
QUIC M. Thomson, Ed.
Internet-Draft Mozilla
Intended status: Standards Track S. Turner, Ed, Ed.
Expires: June 1, 2017 sn3rd
 November 28, 2016

Using Transport Layer Security (TLS) to Secure QUIC
draft-ietf-quic-tls-00

Abstract

 This document describes how Transport Layer Security (TLS) can be
 used to secure QUIC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 1, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson & Turner, Ed Expires June 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC over TLS November 2016

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Protocol Overview . 3
2.1. Handshake Overview 4

3. TLS in Stream 1 . 6
3.1. Handshake and Setup Sequence 6

4. QUIC Packet Protection 8
4.1. Key Phases . 8
4.1.1. Retransmission of TLS Handshake Messages 10
4.1.2. Distinguishing 0-RTT and 1-RTT Packets 10

4.2. QUIC Key Expansion 10
4.2.1. 0-RTT Secret . 11
4.2.2. 1-RTT Secrets . 11
4.2.3. Packet Protection Key and IV 12

4.3. QUIC AEAD Usage . 13
4.4. Key Update . 14
4.5. Packet Numbers . 15

5. Pre-handshake QUIC Messages 16
5.1. Unprotected Frames Prior to Handshake Completion 17
5.1.1. STREAM Frames . 17
5.1.2. ACK Frames . 17
5.1.3. WINDOW_UPDATE Frames 17
5.1.4. Denial of Service with Unprotected Packets 18

5.2. Use of 0-RTT Keys . 19
5.3. Protected Frames Prior to Handshake Completion 19

6. QUIC-Specific Additions to the TLS Handshake 20
6.1. Protocol and Version Negotiation 20
6.2. QUIC Extension . 21
6.3. Source Address Validation 21
6.4. Priming 0-RTT . 21

7. Security Considerations 22
7.1. Packet Reflection Attack Mitigation 22
7.2. Peer Denial of Service 23

8. IANA Considerations . 23
9. References . 23
9.1. Normative References 23
9.2. Informative References 24

Appendix A. Contributors . 25
Appendix B. Acknowledgments 25

 Authors' Addresses . 25

1. Introduction

 QUIC [QUIC-TRANSPORT] provides a multiplexed transport. When used
 for HTTP [RFC7230] semantics [QUIC-HTTP] it provides several key

https://datatracker.ietf.org/doc/html/rfc7230

Thomson & Turner, Ed Expires June 1, 2017 [Page 2]

Internet-Draft QUIC over TLS November 2016

 advantages over HTTP/1.1 [RFC7230] or HTTP/2 [RFC7540] over TCP
 [RFC0793].

 This document describes how QUIC can be secured using Transport Layer
 Security (TLS) version 1.3 [I-D.ietf-tls-tls13]. TLS 1.3 provides
 critical latency improvements for connection establishment over
 previous versions. Absent packet loss, most new connections can be
 established and secured within a single round trip; on subsequent
 connections between the same client and server, the client can often
 send application data immediately, that is, zero round trip setup.

 This document describes how the standardized TLS 1.3 can act a
 security component of QUIC. The same design could work for TLS 1.2,
 though few of the benefits QUIC provides would be realized due to the
 handshake latency in versions of TLS prior to 1.3.

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

2. Protocol Overview

 QUIC [QUIC-TRANSPORT] can be separated into several modules:

 1. The basic frame envelope describes the common packet layout.
 This layer includes connection identification, version
 negotiation, and includes markers that allow the framing and
 public reset to be identified.

 2. The public reset is an unprotected packet that allows an
 intermediary (an entity that is not part of the security context)
 to request the termination of a QUIC connection.

 3. Version negotiation frames are used to agree on a common version
 of QUIC to use.

 4. Framing comprises most of the QUIC protocol. Framing provides a
 number of different types of frame, each with a specific purpose.
 Framing supports frames for both congestion management and stream
 multiplexing. Framing additionally provides a liveness testing
 capability (the PING frame).

 5. Encryption provides confidentiality and integrity protection for
 frames. All frames are protected based on keying material
 derived from the TLS connection running on stream 1. Prior to
 this, data is protected with the 0-RTT keys.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2119

Thomson & Turner, Ed Expires June 1, 2017 [Page 3]

Internet-Draft QUIC over TLS November 2016

 6. Multiplexed streams are the primary payload of QUIC. These
 provide reliable, in-order delivery of data and are used to carry
 the encryption handshake and transport parameters (stream 1),
 HTTP header fields (stream 3), and HTTP requests and responses.
 Frames for managing multiplexing include those for creating and
 destroying streams as well as flow control and priority frames.

 7. Congestion management includes packet acknowledgment and other
 signal required to ensure effective use of available link
 capacity.

 8. A complete TLS connection is run on stream 1. This includes the
 entire TLS record layer. As the TLS connection reaches certain
 states, keying material is provided to the QUIC encryption layer
 for protecting the remainder of the QUIC traffic.

 9. The HTTP mapping [QUIC-HTTP] provides an adaptation to HTTP
 semantics that is based on HTTP/2.

 The relative relationship of these components are pictorally
 represented in Figure 1.

 +-----+------+
 | TLS | HTTP |
 +-----+------+------------+
 | Streams | Congestion |
 +------------+------------+
 | Frames +--------+---------+
 + +---------------------+ Public | Version |
 | | Encryption | Reset | Nego. |
 +---+---------------------+--------+---------+
 | Envelope |
 +--+
 | UDP |
 +--+

 Figure 1: QUIC Structure

 This document defines the cryptographic parts of QUIC. This includes
 the handshake messages that are exchanged on stream 1, plus the
 record protection that is used to encrypt and authenticate all other
 frames.

2.1. Handshake Overview

 TLS 1.3 provides two basic handshake modes of interest to QUIC:

Thomson & Turner, Ed Expires June 1, 2017 [Page 4]

Internet-Draft QUIC over TLS November 2016

 o A full handshake in which the client is able to send application
 data after one round trip and the server immediately after
 receiving the first message from the client.

 o A 0-RTT handshake in which the client uses information about the
 server to send immediately. This data can be replayed by an
 attacker so it MUST NOT carry a self-contained trigger for any
 non-idempotent action.

 A simplified TLS 1.3 handshake with 0-RTT application data is shown
 in Figure 2, see [I-D.ietf-tls-tls13] for more options and details.

 Client Server

 ClientHello
 (0-RTT Application Data)
 (end_of_early_data) -------->
 ServerHello
 {EncryptedExtensions}
 {ServerConfiguration}
 {Certificate}
 {CertificateVerify}
 {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 Figure 2: TLS Handshake with 0-RTT

 Two additional variations on this basic handshake exchange are
 relevant to this document:

 o The server can respond to a ClientHello with a HelloRetryRequest,
 which adds an additional round trip prior to the basic exchange.
 This is needed if the server wishes to request a different key
 exchange key from the client. HelloRetryRequest is also used to
 verify that the client is correctly able to receive packets on the
 address it claims to have (see Section 6.3).

 o A pre-shared key mode can be used for subsequent handshakes to
 avoid public key operations. This is the basis for 0-RTT data,
 even if the remainder of the connection is protected by a new
 Diffie-Hellman exchange.

Thomson & Turner, Ed Expires June 1, 2017 [Page 5]

Internet-Draft QUIC over TLS November 2016

3. TLS in Stream 1

 QUIC completes its cryptographic handshake on stream 1, which means
 that the negotiation of keying material happens after the QUIC
 protocol has started. This simplifies the use of TLS since QUIC is
 able to ensure that the TLS handshake packets are delivered reliably
 and in order.

 QUIC Stream 1 carries a complete TLS connection. This includes the
 TLS record layer in its entirety. QUIC provides for reliable and in-
 order delivery of the TLS handshake messages on this stream.

 Prior to the completion of the TLS handshake, QUIC frames can be
 exchanged. However, these frames are not authenticated or
 confidentiality protected. Section 5 covers some of the implications
 of this design and limitations on QUIC operation during this phase.

 Once the TLS handshake completes, QUIC frames are protected using
 QUIC record protection, see Section 4. If 0-RTT is possible, QUIC
 frames sent by the client can be protected with 0-RTT keys; these
 packets are subject to replay.

3.1. Handshake and Setup Sequence

 The integration of QUIC with a TLS handshake is shown in more detail
 in Figure 3. QUIC "STREAM" frames on stream 1 carry the TLS
 handshake. QUIC performs loss recovery [QUIC-RECOVERY] for this
 stream and ensures that TLS handshake messages are delivered in the
 correct order.

Thomson & Turner, Ed Expires June 1, 2017 [Page 6]

Internet-Draft QUIC over TLS November 2016

 Client Server

 @A QUIC STREAM Frame(s) <1>:
 ClientHello
 + QUIC Setup Parameters
 -------->
 0-RTT Key => @B

 @B QUIC STREAM Frame(s) <any stream>:
 Replayable QUIC Frames
 -------->

 QUIC STREAM Frame <1>: @A
 ServerHello
 {Handshake Messages}
 <--------
 1-RTT Key => @C

 QUIC Frames <any> @C
 <--------
 @A QUIC STREAM Frame(s) <1>:
 (end_of_early_data)
 {Finished}
 -------->

 @C QUIC Frames <any> <-------> QUIC Frames <any> @C

 Figure 3: QUIC over TLS Handshake

 In Figure 3, symbols mean:

 o "<" and ">" enclose stream numbers.

 o "@" indicates the key phase that is currently used for protecting
 QUIC packets.

 o "(" and ")" enclose messages that are protected with TLS 0-RTT
 handshake or application keys.

 o "{" and "}" enclose messages that are protected by the TLS
 Handshake keys.

 If 0-RTT is not possible, then the client does not send frames
 protected by the 0-RTT key (@B). In that case, the only key
 transition on the client is from cleartext (@A) to 1-RTT protection
 (@C).

Thomson & Turner, Ed Expires June 1, 2017 [Page 7]

Internet-Draft QUIC over TLS November 2016

 The server sends TLS handshake messages without protection (@A). The
 server transitions from no protection (@A) to full 1-RTT protection
 (@C) after it sends the last of its handshake messages.

 Some TLS handshake messages are protected by the TLS handshake record
 protection. However, keys derived at this stage are not exported for
 use in QUIC. QUIC frames from the server are sent in the clear until
 the final transition to 1-RTT keys.

 The client transitions from @A to @B when sending 0-RTT data, but it
 transitions back to @A when sending its second flight of TLS
 handshake messages. This introduces a potential for confusion
 between packets with 0-RTT protection (@B) and those with 1-RTT
 protection (@C) at the server if there is loss or reordering of the
 handshake packets. See Section 4.1.2 for details on how this is
 addressed.

4. QUIC Packet Protection

 QUIC provides a packet protection layer that is responsible for
 authenticated encryption of packets. The packet protection layer
 uses keys provided by the TLS connection and authenticated encryption
 to provide confidentiality and integrity protection for the content
 of packets (see Section 4.3).

 Different keys are used for QUIC packet protection and TLS record
 protection. Having separate QUIC and TLS record protection means
 that TLS records can be protected by two different keys. This
 redundancy is limited to a only a few TLS records, and is maintained
 for the sake of simplicity.

 Keying material for new keys is exported from TLS using TLS
 exporters. These exported values are used to produce the keying
 material used to protect packets (see Section 4.2).

4.1. Key Phases

 At several stages during the handshake, new keying material can be
 exported from TLS and used for QUIC packet protection. At each
 transition during the handshake a new secret is exported from TLS and
 keying material is derived from that secret.

 Every time that a new set of keys is used for protecting outbound
 packets, the KEY_PHASE bit in the public flags is toggled. The
 KEY_PHASE bit starts out with a value of 0 and is set to 1 when the
 first encrypted packets are sent. Once the connection is fully
 enabled, the KEY_PHASE bit can toggle between 0 and 1 as keys are
 updated (see Section 4.4).

Thomson & Turner, Ed Expires June 1, 2017 [Page 8]

Internet-Draft QUIC over TLS November 2016

 The KEY_PHASE bit on the public flags is the most significant bit
 (0x80).

 The KEY_PHASE bit allows a recipient to detect a change in keying
 material without necessarily needing to receive the first packet that
 triggered the change. An endpoint that notices a changed KEY_PHASE
 bit can update keys and decrypt the packet that contains the changed
 bit. This isn't possible during the handshake, because the entire
 first flight of TLS handshake messages is used as input to key
 derivation.

 The following transitions are possible:

 o When using 0-RTT, the client transitions to using 0-RTT keys after
 sending the ClientHello. The KEY_PHASE bit on 0-RTT packets sent
 by the client is set to 1.

 o The server sends messages in the clear until the TLS handshake
 completes. The KEY_PHASE bit on packets sent by the server is set
 to 0 when the handshake is in progress. Note that TLS handshake
 messages will still be protected by TLS record protection based on
 the TLS handshake traffic keys.

 o The server transitions to using 1-RTT keys after sending its
 Finished message. This causes the KEY_PHASE bit on packets sent
 by the server to be set to 1.

 o The client transitions back to cleartext when sending its second
 flight of TLS handshake messages. KEY_PHASE on the client's
 second flight of handshake messages is set back to 0. This
 includes a TLS end_of_early_data alert, which is protected with
 TLS (not QUIC) 0-RTT keys.

 o The client transitions to sending with 1-RTT keys and a KEY_PHASE
 of 1 after sending its Finished message.

 o Once the handshake is complete and all TLS handshake messages have
 been sent and acknowledged, either endpoint can send packets with
 a new set of keys. This is signaled by toggling the value of the
 KEY_PHASE bit, see Section 4.4.

 At each transition point, both keying material (see Section 4.2) and
 the AEAD function used by TLS is interchanged with the values that
 are currently in use for protecting outbound packets. Once a change
 of keys has been made, packets with higher sequence numbers MUST use
 the new keying material until a newer set of keys (and AEAD) are
 used. The exception to this is that retransmissions of TLS handshake

Thomson & Turner, Ed Expires June 1, 2017 [Page 9]

Internet-Draft QUIC over TLS November 2016

 packets MUST use the keys that they were originally protected with
 (see Section 4.1.1).

4.1.1. Retransmission of TLS Handshake Messages

 TLS handshake messages need to be retransmitted with the same level
 of cryptographic protection that was originally used to protect them.
 Newer keys cannot be used to protect QUIC packets that carry TLS
 messages.

 A client would be unable to decrypt retransmissions of a server's
 handshake messages that are protected using the 1-RTT keys, since the
 calculation of the 1-RTT keys depends on the contents of the
 handshake messages.

 This restriction means the creation of an exception to the
 requirement to always use new keys for sending once they are
 available. A server MUST mark the retransmitted handshake messages
 with the same KEY_PHASE as the original messages to allow a recipient
 to distinguish retransmitted messages.

 This rule also prevents a key update from being initiated while there
 are any outstanding handshake messages, see Section 4.4.

4.1.2. Distinguishing 0-RTT and 1-RTT Packets

 Loss or reordering of the client's second flight of TLS handshake
 messages can cause 0-RTT packet and 1-RTT packets to become
 indistinguishable from each other when they arrive at the server.
 Both 0-RTT packets use a KEY_PHASE of 1.

 A server does not need to receive the client's second flight of TLS
 handshake messages in order to derive the secrets needed to decrypt
 1-RTT messages. Thus, a server is able to decrypt 1-RTT messages
 that arrive prior to receiving the client's Finished message. Of
 course, any decision that might be made based on client
 authentication needs to be delayed until the client's authentication
 messages have been received and validated.

 A server can distinguish between 0-RTT and 1-RTT packets by
 TBDTBDTBD.

4.2. QUIC Key Expansion

 QUIC uses a system of packet protection secrets, keys and IVs that
 are modelled on the system used in TLS [I-D.ietf-tls-tls13]. The
 secrets that QUIC uses as the basis of its key schedule are obtained
 using TLS exporters (see Section 7.3.3 of [I-D.ietf-tls-tls13]).

Thomson & Turner, Ed Expires June 1, 2017 [Page 10]

Internet-Draft QUIC over TLS November 2016

 QUIC uses the Pseudo-Random Function (PRF) hash function negotiated
 by TLS for key derivation. For example, if TLS is using the
 TLS_AES_128_GCM_SHA256, the SHA-256 hash function is used.

4.2.1. 0-RTT Secret

 0-RTT keys are those keys that are used in resumed connections prior
 to the completion of the TLS handshake. Data sent using 0-RTT keys
 might be replayed and so has some restrictions on its use, see

Section 5.2. 0-RTT keys are used after sending or receiving a
 ClientHello.

 The secret is exported from TLS using the exporter label "EXPORTER-
 QUIC 0-RTT Secret" and an empty context. The size of the secret MUST
 be the size of the hash output for the PRF hash function negotiated
 by TLS. This uses the TLS early_exporter_secret. The QUIC 0-RTT
 secret is only used for protection of packets sent by the client.

 client_0rtt_secret
 = TLS-Exporter("EXPORTER-QUIC 0-RTT Secret"
 "", Hash.length)

4.2.2. 1-RTT Secrets

 1-RTT keys are used by both client and server after the TLS handshake
 completes. There are two secrets used at any time: one is used to
 derive packet protection keys for packets sent by the client, the
 other for protecting packets sent by the server.

 The initial client packet protection secret is exported from TLS
 using the exporter label "EXPORTER-QUIC client 1-RTT Secret"; the
 initial server packet protection secret uses the exporter label
 "EXPORTER-QUIC server 1-RTT Secret". Both exporters use an empty
 context. The size of the secret MUST be the size of the hash output
 for the PRF hash function negotiated by TLS.

 client_pp_secret_0
 = TLS-Exporter("EXPORTER-QUIC client 1-RTT Secret"
 "", Hash.length)
 server_pp_secret_0
 = TLS-Exporter("EXPORTER-QUIC server 1-RTT Secret"
 "", Hash.length)

 After a key update (see Section 4.4), these secrets are updated using
 the HKDF-Expand-Label function defined in Section 7.1 of
 [I-D.ietf-tls-tls13], using the PRF hash function negotiated by TLS.
 The replacement secret is derived using the existing Secret, a Label
 of "QUIC client 1-RTT Secret" for the client and "QUIC server 1-RTT

Thomson & Turner, Ed Expires June 1, 2017 [Page 11]

Internet-Draft QUIC over TLS November 2016

 Secret", an empty HashValue, and the same output Length as the hash
 function selected by TLS for its PRF.

 client_pp_secret_<N+1>
 = HKDF-Expand-Label(client_pp_secret_<N>,
 "QUIC client 1-RTT Secret",
 "", Hash.length)
 server_pp_secret_<N+1>
 = HKDF-Expand-Label(server_pp_secret_<N>,
 "QUIC server 1-RTT Secret",
 "", Hash.length)

 For example, the client secret is updated using HKDF-Expand [RFC5869]
 with an info parameter that includes the PRF hash length encoded on
 two octets, the string "TLS 1.3, QUIC client 1-RTT secret" and a zero
 octet. This equates to a single use of HMAC [RFC2104] with the
 negotiated PRF hash function:

 info = Hash.length / 256 || Hash.length % 256 ||
 "TLS 1.3, QUIC client 1-RTT secret" || 0x00
 client_pp_secret_<N+1>
 = HMAC-Hash(client_pp_secret_<N>, info || 0x01)

4.2.3. Packet Protection Key and IV

 The complete key expansion uses an identical process for key
 expansion as defined in Section 7.3 of [I-D.ietf-tls-tls13], using
 different values for the input secret. QUIC uses the AEAD function
 negotiated by TLS.

 The key and IV used to protect the 0-RTT packets sent by a client use
 the QUIC 0-RTT secret. This uses the HKDF-Expand-Label with the PRF
 hash function negotiated by TLS. The length of the output is
 determined by the requirements of the AEAD function selected by TLS.

 client_0rtt_key = HKDF-Expand-Label(client_0rtt_secret,
 "key", "", key_length)
 client_0rtt_iv = HKDF-Expand-Label(client_0rtt_secret,
 "iv", "", iv_length)

 Similarly, the key and IV used to protect 1-RTT packets sent by both
 client and server use the current packet protection secret.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc2104

Thomson & Turner, Ed Expires June 1, 2017 [Page 12]

Internet-Draft QUIC over TLS November 2016

 client_pp_key_<N> = HKDF-Expand-Label(client_pp_secret_<N>,
 "key", "", key_length)
 client_pp_iv_<N> = HKDF-Expand-Label(client_pp_secret_<N>,
 "iv", "", iv_length)
 server_pp_key_<N> = HKDF-Expand-Label(server_pp_secret_<N>,
 "key", "", key_length)
 server_pp_iv_<N> = HKDF-Expand-Label(server_pp_secret_<N>,
 "iv", "", iv_length)

 The QUIC record protection initially starts without keying material.
 When the TLS state machine reports that the ClientHello has been
 sent, the 0-RTT keys can be generated and installed for writing.
 When the TLS state machine reports completion of the handshake, the
 1-RTT keys can be generated and installed for writing.

4.3. QUIC AEAD Usage

 The Authentication Encryption with Associated Data (AEAD) [RFC5116]
 function used for QUIC packet protection is AEAD that is negotiated
 for use with the TLS connection. For example, if TLS is using the
 TLS_AES_128_GCM_SHA256, the AEAD_AES_128_GCM function is used.

 Regular QUIC packets are protected by an AEAD [RFC5116]. Version
 negotiation and public reset packets are not protected.

 Once TLS has provided a key, the contents of regular QUIC packets
 immediately after any TLS messages have been sent are protected by
 the AEAD selected by TLS.

 The key, K, for the AEAD is either the Client Write Key or the Server
 Write Key, derived as defined in Section 4.2.

 The nonce, N, for the AEAD is formed by combining either the Client
 Write IV or Server Write IV with packet numbers. The 64 bits of the
 reconstructed QUIC packet number in network byte order is left-padded
 with zeros to the N_MAX parameter of the AEAD (see Section 4 of
 [RFC5116]). The exclusive OR of the padded packet number and the IV
 forms the AEAD nonce.

 The associated data, A, for the AEAD is an empty sequence.

 The input plaintext, P, for the AEAD is the contents of the QUIC
 frame following the packet number, as described in [QUIC-TRANSPORT].

 The output ciphertext, C, of the AEAD is transmitted in place of P.

 Prior to TLS providing keys, no record protection is performed and
 the plaintext, P, is transmitted unmodified.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116#section-4
https://datatracker.ietf.org/doc/html/rfc5116#section-4

Thomson & Turner, Ed Expires June 1, 2017 [Page 13]

Internet-Draft QUIC over TLS November 2016

4.4. Key Update

 Once the TLS handshake is complete, the KEY_PHASE bit allows for
 refreshes of keying material by either peer. Endpoints start using
 updated keys immediately without additional signaling; the change in
 the KEY_PHASE bit indicates that a new key is in use.

 An endpoint MUST NOT initiate more than one key update at a time. A
 new key cannot be used until the endpoint has received and
 successfully decrypted a packet with a matching KEY_PHASE.

 A receiving endpoint detects an update when the KEY_PHASE bit doesn't
 match what it is expecting. It creates a new secret (see

Section 4.2) and the corresponding read key and IV. If the packet
 can be decrypted and authenticated using these values, then a write
 keys and IV are generated and the active keys are replaced. The next
 packet sent by the endpoint will then use the new keys.

 An endpoint doesn't need to send packets immediately when it detects
 that its peer has updated keys. The next packets that it sends will
 simply use the new keys. If an endpoint detects a second update
 before it has sent any packets with updated keys it indicates that
 its peer has updated keys twice without awaiting a reciprocal update.
 An endpoint MUST treat consecutive key updates as a fatal error and
 abort the connection.

 An endpoint SHOULD retain old keys for a short period to allow it to
 decrypt packets with smaller packet numbers than the packet that
 triggered the key update. This allows an endpoint to consume packets
 that are reordered around the transition between keys. Packets with
 higher packet numbers always use the updated keys and MUST NOT be
 decrypted with old keys.

 Keys and their corresponding secrets SHOULD be discarded when an
 endpoints has received all packets with sequence numbers lower than
 the lowest sequence number used for the new key, or when it
 determines that the length of the delay to affected packets is
 excessive.

 This ensures that once the handshake is complete, there are at most
 two keys to distinguish between at any one time, for which the
 KEY_PHASE bit is sufficient.

Thomson & Turner, Ed Expires June 1, 2017 [Page 14]

Internet-Draft QUIC over TLS November 2016

 Initiating Peer Responding Peer

 @M QUIC Frames
 New Keys -> @N
 @N QUIC Frames
 -------->
 QUIC Frames @M
 New Keys -> @N
 QUIC Frames @N
 <--------

 Figure 4: Key Update

 As shown in Figure 3 and Figure 4, there is never a situation where
 there are more than two different sets of keying material that might
 be received by a peer. Once both sending and receiving keys have
 been updated,

 A server cannot initiate a key update until it has received the
 client's Finished message. Otherwise, packets protected by the
 updated keys could be confused for retransmissions of handshake
 messages. A client cannot initiate a key update until all of its
 handshake messages have been acknowledged by the server.

4.5. Packet Numbers

 QUIC has a single, contiguous packet number space. In comparison,
 TLS restarts its sequence number each time that record protection
 keys are changed. The sequence number restart in TLS ensures that a
 compromise of the current traffic keys does not allow an attacker to
 truncate the data that is sent after a key update by sending
 additional packets under the old key (causing new packets to be
 discarded).

 QUIC does not assume a reliable transport and is therefore required
 to handle attacks where packets are dropped in other ways.

 The packet number is not reset and it is not permitted to go higher
 than its maximum value of 2^64-1. This establishes a hard limit on
 the number of packets that can be sent. Before this limit is
 reached, some AEAD functions have limits for how many packets can be
 encrypted under the same key and IV (see for example [AEBounds]). An
 endpoint MUST initiate a key update (Section 4.4) prior to exceeding
 any limit set for the AEAD that is in use.

 TLS maintains a separate sequence number that is used for record
 protection on the connection that is hosted on stream 1. This
 sequence number is reset according to the rules in the TLS protocol.

Thomson & Turner, Ed Expires June 1, 2017 [Page 15]

Internet-Draft QUIC over TLS November 2016

5. Pre-handshake QUIC Messages

 Implementations MUST NOT exchange data on any stream other than
 stream 1 prior to the completion of the TLS handshake. However, QUIC
 requires the use of several types of frame for managing loss
 detection and recovery. In addition, it might be useful to use the
 data acquired during the exchange of unauthenticated messages for
 congestion management.

 This section generally only applies to TLS handshake messages from
 both peers and acknowledgments of the packets carrying those
 messages. In many cases, the need for servers to provide
 acknowledgments is minimal, since the messages that clients send are
 small and implicitly acknowledged by the server's responses.

 The actions that a peer takes as a result of receiving an
 unauthenticated packet needs to be limited. In particular, state
 established by these packets cannot be retained once record
 protection commences.

 There are several approaches possible for dealing with
 unauthenticated packets prior to handshake completion:

 o discard and ignore them

 o use them, but reset any state that is established once the
 handshake completes

 o use them and authenticate them afterwards; failing the handshake
 if they can't be authenticated

 o save them and use them when they can be properly authenticated

 o treat them as a fatal error

 Different strategies are appropriate for different types of data.
 This document proposes that all strategies are possible depending on
 the type of message.

 o Transport parameters and options are made usable and authenticated
 as part of the TLS handshake (see Section 6.2).

 o Most unprotected messages are treated as fatal errors when
 received except for the small number necessary to permit the
 handshake to complete (see Section 5.1).

 o Protected packets can either be discarded or saved and later used
 (see Section 5.3).

Thomson & Turner, Ed Expires June 1, 2017 [Page 16]

Internet-Draft QUIC over TLS November 2016

5.1. Unprotected Frames Prior to Handshake Completion

 This section describes the handling of messages that are sent and
 received prior to the completion of the TLS handshake.

 Sending and receiving unprotected messages is hazardous. Unless
 expressly permitted, receipt of an unprotected message of any kind
 MUST be treated as a fatal error.

5.1.1. STREAM Frames

 "STREAM" frames for stream 1 are permitted. These carry the TLS
 handshake messages.

 Receiving unprotected "STREAM" frames for other streams MUST be
 treated as a fatal error.

5.1.2. ACK Frames

 "ACK" frames are permitted prior to the handshake being complete.
 Information learned from "ACK" frames cannot be entirely relied upon,
 since an attacker is able to inject these packets. Timing and packet
 retransmission information from "ACK" frames is critical to the
 functioning of the protocol, but these frames might be spoofed or
 altered.

 Endpoints MUST NOT use an unprotected "ACK" frame to acknowledge data
 that was protected by 0-RTT or 1-RTT keys. An endpoint MUST ignore
 an unprotected "ACK" frame if it claims to acknowledge data that was
 protected data. Such an acknowledgement can only serve as a denial
 of service, since an endpoint that can read protected data is always
 permitted to send protected data.

 An endpoint SHOULD use data from unprotected or 0-RTT-protected "ACK"
 frames only during the initial handshake and while they have
 insufficient information from 1-RTT-protected "ACK" frames. Once
 sufficient information has been obtained from protected messages,
 information obtained from less reliable sources can be discarded.

5.1.3. WINDOW_UPDATE Frames

 "WINDOW_UPDATE" frames MUST NOT be sent unprotected.

 Though data is exchanged on stream 1, the initial flow control window
 is is sufficiently large to allow the TLS handshake to complete.
 This limits the maximum size of the TLS handshake and would prevent a
 server or client from using an abnormally large certificate chain.

Thomson & Turner, Ed Expires June 1, 2017 [Page 17]

Internet-Draft QUIC over TLS November 2016

 Stream 1 is exempt from the connection-level flow control window.

5.1.4. Denial of Service with Unprotected Packets

 Accepting unprotected - specifically unauthenticated - packets
 presents a denial of service risk to endpoints. An attacker that is
 able to inject unprotected packets can cause a recipient to drop even
 protected packets with a matching sequence number. The spurious
 packet shadows the genuine packet, causing the genuine packet to be
 ignored as redundant.

 Once the TLS handshake is complete, both peers MUST ignore
 unprotected packets. The handshake is complete when the server
 receives a client's Finished message and when a client receives an
 acknowledgement that their Finished message was received. From that
 point onward, unprotected messages can be safely dropped. Note that
 the client could retransmit its Finished message to the server, so
 the server cannot reject such a message.

 Since only TLS handshake packets and acknowledgments are sent in the
 clear, an attacker is able to force implementations to rely on
 retransmission for packets that are lost or shadowed. Thus, an
 attacker that intends to deny service to an endpoint has to drop or
 shadow protected packets in order to ensure that their victim
 continues to accept unprotected packets. The ability to shadow
 packets means that an attacker does not need to be on path.

 ISSUE: This would not be an issue if QUIC had a randomized starting
 sequence number. If we choose to randomize, we fix this problem
 and reduce the denial of service exposure to on-path attackers.
 The only possible problem is in authenticating the initial value,
 so that peers can be sure that they haven't missed an initial
 message.

 In addition to denying endpoints messages, an attacker to generate
 packets that cause no state change in a recipient. See Section 7.2
 for a discussion of these risks.

 To avoid receiving TLS packets that contain no useful data, a TLS
 implementation MUST reject empty TLS handshake records and any record
 that is not permitted by the TLS state machine. Any TLS application
 data or alerts - other than a single end_of_early_data at the
 appropriate time - that is received prior to the end of the handshake
 MUST be treated as a fatal error.

Thomson & Turner, Ed Expires June 1, 2017 [Page 18]

Internet-Draft QUIC over TLS November 2016

5.2. Use of 0-RTT Keys

 If 0-RTT keys are available, the lack of replay protection means that
 restrictions on their use are necessary to avoid replay attacks on
 the protocol.

 A client MUST only use 0-RTT keys to protect data that is idempotent.
 A client MAY wish to apply additional restrictions on what data it
 sends prior to the completion of the TLS handshake. A client
 otherwise treats 0-RTT keys as equivalent to 1-RTT keys.

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of the
 server's handshake messages. A client SHOULD stop sending 0-RTT data
 if it receives an indication that 0-RTT data has been rejected. In
 addition to a ServerHello without an early_data extension, an
 unprotected handshake message with a KEY_PHASE bit set to 0 indicates
 that 0-RTT data has been rejected.

 A client SHOULD send its end_of_early_data alert only after it has
 received all of the server's handshake messages. Alternatively
 phrased, a client is encouraged to use 0-RTT keys until 1-RTT keys
 become available. This prevents stalling of the connection and
 allows the client to send continuously.

 A server MUST NOT use 0-RTT keys to protect anything other than TLS
 handshake messages. Servers therefore treat packets protected with
 0-RTT keys as equivalent to unprotected packets in determining what
 is permissible to send. A server protects handshake messages using
 the 0-RTT key if it decides to accept a 0-RTT key. A server MUST
 still include the early_data extension in its ServerHello message.

 This restriction prevents a server from responding to a request using
 frames protected by the 0-RTT keys. This ensures that all
 application data from the server are always protected with keys that
 have forward secrecy. However, this results in head-of-line blocking
 at the client because server responses cannot be decrypted until all
 the server's handshake messages are received by the client.

5.3. Protected Frames Prior to Handshake Completion

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final handshake messages are received. If these
 can be decrypted successfully, such packets MAY be stored and used
 once the handshake is complete.

 Unless expressly permitted below, encrypted packets MUST NOT be used
 prior to completing the TLS handshake, in particular the receipt of a

Thomson & Turner, Ed Expires June 1, 2017 [Page 19]

Internet-Draft QUIC over TLS November 2016

 valid Finished message and any authentication of the peer. If
 packets are processed prior to completion of the handshake, an
 attacker might use the willingness of an implementation to use these
 packets to mount attacks.

 TLS handshake messages are covered by record protection during the
 handshake, once key agreement has completed. This means that
 protected messages need to be decrypted to determine if they are TLS
 handshake messages or not. Similarly, "ACK" and "WINDOW_UPDATE"
 frames might be needed to successfully complete the TLS handshake.

 Any timestamps present in "ACK" frames MUST be ignored rather than
 causing a fatal error. Timestamps on protected frames MAY be saved
 and used once the TLS handshake completes successfully.

 An endpoint MAY save the last protected "WINDOW_UPDATE" frame it
 receives for each stream and apply the values once the TLS handshake
 completes. Failing to do this might result in temporary stalling of
 affected streams.

6. QUIC-Specific Additions to the TLS Handshake

 QUIC uses the TLS handshake for more than just negotiation of
 cryptographic parameters. The TLS handshake validates protocol
 version selection, provides preliminary values for QUIC transport
 parameters, and allows a server to perform return routeability checks
 on clients.

6.1. Protocol and Version Negotiation

 The QUIC version negotiation mechanism is used to negotiate the
 version of QUIC that is used prior to the completion of the
 handshake. However, this packet is not authenticated, enabling an
 active attacker to force a version downgrade.

 To ensure that a QUIC version downgrade is not forced by an attacker,
 version information is copied into the TLS handshake, which provides
 integrity protection for the QUIC negotiation. This does not prevent
 version downgrade during the handshake, though it means that such a
 downgrade causes a handshake failure.

 Protocols that use the QUIC transport MUST use Application Layer
 Protocol Negotiation (ALPN) [RFC7301]. The ALPN identifier for the
 protocol MUST be specific to the QUIC version that it operates over.
 When constructing a ClientHello, clients MUST include a list of all
 the ALPN identifiers that they support, regardless of whether the
 QUIC version that they have currently selected supports that
 protocol.

https://datatracker.ietf.org/doc/html/rfc7301

Thomson & Turner, Ed Expires June 1, 2017 [Page 20]

Internet-Draft QUIC over TLS November 2016

 Servers SHOULD select an application protocol based solely on the
 information in the ClientHello, not using the QUIC version that the
 client has selected. If the protocol that is selected is not
 supported with the QUIC version that is in use, the server MAY send a
 QUIC version negotiation packet to select a compatible version.

 If the server cannot select a combination of ALPN identifier and QUIC
 version it MUST abort the connection. A client MUST abort a
 connection if the server picks an incompatible version of QUIC
 version and ALPN.

6.2. QUIC Extension

 QUIC defines an extension for use with TLS. That extension defines
 transport-related parameters. This provides integrity protection for
 these values. Including these in the TLS handshake also make the
 values that a client sets available to a server one-round trip
 earlier than parameters that are carried in QUIC frames. This
 document does not define that extension.

6.3. Source Address Validation

 QUIC implementations describe a source address token. This is an
 opaque blob that a server might provide to clients when they first
 use a given source address. The client returns this token in
 subsequent messages as a return routeability check. That is, the
 client returns this token to prove that it is able to receive packets
 at the source address that it claims. This prevents the server from
 being used in packet reflection attacks (see Section 7.1).

 A source address token is opaque and consumed only by the server.
 Therefore it can be included in the TLS 1.3 pre-shared key identifier
 for 0-RTT handshakes. Servers that use 0-RTT are advised to provide
 new pre-shared key identifiers after every handshake to avoid
 linkability of connections by passive observers. Clients MUST use a
 new pre-shared key identifier for every connection that they
 initiate; if no pre-shared key identifier is available, then
 resumption is not possible.

 A server that is under load might include a source address token in
 the cookie extension of a HelloRetryRequest.

6.4. Priming 0-RTT

 QUIC uses TLS without modification. Therefore, it is possible to use
 a pre-shared key that was obtained in a TLS connection over TCP to
 enable 0-RTT in QUIC. Similarly, QUIC can provide a pre-shared key
 that can be used to enable 0-RTT in TCP.

Thomson & Turner, Ed Expires June 1, 2017 [Page 21]

Internet-Draft QUIC over TLS November 2016

 All the restrictions on the use of 0-RTT apply, with the exception of
 the ALPN label, which MUST only change to a label that is explicitly
 designated as being compatible. The client indicates which ALPN
 label it has chosen by placing that ALPN label first in the ALPN
 extension.

 The certificate that the server uses MUST be considered valid for
 both connections, which will use different protocol stacks and could
 use different port numbers. For instance, HTTP/1.1 and HTTP/2
 operate over TLS and TCP, whereas QUIC operates over UDP.

 Source address validation is not completely portable between
 different protocol stacks. Even if the source IP address remains
 constant, the port number is likely to be different. Packet
 reflection attacks are still possible in this situation, though the
 set of hosts that can initiate these attacks is greatly reduced. A
 server might choose to avoid source address validation for such a
 connection, or allow an increase to the amount of data that it sends
 toward the client without source validation.

7. Security Considerations

 There are likely to be some real clangers here eventually, but the
 current set of issues is well captured in the relevant sections of
 the main text.

 Never assume that because it isn't in the security considerations
 section it doesn't affect security. Most of this document does.

7.1. Packet Reflection Attack Mitigation

 A small ClientHello that results in a large block of handshake
 messages from a server can be used in packet reflection attacks to
 amplify the traffic generated by an attacker.

 Certificate caching [RFC7924] can reduce the size of the server's
 handshake messages significantly.

 A client SHOULD also pad [RFC7685] its ClientHello to at least 1024
 octets. A server is less likely to generate a packet reflection
 attack if the data it sends is a small multiple of the data it
 receives. A server SHOULD use a HelloRetryRequest if the size of the
 handshake messages it sends is likely to exceed the size of the
 ClientHello.

https://datatracker.ietf.org/doc/html/rfc7924
https://datatracker.ietf.org/doc/html/rfc7685

Thomson & Turner, Ed Expires June 1, 2017 [Page 22]

Internet-Draft QUIC over TLS November 2016

7.2. Peer Denial of Service

 QUIC, TLS and HTTP/2 all contain a messages that have legitimate uses
 in some contexts, but that can be abused to cause a peer to expend
 processing resources without having any observable impact on the
 state of the connection. If processing is disproportionately large
 in comparison to the observable effects on bandwidth or state, then
 this could allow a malicious peer to exhaust processing capacity
 without consequence.

 QUIC prohibits the sending of empty "STREAM" frames unless they are
 marked with the FIN bit. This prevents "STREAM" frames from being
 sent that only waste effort.

 TLS records SHOULD always contain at least one octet of a handshake
 messages or alert. Records containing only padding are permitted
 during the handshake, but an excessive number might be used to
 generate unnecessary work. Once the TLS handshake is complete,
 endpoints SHOULD NOT send TLS application data records unless it is
 to hide the length of QUIC records. QUIC packet protection does not
 include any allowance for padding; padded TLS application data
 records can be used to mask the length of QUIC frames.

 While there are legitimate uses for some redundant packets,
 implementations SHOULD track redundant packets and treat excessive
 volumes of any non-productive packets as indicative of an attack.

8. IANA Considerations

 This document has no IANA actions. Yet.

9. References

9.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", November 2016.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", November 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18

Thomson & Turner, Ed Expires June 1, 2017 [Page 23]

Internet-Draft QUIC over TLS November 2016

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685, DOI 10.17487/RFC7685,
 October 2015, <http://www.rfc-editor.org/info/rfc7685>.

9.2. Informative References

 [AEBounds]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", March 2016,
 <http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", November 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7685
http://www.rfc-editor.org/info/rfc7685
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793

Thomson & Turner, Ed Expires June 1, 2017 [Page 24]

Internet-Draft QUIC over TLS November 2016

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <http://www.rfc-editor.org/info/rfc7924>.

Appendix A. Contributors

 Ryan Hamilton was originally an author of this specification.

Appendix B. Acknowledgments

 This document has benefited from input from Christian Huitema, Jana
 Iyengar, Adam Langley, Roberto Peon, Eric Rescorla, Ian Swett, and
 many others.

Authors' Addresses

 Martin Thomson (editor)
 Mozilla

 Email: martin.thomson@gmail.com

 Sean Turner (editor)
 sn3rd

https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7924
http://www.rfc-editor.org/info/rfc7924

Thomson & Turner, Ed Expires June 1, 2017 [Page 25]

