
QUIC M. Thomson, Ed.
Internet-Draft Mozilla
Intended status: Standards Track S. Turner, Ed.
Expires: April 26, 2019 sn3rd
 October 23, 2018

Using Transport Layer Security (TLS) to Secure QUIC
draft-ietf-quic-tls-16

Abstract

 This document describes how Transport Layer Security (TLS) is used to
 secure QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-tls [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thomson & Turner Expires April 26, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC over TLS October 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions 3
2.1. TLS Overview . 4

3. Protocol Overview . 6
4. Carrying TLS Messages . 7
4.1. Interface to TLS . 9
4.1.1. Sending and Receiving Handshake Messages 9
4.1.2. Encryption Level Changes 11
4.1.3. TLS Interface Summary 11

4.2. TLS Version . 12
4.3. ClientHello Size . 13
4.4. Peer Authentication 13
4.5. Enabling 0-RTT . 14
4.6. Rejecting 0-RTT . 14
4.7. HelloRetryRequest . 14
4.8. TLS Errors . 15
4.9. Discarding Unused Keys 15

5. Packet Protection . 16
5.1. Packet Protection Keys 16
5.2. Initial Secrets . 17
5.3. AEAD Usage . 18
5.4. Packet Number Protection 19
5.4.1. AES-Based Packet Number Protection 20
5.4.2. ChaCha20-Based Packet Number Protection 20

5.5. Receiving Protected Packets 20
5.6. Use of 0-RTT Keys . 21
5.7. Receiving Out-of-Order Protected Frames 21

6. Key Update . 22
7. Security of Initial Messages 23
8. QUIC-Specific Additions to the TLS Handshake 24
8.1. Protocol and Version Negotiation 24
8.2. QUIC Transport Parameters Extension 25
8.3. Removing the EndOfEarlyData Message 25

9. Security Considerations 26
9.1. Packet Reflection Attack Mitigation 26
9.2. Peer Denial of Service 26

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Thomson & Turner Expires April 26, 2019 [Page 2]

Internet-Draft QUIC over TLS October 2018

9.3. Packet Number Protection Analysis 26
10. IANA Considerations . 27
11. References . 28
11.1. Normative References 28
11.2. Informative References 29
11.3. URIs . 29

Appendix A. Change Log . 30
A.1. Since draft-ietf-quic-tls-13 30
A.2. Since draft-ietf-quic-tls-12 30
A.3. Since draft-ietf-quic-tls-11 30
A.4. Since draft-ietf-quic-tls-10 30
A.5. Since draft-ietf-quic-tls-09 30
A.6. Since draft-ietf-quic-tls-08 30
A.7. Since draft-ietf-quic-tls-07 31
A.8. Since draft-ietf-quic-tls-05 31
A.9. Since draft-ietf-quic-tls-04 31
A.10. Since draft-ietf-quic-tls-03 31
A.11. Since draft-ietf-quic-tls-02 31
A.12. Since draft-ietf-quic-tls-01 31
A.13. Since draft-ietf-quic-tls-00 32
A.14. Since draft-thomson-quic-tls-01 32

 Acknowledgments . 32
 Contributors . 32
 Authors' Addresses . 32

1. Introduction

 This document describes how QUIC [QUIC-TRANSPORT] is secured using
 Transport Layer Security (TLS) version 1.3 [TLS13]. TLS 1.3 provides
 critical latency improvements for connection establishment over
 previous versions. Absent packet loss, most new connections can be
 established and secured within a single round trip; on subsequent
 connections between the same client and server, the client can often
 send application data immediately, that is, using a zero round trip
 setup.

 This document describes how the standardized TLS 1.3 acts as a
 security component of QUIC.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology established in [QUIC-TRANSPORT].

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thomson & Turner Expires April 26, 2019 [Page 3]

Internet-Draft QUIC over TLS October 2018

 For brevity, the acronym TLS is used to refer to TLS 1.3.

2.1. TLS Overview

 TLS provides two endpoints with a way to establish a means of
 communication over an untrusted medium (that is, the Internet) that
 ensures that messages they exchange cannot be observed, modified, or
 forged.

 Internally, TLS is a layered protocol, with the structure shown
 below:

 +--------------+--------------+--------------+
Handshake	Alerts	Application
Layer		Data
+--------------+--------------+--------------+		
Record Layer		
 +--+

 Each upper layer (handshake, alerts, and application data) is carried
 as a series of typed TLS records. Records are individually
 cryptographically protected and then transmitted over a reliable
 transport (typically TCP) which provides sequencing and guaranteed
 delivery.

 Change Cipher Spec records cannot be sent in QUIC.

 The TLS authenticated key exchange occurs between two entities:
 client and server. The client initiates the exchange and the server
 responds. If the key exchange completes successfully, both client
 and server will agree on a secret. TLS supports both pre-shared key
 (PSK) and Diffie-Hellman (DH) key exchanges. PSK is the basis for
 0-RTT; the latter provides perfect forward secrecy (PFS) when the DH
 keys are destroyed.

 After completing the TLS handshake, the client will have learned and
 authenticated an identity for the server and the server is optionally
 able to learn and authenticate an identity for the client. TLS
 supports X.509 [RFC5280] certificate-based authentication for both
 server and client.

 The TLS key exchange is resistant to tampering by attackers and it
 produces shared secrets that cannot be controlled by either
 participating peer.

https://datatracker.ietf.org/doc/html/rfc5280

Thomson & Turner Expires April 26, 2019 [Page 4]

Internet-Draft QUIC over TLS October 2018

 TLS 1.3 provides two basic handshake modes of interest to QUIC:

 o A full 1-RTT handshake in which the client is able to send
 application data after one round trip and the server immediately
 responds after receiving the first handshake message from the
 client.

 o A 0-RTT handshake in which the client uses information it has
 previously learned about the server to send application data
 immediately. This application data can be replayed by an attacker
 so it MUST NOT carry a self-contained trigger for any non-
 idempotent action.

 A simplified TLS 1.3 handshake with 0-RTT application data is shown
 in Figure 1. Note that this omits the EndOfEarlyData message, which
 is not used in QUIC (see Section 8.3).

 Client Server

 ClientHello
 (0-RTT Application Data) -------->
 ServerHello
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 () Indicates messages protected by early data (0-RTT) keys
 {} Indicates messages protected using handshake keys
 [] Indicates messages protected using application data
 (1-RTT) keys

 Figure 1: TLS Handshake with 0-RTT

 Data is protected using a number of encryption levels:

 o Plaintext

 o Early Data (0-RTT) Keys

 o Handshake Keys

 o Application Data (1-RTT) Keys

 Application data may appear only in the early data and application
 data levels. Handshake and Alert messages may appear in any level.

Thomson & Turner Expires April 26, 2019 [Page 5]

Internet-Draft QUIC over TLS October 2018

 The 0-RTT handshake is only possible if the client and server have
 previously communicated. In the 1-RTT handshake, the client is
 unable to send protected application data until it has received all
 of the handshake messages sent by the server.

3. Protocol Overview

 QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality
 and integrity protection of packets. For this it uses keys derived
 from a TLS 1.3 handshake [TLS13], but instead of carrying TLS records
 over QUIC (as with TCP), TLS Handshake and Alert messages are carried
 directly over the QUIC transport, which takes over the
 responsibilities of the TLS record layer, as shown below.

 +--------------+--------------+ +-------------+
TLS	TLS		QUIC
Handshake	Alerts		Applications
			(h2q, etc.)
+--------------+--------------+-+-------------+			
QUIC Transport			
(streams, reliability, congestion, etc.)			
+---+			
QUIC Packet Protection			
 +---+

 QUIC also relies on TLS 1.3 for authentication and negotiation of
 parameters that are critical to security and performance.

 Rather than a strict layering, these two protocols are co-dependent:
 QUIC uses the TLS handshake; TLS uses the reliability, ordered
 delivery, and record layer provided by QUIC.

 At a high level, there are two main interactions between the TLS and
 QUIC components:

 o The TLS component sends and receives messages via the QUIC
 component, with QUIC providing a reliable stream abstraction to
 TLS.

 o The TLS component provides a series of updates to the QUIC
 component, including (a) new packet protection keys to install (b)
 state changes such as handshake completion, the server
 certificate, etc.

Thomson & Turner Expires April 26, 2019 [Page 6]

Internet-Draft QUIC over TLS October 2018

 Figure 2 shows these interactions in more detail, with the QUIC
 packet protection being called out specially.

 +------------+ +------------+
	<- Handshake Messages ->	
	<---- 0-RTT Keys -------	
	<--- Handshake Keys-----	
QUIC	<---- 1-RTT Keys -------	TLS
	<--- Handshake Done ----	
 +------------+ +------------+
 | ^
 | Protect | Protected
 v | Packet
 +------------+
 | QUIC |
 | Packet |
 | Protection |
 +------------+

 Figure 2: QUIC and TLS Interactions

 Unlike TLS over TCP, QUIC applications which want to send data do not
 send it through TLS "application_data" records. Rather, they send it
 as QUIC STREAM frames which are then carried in QUIC packets.

4. Carrying TLS Messages

 QUIC carries TLS handshake data in CRYPTO frames, each of which
 consists of a contiguous block of handshake data identified by an
 offset and length. Those frames are packaged into QUIC packets and
 encrypted under the current TLS encryption level. As with TLS over
 TCP, once TLS handshake data has been delivered to QUIC, it is QUIC's
 responsibility to deliver it reliably. Each chunk of data that is
 produced by TLS is associated with the set of keys that TLS is
 currently using. If QUIC needs to retransmit that data, it MUST use
 the same keys even if TLS has already updated to newer keys.

 One important difference between TLS 1.3 records (used with TCP) and
 QUIC CRYPTO frames is that in QUIC multiple frames may appear in the
 same QUIC packet as long as they are associated with the same
 encryption level. For instance, an implementation might bundle a
 Handshake message and an ACK for some Handshake data into the same
 packet.

 Each encryption level has a specific list of frames which may appear
 in it. The rules here generalize those of TLS, in that frames
 associated with establishing the connection can usually appear at any

Thomson & Turner Expires April 26, 2019 [Page 7]

Internet-Draft QUIC over TLS October 2018

 encryption level, whereas those associated with transferring data can
 only appear in the 0-RTT and 1-RTT encryption levels:

 o CRYPTO frames MAY appear in packets of any encryption level except
 0-RTT.

 o CONNECTION_CLOSE MAY appear in packets of any encryption level
 other than 0-RTT.

 o APPLICATION_CLOSE MAY appear in packets of any encryption level
 other than Initial and 0-RTT.

 o PADDING frames MAY appear in packets of any encryption level.

 o ACK frames MAY appear in packets of any encryption level other
 than 0-RTT, but can only acknowledge packets which appeared in
 that packet number space.

 o STREAM frames MUST ONLY appear in the 0-RTT and 1-RTT levels.

 o All other frame types MUST only appear at the 1-RTT levels.

 Because packets could be reordered on the wire, QUIC uses the packet
 type to indicate which level a given packet was encrypted under, as
 shown in Table 1. When multiple packets of different encryption
 levels need to be sent, endpoints SHOULD use coalesced packets to
 send them in the same UDP datagram.

 +-----------------+------------------+-----------+
 | Packet Type | Encryption Level | PN Space |
 +-----------------+------------------+-----------+
 | Initial | Initial secrets | Initial |
 | | | |
 | 0-RTT Protected | 0-RTT | 0/1-RTT |
 | | | |
 | Handshake | Handshake | Handshake |
 | | | |
 | Retry | N/A | N/A |
 | | | |
 | Short Header | 1-RTT | 0/1-RTT |
 +-----------------+------------------+-----------+

 Table 1: Encryption Levels by Packet Type

 Section 6.5 of [QUIC-TRANSPORT] shows how packets at the various
 encryption levels fit into the handshake process.

Thomson & Turner Expires April 26, 2019 [Page 8]

Internet-Draft QUIC over TLS October 2018

4.1. Interface to TLS

 As shown in Figure 2, the interface from QUIC to TLS consists of
 three primary functions:

 o Sending and receiving handshake messages

 o Rekeying (both transmit and receive)

 o Handshake state updates

 Additional functions might be needed to configure TLS.

4.1.1. Sending and Receiving Handshake Messages

 In order to drive the handshake, TLS depends on being able to send
 and receive handshake messages. There are two basic functions on
 this interface: one where QUIC requests handshake messages and one
 where QUIC provides handshake packets.

 Before starting the handshake QUIC provides TLS with the transport
 parameters (see Section 8.2) that it wishes to carry.

 A QUIC client starts TLS by requesting TLS handshake octets from TLS.
 The client acquires handshake octets before sending its first packet.
 A QUIC server starts the process by providing TLS with the client's
 handshake octets.

 At any given time, the TLS stack at an endpoint will have a current
 sending encryption level and receiving encryption level. Each
 encryption level is associated with a different flow of bytes, which
 is reliably transmitted to the peer in CRYPTO frames. When TLS
 provides handshake octets to be sent, they are appended to the
 current flow and any packet that includes the CRYPTO frame is
 protected using keys from the corresponding encryption level.

 QUIC takes the unprotected content of TLS handshake records as the
 content of CRYPTO frames. TLS record protection is not used by QUIC.
 QUIC assembles CRYPTO frames into QUIC packets, which are protected
 using QUIC packet protection.

 When an endpoint receives a QUIC packet containing a CRYPTO frame
 from the network, it proceeds as follows:

 o If the packet was in the TLS receiving encryption level, sequence
 the data into the input flow as usual. As with STREAM frames, the
 offset is used to find the proper location in the data sequence.

Thomson & Turner Expires April 26, 2019 [Page 9]

Internet-Draft QUIC over TLS October 2018

 If the result of this process is that new data is available, then
 it is delivered to TLS in order.

 o If the packet is from a previously installed encryption level, it
 MUST not contain data which extends past the end of previously
 received data in that flow. Implementations MUST treat any
 violations of this requirement as a connection error of type
 PROTOCOL_VIOLATION.

 o If the packet is from a new encryption level, it is saved for
 later processing by TLS. Once TLS moves to receiving from this
 encryption level, saved data can be provided. When providing data
 from any new encryption level to TLS, if there is data from a
 previous encryption level that TLS has not consumed, this MUST be
 treated as a connection error of type PROTOCOL_VIOLATION.

 Each time that TLS is provided with new data, new handshake octets
 are requested from TLS. TLS might not provide any octets if the
 handshake messages it has received are incomplete or it has no data
 to send.

 Once the TLS handshake is complete, this is indicated to QUIC along
 with any final handshake octets that TLS needs to send. TLS also
 provides QUIC with the transport parameters that the peer advertised
 during the handshake.

 Once the handshake is complete, TLS becomes passive. TLS can still
 receive data from its peer and respond in kind, but it will not need
 to send more data unless specifically requested - either by an
 application or QUIC. One reason to send data is that the server
 might wish to provide additional or updated session tickets to a
 client.

 When the handshake is complete, QUIC only needs to provide TLS with
 any data that arrives in CRYPTO streams. In the same way that is
 done during the handshake, new data is requested from TLS after
 providing received data.

 Important: Until the handshake is reported as complete, the
 connection and key exchange are not properly authenticated at the
 server. Even though 1-RTT keys are available to a server after
 receiving the first handshake messages from a client, the server
 cannot consider the client to be authenticated until it receives
 and validates the client's Finished message.

 The requirement for the server to wait for the client Finished
 message creates a dependency on that message being delivered. A
 client can avoid the potential for head-of-line blocking that this

Thomson & Turner Expires April 26, 2019 [Page 10]

Internet-Draft QUIC over TLS October 2018

 implies by sending a copy of the CRYPTO frame that carries the
 Finished message in multiple packets. This enables immediate
 server processing for those packets.

4.1.2. Encryption Level Changes

 As keys for new encryption levels become available, TLS provides QUIC
 with those keys. Separately, as TLS starts using keys at a given
 encryption level, TLS indicates to QUIC that it is now reading or
 writing with keys at that encryption level. These events are not
 asynchronous; they always occur immediately after TLS is provided
 with new handshake octets, or after TLS produces handshake octets.

 If 0-RTT is possible, it is ready after the client sends a TLS
 ClientHello message or the server receives that message. After
 providing a QUIC client with the first handshake octets, the TLS
 stack might signal the change to 0-RTT keys. On the server, after
 receiving handshake octets that contain a ClientHello message, a TLS
 server might signal that 0-RTT keys are available.

 Although TLS only uses one encryption level at a time, QUIC may use
 more than one level. For instance, after sending its Finished
 message (using a CRYPTO frame at the Handshake encryption level) an
 endpoint can send STREAM data (in 1-RTT encryption). If the Finished
 message is lost, the endpoint uses the Handshake encryption level to
 retransmit the lost message. Reordering or loss of packets can mean
 that QUIC will need to handle packets at multiple encryption levels.
 During the handshake, this means potentially handling packets at
 higher and lower encryption levels than the current encryption level
 used by TLS.

 In particular, server implementations need to be able to read packets
 at the Handshake encryption level at the same time as the 0-RTT
 encryption level. A client could interleave ACK frames that are
 protected with Handshake keys with 0-RTT data and the server needs to
 process those acknowledgments in order to detect lost Handshake
 packets.

4.1.3. TLS Interface Summary

 Figure 3 summarizes the exchange between QUIC and TLS for both client
 and server. Each arrow is tagged with the encryption level used for
 that transmission.

Thomson & Turner Expires April 26, 2019 [Page 11]

Internet-Draft QUIC over TLS October 2018

 Client Server

 Get Handshake
 Initial ------------->
 Rekey tx to 0-RTT Keys
 0-RTT --------------->
 Handshake Received
 Get Handshake
 <------------- Initial
 Rekey rx to 0-RTT keys
 Handshake Received
 Rekey rx to Handshake keys
 Get Handshake
 <----------- Handshake
 Rekey tx to 1-RTT keys
 <--------------- 1-RTT
 Handshake Received
 Rekey rx to Handshake keys
 Handshake Received
 Get Handshake
 Handshake Complete
 Handshake ----------->
 Rekey tx to 1-RTT keys
 1-RTT --------------->
 Handshake Received
 Rekey rx to 1-RTT keys
 Get Handshake
 Handshake Complete
 <--------------- 1-RTT
 Handshake Received

 Figure 3: Interaction Summary between QUIC and TLS

4.2. TLS Version

 This document describes how TLS 1.3 [TLS13] is used with QUIC.

 In practice, the TLS handshake will negotiate a version of TLS to
 use. This could result in a newer version of TLS than 1.3 being
 negotiated if both endpoints support that version. This is
 acceptable provided that the features of TLS 1.3 that are used by
 QUIC are supported by the newer version.

 A badly configured TLS implementation could negotiate TLS 1.2 or
 another older version of TLS. An endpoint MUST terminate the
 connection if a version of TLS older than 1.3 is negotiated.

Thomson & Turner Expires April 26, 2019 [Page 12]

Internet-Draft QUIC over TLS October 2018

4.3. ClientHello Size

 QUIC requires that the first Initial packet from a client contain an
 entire cryptographic handshake message, which for TLS is the
 ClientHello. Though a packet larger than 1200 octets might be
 supported by the path, a client improves the likelihood that a packet
 is accepted if it ensures that the first ClientHello message is small
 enough to stay within this limit.

 QUIC packet and framing add at least 36 octets of overhead to the
 ClientHello message. That overhead increases if the client chooses a
 connection ID without zero length. Overheads also do not include the
 token or a connection ID longer than 8 octets, both of which might be
 required if a server sends a Retry packet.

 A typical TLS ClientHello can easily fit into a 1200 octet packet.
 However, in addition to the overheads added by QUIC, there are
 several variables that could cause this limit to be exceeded. Large
 session tickets, multiple or large key shares, and long lists of
 supported ciphers, signature algorithms, versions, QUIC transport
 parameters, and other negotiable parameters and extensions could
 cause this message to grow.

 For servers, in addition to connection IDs and tokens, the size of
 TLS session tickets can have an effect on a client's ability to
 connect. Minimizing the size of these values increases the
 probability that they can be successfully used by a client.

 A client is not required to fit the ClientHello that it sends in
 response to a HelloRetryRequest message into a single UDP datagram.

 The TLS implementation does not need to ensure that the ClientHello
 is sufficiently large. QUIC PADDING frames are added to increase the
 size of the packet as necessary.

4.4. Peer Authentication

 The requirements for authentication depend on the application
 protocol that is in use. TLS provides server authentication and
 permits the server to request client authentication.

 A client MUST authenticate the identity of the server. This
 typically involves verification that the identity of the server is
 included in a certificate and that the certificate is issued by a
 trusted entity (see for example [RFC2818]).

 A server MAY request that the client authenticate during the
 handshake. A server MAY refuse a connection if the client is unable

https://datatracker.ietf.org/doc/html/rfc2818

Thomson & Turner Expires April 26, 2019 [Page 13]

Internet-Draft QUIC over TLS October 2018

 to authenticate when requested. The requirements for client
 authentication vary based on application protocol and deployment.

 A server MUST NOT use post-handshake client authentication (see
 Section 4.6.2 of [TLS13]).

4.5. Enabling 0-RTT

 In order to be usable for 0-RTT, TLS MUST provide a NewSessionTicket
 message that contains the "max_early_data" extension with the value
 0xffffffff; the amount of data which the client can send in 0-RTT is
 controlled by the "initial_max_data" transport parameter supplied by
 the server. A client MUST treat receipt of a NewSessionTicket that
 contains a "max_early_data" extension with any other value as a
 connection error of type PROTOCOL_VIOLATION.

 Early data within the TLS connection MUST NOT be used. As it is for
 other TLS application data, a server MUST treat receiving early data
 on the TLS connection as a connection error of type
 PROTOCOL_VIOLATION.

4.6. Rejecting 0-RTT

 A server rejects 0-RTT by rejecting 0-RTT at the TLS layer. This
 also prevents QUIC from sending 0-RTT data. A server will always
 reject 0-RTT if it sends a TLS HelloRetryRequest.

 When 0-RTT is rejected, all connection characteristics that the
 client assumed might be incorrect. This includes the choice of
 application protocol, transport parameters, and any application
 configuration. The client therefore MUST reset the state of all
 streams, including application state bound to those streams.

 A client MAY attempt to send 0-RTT again if it receives a Retry or
 Version Negotiation packet. These packets do not signify rejection
 of 0-RTT.

4.7. HelloRetryRequest

 In TLS over TCP, the HelloRetryRequest feature (see Section 4.1.4 of
 [TLS13]) can be used to correct a client's incorrect KeyShare
 extension as well as for a stateless round-trip check. From the
 perspective of QUIC, this just looks like additional messages carried
 in the Initial encryption level. Although it is in principle
 possible to use this feature for address verification in QUIC, QUIC
 implementations SHOULD instead use the Retry feature (see Section 4.4
 of [QUIC-TRANSPORT]). HelloRetryRequest is still used to request key
 shares.

Thomson & Turner Expires April 26, 2019 [Page 14]

Internet-Draft QUIC over TLS October 2018

4.8. TLS Errors

 If TLS experiences an error, it generates an appropriate alert as
 defined in Section 6 of [TLS13].

 A TLS alert is turned into a QUIC connection error by converting the
 one-octet alert description into a QUIC error code. The alert
 description is added to 0x100 to produce a QUIC error code from the
 range reserved for CRYPTO_ERROR. The resulting value is sent in a
 QUIC CONNECTION_CLOSE frame.

 The alert level of all TLS alerts is "fatal"; a TLS stack MUST NOT
 generate alerts at the "warning" level.

4.9. Discarding Unused Keys

 After QUIC moves to a new encryption level, packet protection keys
 for previous encryption levels can be discarded. This occurs several
 times during the handshake, as well as when keys are updated (see

Section 6).

 Packet protection keys are not discarded immediately when new keys
 are available. If packets from a lower encryption level contain
 CRYPTO frames, frames that retransmit that data MUST be sent at the
 same encryption level. Similarly, an endpoint generates
 acknowledgements for packets at the same encryption level as the
 packet being acknowledged. Thus, it is possible that keys for a
 lower encryption level are needed for a short time after keys for a
 newer encryption level are available.

 An endpoint cannot discard keys for a given encryption level unless
 it has both received and acknowledged all CRYPTO frames for that
 encryption level and when all CRYPTO frames for that encryption level
 have been acknowledged by its peer. However, this does not guarantee
 that no further packets will need to be received or sent at that
 encryption level because a peer might not have received all the
 acknowledgements necessary to reach the same state.

 After all CRYPTO frames for a given encryption level have been sent
 and all expected CRYPTO frames received, and all the corresponding
 acknowledgments have been received or sent, an endpoint starts a
 timer. For 0-RTT keys, which do not carry CRYPTO frames, this timer
 starts when the first packets protected with 1-RTT are sent or
 received. To limit the effect of packet loss around a change in
 keys, endpoints MUST retain packet protection keys for that
 encryption level for at least three times the current Retransmission
 Timeout (RTO) interval as defined in [QUIC-RECOVERY]. Retaining keys
 for this interval allows packets containing CRYPTO or ACK frames at

Thomson & Turner Expires April 26, 2019 [Page 15]

Internet-Draft QUIC over TLS October 2018

 that encryption level to be sent if packets are determined to be lost
 or new packets require acknowledgment.

 Though an endpoint might retain older keys, new data MUST be sent at
 the highest currently-available encryption level. Only ACK frames
 and retransmissions of data in CRYPTO frames are sent at a previous
 encryption level. These packets MAY also include PADDING frames.

 Once this timer expires, an endpoint MUST NOT either accept or
 generate new packets using those packet protection keys. An endpoint
 can discard packet protection keys for that encryption level.

 Key updates (see Section 6) can be used to update 1-RTT keys before
 keys from other encryption levels are discarded. In that case,
 packets protected with the newest packet protection keys and packets
 sent two updates prior will appear to use the same keys. After the
 handshake is complete, endpoints only need to maintain the two latest
 sets of packet protection keys and MAY discard older keys. Updating
 keys multiple times rapidly can cause packets to be effectively lost
 if packets are significantly delayed. Because key updates can only
 be performed once per round trip time, only packets that are delayed
 by more than a round trip will be lost as a result of changing keys;
 such packets will be marked as lost before this, as they leave a gap
 in the sequence of packet numbers.

5. Packet Protection

 As with TLS over TCP, QUIC protects packets with keys derived from
 the TLS handshake, using the AEAD algorithm negotiated by TLS.

5.1. Packet Protection Keys

 QUIC derives packet protection keys in the same way that TLS derives
 record protection keys.

 Each encryption level has separate secret values for protection of
 packets sent in each direction. These traffic secrets are derived by
 TLS (see Section 7.1 of [TLS13]) and are used by QUIC for all
 encryption levels except the Initial encryption level. The secrets
 for the Initial encryption level are computed based on the client's
 initial Destination Connection ID, as described in Section 5.2.

 The keys used for packet protection are computed from the TLS secrets
 using the method described in Section 7.3 of [TLS13]), except that
 the label for HKDF-Expand-Label uses the prefix "quic " rather than
 "tls13 ". A different label provides key separation between TLS and
 QUIC.

Thomson & Turner Expires April 26, 2019 [Page 16]

Internet-Draft QUIC over TLS October 2018

 For example, where TLS might use a label of
 0x002009746c733133206b657900 to derive a key, QUIC uses
 0x00200871756963206b657900.

 The HKDF-Expand-Label function with a "quic " label is also used to
 derive the initial secrets (see Section 5.2) and to derive a packet
 number protection key (the "pn" label, see Section 5.4).

5.2. Initial Secrets

 Initial packets are protected with a secret derived from the
 Destination Connection ID field from the client's first Initial
 packet of the connection. Specifically:

 initial_salt = 0x9c108f98520a5c5c32968e950e8a2c5fe06d6c38
 initial_secret = HKDF-Extract(initial_salt,
 client_dst_connection_id)

 client_initial_secret = HKDF-Expand-Label(initial_secret,
 "client in", "",
 Hash.length)
 server_initial_secret = HKDF-Expand-Label(initial_secret,
 "server in", "",
 Hash.length)

 The hash function for HKDF when deriving initial secrets and keys is
 SHA-256 [SHA].

 The connection ID used with HKDF-Expand-Label is the Destination
 Connection ID in the Initial packet sent by the client. This will be
 a randomly-selected value unless the client creates the Initial
 packet after receiving a Retry packet, where the Destination
 Connection ID is selected by the server.

 The value of initial_salt is a 20 octet sequence shown in the figure
 in hexadecimal notation. Future versions of QUIC SHOULD generate a
 new salt value, thus ensuring that the keys are different for each
 version of QUIC. This prevents a middlebox that only recognizes one
 version of QUIC from seeing or modifying the contents of handshake
 packets from future versions.

 Note: The Destination Connection ID is of arbitrary length, and it
 could be zero length if the server sends a Retry packet with a
 zero-length Source Connection ID field. In this case, the Initial
 keys provide no assurance to the client that the server received
 its packet; the client has to rely on the exchange that included
 the Retry packet for that property.

Thomson & Turner Expires April 26, 2019 [Page 17]

Internet-Draft QUIC over TLS October 2018

5.3. AEAD Usage

 The Authentication Encryption with Associated Data (AEAD) [AEAD]
 function used for QUIC packet protection is the AEAD that is
 negotiated for use with the TLS connection. For example, if TLS is
 using the TLS_AES_128_GCM_SHA256, the AEAD_AES_128_GCM function is
 used.

 QUIC packets are protected prior to applying packet number protection
 (Section 5.4). The unprotected packet number is part of the
 associated data (A). When removing packet protection, an endpoint
 first removes the protection from the packet number.

 All QUIC packets other than Version Negotiation and Retry packets are
 protected with an AEAD algorithm [AEAD]. Prior to establishing a
 shared secret, packets are protected with AEAD_AES_128_GCM and a key
 derived from the destination connection ID in the client's first
 Initial packet (see Section 5.2). This provides protection against
 off-path attackers and robustness against QUIC version unaware
 middleboxes, but not against on-path attackers.

 All ciphersuites currently defined for TLS 1.3 - and therefore QUIC -
 have a 16-byte authentication tag and produce an output 16 bytes
 larger than their input.

 The key and IV for the packet are computed as described in
Section 5.1. The nonce, N, is formed by combining the packet

 protection IV with the packet number. The 64 bits of the
 reconstructed QUIC packet number in network byte order are left-
 padded with zeros to the size of the IV. The exclusive OR of the
 padded packet number and the IV forms the AEAD nonce.

 The associated data, A, for the AEAD is the contents of the QUIC
 header, starting from the flags octet in either the short or long
 header, up to and including the unprotected packet number.

 The input plaintext, P, for the AEAD is the content of the QUIC frame
 following the header, as described in [QUIC-TRANSPORT].

 The output ciphertext, C, of the AEAD is transmitted in place of P.

 Some AEAD functions have limits for how many packets can be encrypted
 under the same key and IV (see for example [AEBounds]). This might
 be lower than the packet number limit. An endpoint MUST initiate a
 key update (Section 6) prior to exceeding any limit set for the AEAD
 that is in use.

Thomson & Turner Expires April 26, 2019 [Page 18]

Internet-Draft QUIC over TLS October 2018

5.4. Packet Number Protection

 QUIC packet numbers are protected using a key that is derived from
 the current set of secrets. The key derived using the "pn" label is
 used to protect the packet number from casual observation. The
 packet number protection algorithm depends on the negotiated AEAD.

 Packet number protection is applied after packet protection is
 applied (see Section 5.3). The ciphertext of the packet is sampled
 and used as input to an encryption algorithm.

 In sampling the packet ciphertext, the packet number length is
 assumed to be 4 octets (its maximum possible encoded length), unless
 there is insufficient space in the packet for sampling. The sampled
 ciphertext starts after allowing for a 4 octet packet number unless
 this would cause the sample to extend past the end of the packet. If
 the sample would extend past the end of the packet, the end of the
 packet is sampled.

 For example, the sampled ciphertext for a packet with a short header
 can be determined by:

 sample_offset = 1 + len(connection_id) + 4

 if sample_offset + sample_length > packet_length then
 sample_offset = packet_length - sample_length
 sample = packet[sample_offset..sample_offset+sample_length]

 A packet with a long header is sampled in the same way, noting that
 multiple QUIC packets might be included in the same UDP datagram and
 that each one is handled separately.

 sample_offset = 6 + len(destination_connection_id) +
 len(source_connection_id) +
 len(payload_length) + 4
 if packet_type == Initial:
 sample_offset += len(token_length) +
 len(token)

 To ensure that this process does not sample the packet number, packet
 number protection algorithms MUST NOT sample more ciphertext than the
 minimum expansion of the corresponding AEAD.

 Packet number protection is applied to the packet number encoded as
 described in Section 4.11 of [QUIC-TRANSPORT]. Since the length of
 the packet number is stored in the first octet of the encoded packet
 number, it may be necessary to progressively decrypt the packet
 number.

Thomson & Turner Expires April 26, 2019 [Page 19]

Internet-Draft QUIC over TLS October 2018

 Before a TLS ciphersuite can be used with QUIC, a packet protection
 algorithm MUST be specifed for the AEAD used with that ciphersuite.
 This document defines algorithms for AEAD_AES_128_GCM,
 AEAD_AES_128_CCM, AEAD_AES_256_GCM, AEAD_AES_256_CCM (all AES AEADs
 are defined in [AEAD]), and AEAD_CHACHA20_POLY1305 ([CHACHA]).

5.4.1. AES-Based Packet Number Protection

 This section defines the packet protection algorithm for
 AEAD_AES_128_GCM, AEAD_AES_128_CCM, AEAD_AES_256_GCM, and
 AEAD_AES_256_CCM. AEAD_AES_128_GCM and AEAD_AES_128_CCM use 128-bit
 AES [AES] in counter (CTR) mode. AEAD_AES_256_GCM, and
 AEAD_AES_256_CCM use 256-bit AES in CTR mode.

 This algorithm samples 16 octets from the packet ciphertext. This
 value is used as the counter input to AES-CTR.

 encrypted_pn = AES-CTR(pn_key, sample, packet_number)

5.4.2. ChaCha20-Based Packet Number Protection

 When AEAD_CHACHA20_POLY1305 is in use, packet number protection uses
 the raw ChaCha20 function as defined in Section 2.4 of [CHACHA].
 This uses a 256-bit key and 16 octets sampled from the packet
 protection output.

 The first 4 octets of the sampled ciphertext are interpreted as a
 32-bit number in little-endian order and are used as the block count.
 The remaining 12 octets are interpreted as three concatenated 32-bit
 numbers in little-endian order and used as the nonce.

 The encoded packet number is then encrypted with ChaCha20 directly.
 In pseudocode:

 counter = DecodeLE(sample[0..3])
 nonce = DecodeLE(sample[4..7], sample[8..11], sample[12..15])
 encrypted_pn = ChaCha20(pn_key, counter, nonce, packet_number)

5.5. Receiving Protected Packets

 Once an endpoint successfully receives a packet with a given packet
 number, it MUST discard all packets in the same packet number space
 with higher packet numbers if they cannot be successfully unprotected
 with either the same key, or - if there is a key update - the next
 packet protection key (see Section 6). Similarly, a packet that
 appears to trigger a key update, but cannot be unprotected
 successfully MUST be discarded.

Thomson & Turner Expires April 26, 2019 [Page 20]

Internet-Draft QUIC over TLS October 2018

 Failure to unprotect a packet does not necessarily indicate the
 existence of a protocol error in a peer or an attack. The truncated
 packet number encoding used in QUIC can cause packet numbers to be
 decoded incorrectly if they are delayed significantly.

5.6. Use of 0-RTT Keys

 If 0-RTT keys are available (see Section 4.5), the lack of replay
 protection means that restrictions on their use are necessary to
 avoid replay attacks on the protocol.

 A client MUST only use 0-RTT keys to protect data that is idempotent.
 A client MAY wish to apply additional restrictions on what data it
 sends prior to the completion of the TLS handshake. A client
 otherwise treats 0-RTT keys as equivalent to 1-RTT keys, except that
 it MUST NOT send ACKs with 0-RTT keys.

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of the
 server's handshake messages. A client SHOULD stop sending 0-RTT data
 if it receives an indication that 0-RTT data has been rejected.

 A server MUST NOT use 0-RTT keys to protect packets; it uses 1-RTT
 keys to protect acknowledgements of 0-RTT packets. A client MUST NOT
 attempt to decrypt 0-RTT packets it receives and instead MUST discard
 them.

 Note: 0-RTT data can be acknowledged by the server as it receives
 it, but any packets containing acknowledgments of 0-RTT data
 cannot have packet protection removed by the client until the TLS
 handshake is complete. The 1-RTT keys necessary to remove packet
 protection cannot be derived until the client receives all server
 handshake messages.

5.7. Receiving Out-of-Order Protected Frames

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final TLS handshake messages are received. A
 client will be unable to decrypt 1-RTT packets from the server,
 whereas a server will be able to decrypt 1-RTT packets from the
 client.

 However, a server MUST NOT process data from incoming 1-RTT protected
 packets before verifying either the client Finished message or - in
 the case that the server has chosen to use a pre-shared key - the
 pre-shared key binder (see Section 4.2.11 of [TLS13]). Verifying
 these values provides the server with an assurance that the
 ClientHello has not been modified. Packets protected with 1-RTT keys

Thomson & Turner Expires April 26, 2019 [Page 21]

Internet-Draft QUIC over TLS October 2018

 MAY be stored and later decrypted and used once the handshake is
 complete.

 A server could receive packets protected with 0-RTT keys prior to
 receiving a TLS ClientHello. The server MAY retain these packets for
 later decryption in anticipation of receiving a ClientHello.

6. Key Update

 Once the 1-RTT keys are established and the short header is in use,
 it is possible to update the keys. The KEY_PHASE bit in the short
 header is used to indicate whether key updates have occurred. The
 KEY_PHASE bit is initially set to 0 and then inverted with each key
 update.

 The KEY_PHASE bit allows a recipient to detect a change in keying
 material without necessarily needing to receive the first packet that
 triggered the change. An endpoint that notices a changed KEY_PHASE
 bit can update keys and decrypt the packet that contains the changed
 bit.

 This mechanism replaces the TLS KeyUpdate message. Endpoints MUST
 NOT send a TLS KeyUpdate message. Endpoints MUST treat the receipt
 of a TLS KeyUpdate message as a connection error of type 0x10a,
 equivalent to a fatal TLS alert of unexpected_message (see

Section 4.8).

 An endpoint MUST NOT initiate more than one key update at a time. A
 new key cannot be used until the endpoint has received and
 successfully decrypted a packet with a matching KEY_PHASE.

 A receiving endpoint detects an update when the KEY_PHASE bit does
 not match what it is expecting. It creates a new secret (see
 Section 7.2 of [TLS13]) and the corresponding read key and IV using
 the same variation on HKDF as defined in Section 5.1; that is, the
 prefix "quic " is used in place of "tls13 ".

 If the packet can be decrypted and authenticated using the updated
 key and IV, then the keys the endpoint uses for packet protection are
 also updated. The next packet sent by the endpoint will then use the
 new keys.

 An endpoint does not always need to send packets when it detects that
 its peer has updated keys. The next packet that it sends will simply
 use the new keys. If an endpoint detects a second update before it
 has sent any packets with updated keys, it indicates that its peer
 has updated keys twice without awaiting a reciprocal update. An

Thomson & Turner Expires April 26, 2019 [Page 22]

Internet-Draft QUIC over TLS October 2018

 endpoint MUST treat consecutive key updates as a fatal error and
 abort the connection.

 An endpoint SHOULD retain old keys for a short period to allow it to
 decrypt packets with smaller packet numbers than the packet that
 triggered the key update. This allows an endpoint to consume packets
 that are reordered around the transition between keys. Packets with
 higher packet numbers always use the updated keys and MUST NOT be
 decrypted with old keys.

 Keys and their corresponding secrets SHOULD be discarded when an
 endpoint has received all packets with packet numbers lower than the
 lowest packet number used for the new key. An endpoint might discard
 keys if it determines that the length of the delay to affected
 packets is excessive.

 This ensures that once the handshake is complete, packets with the
 same KEY_PHASE will have the same packet protection keys, unless
 there are multiple key updates in a short time frame succession and
 significant packet reordering.

 Initiating Peer Responding Peer

 @M QUIC Frames
 New Keys -> @N
 @N QUIC Frames
 -------->
 QUIC Frames @M
 New Keys -> @N
 QUIC Frames @N
 <--------

 Figure 4: Key Update

 A packet that triggers a key update could arrive after successfully
 processing a packet with a higher packet number. This is only
 possible if there is a key compromise and an attack, or if the peer
 is incorrectly reverting to use of old keys. Because the latter
 cannot be differentiated from an attack, an endpoint MUST immediately
 terminate the connection if it detects this condition.

7. Security of Initial Messages

 Initial packets are not protected with a secret key, so they are
 subject to potential tampering by an attacker. QUIC provides
 protection against attackers that cannot read packets, but does not
 attempt to provide additional protection against attacks where the
 attacker can observe and inject packets. Some forms of tampering -

Thomson & Turner Expires April 26, 2019 [Page 23]

Internet-Draft QUIC over TLS October 2018

 such as modifying the TLS messages themselves - are detectable, but
 some - such as modifying ACKs - are not.

 For example, an attacker could inject a packet containing an ACK
 frame that makes it appear that a packet had not been received or to
 create a false impression of the state of the connection (e.g., by
 modifying the ACK Delay). Note that such a packet could cause a
 legitimate packet to be dropped as a duplicate. Implementations
 SHOULD use caution in relying on any data which is contained in
 Initial packets that is not otherwise authenticated.

 It is also possible for the attacker to tamper with data that is
 carried in Handshake packets, but because that tampering requires
 modifying TLS handshake messages, that tampering will cause the TLS
 handshake to fail.

8. QUIC-Specific Additions to the TLS Handshake

 QUIC uses the TLS handshake for more than just negotiation of
 cryptographic parameters. The TLS handshake validates protocol
 version selection, provides preliminary values for QUIC transport
 parameters, and allows a server to perform return routeability checks
 on clients.

8.1. Protocol and Version Negotiation

 The QUIC version negotiation mechanism is used to negotiate the
 version of QUIC that is used prior to the completion of the
 handshake. However, this packet is not authenticated, enabling an
 active attacker to force a version downgrade.

 To ensure that a QUIC version downgrade is not forced by an attacker,
 version information is copied into the TLS handshake, which provides
 integrity protection for the QUIC negotiation. This does not prevent
 version downgrade prior to the completion of the handshake, though it
 means that a downgrade causes a handshake failure.

 TLS uses Application Layer Protocol Negotiation (ALPN) [RFC7301] to
 select an application protocol. The application-layer protocol MAY
 restrict the QUIC versions that it can operate over. Servers MUST
 select an application protocol compatible with the QUIC version that
 the client has selected.

 If the server cannot select a compatible combination of application
 protocol and QUIC version, it MUST abort the connection. A client
 MUST abort a connection if the server picks an incompatible
 combination of QUIC version and ALPN identifier.

https://datatracker.ietf.org/doc/html/rfc7301

Thomson & Turner Expires April 26, 2019 [Page 24]

Internet-Draft QUIC over TLS October 2018

8.2. QUIC Transport Parameters Extension

 QUIC transport parameters are carried in a TLS extension. Different
 versions of QUIC might define a different format for this struct.

 Including transport parameters in the TLS handshake provides
 integrity protection for these values.

 enum {
 quic_transport_parameters(0xffa5), (65535)
 } ExtensionType;

 The "extension_data" field of the quic_transport_parameters extension
 contains a value that is defined by the version of QUIC that is in
 use. The quic_transport_parameters extension carries a
 TransportParameters when the version of QUIC defined in
 [QUIC-TRANSPORT] is used.

 The quic_transport_parameters extension is carried in the ClientHello
 and the EncryptedExtensions messages during the handshake.

 While the transport parameters are technically available prior to the
 completion of the handshake, they cannot be fully trusted until the
 handshake completes, and reliance on them should be minimized.
 However, any tampering with the parameters will cause the handshake
 to fail.

 Endpoints MUST NOT send this extension in a TLS connection that does
 not use QUIC (such as the use of TLS with TCP defined in [TLS13]). A
 fatal unsupported_extension alert MUST be sent if this extension is
 received when the transport is not QUIC.

8.3. Removing the EndOfEarlyData Message

 The TLS EndOfEarlyData message is not used with QUIC. QUIC does not
 rely on this message to mark the end of 0-RTT data or to signal the
 change to Handshake keys.

 Clients MUST NOT send the EndOfEarlyData message. A server MUST
 treat receipt of a CRYPTO frame in a 0-RTT packet as a connection
 error of type PROTOCOL_VIOLATION.

 As a result, EndOfEarlyData does not appear in the TLS handshake
 transcript.

Thomson & Turner Expires April 26, 2019 [Page 25]

Internet-Draft QUIC over TLS October 2018

9. Security Considerations

 There are likely to be some real clangers here eventually, but the
 current set of issues is well captured in the relevant sections of
 the main text.

 Never assume that because it isn't in the security considerations
 section it doesn't affect security. Most of this document does.

9.1. Packet Reflection Attack Mitigation

 A small ClientHello that results in a large block of handshake
 messages from a server can be used in packet reflection attacks to
 amplify the traffic generated by an attacker.

 QUIC includes three defenses against this attack. First, the packet
 containing a ClientHello MUST be padded to a minimum size. Second,
 if responding to an unverified source address, the server is
 forbidden to send more than three UDP datagrams in its first flight
 (see Section 4.7 of [QUIC-TRANSPORT]). Finally, because
 acknowledgements of Handshake packets are authenticated, a blind
 attacker cannot forge them. Put together, these defenses limit the
 level of amplification.

9.2. Peer Denial of Service

 QUIC, TLS, and HTTP/2 all contain messages that have legitimate uses
 in some contexts, but that can be abused to cause a peer to expend
 processing resources without having any observable impact on the
 state of the connection. If processing is disproportionately large
 in comparison to the observable effects on bandwidth or state, then
 this could allow a malicious peer to exhaust processing capacity
 without consequence.

 QUIC prohibits the sending of empty "STREAM" frames unless they are
 marked with the FIN bit. This prevents "STREAM" frames from being
 sent that only waste effort.

 While there are legitimate uses for some redundant packets,
 implementations SHOULD track redundant packets and treat excessive
 volumes of any non-productive packets as indicative of an attack.

9.3. Packet Number Protection Analysis

 Packet number protection relies on the packet protection AEAD being a
 pseudorandom function (PRF), which is not a property that AEAD
 algorithms guarantee. Therefore, no strong assurances about the
 general security of this mechanism can be shown in the general case.

Thomson & Turner Expires April 26, 2019 [Page 26]

Internet-Draft QUIC over TLS October 2018

 The AEAD algorithms described in this document are assumed to be
 PRFs.

 The packet number protection algorithms defined in this document take
 the form:

 encrypted_pn = packet_number XOR PRF(pn_key, sample)

 This construction is secure against chosen plaintext attacks (IND-
 CPA) [IMC].

 Use of the same key and ciphertext sample more than once risks
 compromising packet number protection. Protecting two different
 packet numbers with the same key and ciphertext sample reveals the
 exclusive OR of those packet numbers. Assuming that the AEAD acts as
 a PRF, if L bits are sampled, the odds of two ciphertext samples
 being identical approach 2^(-L/2), that is, the birthday bound. For
 the algorithms described in this document, that probability is one in
 2^64.

 Note: In some cases, inputs shorter than the full size required by
 the packet protection algorithm might be used.

 To prevent an attacker from modifying packet numbers, values of
 packet numbers are transitively authenticated using packet
 protection; packet numbers are part of the authenticated additional
 data. A falsified or modified packet number can only be detected
 once the packet protection is removed.

 An attacker can guess values for packet numbers and have an endpoint
 confirm guesses through timing side channels. If the recipient of a
 packet discards packets with duplicate packet numbers without
 attempting to remove packet protection they could reveal through
 timing side-channels that the packet number matches a received
 packet. For authentication to be free from side-channels, the entire
 process of packet number protection removal, packet number recovery,
 and packet protection removal MUST be applied together without timing
 and other side-channels.

 For the sending of packets, construction and protection of packet
 payloads and packet numbers MUST be free from side-channels that
 would reveal the packet number or its encoded size.

10. IANA Considerations

 This document does not create any new IANA registries, but it
 registers the values in the following registries:

Thomson & Turner Expires April 26, 2019 [Page 27]

Internet-Draft QUIC over TLS October 2018

 o TLS ExtensionsType Registry [TLS-REGISTRIES] - IANA is to register
 the quic_transport_parameters extension found in Section 8.2. The
 Recommended column is to be marked Yes. The TLS 1.3 Column is to
 include CH and EE.

11. References

11.1. Normative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [AES] "Advanced encryption standard (AES)", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.fips.197, November 2001.

 [CHACHA] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-16 (work
 in progress), October 2018.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-16 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SHA] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Thomson & Turner Expires April 26, 2019 [Page 28]

Internet-Draft QUIC over TLS October 2018

 [TLS-REGISTRIES]
 Salowey, J. and S. Turner, "IANA Registry Updates for
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", draft-ietf-tls-iana-registry-

updates-05 (work in progress), May 2018.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

 [AEBounds]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", March 2016,
 <http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

 [IMC] Katz, J. and Y. Lindell, "Introduction to Modern
 Cryptography, Second Edition", ISBN 978-1466570269,
 November 2014.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-16 (work in progress), October
 2018.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

11.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-tls

https://datatracker.ietf.org/doc/html/draft-ietf-tls-iana-registry-updates-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-iana-registry-updates-05
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-16
https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls

Thomson & Turner Expires April 26, 2019 [Page 29]

Internet-Draft QUIC over TLS October 2018

Appendix A. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

A.1. Since draft-ietf-quic-tls-13

 o Updated to TLS 1.3 final (#1660)

A.2. Since draft-ietf-quic-tls-12

 o Changes to integration of the TLS handshake (#829, #1018, #1094,
 #1165, #1190, #1233, #1242, #1252, #1450)

 * The cryptographic handshake uses CRYPTO frames, not stream 0

 * QUIC packet protection is used in place of TLS record
 protection

 * Separate QUIC packet number spaces are used for the handshake

 * Changed Retry to be independent of the cryptographic handshake

 * Limit the use of HelloRetryRequest to address TLS needs (like
 key shares)

 o Changed codepoint of TLS extension (#1395, #1402)

A.3. Since draft-ietf-quic-tls-11

 o Encrypted packet numbers.

A.4. Since draft-ietf-quic-tls-10

 o No significant changes.

A.5. Since draft-ietf-quic-tls-09

 o Cleaned up key schedule and updated the salt used for handshake
 packet protection (#1077)

A.6. Since draft-ietf-quic-tls-08

 o Specify value for max_early_data_size to enable 0-RTT (#942)

 o Update key derivation function (#1003, #1004)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08

Thomson & Turner Expires April 26, 2019 [Page 30]

Internet-Draft QUIC over TLS October 2018

A.7. Since draft-ietf-quic-tls-07

 o Handshake errors can be reported with CONNECTION_CLOSE (#608,
 #891)

A.8. Since draft-ietf-quic-tls-05

 No significant changes.

A.9. Since draft-ietf-quic-tls-04

 o Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

A.10. Since draft-ietf-quic-tls-03

 No significant changes.

A.11. Since draft-ietf-quic-tls-02

 o Updates to match changes in transport draft

A.12. Since draft-ietf-quic-tls-01

 o Use TLS alerts to signal TLS errors (#272, #374)

 o Require ClientHello to fit in a single packet (#338)

 o The second client handshake flight is now sent in the clear (#262,
 #337)

 o The QUIC header is included as AEAD Associated Data (#226, #243,
 #302)

 o Add interface necessary for client address validation (#275)

 o Define peer authentication (#140)

 o Require at least TLS 1.3 (#138)

 o Define transport parameters as a TLS extension (#122)

 o Define handling for protected packets before the handshake
 completes (#39)

 o Decouple QUIC version and ALPN (#12)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01

Thomson & Turner Expires April 26, 2019 [Page 31]

Internet-Draft QUIC over TLS October 2018

A.13. Since draft-ietf-quic-tls-00

 o Changed bit used to signal key phase

 o Updated key phase markings during the handshake

 o Added TLS interface requirements section

 o Moved to use of TLS exporters for key derivation

 o Moved TLS error code definitions into this document

A.14. Since draft-thomson-quic-tls-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added status note

Acknowledgments

 This document has benefited from input from Dragana Damjanovic,
 Christian Huitema, Jana Iyengar, Adam Langley, Roberto Peon, Eric
 Rescorla, Ian Swett, and many others.

Contributors

 Ryan Hamilton was originally an author of this specification.

Authors' Addresses

 Martin Thomson (editor)
 Mozilla

 Email: martin.thomson@gmail.com

 Sean Turner (editor)
 sn3rd

 Email: sean@sn3rd.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Thomson & Turner Expires April 26, 2019 [Page 32]

