
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-recovery-27

Published: 9 March 2020

Intended Status: Standards Track

Expires: 10 September 2020

Authors: J. Iyengar, Ed.

Fastly

I. Swett, Ed.

Google

QUIC Loss Detection and Congestion Control

Abstract

This document describes loss detection and congestion control

mechanisms for QUIC.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-recovery.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-recovery
https://github.com/quicwg/base-drafts/labels/-recovery
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Design of the QUIC Transmission Machinery

3.1. Relevant Differences Between QUIC and TCP

3.1.1. Separate Packet Number Spaces

3.1.2. Monotonically Increasing Packet Numbers

3.1.3. Clearer Loss Epoch

3.1.4. No Reneging

3.1.5. More ACK Ranges

3.1.6. Explicit Correction For Delayed Acknowledgements

4. Estimating the Round-Trip Time

4.1. Generating RTT samples

4.2. Estimating min_rtt

4.3. Estimating smoothed_rtt and rttvar

5. Loss Detection

5.1. Acknowledgement-based Detection

5.1.1. Packet Threshold

5.1.2. Time Threshold

5.2. Probe Timeout

5.2.1. Computing PTO

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.3. Handshakes and New Paths

5.3.1. Sending Probe Packets

5.3.2. Loss Detection

5.4. Handling Retry Packets

5.5. Discarding Keys and Packet State

6. Congestion Control

6.1. Explicit Congestion Notification

6.2. Slow Start

6.3. Congestion Avoidance

6.4. Recovery Period

6.5. Ignoring Loss of Undecryptable Packets

6.6. Probe Timeout

6.7. Persistent Congestion

6.8. Pacing

6.9. Under-utilizing the Congestion Window

7. Security Considerations

7.1. Congestion Signals

7.2. Traffic Analysis

7.3. Misreporting ECN Markings

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Loss Recovery Pseudocode

A.1. Tracking Sent Packets

A.1.1. Sent Packet Fields

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A.2. Constants of interest

A.3. Variables of interest

A.4. Initialization

A.5. On Sending a Packet

A.6. On Receiving an Acknowledgment

A.7. On Packet Acknowledgment

A.8. Setting the Loss Detection Timer

A.9. On Timeout

A.10. Detecting Lost Packets

Appendix B. Congestion Control Pseudocode

B.1. Constants of interest

B.2. Variables of interest

B.3. Initialization

B.4. On Packet Sent

B.5. On Packet Acknowledgement

B.6. On New Congestion Event

B.7. Process ECN Information

B.8. On Packets Lost

Appendix C. Change Log

C.1. Since draft-ietf-quic-recovery-26

C.2. Since draft-ietf-quic-recovery-25

C.3. Since draft-ietf-quic-recovery-24

C.4. Since draft-ietf-quic-recovery-23

C.5. Since draft-ietf-quic-recovery-22

C.6. Since draft-ietf-quic-recovery-21

C.7. Since draft-ietf-quic-recovery-20

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

C.8. Since draft-ietf-quic-recovery-19

C.9. Since draft-ietf-quic-recovery-18

C.10. Since draft-ietf-quic-recovery-17

C.11. Since draft-ietf-quic-recovery-16

C.12. Since draft-ietf-quic-recovery-14

C.13. Since draft-ietf-quic-recovery-13

C.14. Since draft-ietf-quic-recovery-12

C.15. Since draft-ietf-quic-recovery-11

C.16. Since draft-ietf-quic-recovery-10

C.17. Since draft-ietf-quic-recovery-09

C.18. Since draft-ietf-quic-recovery-08

C.19. Since draft-ietf-quic-recovery-07

C.20. Since draft-ietf-quic-recovery-06

C.21. Since draft-ietf-quic-recovery-05

C.22. Since draft-ietf-quic-recovery-04

C.23. Since draft-ietf-quic-recovery-03

C.24. Since draft-ietf-quic-recovery-02

C.25. Since draft-ietf-quic-recovery-01

C.26. Since draft-ietf-quic-recovery-00

C.27. Since draft-iyengar-quic-loss-recovery-01

Appendix D. Contributors

Acknowledgments

Authors' Addresses

1. Introduction

QUIC is a new multiplexed and secure transport atop UDP. QUIC builds

on decades of transport and security experience, and implements

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Ack-eliciting Frames:

Ack-eliciting Packets:

In-flight:

mechanisms that make it attractive as a modern general-purpose

transport. The QUIC protocol is described in [QUIC-TRANSPORT].

QUIC implements the spirit of existing TCP congestion control and

loss recovery mechanisms, described in RFCs, various Internet-

drafts, and also those prevalent in the Linux TCP implementation.

This document describes QUIC congestion control and loss recovery,

and where applicable, attributes the TCP equivalent in RFCs,

Internet-drafts, academic papers, and/or TCP implementations.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Definitions of terms that are used in this document:

All frames other than ACK, PADDING, and

CONNECTION_CLOSE are considered ack-eliciting.

Packets that contain ack-eliciting frames

elicit an ACK from the receiver within the maximum ack delay and

are called ack-eliciting packets.

Packets are considered in-flight when they are ack-

eliciting or contain a PADDING frame, and they have been sent but

are not acknowledged, declared lost, or abandoned along with old

keys.

3. Design of the QUIC Transmission Machinery

All transmissions in QUIC are sent with a packet-level header, which

indicates the encryption level and includes a packet sequence number

(referred to below as a packet number). The encryption level

indicates the packet number space, as described in [QUIC-TRANSPORT].

Packet numbers never repeat within a packet number space for the

lifetime of a connection. Packet numbers are sent in monotonically

increasing order within a space, preventing ambiguity.

This design obviates the need for disambiguating between

transmissions and retransmissions and eliminates significant

complexity from QUIC's interpretation of TCP loss detection

mechanisms.

QUIC packets can contain multiple frames of different types. The

recovery mechanisms ensure that data and frames that need reliable

delivery are acknowledged or declared lost and sent in new packets

¶

¶

¶

¶

¶

¶

¶

¶

¶

as necessary. The types of frames contained in a packet affect

recovery and congestion control logic:

All packets are acknowledged, though packets that contain no ack-

eliciting frames are only acknowledged along with ack-eliciting

packets.

Long header packets that contain CRYPTO frames are critical to

the performance of the QUIC handshake and use shorter timers for

acknowledgement.

Packets containing frames besides ACK or CONNECTION_CLOSE frames

count toward congestion control limits and are considered in-

flight.

PADDING frames cause packets to contribute toward bytes in flight

without directly causing an acknowledgment to be sent.

3.1. Relevant Differences Between QUIC and TCP

Readers familiar with TCP's loss detection and congestion control

will find algorithms here that parallel well-known TCP ones.

Protocol differences between QUIC and TCP however contribute to

algorithmic differences. We briefly describe these protocol

differences below.

3.1.1. Separate Packet Number Spaces

QUIC uses separate packet number spaces for each encryption level,

except 0-RTT and all generations of 1-RTT keys use the same packet

number space. Separate packet number spaces ensures acknowledgement

of packets sent with one level of encryption will not cause spurious

retransmission of packets sent with a different encryption level.

Congestion control and round-trip time (RTT) measurement are unified

across packet number spaces.

3.1.2. Monotonically Increasing Packet Numbers

TCP conflates transmission order at the sender with delivery order

at the receiver, which results in retransmissions of the same data

carrying the same sequence number, and consequently leads to

"retransmission ambiguity". QUIC separates the two. QUIC uses a

packet number to indicate transmission order. Application data is

sent in one or more streams and delivery order is determined by

stream offsets encoded within STREAM frames.

QUIC's packet number is strictly increasing within a packet number

space, and directly encodes transmission order. A higher packet

number signifies that the packet was sent later, and a lower packet

number signifies that the packet was sent earlier. When a packet

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

containing ack-eliciting frames is detected lost, QUIC rebundles

necessary frames in a new packet with a new packet number, removing

ambiguity about which packet is acknowledged when an ACK is

received. Consequently, more accurate RTT measurements can be made,

spurious retransmissions are trivially detected, and mechanisms such

as Fast Retransmit can be applied universally, based only on packet

number.

This design point significantly simplifies loss detection mechanisms

for QUIC. Most TCP mechanisms implicitly attempt to infer

transmission ordering based on TCP sequence numbers - a non-trivial

task, especially when TCP timestamps are not available.

3.1.3. Clearer Loss Epoch

QUIC starts a loss epoch when a packet is lost and ends one when any

packet sent after the epoch starts is acknowledged. TCP waits for

the gap in the sequence number space to be filled, and so if a

segment is lost multiple times in a row, the loss epoch may not end

for several round trips. Because both should reduce their congestion

windows only once per epoch, QUIC will do it once for every round

trip that experiences loss, while TCP may only do it once across

multiple round trips.

3.1.4. No Reneging

QUIC ACKs contain information that is similar to TCP SACK, but QUIC

does not allow any acked packet to be reneged, greatly simplifying

implementations on both sides and reducing memory pressure on the

sender.

3.1.5. More ACK Ranges

QUIC supports many ACK ranges, opposed to TCP's 3 SACK ranges. In

high loss environments, this speeds recovery, reduces spurious

retransmits, and ensures forward progress without relying on

timeouts.

3.1.6. Explicit Correction For Delayed Acknowledgements

QUIC endpoints measure the delay incurred between when a packet is

received and when the corresponding acknowledgment is sent, allowing

a peer to maintain a more accurate round-trip time estimate (see

Section 13.2 of [QUIC-TRANSPORT]).

4. Estimating the Round-Trip Time

At a high level, an endpoint measures the time from when a packet

was sent to when it is acknowledged as a round-trip time (RTT)

sample. The endpoint uses RTT samples and peer-reported host delays

¶

¶

¶

¶

¶

¶

(see Section 13.2 of [QUIC-TRANSPORT]) to generate a statistical

description of the network path's RTT. An endpoint computes the

following three values for each path: the minimum value observed

over the lifetime of the path (min_rtt), an exponentially-weighted

moving average (smoothed_rtt), and the mean deviation (referred to

as "variation" in the rest of this document) in the observed RTT

samples (rttvar).

4.1. Generating RTT samples

An endpoint generates an RTT sample on receiving an ACK frame that

meets the following two conditions:

the largest acknowledged packet number is newly acknowledged, and

at least one of the newly acknowledged packets was ack-eliciting.

The RTT sample, latest_rtt, is generated as the time elapsed since

the largest acknowledged packet was sent:

An RTT sample is generated using only the largest acknowledged

packet in the received ACK frame. This is because a peer reports ACK

delays for only the largest acknowledged packet in an ACK frame.

While the reported ACK delay is not used by the RTT sample

measurement, it is used to adjust the RTT sample in subsequent

computations of smoothed_rtt and rttvar Section 4.3.

To avoid generating multiple RTT samples for a single packet, an ACK

frame SHOULD NOT be used to update RTT estimates if it does not

newly acknowledge the largest acknowledged packet.

An RTT sample MUST NOT be generated on receiving an ACK frame that

does not newly acknowledge at least one ack-eliciting packet. A peer

usually does not send an ACK frame when only non-ack-eliciting

packets are received. Therefore an ACK frame that contains

acknowledgements for only non-ack-eliciting packets could include an

arbitrarily large Ack Delay value. Ignoring such ACK frames avoids

complications in subsequent smoothed_rtt and rttvar computations.

A sender might generate multiple RTT samples per RTT when multiple

ACK frames are received within an RTT. As suggested in [RFC6298],

doing so might result in inadequate history in smoothed_rtt and

rttvar. Ensuring that RTT estimates retain sufficient history is an

open research question.

¶

¶

* ¶

* ¶

¶

latest_rtt = ack_time - send_time_of_largest_acked¶

¶

¶

¶

¶

4.2. Estimating min_rtt

min_rtt is the minimum RTT observed for a given network path.

min_rtt is set to the latest_rtt on the first RTT sample, and to the

lesser of min_rtt and latest_rtt on subsequent samples. In this

document, min_rtt is used by loss detection to reject implausibly

small rtt samples.

An endpoint uses only locally observed times in computing the

min_rtt and does not adjust for ACK delays reported by the peer.

Doing so allows the endpoint to set a lower bound for the

smoothed_rtt based entirely on what it observes (see Section 4.3),

and limits potential underestimation due to erroneously-reported

delays by the peer.

The RTT for a network path may change over time. If a path's actual

RTT decreases, the min_rtt will adapt immediately on the first low

sample. If the path's actual RTT increases, the min_rtt will not

adapt to it, allowing future RTT samples that are smaller than the

new RTT be included in smoothed_rtt.

4.3. Estimating smoothed_rtt and rttvar

smoothed_rtt is an exponentially-weighted moving average of an

endpoint's RTT samples, and rttvar is the variation in the RTT

samples, estimated using a mean variation.

The calculation of smoothed_rtt uses path latency after adjusting

RTT samples for acknowledgement delays. These delays are computed

using the ACK Delay field of the ACK frame as described in Section

19.3 of [QUIC-TRANSPORT]. For packets sent in the ApplicationData

packet number space, a peer limits any delay in sending an

acknowledgement for an ack-eliciting packet to no greater than the

value it advertised in the max_ack_delay transport parameter.

Consequently, when a peer reports an Ack Delay that is greater than

its max_ack_delay, the delay is attributed to reasons out of the

peer's control, such as scheduler latency at the peer or loss of

previous ACK frames. Any delays beyond the peer's max_ack_delay are

therefore considered effectively part of path delay and incorporated

into the smoothed_rtt estimate.

When adjusting an RTT sample using peer-reported acknowledgement

delays, an endpoint:

MUST ignore the Ack Delay field of the ACK frame for packets sent

in the Initial and Handshake packet number space.

MUST use the lesser of the value reported in Ack Delay field of

the ACK frame and the peer's max_ack_delay transport parameter.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

MUST NOT apply the adjustment if the resulting RTT sample is

smaller than the min_rtt. This limits the underestimation that a

misreporting peer can cause to the smoothed_rtt.

On the first RTT sample for a network path, the smoothed_rtt is set

to the latest_rtt.

smoothed_rtt and rttvar are computed as follows, similar to

[RFC6298]. On the first RTT sample for a network path:

On subsequent RTT samples, smoothed_rtt and rttvar evolve as

follows:

5. Loss Detection

QUIC senders use acknowledgements to detect lost packets, and a

probe time out (see Section 5.2) to ensure acknowledgements are

received. This section provides a description of these algorithms.

If a packet is lost, the QUIC transport needs to recover from that

loss, such as by retransmitting the data, sending an updated frame,

or abandoning the frame. For more information, see Section 13.3 of

[QUIC-TRANSPORT].

5.1. Acknowledgement-based Detection

Acknowledgement-based loss detection implements the spirit of TCP's

Fast Retransmit [RFC5681], Early Retransmit [RFC5827], FACK [FACK],

SACK loss recovery [RFC6675], and RACK [RACK]. This section provides

an overview of how these algorithms are implemented in QUIC.

A packet is declared lost if it meets all the following conditions:

The packet is unacknowledged, in-flight, and was sent prior to an

acknowledged packet.

Either its packet number is kPacketThreshold smaller than an

acknowledged packet (Section 5.1.1), or it was sent long enough

in the past (Section 5.1.2).

*

¶

¶

¶

smoothed_rtt = latest_rtt

rttvar = latest_rtt / 2

¶

¶

ack_delay = min(Ack Delay in ACK Frame, max_ack_delay)

adjusted_rtt = latest_rtt

if (min_rtt + ack_delay < latest_rtt):

 adjusted_rtt = latest_rtt - ack_delay

smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * adjusted_rtt

rttvar_sample = abs(smoothed_rtt - adjusted_rtt)

rttvar = 3/4 * rttvar + 1/4 * rttvar_sample

¶

¶

¶

¶

¶

*

¶

*

¶

The acknowledgement indicates that a packet sent later was

delivered, and the packet and time thresholds provide some tolerance

for packet reordering.

Spuriously declaring packets as lost leads to unnecessary

retransmissions and may result in degraded performance due to the

actions of the congestion controller upon detecting loss.

Implementations that detect spurious retransmissions and increase

the reordering threshold in packets or time MAY choose to start with

smaller initial reordering thresholds to minimize recovery latency.

5.1.1. Packet Threshold

The RECOMMENDED initial value for the packet reordering threshold

(kPacketThreshold) is 3, based on best practices for TCP loss

detection [RFC5681] [RFC6675]. Implementations SHOULD NOT use a

packet threshold less than 3, to keep in line with TCP [RFC5681].

Some networks may exhibit higher degrees of reordering, causing a

sender to detect spurious losses. Implementers MAY use algorithms

developed for TCP, such as TCP-NCR [RFC4653], to improve QUIC's

reordering resilience.

5.1.2. Time Threshold

Once a later packet within the same packet number space has been

acknowledged, an endpoint SHOULD declare an earlier packet lost if

it was sent a threshold amount of time in the past. To avoid

declaring packets as lost too early, this time threshold MUST be set

to at least kGranularity. The time threshold is:

If packets sent prior to the largest acknowledged packet cannot yet

be declared lost, then a timer SHOULD be set for the remaining time.

Using max(smoothed_rtt, latest_rtt) protects from the two following

cases:

the latest RTT sample is lower than the smoothed RTT, perhaps due

to reordering where the acknowledgement encountered a shorter

path;

the latest RTT sample is higher than the smoothed RTT, perhaps

due to a sustained increase in the actual RTT, but the smoothed

RTT has not yet caught up.

The RECOMMENDED time threshold (kTimeThreshold), expressed as a

round-trip time multiplier, is 9/8.

¶

¶

¶

¶

¶

max(kTimeThreshold * max(smoothed_rtt, latest_rtt), kGranularity)¶

¶

¶

*

¶

*

¶

¶

Implementations MAY experiment with absolute thresholds, thresholds

from previous connections, adaptive thresholds, or including RTT

variation. Smaller thresholds reduce reordering resilience and

increase spurious retransmissions, and larger thresholds increase

loss detection delay.

5.2. Probe Timeout

A Probe Timeout (PTO) triggers sending one or two probe datagrams

when ack-eliciting packets are not acknowledged within the expected

period of time or the handshake has not been completed. A PTO

enables a connection to recover from loss of tail packets or

acknowledgements.

As with loss detection, the probe timeout is per packet number

space. The PTO algorithm used in QUIC implements the reliability

functions of Tail Loss Probe [RACK], RTO [RFC5681], and F-RTO

algorithms for TCP [RFC5682]. The timeout computation is based on

TCP's retransmission timeout period [RFC6298].

5.2.1. Computing PTO

When an ack-eliciting packet is transmitted, the sender schedules a

timer for the PTO period as follows:

kGranularity, smoothed_rtt, rttvar, and max_ack_delay are defined in

Appendix A.2 and Appendix A.3.

The PTO period is the amount of time that a sender ought to wait for

an acknowledgement of a sent packet. This time period includes the

estimated network roundtrip-time (smoothed_rtt), the variation in

the estimate (4*rttvar), and max_ack_delay, to account for the

maximum time by which a receiver might delay sending an

acknowledgement. When the PTO is armed for Initial or Handshake

packet number spaces, the max_ack_delay is 0, as specified in 13.2.1

of [QUIC-TRANSPORT].

The PTO value MUST be set to at least kGranularity, to avoid the

timer expiring immediately.

A sender computes its PTO timer every time an ack-eliciting packet

is sent. When ack-eliciting packets are in-flight in multiple packet

number spaces, the timer MUST be set for the packet number space

with the earliest timeout, except for ApplicationData, which MUST be

ignored until the handshake completes; see Section 4.1.1 of [QUIC-

TLS]. Not arming the PTO for ApplicationData prioritizes completing

the handshake and prevents the server from sending a 1-RTT packet on

a PTO before before it has the keys to process a 1-RTT packet.

¶

¶

¶

¶

PTO = smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay¶

¶

¶

¶

¶

When a PTO timer expires, the PTO period MUST be set to twice its

current value. This exponential reduction in the sender's rate is

important because consecutive PTOs might be caused by loss of

packets or acknowledgements due to severe congestion. Even when

there are ack-eliciting packets in-flight in multiple packet number

spaces, the exponential increase in probe timeout occurs across all

spaces to prevent excess load on the network. For example, a timeout

in the Initial packet number space doubles the length of the timeout

in the Handshake packet number space.

The life of a connection that is experiencing consecutive PTOs is

limited by the endpoint's idle timeout.

The probe timer MUST NOT be set if the time threshold Section 5.1.2

loss detection timer is set. The time threshold loss detection timer

is expected to both expire earlier than the PTO and be less likely

to spuriously retransmit data.

5.3. Handshakes and New Paths

The initial probe timeout for a new connection or new path SHOULD be

set to twice the initial RTT. Resumed connections over the same

network SHOULD use the previous connection's final smoothed RTT

value as the resumed connection's initial RTT. If no previous RTT is

available, the initial RTT SHOULD be set to 500ms, resulting in a 1

second initial timeout as recommended in [RFC6298].

A connection MAY use the delay between sending a PATH_CHALLENGE and

receiving a PATH_RESPONSE to set the initial RTT (see kInitialRtt in

Appendix A.2) for a new path, but the delay SHOULD NOT be considered

an RTT sample.

Until the server has validated the client's address on the path, the

amount of data it can send is limited to three times the amount of

data received, as specified in Section 8.1 of [QUIC-TRANSPORT]. If

no data can be sent, then the PTO alarm MUST NOT be armed until

datagrams have been received from the client.

Since the server could be blocked until more packets are received

from the client, it is the client's responsibility to send packets

to unblock the server until it is certain that the server has

finished its address validation (see Section 8 of [QUIC-TRANSPORT]).

That is, the client MUST set the probe timer if the client has not

received an acknowledgement for one of its Handshake or 1-RTT

packets.

Prior to handshake completion, when few to none RTT samples have

been generated, it is possible that the probe timer expiration is

due to an incorrect RTT estimate at the client. To allow the client

to improve its RTT estimate, the new packet that it sends MUST be

¶

¶

¶

¶

¶

¶

¶

ack-eliciting. If Handshake keys are available to the client, it

MUST send a Handshake packet, and otherwise it MUST send an Initial

packet in a UDP datagram of at least 1200 bytes.

Initial packets and Handshake packets could be never acknowledged,

but they are removed from bytes in flight when the Initial and

Handshake keys are discarded.

5.3.1. Sending Probe Packets

When a PTO timer expires, a sender MUST send at least one ack-

eliciting packet in the packet number space as a probe, unless there

is no data available to send. An endpoint MAY send up to two full-

sized datagrams containing ack-eliciting packets, to avoid an

expensive consecutive PTO expiration due to a single lost datagram

or transmit data from multiple packet number spaces.

In addition to sending data in the packet number space for which the

timer expired, the sender SHOULD send ack-eliciting packets from

other packet number spaces with in-flight data, coalescing packets

if possible.

When the PTO timer expires, and there is new or previously sent

unacknowledged data, it MUST be sent.

It is possible the sender has no new or previously-sent data to

send. As an example, consider the following sequence of events: new

application data is sent in a STREAM frame, deemed lost, then

retransmitted in a new packet, and then the original transmission is

acknowledged. When there is no data to send, the sender SHOULD send

a PING or other ack-eliciting frame in a single packet, re-arming

the PTO timer.

Alternatively, instead of sending an ack-eliciting packet, the

sender MAY mark any packets still in flight as lost. Doing so avoids

sending an additional packet, but increases the risk that loss is

declared too aggressively, resulting in an unnecessary rate

reduction by the congestion controller.

Consecutive PTO periods increase exponentially, and as a result,

connection recovery latency increases exponentially as packets

continue to be dropped in the network. Sending two packets on PTO

expiration increases resilience to packet drops, thus reducing the

probability of consecutive PTO events.

Probe packets sent on a PTO MUST be ack-eliciting. A probe packet

SHOULD carry new data when possible. A probe packet MAY carry

retransmitted unacknowledged data when new data is unavailable, when

flow control does not permit new data to be sent, or to

opportunistically reduce loss recovery delay. Implementations MAY

¶

¶

¶

¶

¶

¶

¶

¶

use alternative strategies for determining the content of probe

packets, including sending new or retransmitted data based on the

application's priorities.

When the PTO timer expires multiple times and new data cannot be

sent, implementations must choose between sending the same payload

every time or sending different payloads. Sending the same payload

may be simpler and ensures the highest priority frames arrive first.

Sending different payloads each time reduces the chances of spurious

retransmission.

5.3.2. Loss Detection

Delivery or loss of packets in flight is established when an ACK

frame is received that newly acknowledges one or more packets.

A PTO timer expiration event does not indicate packet loss and MUST

NOT cause prior unacknowledged packets to be marked as lost. When an

acknowledgement is received that newly acknowledges packets, loss

detection proceeds as dictated by packet and time threshold

mechanisms; see Section 5.1.

5.4. Handling Retry Packets

A Retry packet causes a client to send another Initial packet,

effectively restarting the connection process. A Retry packet

indicates that the Initial was received, but not processed. A Retry

packet cannot be treated as an acknowledgment, because it does not

indicate that a packet was processed or specify the packet number.

Clients that receive a Retry packet reset congestion control and

loss recovery state, including resetting any pending timers. Other

connection state, in particular cryptographic handshake messages, is

retained; see Section 17.2.5 of [QUIC-TRANSPORT].

The client MAY compute an RTT estimate to the server as the time

period from when the first Initial was sent to when a Retry or a

Version Negotiation packet is received. The client MAY use this

value in place of its default for the initial RTT estimate.

5.5. Discarding Keys and Packet State

When packet protection keys are discarded (see Section 4.10 of

[QUIC-TLS]), all packets that were sent with those keys can no

longer be acknowledged because their acknowledgements cannot be

processed anymore. The sender MUST discard all recovery state

associated with those packets and MUST remove them from the count of

bytes in flight.

¶

¶

¶

¶

¶

¶

¶

¶

Endpoints stop sending and receiving Initial packets once they start

exchanging Handshake packets (see Section 17.2.2.1 of [QUIC-

TRANSPORT]). At this point, recovery state for all in-flight Initial

packets is discarded.

When 0-RTT is rejected, recovery state for all in-flight 0-RTT

packets is discarded.

If a server accepts 0-RTT, but does not buffer 0-RTT packets that

arrive before Initial packets, early 0-RTT packets will be declared

lost, but that is expected to be infrequent.

It is expected that keys are discarded after packets encrypted with

them would be acknowledged or declared lost. Initial secrets however

might be destroyed sooner, as soon as handshake keys are available

(see Section 4.10.1 of [QUIC-TLS]).

6. Congestion Control

This document specifies a Reno congestion controller for QUIC

[RFC6582].

The signals QUIC provides for congestion control are generic and are

designed to support different algorithms. Endpoints can unilaterally

choose a different algorithm to use, such as Cubic [RFC8312].

If an endpoint uses a different controller than that specified in

this document, the chosen controller MUST conform to the congestion

control guidelines specified in Section 3.1 of [RFC8085].

The algorithm in this document specifies and uses the controller's

congestion window in bytes.

An endpoint MUST NOT send a packet if it would cause bytes_in_flight

(see Appendix B.2) to be larger than the congestion window, unless

the packet is sent on a PTO timer expiration (see Section 5.2).

6.1. Explicit Congestion Notification

If a path has been verified to support ECN [RFC3168] [RFC8311], QUIC

treats a Congestion Experienced(CE) codepoint in the IP header as a

signal of congestion. This document specifies an endpoint's response

when its peer receives packets with the Congestion Experienced

codepoint.

6.2. Slow Start

QUIC begins every connection in slow start and exits slow start upon

loss or upon increase in the ECN-CE counter. QUIC re-enters slow

start any time the congestion window is less than ssthresh, which

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

only occurs after persistent congestion is declared. While in slow

start, QUIC increases the congestion window by the number of bytes

acknowledged when each acknowledgment is processed.

6.3. Congestion Avoidance

Slow start exits to congestion avoidance. Congestion avoidance in

NewReno uses an additive increase multiplicative decrease (AIMD)

approach that increases the congestion window by one maximum packet

size per congestion window acknowledged. When a loss is detected,

NewReno halves the congestion window and sets the slow start

threshold to the new congestion window.

6.4. Recovery Period

A recovery period is entered when loss or ECN-CE marking of a packet

is detected. A recovery period ends when a packet sent during the

recovery period is acknowledged. This is slightly different from

TCP's definition of recovery, which ends when the lost packet that

started recovery is acknowledged.

The recovery period limits congestion window reduction to once per

round trip. During recovery, the congestion window remains unchanged

irrespective of new losses or increases in the ECN-CE counter.

6.5. Ignoring Loss of Undecryptable Packets

During the handshake, some packet protection keys might not be

available when a packet arrives. In particular, Handshake and 0-RTT

packets cannot be processed until the Initial packets arrive, and 1-

RTT packets cannot be processed until the handshake completes.

Endpoints MAY ignore the loss of Handshake, 0-RTT, and 1-RTT packets

that might arrive before the peer has packet protection keys to

process those packets.

6.6. Probe Timeout

Probe packets MUST NOT be blocked by the congestion controller. A

sender MUST however count these packets as being additionally in

flight, since these packets add network load without establishing

packet loss. Note that sending probe packets might cause the

sender's bytes in flight to exceed the congestion window until an

acknowledgement is received that establishes loss or delivery of

packets.

6.7. Persistent Congestion

When an ACK frame is received that establishes loss of all in-flight

packets sent over a long enough period of time, the network is

considered to be experiencing persistent congestion. Commonly, this

¶

¶

¶

¶

¶

¶

can be established by consecutive PTOs, but since the PTO timer is

reset when a new ack-eliciting packet is sent, an explicit duration

must be used to account for those cases where PTOs do not occur or

are substantially delayed. This duration is computed as follows:

For example, assume:

smoothed_rtt = 1 rttvar = 0 max_ack_delay = 0

kPersistentCongestionThreshold = 3

If an ack-eliciting packet is sent at time = 0, the following

scenario would illustrate persistent congestion:

t=0 Send Pkt #1 (App Data)

t=1 Send Pkt #2 (PTO 1)

t=3 Send Pkt #3 (PTO 2)

t=7 Send Pkt #4 (PTO 3)

t=8 Recv ACK of Pkt #4

Table 1

The first three packets are determined to be lost when the

acknowlegement of packet 4 is received at t=8. The congestion period

is calculated as the time between the oldest and newest lost

packets: (3 - 0) = 3. The duration for persistent congestion is

equal to: (1 * kPersistentCongestionThreshold) = 3. Because the

threshold was reached and because none of the packets between the

oldest and the newest packets are acknowledged, the network is

considered to have experienced persistent congestion.

When persistent congestion is established, the sender's congestion

window MUST be reduced to the minimum congestion window

(kMinimumWindow). This response of collapsing the congestion window

on persistent congestion is functionally similar to a sender's

response on a Retransmission Timeout (RTO) in TCP [RFC5681] after

Tail Loss Probes (TLP) [RACK].

6.8. Pacing

This document does not specify a pacer, but it is RECOMMENDED that a

sender pace sending of all in-flight packets based on input from the

congestion controller. For example, a pacer might distribute the

congestion window over the smoothed RTT when used with a window-

based controller, and a pacer might use the rate estimate of a rate-

based controller.

¶

(smoothed_rtt + 4 * rttvar + max_ack_delay) *

 kPersistentCongestionThreshold

¶

¶

¶

¶

¶

¶

¶

An implementation should take care to architect its congestion

controller to work well with a pacer. For instance, a pacer might

wrap the congestion controller and control the availability of the

congestion window, or a pacer might pace out packets handed to it by

the congestion controller. Timely delivery of ACK frames is

important for efficient loss recovery. Packets containing only ACK

frames should therefore not be paced, to avoid delaying their

delivery to the peer.

Sending multiple packets into the network without any delay between

them creates a packet burst that might cause short-term congestion

and losses. Implementations MUST either use pacing or limit such

bursts to the initial congestion window, which is recommended to be

the minimum of 10 * max_datagram_size and max(2* max_datagram_size,

14720)), where max_datagram_size is the current maximum size of a

datagram for the connection, not including UDP or IP overhead.

As an example of a well-known and publicly available implementation

of a flow pacer, implementers are referred to the Fair Queue packet

scheduler (fq qdisc) in Linux (3.11 onwards).

6.9. Under-utilizing the Congestion Window

When bytes in flight is smaller than the congestion window and

sending is not pacing limited, the congestion window is under-

utilized. When this occurs, the congestion window SHOULD NOT be

increased in either slow start or congestion avoidance. This can

happen due to insufficient application data or flow control credit.

A sender MAY use the pipeACK method described in section 4.3 of

[RFC7661] to determine if the congestion window is sufficiently

utilized.

A sender that paces packets (see Section 6.8) might delay sending

packets and not fully utilize the congestion window due to this

delay. A sender should not consider itself application limited if it

would have fully utilized the congestion window without pacing

delay.

A sender MAY implement alternative mechanisms to update its

congestion window after periods of under-utilization, such as those

proposed for TCP in [RFC7661].

7. Security Considerations

7.1. Congestion Signals

Congestion control fundamentally involves the consumption of signals

- both loss and ECN codepoints - from unauthenticated entities. On-

path attackers can spoof or alter these signals. An attacker can

¶

¶

¶

¶

¶

¶

¶

[QUIC-TLS]

[QUIC-TRANSPORT]

cause endpoints to reduce their sending rate by dropping packets, or

alter send rate by changing ECN codepoints.

7.2. Traffic Analysis

Packets that carry only ACK frames can be heuristically identified

by observing packet size. Acknowledgement patterns may expose

information about link characteristics or application behavior.

Endpoints can use PADDING frames or bundle acknowledgments with

other frames to reduce leaked information.

7.3. Misreporting ECN Markings

A receiver can misreport ECN markings to alter the congestion

response of a sender. Suppressing reports of ECN-CE markings could

cause a sender to increase their send rate. This increase could

result in congestion and loss.

A sender MAY attempt to detect suppression of reports by marking

occasional packets that they send with ECN-CE. If a packet sent with

ECN-CE is not reported as having been CE marked when the packet is

acknowledged, then the sender SHOULD disable ECN for that path.

Reporting additional ECN-CE markings will cause a sender to reduce

their sending rate, which is similar in effect to advertising

reduced connection flow control limits and so no advantage is gained

by doing so.

Endpoints choose the congestion controller that they use. Though

congestion controllers generally treat reports of ECN-CE markings as

equivalent to loss [RFC8311], the exact response for each controller

could be different. Failure to correctly respond to information

about ECN markings is therefore difficult to detect.

8. IANA Considerations

This document has no IANA actions. Yet.

9. References

9.1. Normative References

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

tls-27, 9 March 2020, <https://tools.ietf.org/html/draft-

ietf-quic-tls-27>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-27, 9

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-tls-27
https://tools.ietf.org/html/draft-ietf-quic-tls-27

[RFC2119]

[RFC8085]

[RFC8174]

[FACK]

[RACK]

[RFC3168]

[RFC4653]

[RFC5681]

[RFC5682]

[RFC5827]

March 2020, <https://tools.ietf.org/html/draft-ietf-quic-

transport-27>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/info/rfc8085>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

Mathis, M. and J. Mahdavi, "Forward Acknowledgement:

Refining TCP Congestion Control", ACM SIGCOMM , August

1996.

Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha,

"RACK: a time-based fast loss detection algorithm for

TCP", Work in Progress, Internet-Draft, draft-ietf-tcpm-

rack-07, 17 January 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-tcpm-rack-07.txt>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

Bhandarkar, S., Reddy, A. L. N., Allman, M., and E.

Blanton, "Improving the Robustness of TCP to Non-

Congestion Events", RFC 4653, DOI 10.17487/RFC4653,

August 2006, <https://www.rfc-editor.org/info/rfc4653>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,

"Forward RTO-Recovery (F-RTO): An Algorithm for Detecting

Spurious Retransmission Timeouts with TCP", RFC 5682, DOI

10.17487/RFC5682, September 2009, <https://www.rfc-

editor.org/info/rfc5682>.

Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and

P. Hurtig, "Early Retransmit for TCP and Stream Control

https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-07.txt
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc4653
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5682
https://www.rfc-editor.org/info/rfc5682

[RFC6298]

[RFC6582]

[RFC6675]

[RFC6928]

[RFC7661]

[RFC8311]

[RFC8312]

Transmission Protocol (SCTP)", RFC 5827, DOI 10.17487/

RFC5827, May 2010, <https://www.rfc-editor.org/info/

rfc5827>.

Paxson, V., Allman, M., Chu, J., and M. Sargent,

"Computing TCP's Retransmission Timer", RFC 6298, DOI

10.17487/RFC6298, June 2011, <https://www.rfc-editor.org/

info/rfc6298>.

Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida,

"The NewReno Modification to TCP's Fast Recovery

Algorithm", RFC 6582, DOI 10.17487/RFC6582, April 2012,

<https://www.rfc-editor.org/info/rfc6582>.

Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo,

M., and Y. Nishida, "A Conservative Loss Recovery

Algorithm Based on Selective Acknowledgment (SACK) for

TCP", RFC 6675, DOI 10.17487/RFC6675, August 2012,

<https://www.rfc-editor.org/info/rfc6675>.

Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,

"Increasing TCP's Initial Window", RFC 6928, DOI

10.17487/RFC6928, April 2013, <https://www.rfc-

editor.org/info/rfc6928>.

Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating

TCP to Support Rate-Limited Traffic", RFC 7661, DOI

10.17487/RFC7661, October 2015, <https://www.rfc-

editor.org/info/rfc7661>.

Black, D., "Relaxing Restrictions on Explicit Congestion

Notification (ECN) Experimentation", RFC 8311, DOI

10.17487/RFC8311, January 2018, <https://www.rfc-

editor.org/info/rfc8311>.

Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and

R. Scheffenegger, "CUBIC for Fast Long-Distance

Networks", RFC 8312, DOI 10.17487/RFC8312, February 2018,

<https://www.rfc-editor.org/info/rfc8312>.

Appendix A. Loss Recovery Pseudocode

We now describe an example implementation of the loss detection

mechanisms described in Section 5.

A.1. Tracking Sent Packets

To correctly implement congestion control, a QUIC sender tracks

every ack-eliciting packet until the packet is acknowledged or lost.

It is expected that implementations will be able to access this

¶

https://www.rfc-editor.org/info/rfc5827
https://www.rfc-editor.org/info/rfc5827
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6582
https://www.rfc-editor.org/info/rfc6675
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc7661
https://www.rfc-editor.org/info/rfc7661
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8312

packet_number:

ack_eliciting:

in_flight:

sent_bytes:

time_sent:

kPacketThreshold:

kTimeThreshold:

kGranularity:

kInitialRtt:

kPacketNumberSpace:

information by packet number and crypto context and store the per-

packet fields (Appendix A.1.1) for loss recovery and congestion

control.

After a packet is declared lost, the endpoint can track it for an

amount of time comparable to the maximum expected packet reordering,

such as 1 RTT. This allows for detection of spurious

retransmissions.

Sent packets are tracked for each packet number space, and ACK

processing only applies to a single space.

A.1.1. Sent Packet Fields

The packet number of the sent packet.

A boolean that indicates whether a packet is ack-

eliciting. If true, it is expected that an acknowledgement will

be received, though the peer could delay sending the ACK frame

containing it by up to the MaxAckDelay.

A boolean that indicates whether the packet counts

towards bytes in flight.

The number of bytes sent in the packet, not including

UDP or IP overhead, but including QUIC framing overhead.

The time the packet was sent.

A.2. Constants of interest

Constants used in loss recovery are based on a combination of RFCs,

papers, and common practice.

Maximum reordering in packets before packet

threshold loss detection considers a packet lost. The RECOMMENDED

value is 3.

Maximum reordering in time before time threshold

loss detection considers a packet lost. Specified as an RTT

multiplier. The RECOMMENDED value is 9/8.

Timer granularity. This is a system-dependent value.

However, implementations SHOULD use a value no smaller than 1ms.

The RTT used before an RTT sample is taken. The

RECOMMENDED value is 500ms.

An enum to enumerate the three packet number

spaces.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

latest_rtt:

smoothed_rtt:

rttvar:

min_rtt:

max_ack_delay:

loss_detection_timer:

pto_count:

time_of_last_sent_ack_eliciting_packet[kPacketNumberSpace]:

largest_acked_packet[kPacketNumberSpace]:

loss_time[kPacketNumberSpace]:

sent_packets[kPacketNumberSpace]:

A.3. Variables of interest

Variables required to implement the congestion control mechanisms

are described in this section.

The most recent RTT measurement made when receiving an

ack for a previously unacked packet.

The smoothed RTT of the connection, computed as

described in [RFC6298]

The RTT variation, computed as described in [RFC6298]

The minimum RTT seen in the connection, ignoring ack

delay.

The maximum amount of time by which the receiver

intends to delay acknowledgments for packets in the

ApplicationData packet number space. The actual ack_delay in a

received ACK frame may be larger due to late timers, reordering,

or lost ACK frames.

Multi-modal timer used for loss detection.

The number of times a PTO has been sent without

receiving an ack.

The

time the most recent ack-eliciting packet was sent.

The largest packet number

acknowledged in the packet number space so far.

The time at which the next packet in

that packet number space will be considered lost based on

exceeding the reordering window in time.

An association of packet numbers

in a packet number space to information about them. Described in

detail above in Appendix A.1.

 enum kPacketNumberSpace {

 Initial,

 Handshake,

 ApplicationData,

 }

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A.4. Initialization

At the beginning of the connection, initialize the loss detection

variables as follows:

A.5. On Sending a Packet

After a packet is sent, information about the packet is stored. The

parameters to OnPacketSent are described in detail above in Appendix

A.1.1.

Pseudocode for OnPacketSent follows:

A.6. On Receiving an Acknowledgment

When an ACK frame is received, it may newly acknowledge any number

of packets.

Pseudocode for OnAckReceived and UpdateRtt follow:

¶

 loss_detection_timer.reset()

 pto_count = 0

 latest_rtt = 0

 smoothed_rtt = 0

 rttvar = 0

 min_rtt = 0

 max_ack_delay = 0

 for pn_space in [Initial, Handshake, ApplicationData]:

 largest_acked_packet[pn_space] = infinite

 time_of_last_sent_ack_eliciting_packet[pn_space] = 0

 loss_time[pn_space] = 0

¶

¶

¶

 OnPacketSent(packet_number, pn_space, ack_eliciting,

 in_flight, sent_bytes):

 sent_packets[pn_space][packet_number].packet_number =

 packet_number

 sent_packets[pn_space][packet_number].time_sent = now

 sent_packets[pn_space][packet_number].ack_eliciting =

 ack_eliciting

 sent_packets[pn_space][packet_number].in_flight = in_flight

 if (in_flight):

 if (ack_eliciting):

 time_of_last_sent_ack_eliciting_packet[pn_space] = now

 OnPacketSentCC(sent_bytes)

 sent_packets[pn_space][packet_number].size = sent_bytes

 SetLossDetectionTimer()

¶

¶

¶

OnAckReceived(ack, pn_space):

 if (largest_acked_packet[pn_space] == infinite):

 largest_acked_packet[pn_space] = ack.largest_acked

 else:

 largest_acked_packet[pn_space] =

 max(largest_acked_packet[pn_space], ack.largest_acked)

 // Nothing to do if there are no newly acked packets.

 newly_acked_packets = DetermineNewlyAckedPackets(ack, pn_space)

 if (newly_acked_packets.empty()):

 return

 // If the largest acknowledged is newly acked and

 // at least one ack-eliciting was newly acked, update the RTT.

 if (sent_packets[pn_space].contains(ack.largest_acked) &&

 IncludesAckEliciting(newly_acked_packets)):

 latest_rtt =

 now - sent_packets[pn_space][ack.largest_acked].time_sent

 ack_delay = 0

 if (pn_space == ApplicationData):

 ack_delay = ack.ack_delay

 UpdateRtt(ack_delay)

 // Process ECN information if present.

 if (ACK frame contains ECN information):

 ProcessECN(ack, pn_space)

 for acked_packet in newly_acked_packets:

 OnPacketAcked(acked_packet.packet_number, pn_space)

 DetectLostPackets(pn_space)

 pto_count = 0

 SetLossDetectionTimer()

UpdateRtt(ack_delay):

 // First RTT sample.

 if (smoothed_rtt == 0):

 min_rtt = latest_rtt

 smoothed_rtt = latest_rtt

 rttvar = latest_rtt / 2

 return

 // min_rtt ignores ack delay.

 min_rtt = min(min_rtt, latest_rtt)

 // Limit ack_delay by max_ack_delay

 ack_delay = min(ack_delay, max_ack_delay)

 // Adjust for ack delay if plausible.

 adjusted_rtt = latest_rtt

 if (latest_rtt > min_rtt + ack_delay):

 adjusted_rtt = latest_rtt - ack_delay

 rttvar = 3/4 * rttvar + 1/4 * abs(smoothed_rtt - adjusted_rtt)

 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * adjusted_rtt

¶

A.7. On Packet Acknowledgment

When a packet is acknowledged for the first time, the following

OnPacketAcked function is called. Note that a single ACK frame may

newly acknowledge several packets. OnPacketAcked must be called once

for each of these newly acknowledged packets.

OnPacketAcked takes two parameters: acked_packet, which is the

struct detailed in Appendix A.1.1, and the packet number space that

this ACK frame was sent for.

Pseudocode for OnPacketAcked follows:

A.8. Setting the Loss Detection Timer

QUIC loss detection uses a single timer for all timeout loss

detection. The duration of the timer is based on the timer's mode,

which is set in the packet and timer events further below. The

function SetLossDetectionTimer defined below shows how the single

timer is set.

This algorithm may result in the timer being set in the past,

particularly if timers wake up late. Timers set in the past SHOULD

fire immediately.

Pseudocode for SetLossDetectionTimer follows:

¶

¶

¶

 OnPacketAcked(acked_packet, pn_space):

 if (acked_packet.in_flight):

 OnPacketAckedCC(acked_packet)

 sent_packets[pn_space].remove(acked_packet.packet_number)

¶

¶

¶

¶

GetEarliestTimeAndSpace(times):

 time = times[Initial]

 space = Initial

 for pn_space in [Handshake, ApplicationData]:

 if (times[pn_space] != 0 &&

 (time == 0 || times[pn_space] < time) &&

 # Skip ApplicationData until handshake completion.

 (pn_space != ApplicationData ||

 IsHandshakeComplete()):

 time = times[pn_space];

 space = pn_space

 return time, space

PeerNotAwaitingAddressValidation():

 # Assume clients validate the server's address implicitly.

 if (endpoint is server):

 return true

 # Servers complete address validation when a

 # protected packet is received.

 return has received Handshake ACK ||

 has received 1-RTT ACK

SetLossDetectionTimer():

 earliest_loss_time, _ = GetEarliestTimeAndSpace(loss_time)

 if (earliest_loss_time != 0):

 // Time threshold loss detection.

 loss_detection_timer.update(earliest_loss_time)

 return

 if (no ack-eliciting packets in flight &&

 PeerNotAwaitingAddressValidation()):

 loss_detection_timer.cancel()

 return

 // Use a default timeout if there are no RTT measurements

 if (smoothed_rtt == 0):

 timeout = 2 * kInitialRtt

 else:

 // Calculate PTO duration

 timeout = smoothed_rtt + max(4 * rttvar, kGranularity) +

 max_ack_delay

 timeout = timeout * (2 ^ pto_count)

 sent_time, _ = GetEarliestTimeAndSpace(

 time_of_last_sent_ack_eliciting_packet)

 loss_detection_timer.update(sent_time + timeout)

¶

A.9. On Timeout

When the loss detection timer expires, the timer's mode determines

the action to be performed.

Pseudocode for OnLossDetectionTimeout follows:

A.10. Detecting Lost Packets

DetectLostPackets is called every time an ACK is received and

operates on the sent_packets for that packet number space.

Pseudocode for DetectLostPackets follows:

¶

¶

OnLossDetectionTimeout():

 earliest_loss_time, pn_space =

 GetEarliestTimeAndSpace(loss_time)

 if (earliest_loss_time != 0):

 // Time threshold loss Detection

 DetectLostPackets(pn_space)

 SetLossDetectionTimer()

 return

 if (endpoint is client without 1-RTT keys):

 // Client sends an anti-deadlock packet: Initial is padded

 // to earn more anti-amplification credit,

 // a Handshake packet proves address ownership.

 if (has Handshake keys):

 SendOneAckElicitingHandshakePacket()

 else:

 SendOneAckElicitingPaddedInitialPacket()

 else:

 // PTO. Send new data if available, else retransmit old data.

 // If neither is available, send a single PING frame.

 _, pn_space = GetEarliestTimeAndSpace(

 time_of_last_sent_ack_eliciting_packet)

 SendOneOrTwoAckElicitingPackets(pn_space)

 pto_count++

 SetLossDetectionTimer()

¶

¶

¶

kInitialWindow:

Appendix B. Congestion Control Pseudocode

We now describe an example implementation of the congestion

controller described in Section 6.

B.1. Constants of interest

Constants used in congestion control are based on a combination of

RFCs, papers, and common practice.

Default limit on the initial amount of data in

flight, in bytes. The RECOMMENDED value is the minimum of 10 *

max_datagram_size and max(2 * max_datagram_size, 14720)). This

follows the analysis and recommendations in [RFC6928], increasing

DetectLostPackets(pn_space):

 assert(largest_acked_packet[pn_space] != infinite)

 loss_time[pn_space] = 0

 lost_packets = {}

 loss_delay = kTimeThreshold * max(latest_rtt, smoothed_rtt)

 // Minimum time of kGranularity before packets are deemed lost.

 loss_delay = max(loss_delay, kGranularity)

 // Packets sent before this time are deemed lost.

 lost_send_time = now() - loss_delay

 foreach unacked in sent_packets[pn_space]:

 if (unacked.packet_number > largest_acked_packet[pn_space]):

 continue

 // Mark packet as lost, or set time when it should be marked.

 if (unacked.time_sent <= lost_send_time ||

 largest_acked_packet[pn_space] >=

 unacked.packet_number + kPacketThreshold):

 sent_packets[pn_space].remove(unacked.packet_number)

 if (unacked.in_flight):

 lost_packets.insert(unacked)

 else:

 if (loss_time[pn_space] == 0):

 loss_time[pn_space] = unacked.time_sent + loss_delay

 else:

 loss_time[pn_space] = min(loss_time[pn_space],

 unacked.time_sent + loss_delay)

 // Inform the congestion controller of lost packets and

 // let it decide whether to retransmit immediately.

 if (!lost_packets.empty()):

 OnPacketsLost(lost_packets)

¶

¶

¶

kMinimumWindow:

kLossReductionFactor:

kPersistentCongestionThreshold:

max_datagram_size:

ecn_ce_counters[kPacketNumberSpace]:

bytes_in_flight:

congestion_window:

congestion_recovery_start_time:

the byte limit to account for the smaller 8 byte overhead of UDP

compared to the 20 byte overhead for TCP.

Minimum congestion window in bytes. The RECOMMENDED

value is 2 * max_datagram_size.

Reduction in congestion window when a new

loss event is detected. The RECOMMENDED value is 0.5.

Period of time for persistent

congestion to be established, specified as a PTO multiplier. The

rationale for this threshold is to enable a sender to use initial

PTOs for aggressive probing, as TCP does with Tail Loss Probe

(TLP) [RACK], before establishing persistent congestion, as TCP

does with a Retransmission Timeout (RTO) [RFC5681]. The

RECOMMENDED value for kPersistentCongestionThreshold is 3, which

is approximately equivalent to having two TLPs before an RTO in

TCP.

B.2. Variables of interest

Variables required to implement the congestion control mechanisms

are described in this section.

The sender's current maximum payload size. Does

not include UDP or IP overhead. The max datagram size is used for

congestion window computations. An endpoint sets the value of

this variable based on its PMTU (see Section 14.1 of [QUIC-

TRANSPORT]), with a minimum value of 1200 bytes.

The highest value reported for

the ECN-CE counter in the packet number space by the peer in an

ACK frame. This value is used to detect increases in the reported

ECN-CE counter.

The sum of the size in bytes of all sent packets

that contain at least one ack-eliciting or PADDING frame, and

have not been acked or declared lost. The size does not include

IP or UDP overhead, but does include the QUIC header and AEAD

overhead. Packets only containing ACK frames do not count towards

bytes_in_flight to ensure congestion control does not impede

congestion feedback.

Maximum number of bytes-in-flight that may be

sent.

The time when QUIC first detects

congestion due to loss or ECN, causing it to enter congestion

recovery. When a packet sent after this time is acknowledged,

QUIC exits congestion recovery.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ssthresh:
Slow start threshold in bytes. When the congestion window

is below ssthresh, the mode is slow start and the window grows by

the number of bytes acknowledged.

B.3. Initialization

At the beginning of the connection, initialize the congestion

control variables as follows:

B.4. On Packet Sent

Whenever a packet is sent, and it contains non-ACK frames, the

packet increases bytes_in_flight.

B.5. On Packet Acknowledgement

Invoked from loss detection's OnPacketAcked and is supplied with the

acked_packet from sent_packets.

¶

¶

 congestion_window = kInitialWindow

 bytes_in_flight = 0

 congestion_recovery_start_time = 0

 ssthresh = infinite

 for pn_space in [Initial, Handshake, ApplicationData]:

 ecn_ce_counters[pn_space] = 0

¶

¶

 OnPacketSentCC(bytes_sent):

 bytes_in_flight += bytes_sent

¶

¶

 InCongestionRecovery(sent_time):

 return sent_time <= congestion_recovery_start_time

 OnPacketAckedCC(acked_packet):

 // Remove from bytes_in_flight.

 bytes_in_flight -= acked_packet.size

 if (InCongestionRecovery(acked_packet.time_sent)):

 // Do not increase congestion window in recovery period.

 return

 if (IsAppOrFlowControlLimited()):

 // Do not increase congestion_window if application

 // limited or flow control limited.

 return

 if (congestion_window < ssthresh):

 // Slow start.

 congestion_window += acked_packet.size

 else:

 // Congestion avoidance.

 congestion_window += max_datagram_size * acked_packet.size

 / congestion_window

¶

B.6. On New Congestion Event

Invoked from ProcessECN and OnPacketsLost when a new congestion

event is detected. May start a new recovery period and reduces the

congestion window.

B.7. Process ECN Information

Invoked when an ACK frame with an ECN section is received from the

peer.

B.8. On Packets Lost

Invoked from DetectLostPackets when packets are deemed lost.

¶

 CongestionEvent(sent_time):

 // Start a new congestion event if packet was sent after the

 // start of the previous congestion recovery period.

 if (!InCongestionRecovery(sent_time)):

 congestion_recovery_start_time = Now()

 congestion_window *= kLossReductionFactor

 congestion_window = max(congestion_window, kMinimumWindow)

 ssthresh = congestion_window

¶

¶

 ProcessECN(ack, pn_space):

 // If the ECN-CE counter reported by the peer has increased,

 // this could be a new congestion event.

 if (ack.ce_counter > ecn_ce_counters[pn_space]):

 ecn_ce_counters[pn_space] = ack.ce_counter

 CongestionEvent(sent_packets[ack.largest_acked].time_sent)

¶

¶

Appendix C. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-recovery-26

No changes.

C.2. Since draft-ietf-quic-recovery-25

No significant changes.

C.3. Since draft-ietf-quic-recovery-24

Require congestion control of some sort (#3247, #3244, #3248)

Set a minimum reordering threshold (#3256, #3240)

PTO is specific to a packet number space (#3067, #3074, #3066)

C.4. Since draft-ietf-quic-recovery-23

Define under-utilizing the congestion window (#2630, #2686,

#2675)

PTO MUST send data if possible (#3056, #3057)

 InPersistentCongestion(largest_lost_packet):

 pto = smoothed_rtt + max(4 * rttvar, kGranularity) +

 max_ack_delay

 congestion_period = pto * kPersistentCongestionThreshold

 // Determine if all packets in the time period before the

 // newest lost packet, including the edges, are marked

 // lost

 return AreAllPacketsLost(largest_lost_packet,

 congestion_period)

 OnPacketsLost(lost_packets):

 // Remove lost packets from bytes_in_flight.

 for (lost_packet : lost_packets):

 bytes_in_flight -= lost_packet.size

 largest_lost_packet = lost_packets.last()

 CongestionEvent(largest_lost_packet.time_sent)

 // Collapse congestion window if persistent congestion

 if (InPersistentCongestion(largest_lost_packet)):

 congestion_window = kMinimumWindow

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

Connection Close is not ack-eliciting (#3097, #3098)

MUST limit bursts to the initial congestion window (#3160)

Define the current max_datagram_size for congestion control

(#3041, #3167)

C.5. Since draft-ietf-quic-recovery-22

PTO should always send an ack-eliciting packet (#2895)

Unify the Handshake Timer with the PTO timer (#2648, #2658,

#2886)

Move ACK generation text to transport draft (#1860, #2916)

C.6. Since draft-ietf-quic-recovery-21

No changes

C.7. Since draft-ietf-quic-recovery-20

Path validation can be used as initial RTT value (#2644, #2687)

max_ack_delay transport parameter defaults to 0 (#2638, #2646)

Ack Delay only measures intentional delays induced by the

implementation (#2596, #2786)

C.8. Since draft-ietf-quic-recovery-19

Change kPersistentThreshold from an exponent to a multiplier

(#2557)

Send a PING if the PTO timer fires and there's nothing to send

(#2624)

Set loss delay to at least kGranularity (#2617)

Merge application limited and sending after idle sections. Always

limit burst size instead of requiring resetting CWND to initial

CWND after idle (#2605)

Rewrite RTT estimation, allow RTT samples where a newly acked

packet is ack-eliciting but the largest_acked is not (#2592)

Don't arm the handshake timer if there is no handshake data

(#2590)

Clarify that the time threshold loss alarm takes precedence over

the crypto handshake timer (#2590, #2620)

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

Change initial RTT to 500ms to align with RFC6298 (#2184)

C.9. Since draft-ietf-quic-recovery-18

Change IW byte limit to 14720 from 14600 (#2494)

Update PTO calculation to match RFC6298 (#2480, #2489, #2490)

Improve loss detection's description of multiple packet number

spaces and pseudocode (#2485, #2451, #2417)

Declare persistent congestion even if non-probe packets are sent

and don't make persistent congestion more aggressive than RTO

verified was (#2365, #2244)

Move pseudocode to the appendices (#2408)

What to send on multiple PTOs (#2380)

C.10. Since draft-ietf-quic-recovery-17

After Probe Timeout discard in-flight packets or send another

(#2212, #1965)

Endpoints discard initial keys as soon as handshake keys are

available (#1951, #2045)

0-RTT state is discarded when 0-RTT is rejected (#2300)

Loss detection timer is cancelled when ack-eliciting frames are

in flight (#2117, #2093)

Packets are declared lost if they are in flight (#2104)

After becoming idle, either pace packets or reset the congestion

controller (#2138, 2187)

Process ECN counts before marking packets lost (#2142)

Mark packets lost before resetting crypto_count and pto_count

(#2208, #2209)

Congestion and loss recovery state are discarded when keys are

discarded (#2327)

C.11. Since draft-ietf-quic-recovery-16

Unify TLP and RTO into a single PTO; eliminate min RTO, min TLP

and min crypto timeouts; eliminate timeout validation (#2114,

#2166, #2168, #1017)

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

Redefine how congestion avoidance in terms of when the period

starts (#1928, #1930)

Document what needs to be tracked for packets that are in flight

(#765, #1724, #1939)

Integrate both time and packet thresholds into loss detection

(#1969, #1212, #934, #1974)

Reduce congestion window after idle, unless pacing is used

(#2007, #2023)

Disable RTT calculation for packets that don't elicit

acknowledgment (#2060, #2078)

Limit ack_delay by max_ack_delay (#2060, #2099)

Initial keys are discarded once Handshake keys are available

(#1951, #2045)

Reorder ECN and loss detection in pseudocode (#2142)

Only cancel loss detection timer if ack-eliciting packets are in

flight (#2093, #2117)

C.12. Since draft-ietf-quic-recovery-14

Used max_ack_delay from transport params (#1796, #1782)

Merge ACK and ACK_ECN (#1783)

C.13. Since draft-ietf-quic-recovery-13

Corrected the lack of ssthresh reduction in CongestionEvent

pseudocode (#1598)

Considerations for ECN spoofing (#1426, #1626)

Clarifications for PADDING and congestion control (#837, #838,

#1517, #1531, #1540)

Reduce early retransmission timer to RTT/8 (#945, #1581)

Packets are declared lost after an RTO is verified (#935, #1582)

C.14. Since draft-ietf-quic-recovery-12

Changes to manage separate packet number spaces and encryption

levels (#1190, #1242, #1413, #1450)

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

Added ECN feedback mechanisms and handling; new ACK_ECN frame

(#804, #805, #1372)

C.15. Since draft-ietf-quic-recovery-11

No significant changes.

C.16. Since draft-ietf-quic-recovery-10

Improved text on ack generation (#1139, #1159)

Make references to TCP recovery mechanisms informational (#1195)

Define time_of_last_sent_handshake_packet (#1171)

Added signal from TLS the data it includes needs to be sent in a

Retry packet (#1061, #1199)

Minimum RTT (min_rtt) is initialized with an infinite value

(#1169)

C.17. Since draft-ietf-quic-recovery-09

No significant changes.

C.18. Since draft-ietf-quic-recovery-08

Clarified pacing and RTO (#967, #977)

C.19. Since draft-ietf-quic-recovery-07

Include Ack Delay in RTO(and TLP) computations (#981)

Ack Delay in SRTT computation (#961)

Default RTT and Slow Start (#590)

Many editorial fixes.

C.20. Since draft-ietf-quic-recovery-06

No significant changes.

C.21. Since draft-ietf-quic-recovery-05

Add more congestion control text (#776)

C.22. Since draft-ietf-quic-recovery-04

No significant changes.

*

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

C.23. Since draft-ietf-quic-recovery-03

No significant changes.

C.24. Since draft-ietf-quic-recovery-02

Integrate F-RTO (#544, #409)

Add congestion control (#545, #395)

Require connection abort if a skipped packet was acknowledged

(#415)

Simplify RTO calculations (#142, #417)

C.25. Since draft-ietf-quic-recovery-01

Overview added to loss detection

Changes initial default RTT to 100ms

Added time-based loss detection and fixes early retransmit

Clarified loss recovery for handshake packets

Fixed references and made TCP references informative

C.26. Since draft-ietf-quic-recovery-00

Improved description of constants and ACK behavior

C.27. Since draft-iyengar-quic-loss-recovery-01

Adopted as base for draft-ietf-quic-recovery

Updated authors/editors list

Added table of contents

Appendix D. Contributors

The IETF QUIC Working Group received an enormous amount of support

from many people. The following people provided substantive

contributions to this document: Alessandro Ghedini, Benjamin

Saunders, Gorry Fairhurst, 奥 (Kazuho Oku), Lars Eggert, Magnus

Westerlund, Marten Seemann, Martin Duke, Martin Thomson, Nick Banks,

Praveen Balasubramaniam.

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

Acknowledgments

Authors' Addresses

Jana Iyengar (editor)

Fastly

Email: jri.ietf@gmail.com

Ian Swett (editor)

Google

Email: ianswett@google.com

mailto:jri.ietf@gmail.com
mailto:ianswett@google.com

	QUIC Loss Detection and Congestion Control
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Design of the QUIC Transmission Machinery
	3.1. Relevant Differences Between QUIC and TCP
	3.1.1. Separate Packet Number Spaces
	3.1.2. Monotonically Increasing Packet Numbers
	3.1.3. Clearer Loss Epoch
	3.1.4. No Reneging
	3.1.5. More ACK Ranges
	3.1.6. Explicit Correction For Delayed Acknowledgements

	4. Estimating the Round-Trip Time
	4.1. Generating RTT samples
	4.2. Estimating min_rtt
	4.3. Estimating smoothed_rtt and rttvar

	5. Loss Detection
	5.1. Acknowledgement-based Detection
	5.1.1. Packet Threshold
	5.1.2. Time Threshold

	5.2. Probe Timeout
	5.2.1. Computing PTO

	5.3. Handshakes and New Paths
	5.3.1. Sending Probe Packets
	5.3.2. Loss Detection

	5.4. Handling Retry Packets
	5.5. Discarding Keys and Packet State

	6. Congestion Control
	6.1. Explicit Congestion Notification
	6.2. Slow Start
	6.3. Congestion Avoidance
	6.4. Recovery Period
	6.5. Ignoring Loss of Undecryptable Packets
	6.6. Probe Timeout
	6.7. Persistent Congestion
	6.8. Pacing
	6.9. Under-utilizing the Congestion Window

	7. Security Considerations
	7.1. Congestion Signals
	7.2. Traffic Analysis
	7.3. Misreporting ECN Markings

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Loss Recovery Pseudocode
	A.1. Tracking Sent Packets
	A.1.1. Sent Packet Fields

	A.2. Constants of interest
	A.3. Variables of interest
	A.4. Initialization
	A.5. On Sending a Packet
	A.6. On Receiving an Acknowledgment
	A.7. On Packet Acknowledgment
	A.8. Setting the Loss Detection Timer
	A.9. On Timeout
	A.10. Detecting Lost Packets
	Appendix B. Congestion Control Pseudocode
	B.1. Constants of interest
	B.2. Variables of interest
	B.3. Initialization
	B.4. On Packet Sent
	B.5. On Packet Acknowledgement
	B.6. On New Congestion Event
	B.7. Process ECN Information
	B.8. On Packets Lost
	Appendix C. Change Log
	C.1. Since draft-ietf-quic-recovery-26
	C.2. Since draft-ietf-quic-recovery-25
	C.3. Since draft-ietf-quic-recovery-24
	C.4. Since draft-ietf-quic-recovery-23
	C.5. Since draft-ietf-quic-recovery-22
	C.6. Since draft-ietf-quic-recovery-21
	C.7. Since draft-ietf-quic-recovery-20
	C.8. Since draft-ietf-quic-recovery-19
	C.9. Since draft-ietf-quic-recovery-18
	C.10. Since draft-ietf-quic-recovery-17
	C.11. Since draft-ietf-quic-recovery-16
	C.12. Since draft-ietf-quic-recovery-14
	C.13. Since draft-ietf-quic-recovery-13
	C.14. Since draft-ietf-quic-recovery-12
	C.15. Since draft-ietf-quic-recovery-11
	C.16. Since draft-ietf-quic-recovery-10
	C.17. Since draft-ietf-quic-recovery-09
	C.18. Since draft-ietf-quic-recovery-08
	C.19. Since draft-ietf-quic-recovery-07
	C.20. Since draft-ietf-quic-recovery-06
	C.21. Since draft-ietf-quic-recovery-05
	C.22. Since draft-ietf-quic-recovery-04
	C.23. Since draft-ietf-quic-recovery-03
	C.24. Since draft-ietf-quic-recovery-02
	C.25. Since draft-ietf-quic-recovery-01
	C.26. Since draft-ietf-quic-recovery-00
	C.27. Since draft-iyengar-quic-loss-recovery-01
	Appendix D. Contributors
	Acknowledgments
	Authors' Addresses

