
QUIC M. Thomson, Ed.
Internet-Draft Mozilla
Intended status: Standards Track S. Turner, Ed.
Expires: October 19, 2018 sn3rd
 April 17, 2018

Using Transport Layer Security (TLS) to Secure QUIC
draft-ietf-quic-tls-11

Abstract

 This document describes how Transport Layer Security (TLS) is used to
 secure QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-tls [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 19, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thomson & Turner Expires October 19, 2018 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC over TLS April 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Notational Conventions 4
3. Protocol Overview . 4
3.1. TLS Overview . 5
3.2. TLS Handshake . 6

4. TLS Usage . 7
4.1. Handshake and Setup Sequence 8
4.2. Interface to TLS . 9
4.2.1. Handshake Interface 10
4.2.2. Source Address Validation 11
4.2.3. Key Ready Events 12
4.2.4. Secret Export . 12
4.2.5. TLS Interface Summary 12

4.3. TLS Version . 13
4.4. ClientHello Size . 13
4.5. Peer Authentication 14
4.6. Rejecting 0-RTT . 14
4.7. TLS Errors . 15

5. QUIC Packet Protection 15
5.1. Installing New Keys 15
5.2. Enabling 0-RTT . 15
5.3. QUIC Key Expansion 16
5.3.1. QHKDF-Expand . 16
5.3.2. Handshake Secrets 17
5.3.3. 0-RTT Secret . 17
5.3.4. 1-RTT Secrets . 18
5.3.5. Updating 1-RTT Secrets 18
5.3.6. Packet Protection Keys 18

5.4. QUIC AEAD Usage . 19
5.5. Packet Numbers . 20
5.6. Receiving Protected Packets 21
5.7. Packet Number Gaps 21

6. Key Phases . 21
6.1. Packet Protection for the TLS Handshake 22
6.1.1. Initial Key Transitions 22

 6.1.2. Retransmission and Acknowledgment of Unprotected

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Thomson & Turner Expires October 19, 2018 [Page 2]

Internet-Draft QUIC over TLS April 2018

 Packets . 23
6.2. Key Update . 24

7. Client Address Validation 25
7.1. HelloRetryRequest Address Validation 26
7.1.1. Stateless Address Validation 26
7.1.2. Sending HelloRetryRequest 27

7.2. NewSessionTicket Address Validation 27
7.3. Address Validation Token Integrity 28

8. Pre-handshake QUIC Messages 28
8.1. Unprotected Packets Prior to Handshake Completion 29
8.1.1. STREAM Frames . 29
8.1.2. ACK Frames . 29
8.1.3. Updates to Data and Stream Limits 30
8.1.4. Handshake Failures 31
8.1.5. Address Verification 31
8.1.6. Denial of Service with Unprotected Packets 31

8.2. Use of 0-RTT Keys . 32
8.3. Receiving Out-of-Order Protected Frames 32

9. QUIC-Specific Additions to the TLS Handshake 33
9.1. Protocol and Version Negotiation 33
9.2. QUIC Transport Parameters Extension 33

10. Security Considerations 34
10.1. Packet Reflection Attack Mitigation 34
10.2. Peer Denial of Service 34

11. Error Codes . 35
12. IANA Considerations . 35
13. References . 36
13.1. Normative References 36
13.2. Informative References 37
13.3. URIs . 38

Appendix A. Contributors . 38
Appendix B. Acknowledgments 38
Appendix C. Change Log . 38
C.1. Since draft-ietf-quic-tls-10 38
C.2. Since draft-ietf-quic-tls-09 38
C.3. Since draft-ietf-quic-tls-08 38
C.4. Since draft-ietf-quic-tls-07 38
C.5. Since draft-ietf-quic-tls-05 39
C.6. Since draft-ietf-quic-tls-04 39
C.7. Since draft-ietf-quic-tls-03 39
C.8. Since draft-ietf-quic-tls-02 39
C.9. Since draft-ietf-quic-tls-01 39
C.10. Since draft-ietf-quic-tls-00 39
C.11. Since draft-thomson-quic-tls-01 40

 Authors' Addresses . 40

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01

Thomson & Turner Expires October 19, 2018 [Page 3]

Internet-Draft QUIC over TLS April 2018

1. Introduction

 This document describes how QUIC [QUIC-TRANSPORT] is secured using
 Transport Layer Security (TLS) version 1.3 [TLS13]. TLS 1.3 provides
 critical latency improvements for connection establishment over
 previous versions. Absent packet loss, most new connections can be
 established and secured within a single round trip; on subsequent
 connections between the same client and server, the client can often
 send application data immediately, that is, using a zero round trip
 setup.

 This document describes how the standardized TLS 1.3 acts a security
 component of QUIC. The same design could work for TLS 1.2, though
 few of the benefits QUIC provides would be realized due to the
 handshake latency in versions of TLS prior to 1.3.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology established in [QUIC-TRANSPORT].

 For brevity, the acronym TLS is used to refer to TLS 1.3.

 TLS terminology is used when referring to parts of TLS. Though TLS
 assumes a continuous stream of octets, it divides that stream into
 records. Most relevant to QUIC are the records that contain TLS
 handshake messages, which are discrete messages that are used for
 key agreement, authentication and parameter negotiation. Ordinarily,
 TLS records can also contain _application data_, though in the QUIC
 usage there is no use of TLS application data.

3. Protocol Overview

 QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality
 and integrity protection of packets. For this it uses keys derived
 from a TLS 1.3 connection [TLS13]; QUIC also relies on TLS 1.3 for
 authentication and negotiation of parameters that are critical to
 security and performance.

 Rather than a strict layering, these two protocols are co-dependent:
 QUIC uses the TLS handshake; TLS uses the reliability and ordered
 delivery provided by QUIC streams.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thomson & Turner Expires October 19, 2018 [Page 4]

Internet-Draft QUIC over TLS April 2018

 This document defines how QUIC interacts with TLS. This includes a
 description of how TLS is used, how keying material is derived from
 TLS, and the application of that keying material to protect QUIC
 packets. Figure 1 shows the basic interactions between TLS and QUIC,
 with the QUIC packet protection being called out specially.

 +------------+ +------------+
	------ Handshake ------>	
	<-- Validate Address ---	
	-- OK/Error/Validate -->	
	<----- Handshake -------	
QUIC	------ Validate ------->	TLS
	<------ 0-RTT OK -------	
	<------ 1-RTT OK -------	
	<--- Handshake Done ----	
 +------------+ +------------+
 | ^ ^ |
 | Protect | Protected | |
 v | Packet | |
 +------------+ / /
 | QUIC | / /
 | Packet |-------- Get Secret -------' /
 | Protection |<-------- Secret -----------'
 +------------+

 Figure 1: QUIC and TLS Interactions

 The initial state of a QUIC connection has packets exchanged without
 any form of protection. In this state, QUIC is limited to using
 stream 0 and associated packets. Stream 0 is reserved for a TLS
 connection. This is a complete TLS connection as it would appear
 when layered over TCP; the only difference is that QUIC provides the
 reliability and ordering that would otherwise be provided by TCP.

 At certain points during the TLS handshake, keying material is
 exported from the TLS connection for use by QUIC. This keying
 material is used to derive packet protection keys. Details on how
 and when keys are derived and used are included in Section 5.

3.1. TLS Overview

 TLS provides two endpoints with a way to establish a means of
 communication over an untrusted medium (that is, the Internet) that
 ensures that messages they exchange cannot be observed, modified, or
 forged.

Thomson & Turner Expires October 19, 2018 [Page 5]

Internet-Draft QUIC over TLS April 2018

 TLS features can be separated into two basic functions: an
 authenticated key exchange and record protection. QUIC primarily
 uses the authenticated key exchange provided by TLS but provides its
 own packet protection.

 The TLS authenticated key exchange occurs between two entities:
 client and server. The client initiates the exchange and the server
 responds. If the key exchange completes successfully, both client
 and server will agree on a secret. TLS supports both pre-shared key
 (PSK) and Diffie-Hellman (DH) key exchanges. PSK is the basis for
 0-RTT; the latter provides perfect forward secrecy (PFS) when the DH
 keys are destroyed.

 After completing the TLS handshake, the client will have learned and
 authenticated an identity for the server and the server is optionally
 able to learn and authenticate an identity for the client. TLS
 supports X.509 [RFC5280] certificate-based authentication for both
 server and client.

 The TLS key exchange is resistent to tampering by attackers and it
 produces shared secrets that cannot be controlled by either
 participating peer.

3.2. TLS Handshake

 TLS 1.3 provides two basic handshake modes of interest to QUIC:

 o A full 1-RTT handshake in which the client is able to send
 application data after one round trip and the server immediately
 responds after receiving the first handshake message from the
 client.

 o A 0-RTT handshake in which the client uses information it has
 previously learned about the server to send application data
 immediately. This application data can be replayed by an attacker
 so it MUST NOT carry a self-contained trigger for any non-
 idempotent action.

 A simplified TLS 1.3 handshake with 0-RTT application data is shown
 in Figure 2, see [TLS13] for more options and details.

https://datatracker.ietf.org/doc/html/rfc5280

Thomson & Turner Expires October 19, 2018 [Page 6]

Internet-Draft QUIC over TLS April 2018

 Client Server

 ClientHello
 (0-RTT Application Data) -------->
 ServerHello
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data]
 (EndOfEarlyData)
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 Figure 2: TLS Handshake with 0-RTT

 This 0-RTT handshake is only possible if the client and server have
 previously communicated. In the 1-RTT handshake, the client is
 unable to send protected application data until it has received all
 of the handshake messages sent by the server.

 Two additional variations on this basic handshake exchange are
 relevant to this document:

 o The server can respond to a ClientHello with a HelloRetryRequest,
 which adds an additional round trip prior to the basic exchange.
 This is needed if the server wishes to request a different key
 exchange key from the client. HelloRetryRequest is also used to
 verify that the client is correctly able to receive packets on the
 address it claims to have (see [QUIC-TRANSPORT]).

 o A pre-shared key mode can be used for subsequent handshakes to
 reduce the number of public key operations. This is the basis for
 0-RTT data, even if the remainder of the connection is protected
 by a new Diffie-Hellman exchange.

4. TLS Usage

 QUIC reserves stream 0 for a TLS connection. Stream 0 contains a
 complete TLS connection, which includes the TLS record layer. Other
 than the definition of a QUIC-specific extension (see Section 9.2),
 TLS is unmodified for this use. This means that TLS will apply
 confidentiality and integrity protection to its records. In
 particular, TLS record protection is what provides confidentiality
 protection for the TLS handshake messages sent by the server.

 QUIC permits a client to send frames on streams starting from the
 first packet. The initial packet from a client contains a stream
 frame for stream 0 that contains the first TLS handshake messages

Thomson & Turner Expires October 19, 2018 [Page 7]

Internet-Draft QUIC over TLS April 2018

 from the client. This allows the TLS handshake to start with the
 first packet that a client sends.

 QUIC packets are protected using a scheme that is specific to QUIC,
 see Section 5. Keys are exported from the TLS connection when they
 become available using a TLS exporter (see Section 7.5 of [TLS13] and

Section 5.3). After keys are exported from TLS, QUIC manages its own
 key schedule.

4.1. Handshake and Setup Sequence

 The integration of QUIC with a TLS handshake is shown in more detail
 in Figure 3. QUIC "STREAM" frames on stream 0 carry the TLS
 handshake. QUIC performs loss recovery [QUIC-RECOVERY] for this
 stream and ensures that TLS handshake messages are delivered in the
 correct order.

 Client Server

 @H QUIC STREAM Frame(s) <0>:
 ClientHello
 + QUIC Extension
 -------->
 0-RTT Key => @0

 @0 QUIC STREAM Frame(s) <any stream>:
 Replayable QUIC Frames
 -------->

 QUIC STREAM Frame <0>: @H
 ServerHello
 {TLS Handshake Messages}
 <--------
 1-RTT Key => @1

 QUIC Frames <any> @1
 <--------
 @H QUIC STREAM Frame(s) <0>:
 (EndOfEarlyData)
 {Finished}
 -------->

 @1 QUIC Frames <any> <-------> QUIC Frames <any> @1

 Figure 3: QUIC over TLS Handshake

 In Figure 3, symbols mean:

Thomson & Turner Expires October 19, 2018 [Page 8]

Internet-Draft QUIC over TLS April 2018

 o "<" and ">" enclose stream numbers.

 o "@" indicates the keys that are used for protecting the QUIC
 packet (H = handshake, using keys from the well-known cleartext
 packet secret; 0 = 0-RTT keys; 1 = 1-RTT keys).

 o "(" and ")" enclose messages that are protected with TLS 0-RTT
 handshake or application keys.

 o "{" and "}" enclose messages that are protected by the TLS
 Handshake keys.

 If 0-RTT is not attempted, then the client does not send packets
 protected by the 0-RTT key (@0). In that case, the only key
 transition on the client is from handshake packets (@H) to 1-RTT
 protection (@1), which happens after it sends its final set of TLS
 handshake messages.

 Note: two different types of packet are used during the handshake by
 both client and server. The Initial packet carries a TLS ClientHello
 message; the remainder of the TLS handshake is carried in Handshake
 packets. The Retry packet carries a TLS HelloRetryRequest, if it is
 needed, and Handshake packets carry the remainder of the server
 handshake.

 The server sends TLS handshake messages without protection (@H). The
 server transitions from no protection (@H) to full 1-RTT protection
 (@1) after it sends the last of its handshake messages.

 Some TLS handshake messages are protected by the TLS handshake record
 protection. These keys are not exported from the TLS connection for
 use in QUIC. QUIC packets from the server are sent in the clear
 until the final transition to 1-RTT keys.

 The client transitions from handshake (@H) to 0-RTT keys (@0) when
 sending 0-RTT data, and subsequently to to 1-RTT keys (@1) after its
 second flight of TLS handshake messages. This creates the potential
 for unprotected packets to be received by a server in close proximity
 to packets that are protected with 1-RTT keys.

 More information on key transitions is included in Section 6.1.

4.2. Interface to TLS

 As shown in Figure 1, the interface from QUIC to TLS consists of four
 primary functions: Handshake, Source Address Validation, Key Ready
 Events, and Secret Export.

Thomson & Turner Expires October 19, 2018 [Page 9]

Internet-Draft QUIC over TLS April 2018

 Additional functions might be needed to configure TLS.

4.2.1. Handshake Interface

 In order to drive the handshake, TLS depends on being able to send
 and receive handshake messages on stream 0. There are two basic
 functions on this interface: one where QUIC requests handshake
 messages and one where QUIC provides handshake packets.

 Before starting the handshake QUIC provides TLS with the transport
 parameters (see Section 9.2) that it wishes to carry.

 A QUIC client starts TLS by requesting TLS handshake octets from TLS.
 The client acquires handshake octets before sending its first packet.

 A QUIC server starts the process by providing TLS with stream 0
 octets.

 Each time that an endpoint receives data on stream 0, it delivers the
 octets to TLS if it is able. Each time that TLS is provided with new
 data, new handshake octets are requested from TLS. TLS might not
 provide any octets if the handshake messages it has received are
 incomplete or it has no data to send.

 At the server, when TLS provides handshake octets, it also needs to
 indicate whether the octets contain a HelloRetryRequest. A
 HelloRetryRequest MUST always be sent in a Retry packet, so the QUIC
 server needs to know whether the octets are a HelloRetryRequest.

 Once the TLS handshake is complete, this is indicated to QUIC along
 with any final handshake octets that TLS needs to send. TLS also
 provides QUIC with the transport parameters that the peer advertised
 during the handshake.

 Once the handshake is complete, TLS becomes passive. TLS can still
 receive data from its peer and respond in kind, but it will not need
 to send more data unless specifically requested - either by an
 application or QUIC. One reason to send data is that the server
 might wish to provide additional or updated session tickets to a
 client.

 When the handshake is complete, QUIC only needs to provide TLS with
 any data that arrives on stream 0. In the same way that is done
 during the handshake, new data is requested from TLS after providing
 received data.

 Important: Until the handshake is reported as complete, the
 connection and key exchange are not properly authenticated at the

Thomson & Turner Expires October 19, 2018 [Page 10]

Internet-Draft QUIC over TLS April 2018

 server. Even though 1-RTT keys are available to a server after
 receiving the first handshake messages from a client, the server
 cannot consider the client to be authenticated until it receives
 and validates the client's Finished message.

 The requirement for the server to wait for the client Finished
 message creates a dependency on that message being delivered. A
 client can avoid the potential for head-of-line blocking that this
 implies by sending a copy of the STREAM frame that carries the
 Finished message in multiple packets. This enables immediate
 server processing for those packets.

4.2.2. Source Address Validation

 During the processing of the TLS ClientHello, TLS requests that the
 transport make a decision about whether to request source address
 validation from the client.

 An initial TLS ClientHello that resumes a session includes an address
 validation token in the session ticket; this includes all attempts at
 0-RTT. If the client does not attempt session resumption, no token
 will be present. While processing the initial ClientHello, TLS
 provides QUIC with any token that is present. In response, QUIC
 provides one of three responses:

 o proceed with the connection,

 o ask for client address validation, or

 o abort the connection.

 If QUIC requests source address validation, it also provides a new
 address validation token. TLS includes that along with any
 information it requires in the cookie extension of a TLS
 HelloRetryRequest message. In the other cases, the connection either
 proceeds or terminates with a handshake error.

 The client echoes the cookie extension in a second ClientHello. A
 ClientHello that contains a valid cookie extension will always be in
 response to a HelloRetryRequest. If address validation was requested
 by QUIC, then this will include an address validation token. TLS
 makes a second address validation request of QUIC, including the
 value extracted from the cookie extension. In response to this
 request, QUIC cannot ask for client address validation, it can only
 abort or permit the connection attempt to proceed.

 QUIC can provide a new address validation token for use in session
 resumption at any time after the handshake is complete. Each time a

Thomson & Turner Expires October 19, 2018 [Page 11]

Internet-Draft QUIC over TLS April 2018

 new token is provided TLS generates a NewSessionTicket message, with
 the token included in the ticket.

 See Section 7 for more details on client address validation.

4.2.3. Key Ready Events

 TLS provides QUIC with signals when 0-RTT and 1-RTT keys are ready
 for use. These events are not asynchronous, they always occur
 immediately after TLS is provided with new handshake octets, or after
 TLS produces handshake octets.

 When TLS completed its handshake, 1-RTT keys can be provided to QUIC.
 On both client and server, this occurs after sending the TLS Finished
 message.

 This ordering means that there could be frames that carry TLS
 handshake messages ready to send at the same time that application
 data is available. An implementation MUST ensure that TLS handshake
 messages are always sent in packets protected with handshake keys
 (see Section 5.3.2). Separate packets are required for data that
 needs protection from 1-RTT keys.

 If 0-RTT is possible, it is ready after the client sends a TLS
 ClientHello message or the server receives that message. After
 providing a QUIC client with the first handshake octets, the TLS
 stack might signal that 0-RTT keys are ready. On the server, after
 receiving handshake octets that contain a ClientHello message, a TLS
 server might signal that 0-RTT keys are available.

 1-RTT keys are used for packets in both directions. 0-RTT keys are
 only used to protect packets sent by the client.

4.2.4. Secret Export

 Details how secrets are exported from TLS are included in
Section 5.3.

4.2.5. TLS Interface Summary

 Figure 4 summarizes the exchange between QUIC and TLS for both client
 and server.

Thomson & Turner Expires October 19, 2018 [Page 12]

Internet-Draft QUIC over TLS April 2018

 Client Server

 Get Handshake
 0-RTT Key Ready
 --- send/receive --->
 Handshake Received
 0-RTT Key Ready
 Get Handshake
 1-RTT Keys Ready
 <--- send/receive ---
 Handshake Received
 Get Handshake
 Handshake Complete
 1-RTT Keys Ready
 --- send/receive --->
 Handshake Received
 Get Handshake
 Handshake Complete
 <--- send/receive ---
 Handshake Received
 Get Handshake

 Figure 4: Interaction Summary between QUIC and TLS

4.3. TLS Version

 This document describes how TLS 1.3 [TLS13] is used with QUIC.

 In practice, the TLS handshake will negotiate a version of TLS to
 use. This could result in a newer version of TLS than 1.3 being
 negotiated if both endpoints support that version. This is
 acceptable provided that the features of TLS 1.3 that are used by
 QUIC are supported by the newer version.

 A badly configured TLS implementation could negotiate TLS 1.2 or
 another older version of TLS. An endpoint MUST terminate the
 connection if a version of TLS older than 1.3 is negotiated.

4.4. ClientHello Size

 QUIC requires that the initial handshake packet from a client fit
 within the payload of a single packet. The size limits on QUIC
 packets mean that a record containing a ClientHello needs to fit
 within 1129 octets, though endpoints can reduce the size of their
 connection ID to increase by up to 22 octets.

 A TLS ClientHello can fit within this limit with ample space
 remaining. However, there are several variables that could cause

Thomson & Turner Expires October 19, 2018 [Page 13]

Internet-Draft QUIC over TLS April 2018

 this limit to be exceeded. Implementations are reminded that large
 session tickets or HelloRetryRequest cookies, multiple or large key
 shares, and long lists of supported ciphers, signature algorithms,
 versions, QUIC transport parameters, and other negotiable parameters
 and extensions could cause this message to grow.

 For servers, the size of the session tickets and HelloRetryRequest
 cookie extension can have an effect on a client's ability to connect.
 Choosing a small value increases the probability that these values
 can be successfully used by a client.

 The TLS implementation does not need to ensure that the ClientHello
 is sufficiently large. QUIC PADDING frames are added to increase the
 size of the packet as necessary.

4.5. Peer Authentication

 The requirements for authentication depend on the application
 protocol that is in use. TLS provides server authentication and
 permits the server to request client authentication.

 A client MUST authenticate the identity of the server. This
 typically involves verification that the identity of the server is
 included in a certificate and that the certificate is issued by a
 trusted entity (see for example [RFC2818]).

 A server MAY request that the client authenticate during the
 handshake. A server MAY refuse a connection if the client is unable
 to authenticate when requested. The requirements for client
 authentication vary based on application protocol and deployment.

 A server MUST NOT use post-handshake client authentication (see
 Section 4.6.2 of [TLS13]).

4.6. Rejecting 0-RTT

 A server rejects 0-RTT by rejecting 0-RTT at the TLS layer. This
 results in early exporter keys being unavailable, thereby preventing
 the use of 0-RTT for QUIC.

 A client that attempts 0-RTT MUST also consider 0-RTT to be rejected
 if it receives a Retry or Version Negotiation packet.

 When 0-RTT is rejected, all connection characteristics that the
 client assumed might be incorrect. This includes the choice of
 application protocol, transport parameters, and any application
 configuration. The client therefore MUST reset the state of all
 streams, including application state bound to those streams.

https://datatracker.ietf.org/doc/html/rfc2818

Thomson & Turner Expires October 19, 2018 [Page 14]

Internet-Draft QUIC over TLS April 2018

4.7. TLS Errors

 Errors in the TLS connection SHOULD be signaled using TLS alerts on
 stream 0. A failure in the handshake MUST be treated as a QUIC
 connection error of type TLS_HANDSHAKE_FAILED. Once the handshake is
 complete, an error in the TLS connection that causes a TLS alert to
 be sent or received MUST be treated as a QUIC connection error of
 type TLS_FATAL_ALERT_GENERATED or TLS_FATAL_ALERT_RECEIVED
 respectively.

5. QUIC Packet Protection

 QUIC packet protection provides authenticated encryption of packets.
 This provides confidentiality and integrity protection for the
 content of packets (see Section 5.4). Packet protection uses keys
 that are exported from the TLS connection (see Section 5.3).

 Different keys are used for QUIC packet protection and TLS record
 protection. TLS handshake messages are protected solely with TLS
 record protection, but post-handshake messages are redundantly
 protected with both the QUIC packet protection and the TLS record
 protection. These messages are limited in number, and so the
 additional overhead is small.

5.1. Installing New Keys

 As TLS reports the availability of keying material, the packet
 protection keys and initialization vectors (IVs) are updated (see

Section 5.3). The selection of AEAD function is also updated to
 match the AEAD negotiated by TLS.

 For packets other than any handshake packets (see Section 6.1), once
 a change of keys has been made, packets with higher packet numbers
 MUST be sent with the new keying material. The KEY_PHASE bit on
 these packets is inverted each time new keys are installed to signal
 the use of the new keys to the recipient (see Section 6 for details).

 An endpoint retransmits stream data in a new packet. New packets
 have new packet numbers and use the latest packet protection keys.
 This simplifies key management when there are key updates (see

Section 6.2).

5.2. Enabling 0-RTT

 In order to be usable for 0-RTT, TLS MUST provide a NewSessionTicket
 message that contains the "max_early_data" extension with the value
 0xffffffff; the amount of data which the client can send in 0-RTT is
 controlled by the "initial_max_data" transport parameter supplied by

Thomson & Turner Expires October 19, 2018 [Page 15]

Internet-Draft QUIC over TLS April 2018

 the server. A client MUST treat receipt of a NewSessionTicket that
 contains a "max_early_data" extension with any other value as a
 connection error of type PROTOCOL_VIOLATION.

 Early data within the TLS connection MUST NOT be used. As it is for
 other TLS application data, a server MUST treat receiving early data
 on the TLS connection as a connection error of type
 PROTOCOL_VIOLATION.

5.3. QUIC Key Expansion

 QUIC uses a system of packet protection secrets, keys and IVs that
 are modelled on the system used in TLS [TLS13]. The secrets that
 QUIC uses as the basis of its key schedule are obtained using TLS
 exporters (see Section 7.5 of [TLS13]).

5.3.1. QHKDF-Expand

 QUIC uses the Hash-based Key Derivation Function (HKDF) [HKDF] with
 the same hash function negotiated by TLS for key derivation. For
 example, if TLS is using the TLS_AES_128_GCM_SHA256, the SHA-256 hash
 function is used.

 Most key derivations in this document use the QHKDF-Expand function,
 which uses the HKDF expand function and is modelled on the HKDF-
 Expand-Label function from TLS 1.3 (see Section 7.1 of [TLS13]).
 QHKDF-Expand differs from HKDF-Expand-Label in that it uses a
 different base label and omits the Context argument.

 QHKDF-Expand(Secret, Label, Length) =
 HKDF-Expand(Secret, QhkdfExpandInfo, Length)

 The HKDF-Expand function used by QHKDF-Expand uses the PRF hash
 function negotiated by TLS, except for handshake secrets and keys
 derived from them (see Section 5.3.2).

 Where the "info" parameter of HKDF-Expand is an encoded
 "QhkdfExpandInfo" structure:

 struct {
 uint16 length = Length;
 opaque label<6..255> = "QUIC " + Label;
 } QhkdfExpandInfo;

 For example, assuming a hash function with a 32 octet output,
 derivation for a client packet protection key would use HKDF-Expand
 with an "info" parameter of 0x00200851554943206b6579.

Thomson & Turner Expires October 19, 2018 [Page 16]

Internet-Draft QUIC over TLS April 2018

5.3.2. Handshake Secrets

 Packets that carry the TLS handshake (Initial, Retry, and Handshake)
 are protected with a secret derived from the Destination Connection
 ID field from the client's Initial packet. Specifically:

 handshake_salt = 0x9c108f98520a5c5c32968e950e8a2c5fe06d6c38
 handshake_secret =
 HKDF-Extract(handshake_salt, client_dst_connection_id)

 client_handshake_secret =
 QHKDF-Expand(handshake_secret, "client hs", Hash.length)
 server_handshake_secret =
 QHKDF-Expand(handshake_secret, "server hs", Hash.length)

 The hash function for HKDF when deriving handshake secrets and keys
 is SHA-256 [FIPS180]. The connection ID used with QHKDF-Expand is
 the connection ID chosen by the client.

 The handshake salt is a 20 octet sequence shown in the figure in
 hexadecimal notation. Future versions of QUIC SHOULD generate a new
 salt value, thus ensuring that the keys are different for each
 version of QUIC. This prevents a middlebox that only recognizes one
 version of QUIC from seeing or modifying the contents of handshake
 packets from future versions.

 Note: The Destination Connection ID is of arbitrary length, and it
 could be zero length if the server sends a Retry packet with a
 zero-length Source Connection ID field. In this case, the
 handshake keys provide no assurance to the client that the server
 received its packet; the client has to rely on the exchange that
 included the Retry packet for that property.

5.3.3. 0-RTT Secret

 0-RTT keys are those keys that are used in resumed connections prior
 to the completion of the TLS handshake. Data sent using 0-RTT keys
 might be replayed and so has some restrictions on its use, see

Section 8.2. 0-RTT keys are used after sending or receiving a
 ClientHello.

 The secret is exported from TLS using the exporter label "EXPORTER-
 QUIC 0rtt" and an empty context. The size of the secret MUST be the
 size of the hash output for the PRF hash function negotiated by TLS.
 This uses the TLS early_exporter_secret. The QUIC 0-RTT secret is
 only used for protection of packets sent by the client.

Thomson & Turner Expires October 19, 2018 [Page 17]

Internet-Draft QUIC over TLS April 2018

 client_0rtt_secret =
 TLS-Early-Exporter("EXPORTER-QUIC 0rtt", "", Hash.length)

5.3.4. 1-RTT Secrets

 1-RTT keys are used by both client and server after the TLS handshake
 completes. There are two secrets used at any time: one is used to
 derive packet protection keys for packets sent by the client, the
 other for packet protection keys on packets sent by the server.

 The initial client packet protection secret is exported from TLS
 using the exporter label "EXPORTER-QUIC client 1rtt"; the initial
 server packet protection secret uses the exporter label "EXPORTER-
 QUIC server 1rtt". Both exporters use an empty context. The size of
 the secret MUST be the size of the hash output for the PRF hash
 function negotiated by TLS.

 client_pp_secret<0> =
 TLS-Exporter("EXPORTER-QUIC client 1rtt", "", Hash.length)
 server_pp_secret<0> =
 TLS-Exporter("EXPORTER-QUIC server 1rtt", "", Hash.length)

 These secrets are used to derive the initial client and server packet
 protection keys.

5.3.5. Updating 1-RTT Secrets

 After a key update (see Section 6.2), the 1-RTT secrets are updated
 using QHKDF-Expand. Updated secrets are derived from the existing
 packet protection secret. A Label parameter of "client 1rtt" is used
 for the client secret and "server 1rtt" for the server. The Length
 is the same as the native output of the PRF hash function.

 client_pp_secret<N+1> =
 QHKDF-Expand(client_pp_secret<N>, "client 1rtt", Hash.length)
 server_pp_secret<N+1> =
 QHKDF-Expand(server_pp_secret<N>, "server 1rtt", Hash.length)

 This allows for a succession of new secrets to be created as needed.

5.3.6. Packet Protection Keys

 The complete key expansion uses a similar process for key expansion
 to that defined in Section 7.3 of [TLS13], using QHKDF-Expand in
 place of HKDF-Expand-Label. QUIC uses the AEAD function negotiated
 by TLS.

Thomson & Turner Expires October 19, 2018 [Page 18]

Internet-Draft QUIC over TLS April 2018

 The packet protection key and IV used to protect the 0-RTT packets
 sent by a client are derived from the QUIC 0-RTT secret. The packet
 protection keys and IVs for 1-RTT packets sent by the client and
 server are derived from the current generation of client and server
 1-RTT secrets (client_pp_secret<i> and server_pp_secret<i>)
 respectively.

 The length of the QHKDF-Expand output is determined by the
 requirements of the AEAD function selected by TLS. The key length is
 the AEAD key size. As defined in Section 5.3 of [TLS13], the IV
 length is the larger of 8 or N_MIN (see Section 4 of [AEAD]; all
 ciphersuites defined in [TLS13] have N_MIN set to 12).

 For any secret S, the AEAD key uses a label of "key", and the IV uses
 a label of "iv":

 key = QHKDF-Expand(S, "key", key_length)
 iv = QHKDF-Expand(S, "iv", iv_length)

 Separate keys are derived for packet protection by clients and
 servers. Each endpoint uses the packet protection key of its peer to
 remove packet protection. For example, client packet protection keys
 and IVs - which are also used by the server to remove the protection
 added by a client - for AEAD_AES_128_GCM are derived from 1-RTT
 secrets as follows:

 client_pp_key<i> = QHKDF-Expand(client_pp_secret<i>, "key", 16)
 client_pp_iv<i> = QHKDF-Expand(client_pp_secret<i>, "iv", 12)

 The QUIC record protection initially starts with keying material
 derived from handshake keys. For a client, when the TLS state
 machine reports that the ClientHello has been sent, 0-RTT keys can be
 generated and installed for writing, if 0-RTT is available. Finally,
 the TLS state machine reports completion of the handshake and 1-RTT
 keys can be generated and installed for writing.

5.4. QUIC AEAD Usage

 The Authentication Encryption with Associated Data (AEAD) [AEAD]
 function used for QUIC packet protection is AEAD that is negotiated
 for use with the TLS connection. For example, if TLS is using the
 TLS_AES_128_GCM_SHA256, the AEAD_AES_128_GCM function is used.

 All QUIC packets other than Version Negotiation and Stateless Reset
 packets are protected with an AEAD algorithm [AEAD]. Prior to
 establishing a shared secret, packets are protected with
 AEAD_AES_128_GCM and a key derived from the client's connection ID
 (see Section 5.3.2). This provides protection against off-path

Thomson & Turner Expires October 19, 2018 [Page 19]

Internet-Draft QUIC over TLS April 2018

 attackers and robustness against QUIC version unaware middleboxes,
 but not against on-path attackers.

 All ciphersuites currently defined for TLS 1.3 - and therefore QUIC -
 have a 16-byte authentication tag and produce an output 16 bytes
 larger than their input.

 Once TLS has provided a key, the contents of regular QUIC packets
 immediately after any TLS messages have been sent are protected by
 the AEAD selected by TLS.

 The key, K, is either the client packet protection key
 (client_pp_key<i>) or the server packet protection key
 (server_pp_key<i>), derived as defined in Section 5.3.

 The nonce, N, is formed by combining the packet protection IV (either
 client_pp_iv<i> or server_pp_iv<i>) with the packet number. The 64
 bits of the reconstructed QUIC packet number in network byte order is
 left-padded with zeros to the size of the IV. The exclusive OR of
 the padded packet number and the IV forms the AEAD nonce.

 The associated data, A, for the AEAD is the contents of the QUIC
 header, starting from the flags octet in either the short or long
 header.

 The input plaintext, P, for the AEAD is the content of the QUIC frame
 following the header, as described in [QUIC-TRANSPORT].

 The output ciphertext, C, of the AEAD is transmitted in place of P.

5.5. Packet Numbers

 QUIC has a single, contiguous packet number space. In comparison,
 TLS restarts its sequence number each time that record protection
 keys are changed. The sequence number restart in TLS ensures that a
 compromise of the current traffic keys does not allow an attacker to
 truncate the data that is sent after a key update by sending
 additional packets under the old key (causing new packets to be
 discarded).

 QUIC does not assume a reliable transport and is required to handle
 attacks where packets are dropped in other ways. QUIC is therefore
 not affected by this form of truncation.

 The QUIC packet number is not reset and it is not permitted to go
 higher than its maximum value of 2^62-1. This establishes a hard
 limit on the number of packets that can be sent.

Thomson & Turner Expires October 19, 2018 [Page 20]

Internet-Draft QUIC over TLS April 2018

 Some AEAD functions have limits for how many packets can be encrypted
 under the same key and IV (see for example [AEBounds]). This might
 be lower than the packet number limit. An endpoint MUST initiate a
 key update (Section 6.2) prior to exceeding any limit set for the
 AEAD that is in use.

 TLS maintains a separate sequence number that is used for record
 protection on the connection that is hosted on stream 0. This
 sequence number is not visible to QUIC.

5.6. Receiving Protected Packets

 Once an endpoint successfully receives a packet with a given packet
 number, it MUST discard all packets with higher packet numbers if
 they cannot be successfully unprotected with either the same key, or
 - if there is a key update - the next packet protection key (see

Section 6.2). Similarly, a packet that appears to trigger a key
 update, but cannot be unprotected successfully MUST be discarded.

 Failure to unprotect a packet does not necessarily indicate the
 existence of a protocol error in a peer or an attack. The truncated
 packet number encoding used in QUIC can cause packet numbers to be
 decoded incorrectly if they are delayed significantly.

5.7. Packet Number Gaps

 Section 6.8.5.1 of [QUIC-TRANSPORT] also requires a secret to compute
 packet number gaps on connection ID transitions. That secret is
 computed as:

 packet_number_secret =
 TLS-Exporter("EXPORTER-QUIC packet number", "", Hash.length)

6. Key Phases

 As TLS reports the availability of 0-RTT and 1-RTT keys, new keying
 material can be exported from TLS and used for QUIC packet
 protection. At each transition during the handshake a new secret is
 exported from TLS and packet protection keys are derived from that
 secret.

 Every time that a new set of keys is used for protecting outbound
 packets, the KEY_PHASE bit in the public flags is toggled. 0-RTT
 protected packets use the QUIC long header, they do not use the
 KEY_PHASE bit to select the correct keys (see Section 6.1.1).

 Once the connection is fully enabled, the KEY_PHASE bit allows a
 recipient to detect a change in keying material without necessarily

Thomson & Turner Expires October 19, 2018 [Page 21]

Internet-Draft QUIC over TLS April 2018

 needing to receive the first packet that triggered the change. An
 endpoint that notices a changed KEY_PHASE bit can update keys and
 decrypt the packet that contains the changed bit, see Section 6.2.

 The KEY_PHASE bit is included as the 0x20 bit of the QUIC short
 header.

 Transitions between keys during the handshake are complicated by the
 need to ensure that TLS handshake messages are sent with the correct
 packet protection.

6.1. Packet Protection for the TLS Handshake

 The initial exchange of packets that carry the TLS handshake are
 AEAD-protected using the handshake secrets generated as described in

Section 5.3.2. All TLS handshake messages up to the TLS Finished
 message sent by either endpoint use packets protected with handshake
 keys.

 Any TLS handshake messages that are sent after completing the TLS
 handshake do not need special packet protection rules. Packets
 containing these messages use the packet protection keys that are
 current at the time of sending (or retransmission).

 Like the client, a server MUST send retransmissions of its
 unprotected handshake messages or acknowledgments for unprotected
 handshake messages sent by the client in packets protected with
 handshake keys.

6.1.1. Initial Key Transitions

 Once the TLS handshake is complete, keying material is exported from
 TLS and used to protect QUIC packets.

 Packets protected with 1-RTT keys initially have a KEY_PHASE bit set
 to 0. This bit inverts with each subsequent key update (see

Section 6.2).

 If the client sends 0-RTT data, it uses the 0-RTT packet type. The
 packet that contains the TLS EndOfEarlyData and Finished messages are
 sent in packets protected with handshake keys.

 Using distinct packet types during the handshake for handshake
 messages, 0-RTT data, and 1-RTT data ensures that the server is able
 to distinguish between the different keys used to remove packet
 protection. All of these packets can arrive concurrently at a
 server.

Thomson & Turner Expires October 19, 2018 [Page 22]

Internet-Draft QUIC over TLS April 2018

 A server might choose to retain 0-RTT packets that arrive before a
 TLS ClientHello. The server can then use those packets once the
 ClientHello arrives. However, the potential for denial of service
 from buffering 0-RTT packets is significant. These packets cannot be
 authenticated and so might be employed by an attacker to exhaust
 server resources. Limiting the number of packets that are saved
 might be necessary.

 The server transitions to using 1-RTT keys after sending its first
 flight of TLS handshake messages, ending in the Finished. From this
 point, the server protects all packets with 1-RTT keys. Future
 packets are therefore protected with 1-RTT keys. Initially, these
 are marked with a KEY_PHASE of 0.

6.1.2. Retransmission and Acknowledgment of Unprotected Packets

 TLS handshake messages from both client and server are critical to
 the key exchange. The contents of these messages determine the keys
 used to protect later messages. If these handshake messages are
 included in packets that are protected with these keys, they will be
 indecipherable to the recipient.

 Even though newer keys could be available when retransmitting,
 retransmissions of these handshake messages MUST be sent in packets
 protected with handshake keys. An endpoint MUST generate ACK frames
 for these messages and send them in packets protected with handshake
 keys.

 A HelloRetryRequest handshake message might be used to reject an
 initial ClientHello. A HelloRetryRequest handshake message is sent
 in a Retry packet; any second ClientHello that is sent in response
 uses a Initial packet type. These packets are only protected with a
 predictable key (see Section 5.3.2). This is natural, because no
 shared secret will be available when these messages need to be sent.
 Upon receipt of a HelloRetryRequest, a client SHOULD cease any
 transmission of 0-RTT data; 0-RTT data will only be discarded by any
 server that sends a HelloRetryRequest.

 The packet type ensures that protected packets are clearly
 distinguished from unprotected packets. Loss or reordering might
 cause unprotected packets to arrive once 1-RTT keys are in use,
 unprotected packets are easily distinguished from 1-RTT packets using
 the packet type.

 Once 1-RTT keys are available to an endpoint, it no longer needs the
 TLS handshake messages that are carried in unprotected packets.
 However, a server might need to retransmit its TLS handshake messages
 in response to receiving an unprotected packet that contains ACK

Thomson & Turner Expires October 19, 2018 [Page 23]

Internet-Draft QUIC over TLS April 2018

 frames. A server MUST process ACK frames in unprotected packets
 until the TLS handshake is reported as complete, or it receives an
 ACK frame in a protected packet that acknowledges all of its
 handshake messages.

 To limit the number of key phases that could be active, an endpoint
 MUST NOT initiate a key update while there are any unacknowledged
 handshake messages, see Section 6.2.

6.2. Key Update

 Once the TLS handshake is complete, the KEY_PHASE bit allows for
 refreshes of keying material by either peer. Endpoints start using
 updated keys immediately without additional signaling; the change in
 the KEY_PHASE bit indicates that a new key is in use.

 An endpoint MUST NOT initiate more than one key update at a time. A
 new key cannot be used until the endpoint has received and
 successfully decrypted a packet with a matching KEY_PHASE. Note that
 when 0-RTT is attempted the value of the KEY_PHASE bit will be
 different on packets sent by either peer.

 A receiving endpoint detects an update when the KEY_PHASE bit doesn't
 match what it is expecting. It creates a new secret (see

Section 5.3) and the corresponding read key and IV. If the packet
 can be decrypted and authenticated using these values, then the keys
 it uses for packet protection are also updated. The next packet sent
 by the endpoint will then use the new keys.

 An endpoint doesn't need to send packets immediately when it detects
 that its peer has updated keys. The next packet that it sends will
 simply use the new keys. If an endpoint detects a second update
 before it has sent any packets with updated keys it indicates that
 its peer has updated keys twice without awaiting a reciprocal update.
 An endpoint MUST treat consecutive key updates as a fatal error and
 abort the connection.

 An endpoint SHOULD retain old keys for a short period to allow it to
 decrypt packets with smaller packet numbers than the packet that
 triggered the key update. This allows an endpoint to consume packets
 that are reordered around the transition between keys. Packets with
 higher packet numbers always use the updated keys and MUST NOT be
 decrypted with old keys.

 Keys and their corresponding secrets SHOULD be discarded when an
 endpoint has received all packets with packet numbers lower than the
 lowest packet number used for the new key. An endpoint might discard

Thomson & Turner Expires October 19, 2018 [Page 24]

Internet-Draft QUIC over TLS April 2018

 keys if it determines that the length of the delay to affected
 packets is excessive.

 This ensures that once the handshake is complete, packets with the
 same KEY_PHASE will have the same packet protection keys, unless
 there are multiple key updates in a short time frame succession and
 significant packet reordering.

 Initiating Peer Responding Peer

 @M QUIC Frames
 New Keys -> @N
 @N QUIC Frames
 -------->
 QUIC Frames @M
 New Keys -> @N
 QUIC Frames @N
 <--------

 Figure 5: Key Update

 As shown in Figure 3 and Figure 5, there is never a situation where
 there are more than two different sets of keying material that might
 be received by a peer. Once both sending and receiving keys have
 been updated, the peers immediately begin to use them.

 A server cannot initiate a key update until it has received the
 client's Finished message. Otherwise, packets protected by the
 updated keys could be confused for retransmissions of handshake
 messages. A client cannot initiate a key update until all of its
 handshake messages have been acknowledged by the server.

 A packet that triggers a key update could arrive after successfully
 processing a packet with a higher packet number. This is only
 possible if there is a key compromise and an attack, or if the peer
 is incorrectly reverting to use of old keys. Because the latter
 cannot be differentiated from an attack, an endpoint MUST immediately
 terminate the connection if it detects this condition.

7. Client Address Validation

 Two tools are provided by TLS to enable validation of client source
 addresses at a server: the cookie in the HelloRetryRequest message,
 and the ticket in the NewSessionTicket message.

Thomson & Turner Expires October 19, 2018 [Page 25]

Internet-Draft QUIC over TLS April 2018

7.1. HelloRetryRequest Address Validation

 The cookie extension in the TLS HelloRetryRequest message allows a
 server to perform source address validation during the handshake.

 When QUIC requests address validation during the processing of the
 first ClientHello, the token it provides is included in the cookie
 extension of a HelloRetryRequest. As long as the cookie cannot be
 successfully guessed by a client, the server can be assured that the
 client received the HelloRetryRequest if it includes the value in a
 second ClientHello.

 An initial ClientHello never includes a cookie extension. Thus, if a
 server constructs a cookie that contains all the information
 necessary to reconstruct state, it can discard local state after
 sending a HelloRetryRequest. Presence of a valid cookie in a
 ClientHello indicates that the ClientHello is a second attempt from
 the client.

 An address validation token can be extracted from a second
 ClientHello and passed to the transport for further validation. If
 that validation fails, the server MUST fail the TLS handshake and
 send an illegal_parameter alert.

 Combining address validation with the other uses of HelloRetryRequest
 ensures that there are fewer ways in which an additional round-trip
 can be added to the handshake. In particular, this makes it possible
 to combine a request for address validation with a request for a
 different client key share.

 If TLS needs to send a HelloRetryRequest for other reasons, it needs
 to ensure that it can correctly identify the reason that the
 HelloRetryRequest was generated. During the processing of a second
 ClientHello, TLS does not need to consult the transport protocol
 regarding address validation if address validation was not requested
 originally. In such cases, the cookie extension could either be
 absent or it could indicate that an address validation token is not
 present.

7.1.1. Stateless Address Validation

 A server can use the cookie extension to store all state necessary to
 continue the connection. This allows a server to avoid committing
 state for clients that have unvalidated source addresses.

 For instance, a server could use a statically-configured key to
 encrypt the information that it requires and include that information
 in the cookie. In addition to address validation information, a

Thomson & Turner Expires October 19, 2018 [Page 26]

Internet-Draft QUIC over TLS April 2018

 server that uses encryption also needs to be able recover the hash of
 the ClientHello and its length, plus any information it needs in
 order to reconstruct the HelloRetryRequest.

7.1.2. Sending HelloRetryRequest

 A server does not need to maintain state for the connection when
 sending a HelloRetryRequest message. This might be necessary to
 avoid creating a denial of service exposure for the server. However,
 this means that information about the transport will be lost at the
 server. This includes the stream offset of stream 0, the packet
 number that the server selects, and any opportunity to measure round
 trip time.

 A server MUST send a TLS HelloRetryRequest in a Retry packet. Using
 a Retry packet causes the client to reset stream offsets. It also
 avoids the need for the server select an initial packet number, which
 would need to be remembered so that subsequent packets could be
 correctly numbered.

 A HelloRetryRequest message MUST NOT be split between multiple Retry
 packets. This means that HelloRetryRequest is subject to the same
 size constraints as a ClientHello (see Section 4.4).

 A client might send multiple Initial packets in response to loss. If
 a server sends a Retry packet in response to an Initial packet, it
 does not have to generate the same Retry packet each time.
 Variations in Retry packet, if used by a client, could lead to
 multiple connections derived from the same ClientHello. Reuse of the
 client nonce is not supported by TLS and could lead to security
 vulnerabilities. Clients that receive multiple Retry packets MUST
 use only one and discard the remainder.

7.2. NewSessionTicket Address Validation

 The ticket in the TLS NewSessionTicket message allows a server to
 provide a client with a similar sort of token. When a client resumes
 a TLS connection - whether or not 0-RTT is attempted - it includes
 the ticket in the handshake message. As with the HelloRetryRequest
 cookie, the server includes the address validation token in the
 ticket. TLS provides the token it extracts from the session ticket
 to the transport when it asks whether source address validation is
 needed.

 If both a HelloRetryRequest cookie and a session ticket are present
 in the ClientHello, only the token from the cookie is passed to the
 transport. The presence of a cookie indicates that this is a second

Thomson & Turner Expires October 19, 2018 [Page 27]

Internet-Draft QUIC over TLS April 2018

 ClientHello - the token from the session ticket will have been
 provided to the transport when it appeared in the first ClientHello.

 A server can send a NewSessionTicket message at any time. This
 allows it to update the state - and the address validation token -
 that is included in the ticket. This might be done to refresh the
 ticket or token, or it might be generated in response to changes in
 the state of the connection. QUIC can request that a
 NewSessionTicket be sent by providing a new address validation token.

 A server that intends to support 0-RTT SHOULD provide an address
 validation token immediately after completing the TLS handshake.

7.3. Address Validation Token Integrity

 TLS MUST provide integrity protection for address validation token
 unless the transport guarantees integrity protection by other means.
 For a NewSessionTicket that includes confidential information - such
 as the resumption secret - including the token under authenticated
 encryption ensures that the token gains both confidentiality and
 integrity protection without duplicating the overheads of that
 protection.

8. Pre-handshake QUIC Messages

 Implementations MUST NOT exchange data on any stream other than
 stream 0 without packet protection. QUIC requires the use of several
 types of frame for managing loss detection and recovery during this
 phase. In addition, it might be useful to use the data acquired
 during the exchange of unauthenticated messages for congestion
 control.

 This section generally only applies to TLS handshake messages from
 both peers and acknowledgments of the packets carrying those
 messages. In many cases, the need for servers to provide
 acknowledgments is minimal, since the messages that clients send are
 small and implicitly acknowledged by the server's responses.

 The actions that a peer takes as a result of receiving an
 unauthenticated packet needs to be limited. In particular, state
 established by these packets cannot be retained once record
 protection commences.

 There are several approaches possible for dealing with
 unauthenticated packets prior to handshake completion:

 o discard and ignore them

Thomson & Turner Expires October 19, 2018 [Page 28]

Internet-Draft QUIC over TLS April 2018

 o use them, but reset any state that is established once the
 handshake completes

 o use them and authenticate them afterwards; failing the handshake
 if they can't be authenticated

 o save them and use them when they can be properly authenticated

 o treat them as a fatal error

 Different strategies are appropriate for different types of data.
 This document proposes that all strategies are possible depending on
 the type of message.

 o Transport parameters are made usable and authenticated as part of
 the TLS handshake (see Section 9.2).

 o Most unprotected messages are treated as fatal errors when
 received except for the small number necessary to permit the
 handshake to complete (see Section 8.1).

 o Protected packets can either be discarded or saved and later used
 (see Section 8.3).

8.1. Unprotected Packets Prior to Handshake Completion

 This section describes the handling of messages that are sent and
 received prior to the completion of the TLS handshake.

 Sending and receiving unprotected messages is hazardous. Unless
 expressly permitted, receipt of an unprotected message of any kind
 MUST be treated as a fatal error.

8.1.1. STREAM Frames

 "STREAM" frames for stream 0 are permitted. These carry the TLS
 handshake messages. Once 1-RTT keys are available, unprotected
 "STREAM" frames on stream 0 can be ignored.

 Receiving unprotected "STREAM" frames for other streams MUST be
 treated as a fatal error.

8.1.2. ACK Frames

 "ACK" frames are permitted prior to the handshake being complete.
 Information learned from "ACK" frames cannot be entirely relied upon,
 since an attacker is able to inject these packets. Timing and packet
 retransmission information from "ACK" frames is critical to the

Thomson & Turner Expires October 19, 2018 [Page 29]

Internet-Draft QUIC over TLS April 2018

 functioning of the protocol, but these frames might be spoofed or
 altered.

 Endpoints MUST NOT use an "ACK" frame in an unprotected packet to
 acknowledge packets that were protected by 0-RTT or 1-RTT keys. An
 endpoint MUST treat receipt of an "ACK" frame in an unprotected
 packet that claims to acknowledge protected packets as a connection
 error of type OPTIMISTIC_ACK. An endpoint that can read protected
 data is always able to send protected data.

 Note: 0-RTT data can be acknowledged by the server as it receives
 it, but any packets containing acknowledgments of 0-RTT data
 cannot have packet protection removed by the client until the TLS
 handshake is complete. The 1-RTT keys necessary to remove packet
 protection cannot be derived until the client receives all server
 handshake messages.

 An endpoint SHOULD use data from "ACK" frames carried in unprotected
 packets or packets protected with 0-RTT keys only during the initial
 handshake. All "ACK" frames contained in unprotected packets that
 are received after successful receipt of a packet protected with
 1-RTT keys MUST be discarded. An endpoint SHOULD therefore include
 acknowledgments for unprotected and any packets protected with 0-RTT
 keys until it sees an acknowledgment for a packet that is both
 protected with 1-RTT keys and contains an "ACK" frame.

8.1.3. Updates to Data and Stream Limits

 "MAX_DATA", "MAX_STREAM_DATA", "BLOCKED", "STREAM_BLOCKED", and
 "MAX_STREAM_ID" frames MUST NOT be sent unprotected.

 Though data is exchanged on stream 0, the initial flow control window
 on that stream is sufficiently large to allow the TLS handshake to
 complete. This limits the maximum size of the TLS handshake and
 would prevent a server or client from using an abnormally large
 certificate chain.

 Stream 0 is exempt from the connection-level flow control window.

 Consequently, there is no need to signal being blocked on flow
 control.

 Similarly, there is no need to increase the number of allowed streams
 until the handshake completes.

Thomson & Turner Expires October 19, 2018 [Page 30]

Internet-Draft QUIC over TLS April 2018

8.1.4. Handshake Failures

 The "CONNECTION_CLOSE" frame MAY be sent by either endpoint in a
 Handshake packet. This allows an endpoint to signal a fatal error
 with connection establishment. A "STREAM" frame carrying a TLS alert
 MAY be included in the same packet.

8.1.5. Address Verification

 In order to perform source-address verification before the handshake
 is complete, "PATH_CHALLENGE" and "PATH_RESPONSE" frames MAY be
 exchanged unprotected.

8.1.6. Denial of Service with Unprotected Packets

 Accepting unprotected - specifically unauthenticated - packets
 presents a denial of service risk to endpoints. An attacker that is
 able to inject unprotected packets can cause a recipient to drop even
 protected packets with a matching packet number. The spurious packet
 shadows the genuine packet, causing the genuine packet to be ignored
 as redundant.

 Once the TLS handshake is complete, both peers MUST ignore
 unprotected packets. From that point onward, unprotected messages
 can be safely dropped.

 Since only TLS handshake packets and acknowledgments are sent in the
 clear, an attacker is able to force implementations to rely on
 retransmission for packets that are lost or shadowed. Thus, an
 attacker that intends to deny service to an endpoint has to drop or
 shadow protected packets in order to ensure that their victim
 continues to accept unprotected packets. The ability to shadow
 packets means that an attacker does not need to be on path.

 In addition to causing valid packets to be dropped, an attacker can
 generate packets with an intent of causing the recipient to expend
 processing resources. See Section 10.2 for a discussion of these
 risks.

 To avoid receiving TLS packets that contain no useful data, a TLS
 implementation MUST reject empty TLS handshake records and any record
 that is not permitted by the TLS state machine. Any TLS application
 data or alerts that are received prior to the end of the handshake
 MUST be treated as a connection error of type PROTOCOL_VIOLATION.

Thomson & Turner Expires October 19, 2018 [Page 31]

Internet-Draft QUIC over TLS April 2018

8.2. Use of 0-RTT Keys

 If 0-RTT keys are available (see Section 5.2), the lack of replay
 protection means that restrictions on their use are necessary to
 avoid replay attacks on the protocol.

 A client MUST only use 0-RTT keys to protect data that is idempotent.
 A client MAY wish to apply additional restrictions on what data it
 sends prior to the completion of the TLS handshake. A client
 otherwise treats 0-RTT keys as equivalent to 1-RTT keys.

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of the
 server's handshake messages. A client SHOULD stop sending 0-RTT data
 if it receives an indication that 0-RTT data has been rejected.

 A server MUST NOT use 0-RTT keys to protect packets.

 If a server rejects 0-RTT, then the TLS stream will not include any
 TLS records protected with 0-RTT keys.

8.3. Receiving Out-of-Order Protected Frames

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final TLS handshake messages are received. A
 client will be unable to decrypt 1-RTT packets from the server,
 whereas a server will be able to decrypt 1-RTT packets from the
 client.

 Packets protected with 1-RTT keys MAY be stored and later decrypted
 and used once the handshake is complete. A server MUST NOT use 1-RTT
 protected packets before verifying either the client Finished message
 or - in the case that the server has chosen to use a pre-shared key -
 the pre-shared key binder (see Section 4.2.8 of [TLS13]). Verifying
 these values provides the server with an assurance that the
 ClientHello has not been modified.

 A server could receive packets protected with 0-RTT keys prior to
 receiving a TLS ClientHello. The server MAY retain these packets for
 later decryption in anticipation of receiving a ClientHello.

 Receiving and verifying the TLS Finished message is critical in
 ensuring the integrity of the TLS handshake. A server MUST NOT use
 protected packets from the client prior to verifying the client
 Finished message if its response depends on client authentication.

Thomson & Turner Expires October 19, 2018 [Page 32]

Internet-Draft QUIC over TLS April 2018

9. QUIC-Specific Additions to the TLS Handshake

 QUIC uses the TLS handshake for more than just negotiation of
 cryptographic parameters. The TLS handshake validates protocol
 version selection, provides preliminary values for QUIC transport
 parameters, and allows a server to perform return routeability checks
 on clients.

9.1. Protocol and Version Negotiation

 The QUIC version negotiation mechanism is used to negotiate the
 version of QUIC that is used prior to the completion of the
 handshake. However, this packet is not authenticated, enabling an
 active attacker to force a version downgrade.

 To ensure that a QUIC version downgrade is not forced by an attacker,
 version information is copied into the TLS handshake, which provides
 integrity protection for the QUIC negotiation. This does not prevent
 version downgrade prior to the completion of the handshake, though it
 means that a downgrade causes a handshake failure.

 TLS uses Application Layer Protocol Negotiation (ALPN) [RFC7301] to
 select an application protocol. The application-layer protocol MAY
 restrict the QUIC versions that it can operate over. Servers MUST
 select an application protocol compatible with the QUIC version that
 the client has selected.

 If the server cannot select a compatible combination of application
 protocol and QUIC version, it MUST abort the connection. A client
 MUST abort a connection if the server picks an incompatible
 combination of QUIC version and ALPN identifier.

9.2. QUIC Transport Parameters Extension

 QUIC transport parameters are carried in a TLS extension. Different
 versions of QUIC might define a different format for this struct.

 Including transport parameters in the TLS handshake provides
 integrity protection for these values.

 enum {
 quic_transport_parameters(26), (65535)
 } ExtensionType;

 The "extension_data" field of the quic_transport_parameters extension
 contains a value that is defined by the version of QUIC that is in
 use. The quic_transport_parameters extension carries a

https://datatracker.ietf.org/doc/html/rfc7301

Thomson & Turner Expires October 19, 2018 [Page 33]

Internet-Draft QUIC over TLS April 2018

 TransportParameters when the version of QUIC defined in
 [QUIC-TRANSPORT] is used.

 The quic_transport_parameters extension is carried in the ClientHello
 and the EncryptedExtensions messages during the handshake.

10. Security Considerations

 There are likely to be some real clangers here eventually, but the
 current set of issues is well captured in the relevant sections of
 the main text.

 Never assume that because it isn't in the security considerations
 section it doesn't affect security. Most of this document does.

10.1. Packet Reflection Attack Mitigation

 A small ClientHello that results in a large block of handshake
 messages from a server can be used in packet reflection attacks to
 amplify the traffic generated by an attacker.

 Certificate caching [RFC7924] can reduce the size of the server's
 handshake messages significantly.

 QUIC requires that the packet containing a ClientHello be padded to a
 minimum size. A server is less likely to generate a packet
 reflection attack if the data it sends is a small multiple of this
 size. A server SHOULD use a HelloRetryRequest if the size of the
 handshake messages it sends is likely to significantly exceed the
 size of the packet containing the ClientHello.

10.2. Peer Denial of Service

 QUIC, TLS and HTTP/2 all contain a messages that have legitimate uses
 in some contexts, but that can be abused to cause a peer to expend
 processing resources without having any observable impact on the
 state of the connection. If processing is disproportionately large
 in comparison to the observable effects on bandwidth or state, then
 this could allow a malicious peer to exhaust processing capacity
 without consequence.

 QUIC prohibits the sending of empty "STREAM" frames unless they are
 marked with the FIN bit. This prevents "STREAM" frames from being
 sent that only waste effort.

 TLS records SHOULD always contain at least one octet of a handshake
 messages or alert. Records containing only padding are permitted
 during the handshake, but an excessive number might be used to

https://datatracker.ietf.org/doc/html/rfc7924

Thomson & Turner Expires October 19, 2018 [Page 34]

Internet-Draft QUIC over TLS April 2018

 generate unnecessary work. Once the TLS handshake is complete,
 endpoints MUST NOT send TLS application data records. Receiving TLS
 application data MUST be treated as a connection error of type
 PROTOCOL_VIOLATION.

 While there are legitimate uses for some redundant packets,
 implementations SHOULD track redundant packets and treat excessive
 volumes of any non-productive packets as indicative of an attack.

11. Error Codes

 This section defines error codes from the error code space used in
 [QUIC-TRANSPORT].

 The following error codes are defined when TLS is used for the crypto
 handshake:

 TLS_HANDSHAKE_FAILED (0x201): The TLS handshake failed.

 TLS_FATAL_ALERT_GENERATED (0x202): A TLS fatal alert was sent,
 causing the TLS connection to end prematurely.

 TLS_FATAL_ALERT_RECEIVED (0x203): A TLS fatal alert was received,
 causing the TLS connection to end prematurely.

12. IANA Considerations

 This document does not create any new IANA registries, but it
 registers the values in the following registries:

 o QUIC Transport Error Codes Registry [QUIC-TRANSPORT] - IANA is to
 register the three error codes found in Section 11, these are
 summarized in Table 1.

 o TLS ExtensionsType Registry [TLS-REGISTRIES] - IANA is to register
 the quic_transport_parameters extension found in Section 9.2.
 Assigning 26 to the extension would be greatly appreciated. The
 Recommended column is to be marked Yes. The TLS 1.3 Column is to
 include CH and EE.

 o TLS Exporter Label Registry [TLS-REGISTRIES] - IANA is requested
 to register "EXPORTER-QUIC 0rtt" from Section 5.3.3; "EXPORTER-
 QUIC client 1rtt" and "EXPORTER-QUIC server 1-RTT" from

Section 5.3.4. The DTLS column is to be marked No. The
 Recommended column is to be marked Yes.

Thomson & Turner Expires October 19, 2018 [Page 35]

Internet-Draft QUIC over TLS April 2018

 +-------+---------------------------+---------------+---------------+
 | Value | Error | Description | Specification |
 +-------+---------------------------+---------------+---------------+
0x201	TLS_HANDSHAKE_FAILED	TLS handshake	Section 11
		failure	
0x202	TLS_FATAL_ALERT_GENERATED	Sent TLS	Section 11
		alert	
0x203	TLS_FATAL_ALERT_RECEIVED	Receives TLS	Section 11
		alert	
 +-------+---------------------------+---------------+---------------+

 Table 1: QUIC Transport Error Codes for TLS

13. References

13.1. Normative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [FIPS180] Department of Commerce, National., "NIST FIPS 180-4,
 Secure Hash Standard", March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [HKDF] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-11 (work in progress), April 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301

Thomson & Turner Expires October 19, 2018 [Page 36]

Internet-Draft QUIC over TLS April 2018

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS-REGISTRIES]
 Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", draft-ietf-tls-iana-registry-updates-04 (work
 in progress), February 2018.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

13.2. Informative References

 [AEBounds]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", March 2016,
 <http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-11 (work in progress), April
 2018.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-11 (work
 in progress), April 2018.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <https://www.rfc-editor.org/info/rfc7924>.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-tls-iana-registry-updates-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-21
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-11
https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc7924
https://www.rfc-editor.org/info/rfc7924

Thomson & Turner Expires October 19, 2018 [Page 37]

Internet-Draft QUIC over TLS April 2018

13.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-tls

Appendix A. Contributors

 Ryan Hamilton was originally an author of this specification.

Appendix B. Acknowledgments

 This document has benefited from input from Dragana Damjanovic,
 Christian Huitema, Jana Iyengar, Adam Langley, Roberto Peon, Eric
 Rescorla, Ian Swett, and many others.

Appendix C. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-tls-10

 o No significant changes.

C.2. Since draft-ietf-quic-tls-09

 o Cleaned up key schedule and updated the salt used for handshake
 packet protection (#1077)

C.3. Since draft-ietf-quic-tls-08

 o Specify value for max_early_data_size to enable 0-RTT (#942)

 o Update key derivation function (#1003, #1004)

C.4. Since draft-ietf-quic-tls-07

 o Handshake errors can be reported with CONNECTION_CLOSE (#608,
 #891)

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07

Thomson & Turner Expires October 19, 2018 [Page 38]

Internet-Draft QUIC over TLS April 2018

C.5. Since draft-ietf-quic-tls-05

 No significant changes.

C.6. Since draft-ietf-quic-tls-04

 o Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

C.7. Since draft-ietf-quic-tls-03

 No significant changes.

C.8. Since draft-ietf-quic-tls-02

 o Updates to match changes in transport draft

C.9. Since draft-ietf-quic-tls-01

 o Use TLS alerts to signal TLS errors (#272, #374)

 o Require ClientHello to fit in a single packet (#338)

 o The second client handshake flight is now sent in the clear (#262,
 #337)

 o The QUIC header is included as AEAD Associated Data (#226, #243,
 #302)

 o Add interface necessary for client address validation (#275)

 o Define peer authentication (#140)

 o Require at least TLS 1.3 (#138)

 o Define transport parameters as a TLS extension (#122)

 o Define handling for protected packets before the handshake
 completes (#39)

 o Decouple QUIC version and ALPN (#12)

C.10. Since draft-ietf-quic-tls-00

 o Changed bit used to signal key phase

 o Updated key phase markings during the handshake

 o Added TLS interface requirements section

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00

Thomson & Turner Expires October 19, 2018 [Page 39]

Internet-Draft QUIC over TLS April 2018

 o Moved to use of TLS exporters for key derivation

 o Moved TLS error code definitions into this document

C.11. Since draft-thomson-quic-tls-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added status note

Authors' Addresses

 Martin Thomson (editor)
 Mozilla

 Email: martin.thomson@gmail.com

 Sean Turner (editor)
 sn3rd

 Email: sean@sn3rd.com

https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Thomson & Turner Expires October 19, 2018 [Page 40]

