCP-NCR [RFC4653], to improve QUIC's
   reordering resilience.

6.1.2.  Time Threshold

   Once a later packet has been acknowledged, an endpoint SHOULD declare
   an earlier packet lost if it was sent a threshold amount of time in
   the past.  The time threshold is computed as kTimeThreshold *
   max(SRTT, latest_RTT).  If packets sent prior to the largest
   acknowledged packet cannot yet be declared lost, then a timer SHOULD
   be set for the remaining time.

   The RECOMMENDED time threshold (kTimeThreshold), expressed as a
   round-trip time multiplier, is 9/8.

   Using max(SRTT, latest_RTT) protects from the two following cases:

   o  the latest RTT sample is lower than the SRTT, perhaps due to
      reordering where the acknowledgement encountered a shorter path;

   o  the latest RTT sample is higher than the SRTT, perhaps due to a
      sustained increase in the actual RTT, but the smoothed SRTT has
      not yet caught up.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc4653
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   Implementations MAY experiment with absolute thresholds, thresholds
   from previous connections, adaptive thresholds, or including RTT
   variance.  Smaller thresholds reduce reordering resilience and
   increase spurious retransmissions, and larger thresholds increase
   loss detection delay.

6.2.  Crypto Retransmission Timeout

   Data in CRYPTO frames is critical to QUIC transport and crypto
   negotiation, so a more aggressive timeout is used to retransmit it.

   The initial crypto retransmission timeout SHOULD be set to twice the
   initial RTT.

   At the beginning, there are no prior RTT samples within a connection.
   Resumed connections over the same network SHOULD use the previous
   connection's final smoothed RTT value as the resumed connection's
   initial RTT.  If no previous RTT is available, or if the network
   changes, the initial RTT SHOULD be set to 100ms.  When an
   acknowledgement is received, a new RTT is computed and the timer
   SHOULD be set for twice the newly computed smoothed RTT.

   When a crypto packet is sent, the sender MUST set a timer for the
   crypto timeout period.  This timer MUST be updated when a new crypto
   packet is sent.  Upon timeout, the sender MUST retransmit all
   unacknowledged CRYPTO data if possible.

   Until the server has validated the client's address on the path, the
   amount of data it can send is limited, as specified in
   [QUIC-TRANSPORT].  If not all unacknowledged CRYPTO data can be sent,
   then all unacknowledged CRYPTO data sent in Initial packets should be
   retransmitted.  If no data can be sent, then no alarm should be armed
   until data has been received from the client.

   Because the server could be blocked until more packets are received,
   the client MUST start the crypto retransmission timer even if there
   is no unacknowledged CRYPTO data.  If the timer expires and the
   client has no CRYPTO data to retransmit and does not have Handshake
   keys, it SHOULD send an Initial packet in a UDP datagram of at least
   1200 bytes.  If the client has Handshake keys, it SHOULD send a
   Handshake packet.

   On each consecutive expiration of the crypto timer without receiving
   an acknowledgement for a new packet, the sender SHOULD double the
   crypto retransmission timeout and set a timer for this period.

   When crypto packets are in flight, the probe timer (Section 6.3) is
   not active.
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6.2.1.  Retry and Version Negotiation

   A Retry or Version Negotiation packet causes a client to send another
   Initial packet, effectively restarting the connection process and
   resetting congestion control and loss recovery state, including
   resetting any pending timers.  Either packet indicates that the
   Initial was received but not processed.  Neither packet can be
   treated as an acknowledgment for the Initial.

   The client MAY however compute an RTT estimate to the server as the
   time period from when the first Initial was sent to when a Retry or a
   Version Negotiation packet is received.  The client MAY use this
   value to seed the RTT estimator for a subsequent connection attempt
   to the server.

6.2.2.  Discarding Keys and Packet State

   When packet protection keys are discarded (see Section 4.9 of
   [QUIC-TLS]), all packets that were sent with those keys can no longer
   be acknowledged because their acknowledgements cannot be processed
   anymore.  The sender MUST discard all recovery state associated with
   those packets and MUST remove them from the count of bytes in flight.

   Endpoints stop sending and receiving Initial packets once they start
   exchanging Handshake packets (see Section 17.2.2.1 of
   [QUIC-TRANSPORT]).  At this point, recovery state for all in-flight
   Initial packets is discarded.

   When 0-RTT is rejected, recovery state for all in-flight 0-RTT
   packets is discarded.

   If a server accepts 0-RTT, but does not buffer 0-RTT packets that
   arrive before Initial packets, early 0-RTT packets will be declared
   lost, but that is expected to be infrequent.

   It is expected that keys are discarded after packets encrypted with
   them would be acknowledged or declared lost.  Initial secrets however
   might be destroyed sooner, as soon as handshake keys are available
   (see Section 4.10 of [QUIC-TLS]).

6.3.  Probe Timeout

   A Probe Timeout (PTO) triggers a probe packet when ack-eliciting data
   is in flight but an acknowledgement is not received within the
   expected period of time.  A PTO enables a connection to recover from
   loss of tail packets or acks.  The PTO algorithm used in QUIC
   implements the reliability functions of Tail Loss Probe [TLP] [RACK],
   RTO [RFC5681] and F-RTO algorithms for TCP [RFC5682], and the timeout

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
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   computation is based on TCP's retransmission timeout period
   [RFC6298].

6.3.1.  Computing PTO

   When an ack-eliciting packet is transmitted, the sender schedules a
   timer for the PTO period as follows:

   PTO = smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay

   kGranularity, smoothed_rtt, rttvar, and max_ack_delay are defined in
Appendix A.2 and Appendix A.3.

   The PTO period is the amount of time that a sender ought to wait for
   an acknowledgement of a sent packet.  This time period includes the
   estimated network roundtrip-time (smoothed_rtt), the variance in the
   estimate (4*rttvar), and max_ack_delay, to account for the maximum
   time by which a receiver might delay sending an acknowledgement.

   The PTO value MUST be set to at least kGranularity, to avoid the
   timer expiring immediately.

   When a PTO timer expires, the sender probes the network as described
   in the next section.  The PTO period MUST be set to twice its current
   value.  This exponential reduction in the sender's rate is important
   because the PTOs might be caused by loss of packets or
   acknowledgements due to severe congestion.

   A sender computes its PTO timer every time an ack-eliciting packet is
   sent.  A sender might choose to optimize this by setting the timer
   fewer times if it knows that more ack-eliciting packets will be sent
   within a short period of time.

6.3.2.  Sending Probe Packets

   When a PTO timer expires, the sender MUST send one ack-eliciting
   packet as a probe.  A sender MAY send up to two ack-eliciting
   packets, to avoid an expensive consecutive PTO expiration due to a
   single packet loss.

   Consecutive PTO periods increase exponentially, and as a result,
   connection recovery latency increases exponentially as packets
   continue to be dropped in the network.  Sending two packets on PTO
   expiration increases resilience to packet drops, thus reducing the
   probability of consecutive PTO events.

   Probe packets sent on a PTO MUST be ack-eliciting.  A probe packet
   SHOULD carry new data when possible.  A probe packet MAY carry

https://datatracker.ietf.org/doc/html/rfc6298


Iyengar & Swett        Expires September 12, 2019              [Page 13]



Internet-Draft             QUIC Loss Detection                March 2019

   retransmitted unacknowledged data when new data is unavailable, when
   flow control does not permit new data to be sent, or to
   opportunistically reduce loss recovery delay.  Implementations MAY
   use alternate strategies for determining the content of probe
   packets, including sending new or retransmitted data based on the
   application's priorities.

   When the PTO timer expires multiple times and new data cannot be
   sent, implementations must choose between sending the same payload
   every time or sending different payloads.  Sending the same payload
   may be simpler and ensures the highest priority frames arrive first.
   Sending different payloads each time reduces the chances of spurious
   retransmission.

   When a PTO timer expires, new or previously-sent data may not be
   available to send and packets may still be in flight.  A sender can
   be blocked from sending new data in the future if packets are left in
   flight.  Under these conditions, a sender SHOULD mark any packets
   still in flight as lost.  If a sender wishes to establish delivery of
   packets still in flight, it MAY send an ack-eliciting packet and re-
   arm the PTO timer instead.

6.3.3.  Loss Detection

   Delivery or loss of packets in flight is established when an ACK
   frame is received that newly acknowledges one or more packets.

   A PTO timer expiration event does not indicate packet loss and MUST
   NOT cause prior unacknowledged packets to be marked as lost.  When an
   acknowledgement is received that newly acknowledges packets, loss
   detection proceeds as dictated by packet and time threshold
   mechanisms, see Section 6.1.

6.4.  Discussion

   The majority of constants were derived from best common practices
   among widely deployed TCP implementations on the internet.
   Exceptions follow.

   A shorter delayed ack time of 25ms was chosen because longer delayed
   acks can delay loss recovery and for the small number of connections
   where less than packet per 25ms is delivered, acking every packet is
   beneficial to congestion control and loss recovery.

   The default initial RTT of 100ms was chosen because it is slightly
   higher than both the median and mean min_rtt typically observed on
   the public internet.
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7.  Congestion Control

   QUIC's congestion control is based on TCP NewReno [RFC6582].  NewReno
   is a congestion window based congestion control.  QUIC specifies the
   congestion window in bytes rather than packets due to finer control
   and the ease of appropriate byte counting [RFC3465].

   QUIC hosts MUST NOT send packets if they would increase
   bytes_in_flight (defined in Appendix B.2) beyond the available
   congestion window, unless the packet is a probe packet sent after a
   PTO timer expires, as described in Section 6.3.

   Implementations MAY use other congestion control algorithms, such as
   Cubic [RFC8312], and endpoints MAY use different algorithms from one
   another.  The signals QUIC provides for congestion control are
   generic and are designed to support different algorithms.

7.1.  Explicit Congestion Notification

   If a path has been verified to support ECN, QUIC treats a Congestion
   Experienced codepoint in the IP header as a signal of congestion.
   This document specifies an endpoint's response when its peer receives
   packets with the Congestion Experienced codepoint.  As discussed in
   [RFC8311], endpoints are permitted to experiment with other response
   functions.

7.2.  Slow Start

   QUIC begins every connection in slow start and exits slow start upon
   loss or upon increase in the ECN-CE counter.  QUIC re-enters slow
   start anytime the congestion window is less than ssthresh, which
   typically only occurs after an PTO.  While in slow start, QUIC
   increases the congestion window by the number of bytes acknowledged
   when each acknowledgment is processed.

7.3.  Congestion Avoidance

   Slow start exits to congestion avoidance.  Congestion avoidance in
   NewReno uses an additive increase multiplicative decrease (AIMD)
   approach that increases the congestion window by one maximum packet
   size per congestion window acknowledged.  When a loss is detected,
   NewReno halves the congestion window and sets the slow start
   threshold to the new congestion window.

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc8311
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7.4.  Recovery Period

   Recovery is a period of time beginning with detection of a lost
   packet or an increase in the ECN-CE counter.  Because QUIC does not
   retransmit packets, it defines the end of recovery as a packet sent
   after the start of recovery being acknowledged.  This is slightly
   different from TCP's definition of recovery, which ends when the lost
   packet that started recovery is acknowledged.

   The recovery period limits congestion window reduction to once per
   round trip.  During recovery, the congestion window remains unchanged
   irrespective of new losses or increases in the ECN-CE counter.

7.5.  Ignoring Loss of Undecryptable Packets

   During the handshake, some packet protection keys might not be
   available when a packet arrives.  In particular, Handshake and 0-RTT
   packets cannot be processed until the Initial packets arrive, and
   1-RTT packets cannot be processed until the handshake completes.
   Endpoints MAY ignore the loss of Handshake, 0-RTT, and 1-RTT packets
   that might arrive before the peer has packet protection keys to
   process those packets.

7.6.  Probe Timeout

   Probe packets MUST NOT be blocked by the congestion controller.  A
   sender MUST however count these packets as being additionally in
   flight, since these packets add network load without establishing
   packet loss.  Note that sending probe packets might cause the
   sender's bytes in flight to exceed the congestion window until an
   acknowledgement is received that establishes loss or delivery of
   packets.

7.7.  Persistent Congestion

   When an ACK frame is received that establishes loss of all in-flight
   packets sent over a long enough period of time, the network is
   considered to be experiencing persistent congestion.  Commonly, this
   can be established by consecutive PTOs, but since the PTO timer is
   reset when a new ack-eliciting packet is sent, an explicit duration
   must be used to account for those cases where PTOs do not occur or
   are substantially delayed.  This duration is the equivalent of
   kPersistentCongestionThreshold consecutive PTOs, and is computed as
   follows: ~~~ (smoothed_rtt + 4 * rttvar + max_ack_delay) * ((2 ^
   kPersistentCongestionThreshold) - 1) ~~~

   For example, assume:
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   smoothed_rtt = 1 rttvar = 0 max_ack_delay = 0
   kPersistentCongestionThreshold = 2

   If an eck-eliciting packet is sent at time = 0, the following
   scenario would illustrate persistent congestion:

                     +-----+------------------------+
                     | t=0 | Send Pkt #1 (App Data) |
                     +-----+------------------------+
                     | t=1 | Send Pkt #2 (PTO 1)    |
                     |     |                        |
                     | t=3 | Send Pkt #3 (PTO 2)    |
                     |     |                        |
                     | t=7 | Send Pkt #4 (PTO 3)    |
                     |     |                        |
                     | t=8 | Recv ACK of Pkt #4     |
                     +-----+------------------------+

   The first three packets are determined to be lost when the ACK of
   packet 4 is received at t=8.  The congestion period is calculated as
   the time between the oldest and newest lost packets: (3 - 0) = 3.
   The duration for persistent congestion is equal to: (1 * ((2 ^
   kPersistentCongestionThreshold) - 1)) = 3.  Because the threshold was
   reached and because none of the packets between the oldest and the
   newest packets are acknowledged, the network is considered to have
   experienced persistent congestion.

   When persistent congestion is established, the sender's congestion
   window MUST be reduced to the minimum congestion window
   (kMinimumWindow).  This response of collapsing the congestion window
   on persistent congestion is functionally similar to a sender's
   response on a Retransmission Timeout (RTO) in TCP [RFC5681] after
   Tail Loss Probes (TLP) [TLP].

7.8.  Pacing

   This document does not specify a pacer, but it is RECOMMENDED that a
   sender pace sending of all in-flight packets based on input from the
   congestion controller.  For example, a pacer might distribute the
   congestion window over the SRTT when used with a window-based
   controller, and a pacer might use the rate estimate of a rate-based
   controller.

   An implementation should take care to architect its congestion
   controller to work well with a pacer.  For instance, a pacer might
   wrap the congestion controller and control the availability of the
   congestion window, or a pacer might pace out packets handed to it by
   the congestion controller.  Timely delivery of ACK frames is

https://datatracker.ietf.org/doc/html/rfc5681
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   important for efficient loss recovery.  Packets containing only ACK
   frames should therefore not be paced, to avoid delaying their
   delivery to the peer.

   As an example of a well-known and publicly available implementation
   of a flow pacer, implementers are referred to the Fair Queue packet
   scheduler (fq qdisc) in Linux (3.11 onwards).

7.9.  Sending data after an idle period

   A sender becomes idle if it ceases to send data and has no bytes in
   flight.  A sender's congestion window MUST NOT increase while it is
   idle.

   When sending data after becoming idle, a sender MUST reset its
   congestion window to the initial congestion window (see Section 4.1
   of [RFC5681]), unless it paces the sending of packets.  A sender MAY
   retain its congestion window if it paces the sending of any packets
   in excess of the initial congestion window.

   A sender MAY implement alternate mechanisms to update its congestion
   window after idle periods, such as those proposed for TCP in
   [RFC7661].

7.10.  Application Limited Sending

   The congestion window should not be increased in slow start or
   congestion avoidance when it is not fully utilized.  The congestion
   window could be under-utilized due to insufficient application data
   or flow control credit.

   A sender that paces packets (see Section 7.8) might delay sending
   packets and not fully utilize the congestion window due to this
   delay.  A sender should not consider itself application limited if it
   would have fully utilized the congestion window without pacing delay.

8.  Security Considerations

8.1.  Congestion Signals

   Congestion control fundamentally involves the consumption of signals
   - both loss and ECN codepoints - from unauthenticated entities.  On-
   path attackers can spoof or alter these signals.  An attacker can
   cause endpoints to reduce their sending rate by dropping packets, or
   alter send rate by changing ECN codepoints.

https://datatracker.ietf.org/doc/html/rfc5681#section-4.1
https://datatracker.ietf.org/doc/html/rfc5681#section-4.1
https://datatracker.ietf.org/doc/html/rfc7661
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8.2.  Traffic Analysis

   Packets that carry only ACK frames can be heuristically identified by
   observing packet size.  Acknowledgement patterns may expose
   information about link characteristics or application behavior.
   Endpoints can use PADDING frames or bundle acknowledgments with other
   frames to reduce leaked information.

8.3.  Misreporting ECN Markings

   A receiver can misreport ECN markings to alter the congestion
   response of a sender.  Suppressing reports of ECN-CE markings could
   cause a sender to increase their send rate.  This increase could
   result in congestion and loss.

   A sender MAY attempt to detect suppression of reports by marking
   occasional packets that they send with ECN-CE.  If a packet marked
   with ECN-CE is not reported as having been marked when the packet is
   acknowledged, the sender SHOULD then disable ECN for that path.

   Reporting additional ECN-CE markings will cause a sender to reduce
   their sending rate, which is similar in effect to advertising reduced
   connection flow control limits and so no advantage is gained by doing
   so.

   Endpoints choose the congestion controller that they use.  Though
   congestion controllers generally treat reports of ECN-CE markings as
   equivalent to loss [RFC8311], the exact response for each controller
   could be different.  Failure to correctly respond to information
   about ECN markings is therefore difficult to detect.

9.  IANA Considerations

   This document has no IANA actions.  Yet.
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Appendix A.  Loss Recovery Pseudocode

   We now describe an example implementation of the loss detection
   mechanisms described in Section 6.

A.1.  Tracking Sent Packets

   To correctly implement congestion control, a QUIC sender tracks every
   ack-eliciting packet until the packet is acknowledged or lost.  It is
   expected that implementations will be able to access this information
   by packet number and crypto context and store the per-packet fields
   (Appendix A.1.1) for loss recovery and congestion control.

   After a packet is declared lost, it SHOULD be tracked for an amount
   of time comparable to the maximum expected packet reordering, such as
   1 RTT.  This allows for detection of spurious retransmissions.

   Sent packets are tracked for each packet number space, and ACK
   processing only applies to a single space.

A.1.1.  Sent Packet Fields

   packet_number:  The packet number of the sent packet.

   ack_eliciting:  A boolean that indicates whether a packet is ack-
      eliciting.  If true, it is expected that an acknowledgement will
      be received, though the peer could delay sending the ACK frame
      containing it by up to the MaxAckDelay.

   in_flight:  A boolean that indicates whether the packet counts
      towards bytes in flight.

   is_crypto_packet:  A boolean that indicates whether the packet
      contains cryptographic handshake messages critical to the
      completion of the QUIC handshake.  In this version of QUIC, this
      includes any packet with the long header that includes a CRYPTO
      frame.

   sent_bytes:  The number of bytes sent in the packet, not including
      UDP or IP overhead, but including QUIC framing overhead.

   time_sent:  The time the packet was sent.

A.2.  Constants of interest

   Constants used in loss recovery are based on a combination of RFCs,
   papers, and common practice.  Some may need to be changed or
   negotiated in order to better suit a variety of environments.
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   kPacketThreshold:  Maximum reordering in packets before packet
      threshold loss detection considers a packet lost.  The RECOMMENDED
      value is 3.

   kTimeThreshold:  Maximum reordering in time before time threshold
      loss detection considers a packet lost.  Specified as an RTT
      multiplier.  The RECOMMENDED value is 9/8.

   kGranularity:  Timer granularity.  This is a system-dependent value.
      However, implementations SHOULD use a value no smaller than 1ms.

   kInitialRtt:  The RTT used before an RTT sample is taken.  The
      RECOMMENDED value is 100ms.

   kPacketNumberSpace:  An enum to enumerate the three packet number
      spaces.  ~~~ enum kPacketNumberSpace { Initial, Handshake,
      ApplicationData, } ~~~

A.3.  Variables of interest

   Variables required to implement the congestion control mechanisms are
   described in this section.

   loss_detection_timer:  Multi-modal timer used for loss detection.

   crypto_count:  The number of times all unacknowledged CRYPTO data has
      been retransmitted without receiving an ack.

   pto_count:  The number of times a PTO has been sent without receiving
      an ack.

   time_of_last_sent_ack_eliciting_packet:  The time the most recent
      ack-eliciting packet was sent.

   time_of_last_sent_crypto_packet:  The time the most recent crypto
      packet was sent.

   largest_acked_packet[kPacketNumberSpace]:  The largest packet number
      acknowledged in the packet number space so far.

   latest_rtt:  The most recent RTT measurement made when receiving an
      ack for a previously unacked packet.

   smoothed_rtt:  The smoothed RTT of the connection, computed as
      described in [RFC6298]

   rttvar:  The RTT variance, computed as described in [RFC6298]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
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   min_rtt:  The minimum RTT seen in the connection, ignoring ack delay.

   max_ack_delay:  The maximum amount of time by which the receiver
      intends to delay acknowledgments, in milliseconds.  The actual
      ack_delay in a received ACK frame may be larger due to late
      timers, reordering, or lost ACKs.

   loss_time[kPacketNumberSpace]:  The time at which the next packet in
      that packet number space will be considered lost based on
      exceeding the reordering window in time.

   sent_packets[kPacketNumberSpace]:  An association of packet numbers
      in a packet number space to information about them.  Described in
      detail above in Appendix A.1.

A.4.  Initialization

   At the beginning of the connection, initialize the loss detection
   variables as follows:

      loss_detection_timer.reset()
      crypto_count = 0
      pto_count = 0
      smoothed_rtt = 0
      rttvar = 0
      min_rtt = infinite
      time_of_last_sent_ack_eliciting_packet = 0
      time_of_last_sent_crypto_packet = 0
      for pn_space in [ Initial, Handshake, ApplicatonData ]:
        largest_acked_packet[pn_space] = 0
        loss_time[pn_space] = 0

A.5.  On Sending a Packet

   After a packet is sent, information about the packet is stored.  The
   parameters to OnPacketSent are described in detail above in

Appendix A.1.1.

   Pseudocode for OnPacketSent follows:
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    OnPacketSent(packet_number, pn_space, ack_eliciting,
                 in_flight, is_crypto_packet, sent_bytes):
      sent_packets[pn_space][packet_number].packet_number =
                                               packet_number
      sent_packets[pn_space][packet_number].time_sent = now
      sent_packets[pn_space][packet_number].ack_eliciting =
                                               ack_eliciting
      sent_packets[pn_space][packet_number].in_flight = in_flight
      if (in_flight):
        if (is_crypto_packet):
          time_of_last_sent_crypto_packet = now
        if (ack_eliciting):
          time_of_last_sent_ack_eliciting_packet = now
        OnPacketSentCC(sent_bytes)
        sent_packets[pn_space][packet_number].size = sent_bytes
        SetLossDetectionTimer()

A.6.  On Receiving an Acknowledgment

   When an ACK frame is received, it may newly acknowledge any number of
   packets.

   Pseudocode for OnAckReceived and UpdateRtt follow:
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   OnAckReceived(ack, pn_space):
     largest_acked_packet[pn_space] =
         max(largest_acked_packet[pn_space], ack.largest_acked)

     // If the largest acknowledged is newly acked and
     // ack-eliciting, update the RTT.
     if (sent_packets[pn_space][ack.largest_acked] &&
         sent_packets[pn_space][ack.largest_acked].ack_eliciting):
       latest_rtt =
         now - sent_packets[pn_space][ack.largest_acked].time_sent
       UpdateRtt(latest_rtt, ack.ack_delay)

     // Process ECN information if present.
     if (ACK frame contains ECN information):
         ProcessECN(ack)

     // Find all newly acked packets in this ACK frame
     newly_acked_packets = DetermineNewlyAckedPackets(ack, pn_space)
     if (newly_acked_packets.empty()):
       return

     for acked_packet in newly_acked_packets:
       OnPacketAcked(acked_packet.packet_number, pn_space)

     DetectLostPackets(pn_space)

     crypto_count = 0
     pto_count = 0

     SetLossDetectionTimer()

   UpdateRtt(latest_rtt, ack_delay):
     // min_rtt ignores ack delay.
     min_rtt = min(min_rtt, latest_rtt)
     // Limit ack_delay by max_ack_delay
     ack_delay = min(ack_delay, max_ack_delay)
     // Adjust for ack delay if it's plausible.
     if (latest_rtt - min_rtt > ack_delay):
       latest_rtt -= ack_delay
     // Based on {{RFC6298}}.
     if (smoothed_rtt == 0):
       smoothed_rtt = latest_rtt
       rttvar = latest_rtt / 2
     else:
       rttvar_sample = abs(smoothed_rtt - latest_rtt)
       rttvar = 3/4 * rttvar + 1/4 * rttvar_sample
       smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * latest_rtt

https://datatracker.ietf.org/doc/html/rfc6298
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A.7.  On Packet Acknowledgment

   When a packet is acknowledged for the first time, the following
   OnPacketAcked function is called.  Note that a single ACK frame may
   newly acknowledge several packets.  OnPacketAcked must be called once
   for each of these newly acknowledged packets.

   OnPacketAcked takes two parameters: acked_packet, which is the struct
   detailed in Appendix A.1.1, and the packet number space that this ACK
   frame was sent for.

   Pseudocode for OnPacketAcked follows:

      OnPacketAcked(acked_packet, pn_space):
        if (acked_packet.ack_eliciting):
          OnPacketAckedCC(acked_packet)
        sent_packets[pn_space].remove(acked_packet.packet_number)

A.8.  Setting the Loss Detection Timer

   QUIC loss detection uses a single timer for all timeout loss
   detection.  The duration of the timer is based on the timer's mode,
   which is set in the packet and timer events further below.  The
   function SetLossDetectionTimer defined below shows how the single
   timer is set.

   This algorithm may result in the timer being set in the past,
   particularly if timers wake up late.  Timers set in the past SHOULD
   fire immediately.

   Pseudocode for SetLossDetectionTimer follows:
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   // Returns the earliest loss_time and the packet number
   // space it's from.  Returns 0 if all times are 0.
   GetEarliestLossTime():
     time = loss_time[Initial]
     space = Initial
     for pn_space in [ Handshake, ApplicatonData ]:
       if loss_time[pn_space] != 0 &&
          (time == 0 || loss_time[pn_space] < time):
         time = loss_time[pn_space];
         space = pn_space
     return time, space

   SetLossDetectionTimer():
     // Don't arm timer if there are no ack-eliciting packets
     // in flight.
     if (no ack-eliciting packets in flight):
       loss_detection_timer.cancel()
       return

     loss_time, _ = GetEarliestLossTime()
     if (loss_time != 0):
       // Time threshold loss detection.
       loss_detection_timer.update(loss_time)
       return

     if (crypto packets are in flight):
       // Crypto retransmission timer.
       if (smoothed_rtt == 0):
         timeout = 2 * kInitialRtt
       else:
         timeout = 2 * smoothed_rtt
       timeout = max(timeout, kGranularity)
       timeout = timeout * (2 ^ crypto_count)
       loss_detection_timer.update(
         time_of_last_sent_crypto_packet + timeout)
       return

     // Calculate PTO duration
     timeout =
       smoothed_rtt + max(4 * rttvar, kGranularity) + max_ack_delay
     timeout = timeout * (2 ^ pto_count)

     loss_detection_timer.update(
       time_of_last_sent_ack_eliciting_packet + timeout)
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A.9.  On Timeout

   When the loss detection timer expires, the timer's mode determines
   the action to be performed.

   Pseudocode for OnLossDetectionTimeout follows:

   OnLossDetectionTimeout():
     loss_time, pn_space = GetEarliestLossTime()
     if (loss_time != 0):
       // Time threshold loss Detection
       DetectLostPackets(pn_space)
     // Retransmit crypto data if no packets were lost
     // and there are still crypto packets in flight.
     else if (crypto packets are in flight):
       // Crypto retransmission timeout.
       RetransmitUnackedCryptoData()
       crypto_count++
     else:
       // PTO
       SendOneOrTwoPackets()
       pto_count++

     SetLossDetectionTimer()

A.10.  Detecting Lost Packets

   DetectLostPackets is called every time an ACK is received and
   operates on the sent_packets for that packet number space.  If the
   loss detection timer expires and the loss_time is set, the previous
   largest acknowledged packet is supplied.

   Pseudocode for DetectLostPackets follows:
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   DetectLostPackets(pn_space):
     loss_time[pn_space] = 0
     lost_packets = {}
     loss_delay = kTimeThreshold * max(latest_rtt, smoothed_rtt)

     // Packets sent before this time are deemed lost.
     lost_send_time = now() - loss_delay

     // Packets with packet numbers before this are deemed lost.
     lost_pn = largest_acked_packet[pn_space] - kPacketThreshold

     foreach unacked in sent_packets:
       if (unacked.packet_number > largest_acked_packet[pn_space]):
         continue

       // Mark packet as lost, or set time when it should be marked.
       if (unacked.time_sent <= lost_send_time ||
           unacked.packet_number <= lost_pn):
         sent_packets.remove(unacked.packet_number)
         if (unacked.in_flight):
           lost_packets.insert(unacked)
       else:
         if (loss_time[pn_space] == 0):
           loss_time[pn_space] = unacked.time_sent + loss_delay
         else:
           loss_time[pn_space] = min(loss_time[pn_space],
                                     unacked.time_sent + loss_delay)

     // Inform the congestion controller of lost packets and
     // let it decide whether to retransmit immediately.
     if (!lost_packets.empty()):
       OnPacketsLost(lost_packets)

Appendix B.  Congestion Control Pseudocode

   We now describe an example implementation of the congestion
   controller described in Section 7.

B.1.  Constants of interest

   Constants used in congestion control are based on a combination of
   RFCs, papers, and common practice.  Some may need to be changed or
   negotiated in order to better suit a variety of environments.

   kMaxDatagramSize:  The sender's maximum payload size.  Does not
      include UDP or IP overhead.  The max packet size is used for
      calculating initial and minimum congestion windows.  The
      RECOMMENDED value is 1200 bytes.
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   kInitialWindow:  Default limit on the initial amount of data in
      flight, in bytes.  Taken from [RFC6928], but increased slightly to
      account for the smaller 8 byte overhead of UDP vs 20 bytes for
      TCP.  The RECOMMENDED value is the minimum of 10 *
      kMaxDatagramSize and max(2* kMaxDatagramSize, 14720)).

   kMinimumWindow:  Minimum congestion window in bytes.  The RECOMMENDED
      value is 2 * kMaxDatagramSize.

   kLossReductionFactor:  Reduction in congestion window when a new loss
      event is detected.  The RECOMMENDED value is 0.5.

   kPersistentCongestionThreshold:  Number of consecutive PTOs required
      for persistent congestion to be established.  The rationale for
      this threshold is to enable a sender to use initial PTOs for
      aggressive probing, as TCP does with Tail Loss Probe (TLP) [TLP]
      [RACK], before establishing persistent congestion, as TCP does
      with a Retransmission Timeout (RTO) [RFC5681].  The RECOMMENDED
      value for kPersistentCongestionThreshold is 2, which is equivalent
      to having two TLPs before an RTO in TCP.

B.2.  Variables of interest

   Variables required to implement the congestion control mechanisms are
   described in this section.

   ecn_ce_counter:  The highest value reported for the ECN-CE counter by
      the peer in an ACK frame.  This variable is used to detect
      increases in the reported ECN-CE counter.

   bytes_in_flight:  The sum of the size in bytes of all sent packets
      that contain at least one ack-eliciting or PADDING frame, and have
      not been acked or declared lost.  The size does not include IP or
      UDP overhead, but does include the QUIC header and AEAD overhead.
      Packets only containing ACK frames do not count towards
      bytes_in_flight to ensure congestion control does not impede
      congestion feedback.

   congestion_window:  Maximum number of bytes-in-flight that may be
      sent.

   recovery_start_time:  The time when QUIC first detects a loss,
      causing it to enter recovery.  When a packet sent after this time
      is acknowledged, QUIC exits recovery.

   ssthresh:  Slow start threshold in bytes.  When the congestion window
      is below ssthresh, the mode is slow start and the window grows by
      the number of bytes acknowledged.

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc5681
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B.3.  Initialization

   At the beginning of the connection, initialize the congestion control
   variables as follows:

      congestion_window = kInitialWindow
      bytes_in_flight = 0
      recovery_start_time = 0
      ssthresh = infinite
      ecn_ce_counter = 0

B.4.  On Packet Sent

   Whenever a packet is sent, and it contains non-ACK frames, the packet
   increases bytes_in_flight.

      OnPacketSentCC(bytes_sent):
        bytes_in_flight += bytes_sent

B.5.  On Packet Acknowledgement

   Invoked from loss detection's OnPacketAcked and is supplied with the
   acked_packet from sent_packets.

      InRecovery(sent_time):
        return sent_time <= recovery_start_time

      OnPacketAckedCC(acked_packet):
        // Remove from bytes_in_flight.
        bytes_in_flight -= acked_packet.size
        if (InRecovery(acked_packet.time_sent)):
          // Do not increase congestion window in recovery period.
          return
        if (IsAppLimited())
          // Do not increase congestion_window if application
          // limited.
          return
        if (congestion_window < ssthresh):
          // Slow start.
          congestion_window += acked_packet.size
        else:
          // Congestion avoidance.
          congestion_window += kMaxDatagramSize * acked_packet.size
              / congestion_window
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B.6.  On New Congestion Event

   Invoked from ProcessECN and OnPacketsLost when a new congestion event
   is detected.  May start a new recovery period and reduces the
   congestion window.

      CongestionEvent(sent_time):
        // Start a new congestion event if the sent time is larger
        // than the start time of the previous recovery epoch.
        if (!InRecovery(sent_time)):
          recovery_start_time = Now()
          congestion_window *= kLossReductionFactor
          congestion_window = max(congestion_window, kMinimumWindow)
          ssthresh = congestion_window

B.7.  Process ECN Information

   Invoked when an ACK frame with an ECN section is received from the
   peer.

      ProcessECN(ack):
        // If the ECN-CE counter reported by the peer has increased,
        // this could be a new congestion event.
        if (ack.ce_counter > ecn_ce_counter):
          ecn_ce_counter = ack.ce_counter
          // Start a new congestion event if the last acknowledged
          // packet was sent after the start of the previous
          // recovery epoch.
          CongestionEvent(sent_packets[ack.largest_acked].time_sent)

B.8.  On Packets Lost

   Invoked by loss detection from DetectLostPackets when new packets are
   detected lost.
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      InPersistentCongestion(largest_lost_packet):
        pto = smoothed_rtt + max(4 * rttvar, kGranularity) +
          max_ack_delay
        congestion_period =
          pto * (2 ^ kPersistentCongestionThreshold - 1)
        // Determine if all packets in the window before the
        // newest lost packet, including the edges, are marked
        // lost
        return IsWindowLost(largest_lost_packet, congestion_period)

      OnPacketsLost(lost_packets):
        // Remove lost packets from bytes_in_flight.
        for (lost_packet : lost_packets):
          bytes_in_flight -= lost_packet.size
        largest_lost_packet = lost_packets.last()

        // Start a new congestion epoch if the last lost packet
        // is past the end of the previous recovery epoch.
        CongestionEvent(largest_lost_packet.time_sent)

        // Collapse congestion window if persistent congestion
        if (InPersistentCongestion(largest_lost_packet)):
          congestion_window = kMinimumWindow

Appendix C.  Change Log

      *RFC Editor's Note:* Please remove this section prior to
      publication of a final version of this document.

   Issue and pull request numbers are listed with a leading octothorp.

C.1.  Since draft-ietf-quic-recovery-18

   o  Change IW byte limit to 14720 from 14600 (#2494)

   o  Update PTO calculation to match RFC6298 (#2480, #2489, #2490)

   o  Improve loss detection's description of multiple packet number
      spaces and pseudocode (#2485, #2451, #2417)

   o  Declare persistent congestion even if non-probe packets are sent
      and don't make persistent congestion more aggressive than RTO
      verified was (#2365, #2244)

   o  Move pseudocode to the appendices (#2408)

   o  What to send on multiple PTOs (#2380)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-18
https://datatracker.ietf.org/doc/html/rfc6298
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C.2.  Since draft-ietf-quic-recovery-17

   o  After Probe Timeout discard in-flight packets or send another
      (#2212, #1965)

   o  Endpoints discard initial keys as soon as handshake keys are
      available (#1951, #2045)

   o  0-RTT state is discarded when 0-RTT is rejected (#2300)

   o  Loss detection timer is cancelled when ack-eliciting frames are in
      flight (#2117, #2093)

   o  Packets are declared lost if they are in flight (#2104)

   o  After becoming idle, either pace packets or reset the congestion
      controller (#2138, 2187)

   o  Process ECN counts before marking packets lost (#2142)

   o  Mark packets lost before resetting crypto_count and pto_count
      (#2208, #2209)

   o  Congestion and loss recovery state are discarded when keys are
      discarded (#2327)

C.3.  Since draft-ietf-quic-recovery-16

   o  Unify TLP and RTO into a single PTO; eliminate min RTO, min TLP
      and min crypto timeouts; eliminate timeout validation (#2114,
      #2166, #2168, #1017)

   o  Redefine how congestion avoidance in terms of when the period
      starts (#1928, #1930)

   o  Document what needs to be tracked for packets that are in flight
      (#765, #1724, #1939)

   o  Integrate both time and packet thresholds into loss detection
      (#1969, #1212, #934, #1974)

   o  Reduce congestion window after idle, unless pacing is used (#2007,
      #2023)

   o  Disable RTT calculation for packets that don't elicit
      acknowledgment (#2060, #2078)

   o  Limit ack_delay by max_ack_delay (#2060, #2099)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-16
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   o  Initial keys are discarded once Handshake are avaialble (#1951,
      #2045)

   o  Reorder ECN and loss detection in pseudocode (#2142)

   o  Only cancel loss detection timer if ack-eliciting packets are in
      flight (#2093, #2117)

C.4.  Since draft-ietf-quic-recovery-14

   o  Used max_ack_delay from transport params (#1796, #1782)

   o  Merge ACK and ACK_ECN (#1783)

C.5.  Since draft-ietf-quic-recovery-13

   o  Corrected the lack of ssthresh reduction in CongestionEvent
      pseudocode (#1598)

   o  Considerations for ECN spoofing (#1426, #1626)

   o  Clarifications for PADDING and congestion control (#837, #838,
      #1517, #1531, #1540)

   o  Reduce early retransmission timer to RTT/8 (#945, #1581)

   o  Packets are declared lost after an RTO is verified (#935, #1582)

C.6.  Since draft-ietf-quic-recovery-12

   o  Changes to manage separate packet number spaces and encryption
      levels (#1190, #1242, #1413, #1450)

   o  Added ECN feedback mechanisms and handling; new ACK_ECN frame
      (#804, #805, #1372)

C.7.  Since draft-ietf-quic-recovery-11

   No significant changes.

C.8.  Since draft-ietf-quic-recovery-10

   o  Improved text on ack generation (#1139, #1159)

   o  Make references to TCP recovery mechanisms informational (#1195)

   o  Define time_of_last_sent_handshake_packet (#1171)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-10
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   o  Added signal from TLS the data it includes needs to be sent in a
      Retry packet (#1061, #1199)

   o  Minimum RTT (min_rtt) is initialized with an infinite value
      (#1169)

C.9.  Since draft-ietf-quic-recovery-09

   No significant changes.

C.10.  Since draft-ietf-quic-recovery-08

   o  Clarified pacing and RTO (#967, #977)

C.11.  Since draft-ietf-quic-recovery-07

   o  Include Ack Delay in RTO(and TLP) computations (#981)

   o  Ack Delay in SRTT computation (#961)

   o  Default RTT and Slow Start (#590)

   o  Many editorial fixes.

C.12.  Since draft-ietf-quic-recovery-06

   No significant changes.

C.13.  Since draft-ietf-quic-recovery-05

   o  Add more congestion control text (#776)

C.14.  Since draft-ietf-quic-recovery-04

   No significant changes.

C.15.  Since draft-ietf-quic-recovery-03

   No significant changes.

C.16.  Since draft-ietf-quic-recovery-02

   o  Integrate F-RTO (#544, #409)

   o  Add congestion control (#545, #395)

   o  Require connection abort if a skipped packet was acknowledged
      (#415)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-07
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   o  Simplify RTO calculations (#142, #417)

C.17.  Since draft-ietf-quic-recovery-01

   o  Overview added to loss detection

   o  Changes initial default RTT to 100ms

   o  Added time-based loss detection and fixes early retransmit

   o  Clarified loss recovery for handshake packets

   o  Fixed references and made TCP references informative

C.18.  Since draft-ietf-quic-recovery-00

   o  Improved description of constants and ACK behavior

C.19.  Since draft-iyengar-quic-loss-recovery-01

   o  Adopted as base for draft-ietf-quic-recovery

   o  Updated authors/editors list

   o  Added table of contents
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