
QUIC M. Thomson, Ed.
Internet-Draft Mozilla
Intended status: Standards Track S. Turner, Ed.
Expires: January 9, 2020 sn3rd
 July 08, 2019

Using TLS to Secure QUIC
draft-ietf-quic-tls-21

Abstract

 This document describes how Transport Layer Security (TLS) is used to
 secure QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-tls [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thomson & Turner Expires January 9, 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC over TLS July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions 4
2.1. TLS Overview . 4

3. Protocol Overview . 6
4. Carrying TLS Messages . 8
4.1. Interface to TLS . 9
4.1.1. Handshake Complete 10
4.1.2. Handshake Confirmed 10
4.1.3. Sending and Receiving Handshake Messages 10
4.1.4. Encryption Level Changes 12
4.1.5. TLS Interface Summary 13

4.2. TLS Version . 13
4.3. ClientHello Size . 14
4.4. Peer Authentication 14
4.5. Enabling 0-RTT . 15
4.6. Rejecting 0-RTT . 15
4.7. HelloRetryRequest . 15
4.8. TLS Errors . 16
4.9. Discarding Unused Keys 16
4.9.1. Discarding Initial Keys 17
4.9.2. Discarding Handshake Keys 17
4.9.3. Discarding 0-RTT Keys 17

5. Packet Protection . 18
5.1. Packet Protection Keys 18
5.2. Initial Secrets . 18
5.3. AEAD Usage . 19
5.4. Header Protection . 21
5.4.1. Header Protection Application 21
5.4.2. Header Protection Sample 23
5.4.3. AES-Based Header Protection 24
5.4.4. ChaCha20-Based Header Protection 24

5.5. Receiving Protected Packets 24
5.6. Use of 0-RTT Keys . 25
5.7. Receiving Out-of-Order Protected Frames 25

6. Key Update . 26
7. Security of Initial Messages 28

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Thomson & Turner Expires January 9, 2020 [Page 2]

Internet-Draft QUIC over TLS July 2019

8. QUIC-Specific Additions to the TLS Handshake 29
8.1. Protocol Negotiation 29
8.2. QUIC Transport Parameters Extension 29
8.3. Removing the EndOfEarlyData Message 30

9. Security Considerations 30
9.1. Replay Attacks with 0-RTT 31
9.2. Packet Reflection Attack Mitigation 32
9.3. Peer Denial of Service 32
9.4. Header Protection Analysis 32
9.5. Key Diversity . 33

10. IANA Considerations . 34
11. References . 34
11.1. Normative References 34
11.2. Informative References 35
11.3. URIs . 36

Appendix A. Sample Initial Packet Protection 36
A.1. Keys . 36
A.2. Client Initial . 37
A.3. Server Initial . 39

Appendix B. Change Log . 40
B.1. Since draft-ietf-quic-tls-20 40
B.2. Since draft-ietf-quic-tls-18 40
B.3. Since draft-ietf-quic-tls-17 40
B.4. Since draft-ietf-quic-tls-14 41
B.5. Since draft-ietf-quic-tls-13 41
B.6. Since draft-ietf-quic-tls-12 41
B.7. Since draft-ietf-quic-tls-11 42
B.8. Since draft-ietf-quic-tls-10 42
B.9. Since draft-ietf-quic-tls-09 42
B.10. Since draft-ietf-quic-tls-08 42
B.11. Since draft-ietf-quic-tls-07 42
B.12. Since draft-ietf-quic-tls-05 42
B.13. Since draft-ietf-quic-tls-04 42
B.14. Since draft-ietf-quic-tls-03 42
B.15. Since draft-ietf-quic-tls-02 42
B.16. Since draft-ietf-quic-tls-01 42
B.17. Since draft-ietf-quic-tls-00 43
B.18. Since draft-thomson-quic-tls-01 43

 Acknowledgments . 43
 Contributors . 43
 Authors' Addresses . 44

1. Introduction

 This document describes how QUIC [QUIC-TRANSPORT] is secured using
 TLS [TLS13].

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01

Thomson & Turner Expires January 9, 2020 [Page 3]

Internet-Draft QUIC over TLS July 2019

 TLS 1.3 provides critical latency improvements for connection
 establishment over previous versions. Absent packet loss, most new
 connections can be established and secured within a single round
 trip; on subsequent connections between the same client and server,
 the client can often send application data immediately, that is,
 using a zero round trip setup.

 This document describes how TLS acts as a security component of QUIC.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology established in [QUIC-TRANSPORT].

 For brevity, the acronym TLS is used to refer to TLS 1.3, though a
 newer version could be used (see Section 4.2).

2.1. TLS Overview

 TLS provides two endpoints with a way to establish a means of
 communication over an untrusted medium (that is, the Internet) that
 ensures that messages they exchange cannot be observed, modified, or
 forged.

 Internally, TLS is a layered protocol, with the structure shown
 below:

 +--------------+--------------+--------------+
Handshake	Alerts	Application
Layer		Data
+--------------+--------------+--------------+		
Record Layer		
 +--+

 Each upper layer (handshake, alerts, and application data) is carried
 as a series of typed TLS records. Records are individually
 cryptographically protected and then transmitted over a reliable
 transport (typically TCP) which provides sequencing and guaranteed
 delivery.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thomson & Turner Expires January 9, 2020 [Page 4]

Internet-Draft QUIC over TLS July 2019

 Change Cipher Spec records cannot be sent in QUIC.

 The TLS authenticated key exchange occurs between two entities:
 client and server. The client initiates the exchange and the server
 responds. If the key exchange completes successfully, both client
 and server will agree on a secret. TLS supports both pre-shared key
 (PSK) and Diffie-Hellman (DH) key exchanges. PSK is the basis for
 0-RTT; the latter provides perfect forward secrecy (PFS) when the DH
 keys are destroyed.

 After completing the TLS handshake, the client will have learned and
 authenticated an identity for the server and the server is optionally
 able to learn and authenticate an identity for the client. TLS
 supports X.509 [RFC5280] certificate-based authentication for both
 server and client.

 The TLS key exchange is resistant to tampering by attackers and it
 produces shared secrets that cannot be controlled by either
 participating peer.

 TLS provides two basic handshake modes of interest to QUIC:

 o A full 1-RTT handshake in which the client is able to send
 application data after one round trip and the server immediately
 responds after receiving the first handshake message from the
 client.

 o A 0-RTT handshake in which the client uses information it has
 previously learned about the server to send application data
 immediately. This application data can be replayed by an attacker
 so it MUST NOT carry a self-contained trigger for any non-
 idempotent action.

 A simplified TLS handshake with 0-RTT application data is shown in
 Figure 1. Note that this omits the EndOfEarlyData message, which is
 not used in QUIC (see Section 8.3).

https://datatracker.ietf.org/doc/html/rfc5280

Thomson & Turner Expires January 9, 2020 [Page 5]

Internet-Draft QUIC over TLS July 2019

 Client Server

 ClientHello
 (0-RTT Application Data) -------->
 ServerHello
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 () Indicates messages protected by early data (0-RTT) keys
 {} Indicates messages protected using handshake keys
 [] Indicates messages protected using application data
 (1-RTT) keys

 Figure 1: TLS Handshake with 0-RTT

 Data is protected using a number of encryption levels:

 o Initial Keys

 o Early Data (0-RTT) Keys

 o Handshake Keys

 o Application Data (1-RTT) Keys

 Application data may appear only in the early data and application
 data levels. Handshake and Alert messages may appear in any level.

 The 0-RTT handshake is only possible if the client and server have
 previously communicated. In the 1-RTT handshake, the client is
 unable to send protected application data until it has received all
 of the handshake messages sent by the server.

3. Protocol Overview

 QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality
 and integrity protection of packets. For this it uses keys derived
 from a TLS handshake [TLS13], but instead of carrying TLS records
 over QUIC (as with TCP), TLS Handshake and Alert messages are carried
 directly over the QUIC transport, which takes over the
 responsibilities of the TLS record layer, as shown below.

Thomson & Turner Expires January 9, 2020 [Page 6]

Internet-Draft QUIC over TLS July 2019

 +--------------+--------------+ +-------------+
TLS	TLS		QUIC
Handshake	Alerts		Applications
			(h3, etc.)
+--------------+--------------+-+-------------+			
QUIC Transport			
(streams, reliability, congestion, etc.)			
+---+			
QUIC Packet Protection			
 +---+

 QUIC also relies on TLS for authentication and negotiation of
 parameters that are critical to security and performance.

 Rather than a strict layering, these two protocols are co-dependent:
 QUIC uses the TLS handshake; TLS uses the reliability, ordered
 delivery, and record layer provided by QUIC.

 At a high level, there are two main interactions between the TLS and
 QUIC components:

 o The TLS component sends and receives messages via the QUIC
 component, with QUIC providing a reliable stream abstraction to
 TLS.

 o The TLS component provides a series of updates to the QUIC
 component, including (a) new packet protection keys to install (b)
 state changes such as handshake completion, the server
 certificate, etc.

 Figure 2 shows these interactions in more detail, with the QUIC
 packet protection being called out specially.

Thomson & Turner Expires January 9, 2020 [Page 7]

Internet-Draft QUIC over TLS July 2019

 +------------+ +------------+
	<- Handshake Messages ->	
	<---- 0-RTT Keys -------	
	<--- Handshake Keys-----	
QUIC	<---- 1-RTT Keys -------	TLS
	<--- Handshake Done ----	
 +------------+ +------------+
 | ^
 | Protect | Protected
 v | Packet
 +------------+
 | QUIC |
 | Packet |
 | Protection |
 +------------+

 Figure 2: QUIC and TLS Interactions

 Unlike TLS over TCP, QUIC applications which want to send data do not
 send it through TLS "application_data" records. Rather, they send it
 as QUIC STREAM frames which are then carried in QUIC packets.

4. Carrying TLS Messages

 QUIC carries TLS handshake data in CRYPTO frames, each of which
 consists of a contiguous block of handshake data identified by an
 offset and length. Those frames are packaged into QUIC packets and
 encrypted under the current TLS encryption level. As with TLS over
 TCP, once TLS handshake data has been delivered to QUIC, it is QUIC's
 responsibility to deliver it reliably. Each chunk of data that is
 produced by TLS is associated with the set of keys that TLS is
 currently using. If QUIC needs to retransmit that data, it MUST use
 the same keys even if TLS has already updated to newer keys.

 One important difference between TLS records (used with TCP) and QUIC
 CRYPTO frames is that in QUIC multiple frames may appear in the same
 QUIC packet as long as they are associated with the same encryption
 level. For instance, an implementation might bundle a Handshake
 message and an ACK for some Handshake data into the same packet.

 Some frames are prohibited in different encryption levels, others
 cannot be sent. The rules here generalize those of TLS, in that
 frames associated with establishing the connection can usually appear
 at any encryption level, whereas those associated with transferring
 data can only appear in the 0-RTT and 1-RTT encryption levels:

 o PADDING frames MAY appear in packets of any encryption level.

Thomson & Turner Expires January 9, 2020 [Page 8]

Internet-Draft QUIC over TLS July 2019

 o CRYPTO and CONNECTION_CLOSE frames MAY appear in packets of any
 encryption level except 0-RTT.

 o ACK frames MAY appear in packets of any encryption level other
 than 0-RTT, but can only acknowledge packets which appeared in
 that packet number space.

 o All other frame types MUST only be sent in the 0-RTT and 1-RTT
 levels.

 Note that it is not possible to send the following frames in 0-RTT
 for various reasons: ACK, CRYPTO, NEW_TOKEN, PATH_RESPONSE, and
 RETIRE_CONNECTION_ID.

 Because packets could be reordered on the wire, QUIC uses the packet
 type to indicate which level a given packet was encrypted under, as
 shown in Table 1. When multiple packets of different encryption
 levels need to be sent, endpoints SHOULD use coalesced packets to
 send them in the same UDP datagram.

 +---------------------+------------------+-----------+
 | Packet Type | Encryption Level | PN Space |
 +---------------------+------------------+-----------+
 | Initial | Initial secrets | Initial |
 | | | |
 | 0-RTT Protected | 0-RTT | 0/1-RTT |
 | | | |
 | Handshake | Handshake | Handshake |
 | | | |
 | Retry | N/A | N/A |
 | | | |
 | Version Negotiation | N/A | N/A |
 | | | |
 | Short Header | 1-RTT | 0/1-RTT |
 +---------------------+------------------+-----------+

 Table 1: Encryption Levels by Packet Type

 Section 17 of [QUIC-TRANSPORT] shows how packets at the various
 encryption levels fit into the handshake process.

4.1. Interface to TLS

 As shown in Figure 2, the interface from QUIC to TLS consists of
 three primary functions:

 o Sending and receiving handshake messages

Thomson & Turner Expires January 9, 2020 [Page 9]

Internet-Draft QUIC over TLS July 2019

 o Rekeying (both transmit and receive)

 o Handshake state updates

 Additional functions might be needed to configure TLS.

4.1.1. Handshake Complete

 In this document, the TLS handshake is considered complete when the
 TLS stack has reported that the handshake is complete. This happens
 when the TLS stack has both sent a Finished message and verified the
 peer's Finished message. Verifying the peer's Finished provides the
 endpoints with an assurance that previous handshake messages have not
 been modified. Note that the handshake does not complete at both
 endpoints simultaneously. Consequently, any requirement that is
 based on the completion of the handshake depends on the perspective
 of the endpoint in question.

4.1.2. Handshake Confirmed

 In this document, the TLS handshake is considered confirmed at an
 endpoint when the following two conditions are met: the handshake is
 complete, and the endpoint has received an acknowledgment for a
 packet sent with 1-RTT keys. This second condition can be
 implemented by recording the lowest packet number sent with 1-RTT
 keys, and the highest value of the Largest Acknowledged field in any
 received 1-RTT ACK frame: once the latter is higher than or equal to
 the former, the handshake is confirmed.

4.1.3. Sending and Receiving Handshake Messages

 In order to drive the handshake, TLS depends on being able to send
 and receive handshake messages. There are two basic functions on
 this interface: one where QUIC requests handshake messages and one
 where QUIC provides handshake packets.

 Before starting the handshake QUIC provides TLS with the transport
 parameters (see Section 8.2) that it wishes to carry.

 A QUIC client starts TLS by requesting TLS handshake bytes from TLS.
 The client acquires handshake bytes before sending its first packet.
 A QUIC server starts the process by providing TLS with the client's
 handshake bytes.

 At any given time, the TLS stack at an endpoint will have a current
 sending encryption level and receiving encryption level. Each
 encryption level is associated with a different flow of bytes, which
 is reliably transmitted to the peer in CRYPTO frames. When TLS

Thomson & Turner Expires January 9, 2020 [Page 10]

Internet-Draft QUIC over TLS July 2019

 provides handshake bytes to be sent, they are appended to the current
 flow and any packet that includes the CRYPTO frame is protected using
 keys from the corresponding encryption level.

 QUIC takes the unprotected content of TLS handshake records as the
 content of CRYPTO frames. TLS record protection is not used by QUIC.
 QUIC assembles CRYPTO frames into QUIC packets, which are protected
 using QUIC packet protection.

 When an endpoint receives a QUIC packet containing a CRYPTO frame
 from the network, it proceeds as follows:

 o If the packet was in the TLS receiving encryption level, sequence
 the data into the input flow as usual. As with STREAM frames, the
 offset is used to find the proper location in the data sequence.
 If the result of this process is that new data is available, then
 it is delivered to TLS in order.

 o If the packet is from a previously installed encryption level, it
 MUST not contain data which extends past the end of previously
 received data in that flow. Implementations MUST treat any
 violations of this requirement as a connection error of type
 PROTOCOL_VIOLATION.

 o If the packet is from a new encryption level, it is saved for
 later processing by TLS. Once TLS moves to receiving from this
 encryption level, saved data can be provided. When providing data
 from any new encryption level to TLS, if there is data from a
 previous encryption level that TLS has not consumed, this MUST be
 treated as a connection error of type PROTOCOL_VIOLATION.

 Each time that TLS is provided with new data, new handshake bytes are
 requested from TLS. TLS might not provide any bytes if the handshake
 messages it has received are incomplete or it has no data to send.

 Once the TLS handshake is complete, this is indicated to QUIC along
 with any final handshake bytes that TLS needs to send. TLS also
 provides QUIC with the transport parameters that the peer advertised
 during the handshake.

 Once the handshake is complete, TLS becomes passive. TLS can still
 receive data from its peer and respond in kind, but it will not need
 to send more data unless specifically requested - either by an
 application or QUIC. One reason to send data is that the server
 might wish to provide additional or updated session tickets to a
 client.

Thomson & Turner Expires January 9, 2020 [Page 11]

Internet-Draft QUIC over TLS July 2019

 When the handshake is complete, QUIC only needs to provide TLS with
 any data that arrives in CRYPTO streams. In the same way that is
 done during the handshake, new data is requested from TLS after
 providing received data.

4.1.4. Encryption Level Changes

 As keys for new encryption levels become available, TLS provides QUIC
 with those keys. Separately, as TLS starts using keys at a given
 encryption level, TLS indicates to QUIC that it is now reading or
 writing with keys at that encryption level. These events are not
 asynchronous; they always occur immediately after TLS is provided
 with new handshake bytes, or after TLS produces handshake bytes.

 TLS provides QUIC with three items as a new encryption level becomes
 available:

 o A secret

 o An Authenticated Encryption with Associated Data (AEAD) function

 o A Key Derivation Function (KDF)

 These values are based on the values that TLS negotiates and are used
 by QUIC to generate packet and header protection keys (see Section 5
 and Section 5.4).

 If 0-RTT is possible, it is ready after the client sends a TLS
 ClientHello message or the server receives that message. After
 providing a QUIC client with the first handshake bytes, the TLS stack
 might signal the change to 0-RTT keys. On the server, after
 receiving handshake bytes that contain a ClientHello message, a TLS
 server might signal that 0-RTT keys are available.

 Although TLS only uses one encryption level at a time, QUIC may use
 more than one level. For instance, after sending its Finished
 message (using a CRYPTO frame at the Handshake encryption level) an
 endpoint can send STREAM data (in 1-RTT encryption). If the Finished
 message is lost, the endpoint uses the Handshake encryption level to
 retransmit the lost message. Reordering or loss of packets can mean
 that QUIC will need to handle packets at multiple encryption levels.
 During the handshake, this means potentially handling packets at
 higher and lower encryption levels than the current encryption level
 used by TLS.

 In particular, server implementations need to be able to read packets
 at the Handshake encryption level at the same time as the 0-RTT
 encryption level. A client could interleave ACK frames that are

Thomson & Turner Expires January 9, 2020 [Page 12]

Internet-Draft QUIC over TLS July 2019

 protected with Handshake keys with 0-RTT data and the server needs to
 process those acknowledgments in order to detect lost Handshake
 packets.

4.1.5. TLS Interface Summary

 Figure 3 summarizes the exchange between QUIC and TLS for both client
 and server. Each arrow is tagged with the encryption level used for
 that transmission.

 Client Server

 Get Handshake
 Initial ------------->
 Install tx 0-RTT Keys
 0-RTT --------------->
 Handshake Received
 Get Handshake
 <------------- Initial
 Install rx 0-RTT keys
 Install Handshake keys
 Get Handshake
 <----------- Handshake
 Install tx 1-RTT keys
 <--------------- 1-RTT
 Handshake Received
 Install tx Handshake keys
 Handshake Received
 Get Handshake
 Handshake Complete
 Handshake ----------->
 Install 1-RTT keys
 1-RTT --------------->
 Handshake Received
 Install rx 1-RTT keys
 Handshake Complete
 Get Handshake
 <--------------- 1-RTT
 Handshake Received

 Figure 3: Interaction Summary between QUIC and TLS

4.2. TLS Version

 This document describes how TLS 1.3 [TLS13] is used with QUIC.

 In practice, the TLS handshake will negotiate a version of TLS to
 use. This could result in a newer version of TLS than 1.3 being

Thomson & Turner Expires January 9, 2020 [Page 13]

Internet-Draft QUIC over TLS July 2019

 negotiated if both endpoints support that version. This is
 acceptable provided that the features of TLS 1.3 that are used by
 QUIC are supported by the newer version.

 A badly configured TLS implementation could negotiate TLS 1.2 or
 another older version of TLS. An endpoint MUST terminate the
 connection if a version of TLS older than 1.3 is negotiated.

4.3. ClientHello Size

 QUIC requires that the first Initial packet from a client contain an
 entire cryptographic handshake message, which for TLS is the
 ClientHello. Though a packet larger than 1200 bytes might be
 supported by the path, a client improves the likelihood that a packet
 is accepted if it ensures that the first ClientHello message is small
 enough to stay within this limit.

 QUIC packet and framing add at least 36 bytes of overhead to the
 ClientHello message. That overhead increases if the client chooses a
 connection ID without zero length. Overheads also do not include the
 token or a connection ID longer than 8 bytes, both of which might be
 required if a server sends a Retry packet.

 A typical TLS ClientHello can easily fit into a 1200 byte packet.
 However, in addition to the overheads added by QUIC, there are
 several variables that could cause this limit to be exceeded. Large
 session tickets, multiple or large key shares, and long lists of
 supported ciphers, signature algorithms, versions, QUIC transport
 parameters, and other negotiable parameters and extensions could
 cause this message to grow.

 For servers, in addition to connection IDs and tokens, the size of
 TLS session tickets can have an effect on a client's ability to
 connect. Minimizing the size of these values increases the
 probability that they can be successfully used by a client.

 A client is not required to fit the ClientHello that it sends in
 response to a HelloRetryRequest message into a single UDP datagram.

 The TLS implementation does not need to ensure that the ClientHello
 is sufficiently large. QUIC PADDING frames are added to increase the
 size of the packet as necessary.

4.4. Peer Authentication

 The requirements for authentication depend on the application
 protocol that is in use. TLS provides server authentication and
 permits the server to request client authentication.

Thomson & Turner Expires January 9, 2020 [Page 14]

Internet-Draft QUIC over TLS July 2019

 A client MUST authenticate the identity of the server. This
 typically involves verification that the identity of the server is
 included in a certificate and that the certificate is issued by a
 trusted entity (see for example [RFC2818]).

 A server MAY request that the client authenticate during the
 handshake. A server MAY refuse a connection if the client is unable
 to authenticate when requested. The requirements for client
 authentication vary based on application protocol and deployment.

 A server MUST NOT use post-handshake client authentication (see
 Section 4.6.2 of [TLS13]).

4.5. Enabling 0-RTT

 In order to be usable for 0-RTT, TLS MUST provide a NewSessionTicket
 message that contains the "early_data" extension with a
 max_early_data_size of 0xffffffff; the amount of data which the
 client can send in 0-RTT is controlled by the "initial_max_data"
 transport parameter supplied by the server. A client MUST treat
 receipt of a NewSessionTicket that contains an "early_data" extension
 with any other value as a connection error of type
 PROTOCOL_VIOLATION.

4.6. Rejecting 0-RTT

 A server rejects 0-RTT by rejecting 0-RTT at the TLS layer. This
 also prevents QUIC from sending 0-RTT data. A server will always
 reject 0-RTT if it sends a TLS HelloRetryRequest.

 When 0-RTT is rejected, all connection characteristics that the
 client assumed might be incorrect. This includes the choice of
 application protocol, transport parameters, and any application
 configuration. The client therefore MUST reset the state of all
 streams, including application state bound to those streams.

 A client MAY attempt to send 0-RTT again if it receives a Retry or
 Version Negotiation packet. These packets do not signify rejection
 of 0-RTT.

4.7. HelloRetryRequest

 In TLS over TCP, the HelloRetryRequest feature (see Section 4.1.4 of
 [TLS13]) can be used to correct a client's incorrect KeyShare
 extension as well as for a stateless round-trip check. From the
 perspective of QUIC, this just looks like additional messages carried
 in the Initial encryption level. Although it is in principle
 possible to use this feature for address verification in QUIC, QUIC

https://datatracker.ietf.org/doc/html/rfc2818

Thomson & Turner Expires January 9, 2020 [Page 15]

Internet-Draft QUIC over TLS July 2019

 implementations SHOULD instead use the Retry feature (see Section 8.1
 of [QUIC-TRANSPORT]). HelloRetryRequest is still used to request key
 shares.

4.8. TLS Errors

 If TLS experiences an error, it generates an appropriate alert as
 defined in Section 6 of [TLS13].

 A TLS alert is turned into a QUIC connection error by converting the
 one-byte alert description into a QUIC error code. The alert
 description is added to 0x100 to produce a QUIC error code from the
 range reserved for CRYPTO_ERROR. The resulting value is sent in a
 QUIC CONNECTION_CLOSE frame.

 The alert level of all TLS alerts is "fatal"; a TLS stack MUST NOT
 generate alerts at the "warning" level.

4.9. Discarding Unused Keys

 After QUIC moves to a new encryption level, packet protection keys
 for previous encryption levels can be discarded. This occurs several
 times during the handshake, as well as when keys are updated; see

Section 6.

 Packet protection keys are not discarded immediately when new keys
 are available. If packets from a lower encryption level contain
 CRYPTO frames, frames that retransmit that data MUST be sent at the
 same encryption level. Similarly, an endpoint generates
 acknowledgements for packets at the same encryption level as the
 packet being acknowledged. Thus, it is possible that keys for a
 lower encryption level are needed for a short time after keys for a
 newer encryption level are available.

 An endpoint cannot discard keys for a given encryption level unless
 it has both received and acknowledged all CRYPTO frames for that
 encryption level and when all CRYPTO frames for that encryption level
 have been acknowledged by its peer. However, this does not guarantee
 that no further packets will need to be received or sent at that
 encryption level because a peer might not have received all the
 acknowledgements necessary to reach the same state.

 Though an endpoint might retain older keys, new data MUST be sent at
 the highest currently-available encryption level. Only ACK frames
 and retransmissions of data in CRYPTO frames are sent at a previous
 encryption level. These packets MAY also include PADDING frames.

Thomson & Turner Expires January 9, 2020 [Page 16]

Internet-Draft QUIC over TLS July 2019

4.9.1. Discarding Initial Keys

 Packets protected with Initial secrets (Section 5.2) are not
 authenticated, meaning that an attacker could spoof packets with the
 intent to disrupt a connection. To limit these attacks, Initial
 packet protection keys can be discarded more aggressively than other
 keys.

 The successful use of Handshake packets indicates that no more
 Initial packets need to be exchanged, as these keys can only be
 produced after receiving all CRYPTO frames from Initial packets.
 Thus, a client MUST discard Initial keys when it first sends a
 Handshake packet and a server MUST discard Initial keys when it first
 successfully processes a Handshake packet. Endpoints MUST NOT send
 Initial packets after this point.

 This results in abandoning loss recovery state for the Initial
 encryption level and ignoring any outstanding Initial packets.

4.9.2. Discarding Handshake Keys

 An endpoint MUST NOT discard its handshake keys until the TLS
 handshake is confirmed (Section 4.1.2). An endpoint SHOULD discard
 its handshake keys as soon as it has confirmed the handshake. Most
 application protocols will send data after the handshake, resulting
 in acknowledgements that allow both endpoints to discard their
 handshake keys promptly. Endpoints that do not have reason to send
 immediately after completing the handshake MAY send ack-eliciting
 frames, such as PING, which will cause the handshake to be confirmed
 when they are acknowledged.

4.9.3. Discarding 0-RTT Keys

 0-RTT and 1-RTT packets share the same packet number space, and
 clients do not send 0-RTT packets after sending a 1-RTT packet
 (Section 5.6).

 Therefore, a client SHOULD discard 0-RTT keys as soon as it installs
 1-RTT keys, since they have no use after that moment.

 Additionally, a server MAY discard 0-RTT keys as soon as it receives
 a 1-RTT packet. However, due to packet reordering, a 0-RTT packet
 could arrive after a 1-RTT packet. Servers MAY temporarily retain
 0-RTT keys to allow decrypting reordered packets without requiring
 their contents to be retransmitted with 1-RTT keys. After receiving
 a 1-RTT packet, servers MUST discard 0-RTT keys within a short time;
 the RECOMMENDED time period is three times the Probe Timeout (PTO,
 see [QUIC-RECOVERY]). A server MAY discard 0-RTT keys earlier if it

Thomson & Turner Expires January 9, 2020 [Page 17]

Internet-Draft QUIC over TLS July 2019

 determines that it has received all 0-RTT packets, which can be done
 by keeping track of missing packet numbers.

5. Packet Protection

 As with TLS over TCP, QUIC protects packets with keys derived from
 the TLS handshake, using the AEAD algorithm negotiated by TLS.

5.1. Packet Protection Keys

 QUIC derives packet protection keys in the same way that TLS derives
 record protection keys.

 Each encryption level has separate secret values for protection of
 packets sent in each direction. These traffic secrets are derived by
 TLS (see Section 7.1 of [TLS13]) and are used by QUIC for all
 encryption levels except the Initial encryption level. The secrets
 for the Initial encryption level are computed based on the client's
 initial Destination Connection ID, as described in Section 5.2.

 The keys used for packet protection are computed from the TLS secrets
 using the KDF provided by TLS. In TLS 1.3, the HKDF-Expand-Label
 function described in Section 7.1 of [TLS13] is used, using the hash
 function from the negotiated cipher suite. Other versions of TLS
 MUST provide a similar function in order to be used with QUIC.

 The current encryption level secret and the label "quic key" are
 input to the KDF to produce the AEAD key; the label "quic iv" is used
 to derive the IV; see Section 5.3. The header protection key uses
 the "quic hp" label; see Section 5.4. Using these labels provides
 key separation between QUIC and TLS; see Section 9.5.

 The KDF used for initial secrets is always the HKDF-Expand-Label
 function from TLS 1.3 (see Section 5.2).

5.2. Initial Secrets

 Initial packets are protected with a secret derived from the
 Destination Connection ID field from the client's first Initial
 packet of the connection. Specifically:

Thomson & Turner Expires January 9, 2020 [Page 18]

Internet-Draft QUIC over TLS July 2019

 initial_salt = 0x7fbcdb0e7c66bbe9193a96cd21519ebd7a02644a
 initial_secret = HKDF-Extract(initial_salt,
 client_dst_connection_id)

 client_initial_secret = HKDF-Expand-Label(initial_secret,
 "client in", "",
 Hash.length)
 server_initial_secret = HKDF-Expand-Label(initial_secret,
 "server in", "",
 Hash.length)

 The hash function for HKDF when deriving initial secrets and keys is
 SHA-256 [SHA].

 The connection ID used with HKDF-Expand-Label is the Destination
 Connection ID in the Initial packet sent by the client. This will be
 a randomly-selected value unless the client creates the Initial
 packet after receiving a Retry packet, where the Destination
 Connection ID is selected by the server.

 The value of initial_salt is a 20 byte sequence shown in the figure
 in hexadecimal notation. Future versions of QUIC SHOULD generate a
 new salt value, thus ensuring that the keys are different for each
 version of QUIC. This prevents a middlebox that only recognizes one
 version of QUIC from seeing or modifying the contents of packets from
 future versions.

 The HKDF-Expand-Label function defined in TLS 1.3 MUST be used for
 Initial packets even where the TLS versions offered do not include
 TLS 1.3.

Appendix A contains test vectors for the initial packet encryption.

 Note: The Destination Connection ID is of arbitrary length, and it
 could be zero length if the server sends a Retry packet with a
 zero-length Source Connection ID field. In this case, the Initial
 keys provide no assurance to the client that the server received
 its packet; the client has to rely on the exchange that included
 the Retry packet for that property.

5.3. AEAD Usage

 The Authentication Encryption with Associated Data (AEAD) [AEAD]
 function used for QUIC packet protection is the AEAD that is
 negotiated for use with the TLS connection. For example, if TLS is
 using the TLS_AES_128_GCM_SHA256, the AEAD_AES_128_GCM function is
 used.

Thomson & Turner Expires January 9, 2020 [Page 19]

Internet-Draft QUIC over TLS July 2019

 Packets are protected prior to applying header protection
 (Section 5.4). The unprotected packet header is part of the
 associated data (A). When removing packet protection, an endpoint
 first removes the header protection.

 All QUIC packets other than Version Negotiation and Retry packets are
 protected with an AEAD algorithm [AEAD]. Prior to establishing a
 shared secret, packets are protected with AEAD_AES_128_GCM and a key
 derived from the Destination Connection ID in the client's first
 Initial packet (see Section 5.2). This provides protection against
 off-path attackers and robustness against QUIC version unaware
 middleboxes, but not against on-path attackers.

 QUIC can use any of the ciphersuites defined in [TLS13] with the
 exception of TLS_AES_128_CCM_8_SHA256. A ciphersuite MUST NOT be
 negotiated unless a header protection scheme is defined for the
 ciphersuite. This document defines a header protection scheme for
 all ciphersuites defined in [TLS13] aside from
 TLS_AES_128_CCM_8_SHA256. These ciphersuites have a 16-byte
 authentication tag and produce an output 16 bytes larger than their
 input.

 Note: An endpoint MUST NOT reject a ClientHello that offers a
 ciphersuite that it does not support, or it would be impossible to
 deploy a new ciphersuite. This also applies to
 TLS_AES_128_CCM_8_SHA256.

 The key and IV for the packet are computed as described in
Section 5.1. The nonce, N, is formed by combining the packet

 protection IV with the packet number. The 62 bits of the
 reconstructed QUIC packet number in network byte order are left-
 padded with zeros to the size of the IV. The exclusive OR of the
 padded packet number and the IV forms the AEAD nonce.

 The associated data, A, for the AEAD is the contents of the QUIC
 header, starting from the flags byte in either the short or long
 header, up to and including the unprotected packet number.

 The input plaintext, P, for the AEAD is the payload of the QUIC
 packet, as described in [QUIC-TRANSPORT].

 The output ciphertext, C, of the AEAD is transmitted in place of P.

 Some AEAD functions have limits for how many packets can be encrypted
 under the same key and IV (see for example [AEBounds]). This might
 be lower than the packet number limit. An endpoint MUST initiate a
 key update (Section 6) prior to exceeding any limit set for the AEAD
 that is in use.

Thomson & Turner Expires January 9, 2020 [Page 20]

Internet-Draft QUIC over TLS July 2019

5.4. Header Protection

 Parts of QUIC packet headers, in particular the Packet Number field,
 are protected using a key that is derived separate to the packet
 protection key and IV. The key derived using the "quic hp" label is
 used to provide confidentiality protection for those fields that are
 not exposed to on-path elements.

 This protection applies to the least-significant bits of the first
 byte, plus the Packet Number field. The four least-significant bits
 of the first byte are protected for packets with long headers; the
 five least significant bits of the first byte are protected for
 packets with short headers. For both header forms, this covers the
 reserved bits and the Packet Number Length field; the Key Phase bit
 is also protected for packets with a short header.

 The same header protection key is used for the duration of the
 connection, with the value not changing after a key update (see

Section 6). This allows header protection to be used to protect the
 key phase.

 This process does not apply to Retry or Version Negotiation packets,
 which do not contain a protected payload or any of the fields that
 are protected by this process.

5.4.1. Header Protection Application

 Header protection is applied after packet protection is applied (see
Section 5.3). The ciphertext of the packet is sampled and used as

 input to an encryption algorithm. The algorithm used depends on the
 negotiated AEAD.

 The output of this algorithm is a 5 byte mask which is applied to the
 protected header fields using exclusive OR. The least significant
 bits of the first byte of the packet are masked by the least
 significant bits of the first mask byte, and the packet number is
 masked with the remaining bytes. Any unused bytes of mask that might
 result from a shorter packet number encoding are unused.

 Figure 4 shows a sample algorithm for applying header protection.
 Removing header protection only differs in the order in which the
 packet number length (pn_length) is determined.

Thomson & Turner Expires January 9, 2020 [Page 21]

Internet-Draft QUIC over TLS July 2019

 mask = header_protection(hp_key, sample)

 pn_length = (packet[0] & 0x03) + 1
 if (packet[0] & 0x80) == 0x80:
 # Long header: 4 bits masked
 packet[0] ^= mask[0] & 0x0f
 else:
 # Short header: 5 bits masked
 packet[0] ^= mask[0] & 0x1f

 # pn_offset is the start of the Packet Number field.
 packet[pn_offset:pn_offset+pn_length] ^= mask[1:1+pn_length]

 Figure 4: Header Protection Pseudocode

 Figure 5 shows the protected fields of long and short headers marked
 with an E. Figure 5 also shows the sampled fields.

 Long Header:
 +-+-+-+-+-+-+-+-+
 |1|1|T T|E E E E|
 +-+
 | Version -> Length Fields ...
 +-+

 Short Header:
 +-+-+-+-+-+-+-+-+
 |0|1|S|E E E E E|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+

 Common Fields:
 +-+
 |E E E E E E E E E Packet Number (8/16/24/32) E E E E E E E E...
 +-+
 | [Protected Payload (8/16/24)] ...
 +-+
 | Sampled part of Protected Payload (128) ...
 +-+
 | Protected Payload Remainder (*) ...
 +-+

 Figure 5: Header Protection and Ciphertext Sample

 Before a TLS ciphersuite can be used with QUIC, a header protection
 algorithm MUST be specified for the AEAD used with that ciphersuite.
 This document defines algorithms for AEAD_AES_128_GCM,

Thomson & Turner Expires January 9, 2020 [Page 22]

Internet-Draft QUIC over TLS July 2019

 AEAD_AES_128_CCM, AEAD_AES_256_GCM (all AES AEADs are defined in
 [AEAD]), and AEAD_CHACHA20_POLY1305 [CHACHA]. Prior to TLS selecting
 a ciphersuite, AES header protection is used (Section 5.4.3),
 matching the AEAD_AES_128_GCM packet protection.

5.4.2. Header Protection Sample

 The header protection algorithm uses both the header protection key
 and a sample of the ciphertext from the packet Payload field.

 The same number of bytes are always sampled, but an allowance needs
 to be made for the endpoint removing protection, which will not know
 the length of the Packet Number field. In sampling the packet
 ciphertext, the Packet Number field is assumed to be 4 bytes long
 (its maximum possible encoded length).

 An endpoint MUST discard packets that are not long enough to contain
 a complete sample.

 To ensure that sufficient data is available for sampling, packets are
 padded so that the combined lengths of the encoded packet number and
 protected payload is at least 4 bytes longer than the sample required
 for header protection. The ciphersuites defined in [TLS13] - other
 than TLS_AES_128_CCM_8_SHA256, for which a header protection scheme
 is not defined in this document - have 16-byte expansions and 16-byte
 header protection samples. This results in needing at least 3 bytes
 of frames in the unprotected payload if the packet number is encoded
 on a single byte, or 2 bytes of frames for a 2-byte packet number
 encoding.

 The sampled ciphertext for a packet with a short header can be
 determined by the following pseudocode:

 sample_offset = 1 + len(connection_id) + 4

 sample = packet[sample_offset..sample_offset+sample_length]

 For example, for a packet with a short header, an 8 byte connection
 ID, and protected with AEAD_AES_128_GCM, the sample takes bytes 13 to
 28 inclusive (using zero-based indexing).

 A packet with a long header is sampled in the same way, noting that
 multiple QUIC packets might be included in the same UDP datagram and
 that each one is handled separately.

Thomson & Turner Expires January 9, 2020 [Page 23]

Internet-Draft QUIC over TLS July 2019

 sample_offset = 6 + len(destination_connection_id) +
 len(source_connection_id) +
 len(payload_length) + 4
 if packet_type == Initial:
 sample_offset += len(token_length) +
 len(token)

 sample = packet[sample_offset..sample_offset+sample_length]

5.4.3. AES-Based Header Protection

 This section defines the packet protection algorithm for
 AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.
 AEAD_AES_128_GCM and AEAD_AES_128_CCM use 128-bit AES [AES] in
 electronic code-book (ECB) mode. AEAD_AES_256_GCM uses 256-bit AES
 in ECB mode.

 This algorithm samples 16 bytes from the packet ciphertext. This
 value is used as the input to AES-ECB. In pseudocode:

 mask = AES-ECB(hp_key, sample)

5.4.4. ChaCha20-Based Header Protection

 When AEAD_CHACHA20_POLY1305 is in use, header protection uses the raw
 ChaCha20 function as defined in Section 2.4 of [CHACHA]. This uses a
 256-bit key and 16 bytes sampled from the packet protection output.

 The first 4 bytes of the sampled ciphertext are interpreted as a
 32-bit number in little-endian order and are used as the block count.
 The remaining 12 bytes are interpreted as three concatenated 32-bit
 numbers in little-endian order and used as the nonce.

 The encryption mask is produced by invoking ChaCha20 to protect 5
 zero bytes. In pseudocode:

 counter = DecodeLE(sample[0..3])
 nonce = DecodeLE(sample[4..7], sample[8..11], sample[12..15])
 mask = ChaCha20(hp_key, counter, nonce, {0,0,0,0,0})

5.5. Receiving Protected Packets

 Once an endpoint successfully receives a packet with a given packet
 number, it MUST discard all packets in the same packet number space
 with higher packet numbers if they cannot be successfully unprotected
 with either the same key, or - if there is a key update - the next
 packet protection key (see Section 6). Similarly, a packet that

Thomson & Turner Expires January 9, 2020 [Page 24]

Internet-Draft QUIC over TLS July 2019

 appears to trigger a key update, but cannot be unprotected
 successfully MUST be discarded.

 Failure to unprotect a packet does not necessarily indicate the
 existence of a protocol error in a peer or an attack. The truncated
 packet number encoding used in QUIC can cause packet numbers to be
 decoded incorrectly if they are delayed significantly.

5.6. Use of 0-RTT Keys

 If 0-RTT keys are available (see Section 4.5), the lack of replay
 protection means that restrictions on their use are necessary to
 avoid replay attacks on the protocol.

 A client MUST only use 0-RTT keys to protect data that is idempotent.
 A client MAY wish to apply additional restrictions on what data it
 sends prior to the completion of the TLS handshake. A client
 otherwise treats 0-RTT keys as equivalent to 1-RTT keys, except that
 it MUST NOT send ACKs with 0-RTT keys.

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of the
 server's handshake messages. A client SHOULD stop sending 0-RTT data
 if it receives an indication that 0-RTT data has been rejected.

 A server MUST NOT use 0-RTT keys to protect packets; it uses 1-RTT
 keys to protect acknowledgements of 0-RTT packets. A client MUST NOT
 attempt to decrypt 0-RTT packets it receives and instead MUST discard
 them.

 Once a client has installed 1-RTT keys, it MUST NOT send any more
 0-RTT packets.

 Note: 0-RTT data can be acknowledged by the server as it receives
 it, but any packets containing acknowledgments of 0-RTT data
 cannot have packet protection removed by the client until the TLS
 handshake is complete. The 1-RTT keys necessary to remove packet
 protection cannot be derived until the client receives all server
 handshake messages.

5.7. Receiving Out-of-Order Protected Frames

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final TLS handshake messages are received. A
 client will be unable to decrypt 1-RTT packets from the server,
 whereas a server will be able to decrypt 1-RTT packets from the
 client.

Thomson & Turner Expires January 9, 2020 [Page 25]

Internet-Draft QUIC over TLS July 2019

 Even though 1-RTT keys are available to a server after receiving the
 first handshake messages from a client, it is missing assurances on
 the client state:

 o The client is not authenticated, unless the server has chosen to
 use a pre-shared key and validated the client's pre-shared key
 binder; see Section 4.2.11 of [TLS13].

 o The client has not demonstrated liveness, unless a RETRY packet
 was used.

 o Any received 0-RTT data that the server responds to might be due
 to a replay attack.

 Therefore, the server's use of 1-RTT keys is limited before the
 handshake is complete. A server MUST NOT process data from incoming
 1-RTT protected packets before the TLS handshake is complete.
 Because sending acknowledgments indicates that all frames in a packet
 have been processed, a server cannot send acknowledgments for 1-RTT
 packets until the TLS handshake is complete. Received packets
 protected with 1-RTT keys MAY be stored and later decrypted and used
 once the handshake is complete.

 The requirement for the server to wait for the client Finished
 message creates a dependency on that message being delivered. A
 client can avoid the potential for head-of-line blocking that this
 implies by sending its 1-RTT packets coalesced with a handshake
 packet containing a copy of the CRYPTO frame that carries the
 Finished message, until one of the handshake packets is acknowledged.
 This enables immediate server processing for those packets.

 A server could receive packets protected with 0-RTT keys prior to
 receiving a TLS ClientHello. The server MAY retain these packets for
 later decryption in anticipation of receiving a ClientHello.

6. Key Update

 Once the handshake is confirmed, it is possible to update the keys.
 The KEY_PHASE bit in the short header is used to indicate whether key
 updates have occurred. The KEY_PHASE bit is initially set to 0 and
 then inverted with each key update.

 The KEY_PHASE bit allows a recipient to detect a change in keying
 material without necessarily needing to receive the first packet that
 triggered the change. An endpoint that notices a changed KEY_PHASE
 bit can update keys and decrypt the packet that contains the changed
 bit.

Thomson & Turner Expires January 9, 2020 [Page 26]

Internet-Draft QUIC over TLS July 2019

 This mechanism replaces the TLS KeyUpdate message. Endpoints MUST
 NOT send a TLS KeyUpdate message. Endpoints MUST treat the receipt
 of a TLS KeyUpdate message as a connection error of type 0x10a,
 equivalent to a fatal TLS alert of unexpected_message (see

Section 4.8).

 An endpoint MUST NOT initiate the first key update until the
 handshake is confirmed (Section 4.1.2). An endpoint MUST NOT
 initiate a subsequent key update until it has received an
 acknowledgment for a packet sent at the current KEY_PHASE. This can
 be implemented by tracking the lowest packet number sent with each
 KEY_PHASE, and the highest acknowledged packet number in the 1-RTT
 space: once the latter is higher than or equal to the former, another
 key update can be initiated.

 Endpoints MAY limit the number of keys they retain to two sets for
 removing packet protection and one set for protecting packets. Older
 keys can be discarded. Updating keys multiple times rapidly can
 cause packets to be effectively lost if packets are significantly
 reordered. Therefore, an endpoint SHOULD NOT initiate a key update
 for some time after it has last updated keys; the RECOMMENDED time
 period is three times the PTO. This avoids valid reordered packets
 being dropped by the peer as a result of the peer discarding older
 keys.

 A receiving endpoint detects an update when the KEY_PHASE bit does
 not match what it is expecting. It creates a new secret (see
 Section 7.2 of [TLS13]) and the corresponding read key and IV using
 the KDF function provided by TLS. The header protection key is not
 updated.

 If the packet can be decrypted and authenticated using the updated
 key and IV, then the keys the endpoint uses for packet protection are
 also updated. The next packet sent by the endpoint MUST then use the
 new keys. Once an endpoint has sent a packet encrypted with a given
 key phase, it MUST NOT send a packet encrypted with an older key
 phase.

 An endpoint does not always need to send packets when it detects that
 its peer has updated keys. The next packet that it sends will simply
 use the new keys. If an endpoint detects a second update before it
 has sent any packets with updated keys, it indicates that its peer
 has updated keys twice without awaiting a reciprocal update. An
 endpoint MUST treat consecutive key updates as a fatal error and
 abort the connection.

 An endpoint SHOULD retain old keys for a period of no more than three
 times the PTO. After this period, old keys and their corresponding

Thomson & Turner Expires January 9, 2020 [Page 27]

Internet-Draft QUIC over TLS July 2019

 secrets SHOULD be discarded. Retaining keys allow endpoints to
 process packets that were sent with old keys and delayed in the
 network. Packets with higher packet numbers always use the updated
 keys and MUST NOT be decrypted with old keys.

 This ensures that once the handshake is complete, packets with the
 same KEY_PHASE will have the same packet protection keys, unless
 there are multiple key updates in a short time frame succession and
 significant packet reordering.

 Initiating Peer Responding Peer

 @M QUIC Frames
 New Keys -> @N
 @N QUIC Frames
 -------->
 QUIC Frames @M
 New Keys -> @N
 QUIC Frames @N
 <--------

 Figure 6: Key Update

 A packet that triggers a key update could arrive after the receiving
 endpoint successfully processed a packet with a higher packet number.
 This is only possible if there is a key compromise and an attack, or
 if the peer is incorrectly reverting to use of old keys. Because the
 latter cannot be differentiated from an attack, an endpoint MUST
 immediately terminate the connection if it detects this condition.

 In deciding when to update keys, endpoints MUST NOT exceed the limits
 for use of specific keys, as described in Section 5.5 of [TLS13].

7. Security of Initial Messages

 Initial packets are not protected with a secret key, so they are
 subject to potential tampering by an attacker. QUIC provides
 protection against attackers that cannot read packets, but does not
 attempt to provide additional protection against attacks where the
 attacker can observe and inject packets. Some forms of tampering -
 such as modifying the TLS messages themselves - are detectable, but
 some - such as modifying ACKs - are not.

 For example, an attacker could inject a packet containing an ACK
 frame that makes it appear that a packet had not been received or to
 create a false impression of the state of the connection (e.g., by
 modifying the ACK Delay). Note that such a packet could cause a
 legitimate packet to be dropped as a duplicate. Implementations

Thomson & Turner Expires January 9, 2020 [Page 28]

Internet-Draft QUIC over TLS July 2019

 SHOULD use caution in relying on any data which is contained in
 Initial packets that is not otherwise authenticated.

 It is also possible for the attacker to tamper with data that is
 carried in Handshake packets, but because that tampering requires
 modifying TLS handshake messages, that tampering will cause the TLS
 handshake to fail.

8. QUIC-Specific Additions to the TLS Handshake

 QUIC uses the TLS handshake for more than just negotiation of
 cryptographic parameters. The TLS handshake validates protocol
 version selection, provides preliminary values for QUIC transport
 parameters, and allows a server to perform return routeability checks
 on clients.

8.1. Protocol Negotiation

 QUIC requires that the cryptographic handshake provide authenticated
 protocol negotiation. TLS uses Application Layer Protocol
 Negotiation (ALPN) [RFC7301] to select an application protocol.
 Unless another mechanism is used for agreeing on an application
 protocol, endpoints MUST use ALPN for this purpose. When using ALPN,
 endpoints MUST immediately close a connection (see Section 10.3 in
 [QUIC-TRANSPORT]) if an application protocol is not negotiated with a
 no_application_protocol TLS alert (QUIC error code 0x178, see

Section 4.8). While [RFC7301] only specifies that servers use this
 alert, QUIC clients MUST also use it to terminate a connection when
 ALPN negotiation fails.

 An application-layer protocol MAY restrict the QUIC versions that it
 can operate over. Servers MUST select an application protocol
 compatible with the QUIC version that the client has selected. If
 the server cannot select a compatible combination of application
 protocol and QUIC version, it MUST abort the connection. A client
 MUST abort a connection if the server picks an incompatible
 combination of QUIC version and ALPN identifier.

8.2. QUIC Transport Parameters Extension

 QUIC transport parameters are carried in a TLS extension. Different
 versions of QUIC might define a different format for this struct.

 Including transport parameters in the TLS handshake provides
 integrity protection for these values.

https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7301

Thomson & Turner Expires January 9, 2020 [Page 29]

Internet-Draft QUIC over TLS July 2019

 enum {
 quic_transport_parameters(0xffa5), (65535)
 } ExtensionType;

 The "extension_data" field of the quic_transport_parameters extension
 contains a value that is defined by the version of QUIC that is in
 use. The quic_transport_parameters extension carries a
 TransportParameters struct when the version of QUIC defined in
 [QUIC-TRANSPORT] is used.

 The quic_transport_parameters extension is carried in the ClientHello
 and the EncryptedExtensions messages during the handshake. Endpoints
 MUST send the quic_transport_parameters extension; endpoints that
 receive ClientHello or EncryptedExtensions messages without the
 quic_transport_parameters extension MUST close the connection with an
 error of type 0x16d (equivalent to a fatal TLS missing_extension
 alert, see Section 4.8).

 While the transport parameters are technically available prior to the
 completion of the handshake, they cannot be fully trusted until the
 handshake completes, and reliance on them should be minimized.
 However, any tampering with the parameters will cause the handshake
 to fail.

 Endpoints MUST NOT send this extension in a TLS connection that does
 not use QUIC (such as the use of TLS with TCP defined in [TLS13]). A
 fatal unsupported_extension alert MUST be sent by an implementation
 that supports this extension if the extension is received when the
 transport is not QUIC.

8.3. Removing the EndOfEarlyData Message

 The TLS EndOfEarlyData message is not used with QUIC. QUIC does not
 rely on this message to mark the end of 0-RTT data or to signal the
 change to Handshake keys.

 Clients MUST NOT send the EndOfEarlyData message. A server MUST
 treat receipt of a CRYPTO frame in a 0-RTT packet as a connection
 error of type PROTOCOL_VIOLATION.

 As a result, EndOfEarlyData does not appear in the TLS handshake
 transcript.

9. Security Considerations

 There are likely to be some real clangers here eventually, but the
 current set of issues is well captured in the relevant sections of
 the main text.

Thomson & Turner Expires January 9, 2020 [Page 30]

Internet-Draft QUIC over TLS July 2019

 Never assume that because it isn't in the security considerations
 section it doesn't affect security. Most of this document does.

9.1. Replay Attacks with 0-RTT

 As described in Section 8 of [TLS13], use of TLS early data comes
 with an exposure to replay attack. The use of 0-RTT in QUIC is
 similarly vulnerable to replay attack.

 Endpoints MUST implement and use the replay protections described in
 [TLS13], however it is recognized that these protections are
 imperfect. Therefore, additional consideration of the risk of replay
 is needed.

 QUIC is not vulnerable to replay attack, except via the application
 protocol information it might carry. The management of QUIC protocol
 state based on the frame types defined in [QUIC-TRANSPORT] is not
 vulnerable to replay. Processing of QUIC frames is idempotent and
 cannot result in invalid connection states if frames are replayed,
 reordered or lost. QUIC connections do not produce effects that last
 beyond the lifetime of the connection, except for those produced by
 the application protocol that QUIC serves.

 Note: TLS session tickets and address validation tokens are used to
 carry QUIC configuration information between connections. These
 MUST NOT be used to carry application semantics. The potential
 for reuse of these tokens means that they require stronger
 protections against replay.

 A server that accepts 0-RTT on a connection incurs a higher cost than
 accepting a connection without 0-RTT. This includes higher
 processing and computation costs. Servers need to consider the
 probability of replay and all associated costs when accepting 0-RTT.

 Ultimately, the responsibility for managing the risks of replay
 attacks with 0-RTT lies with an application protocol. An application
 protocol that uses QUIC MUST describe how the protocol uses 0-RTT and
 the measures that are employed to protect against replay attack. An
 analysis of replay risk needs to consider all QUIC protocol features
 that carry application semantics.

 Disabling 0-RTT entirely is the most effective defense against replay
 attack.

 QUIC extensions MUST describe how replay attacks affect their
 operation, or prohibit their use in 0-RTT. Application protocols
 MUST either prohibit the use of extensions that carry application
 semantics in 0-RTT or provide replay mitigation strategies.

Thomson & Turner Expires January 9, 2020 [Page 31]

Internet-Draft QUIC over TLS July 2019

9.2. Packet Reflection Attack Mitigation

 A small ClientHello that results in a large block of handshake
 messages from a server can be used in packet reflection attacks to
 amplify the traffic generated by an attacker.

 QUIC includes three defenses against this attack. First, the packet
 containing a ClientHello MUST be padded to a minimum size. Second,
 if responding to an unverified source address, the server is
 forbidden to send more than three UDP datagrams in its first flight
 (see Section 8.1 of [QUIC-TRANSPORT]). Finally, because
 acknowledgements of Handshake packets are authenticated, a blind
 attacker cannot forge them. Put together, these defenses limit the
 level of amplification.

9.3. Peer Denial of Service

 QUIC, TLS, and HTTP/2 all contain messages that have legitimate uses
 in some contexts, but that can be abused to cause a peer to expend
 processing resources without having any observable impact on the
 state of the connection. If processing is disproportionately large
 in comparison to the observable effects on bandwidth or state, then
 this could allow a malicious peer to exhaust processing capacity
 without consequence.

 While there are legitimate uses for some redundant packets,
 implementations SHOULD track redundant packets and treat excessive
 volumes of any non-productive packets as indicative of an attack.

9.4. Header Protection Analysis

 Header protection relies on the packet protection AEAD being a
 pseudorandom function (PRF), which is not a property that AEAD
 algorithms guarantee. Therefore, no strong assurances about the
 general security of this mechanism can be shown in the general case.
 The AEAD algorithms described in this document are assumed to be
 PRFs.

 The header protection algorithms defined in this document take the
 form:

 protected_field = field XOR PRF(hp_key, sample)

 This construction is secure against chosen plaintext attacks (IND-
 CPA) [IMC].

 Use of the same key and ciphertext sample more than once risks
 compromising header protection. Protecting two different headers

Thomson & Turner Expires January 9, 2020 [Page 32]

Internet-Draft QUIC over TLS July 2019

 with the same key and ciphertext sample reveals the exclusive OR of
 the protected fields. Assuming that the AEAD acts as a PRF, if L
 bits are sampled, the odds of two ciphertext samples being identical
 approach 2^(-L/2), that is, the birthday bound. For the algorithms
 described in this document, that probability is one in 2^64.

 Note: In some cases, inputs shorter than the full size required by
 the packet protection algorithm might be used.

 To prevent an attacker from modifying packet headers, the header is
 transitively authenticated using packet protection; the entire packet
 header is part of the authenticated additional data. Protected
 fields that are falsified or modified can only be detected once the
 packet protection is removed.

 An attacker could guess values for packet numbers and have an
 endpoint confirm guesses through timing side channels. Similarly,
 guesses for the packet number length can be trialed and exposed. If
 the recipient of a packet discards packets with duplicate packet
 numbers without attempting to remove packet protection they could
 reveal through timing side-channels that the packet number matches a
 received packet. For authentication to be free from side-channels,
 the entire process of header protection removal, packet number
 recovery, and packet protection removal MUST be applied together
 without timing and other side-channels.

 For the sending of packets, construction and protection of packet
 payloads and packet numbers MUST be free from side-channels that
 would reveal the packet number or its encoded size.

9.5. Key Diversity

 In using TLS, the central key schedule of TLS is used. As a result
 of the TLS handshake messages being integrated into the calculation
 of secrets, the inclusion of the QUIC transport parameters extension
 ensures that handshake and 1-RTT keys are not the same as those that
 might be produced by a server running TLS over TCP. To avoid the
 possibility of cross-protocol key synchronization, additional
 measures are provided to improve key separation.

 The QUIC packet protection keys and IVs are derived using a different
 label than the equivalent keys in TLS.

 To preserve this separation, a new version of QUIC SHOULD define new
 labels for key derivation for packet protection key and IV, plus the
 header protection keys. This version of QUIC uses the string "quic".
 Other versions can use a version-specific label in place of that
 string.

Thomson & Turner Expires January 9, 2020 [Page 33]

Internet-Draft QUIC over TLS July 2019

 The initial secrets use a key that is specific to the negotiated QUIC
 version. New QUIC versions SHOULD define a new salt value used in
 calculating initial secrets.

10. IANA Considerations

 This document does not create any new IANA registries, but it
 registers the values in the following registries:

 o TLS ExtensionsType Registry [TLS-REGISTRIES] - IANA is to register
 the quic_transport_parameters extension found in Section 8.2. The
 Recommended column is to be marked Yes. The TLS 1.3 Column is to
 include CH and EE.

11. References

11.1. Normative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [AES] "Advanced encryption standard (AES)", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.fips.197, November 2001.

 [CHACHA] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-21 (work
 in progress), July 2019.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-21 (work in progress), July 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-21
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Thomson & Turner Expires January 9, 2020 [Page 34]

Internet-Draft QUIC over TLS July 2019

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SHA] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015.

 [TLS-REGISTRIES]
 Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,
 <https://www.rfc-editor.org/info/rfc8447>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

 [AEBounds]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", March 2016,
 <http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

 [IMC] Katz, J. and Y. Lindell, "Introduction to Modern
 Cryptography, Second Edition", ISBN 978-1466570269,
 November 2014.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-21 (work in progress), July
 2019.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8447
https://www.rfc-editor.org/info/rfc8447
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-21
https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280

Thomson & Turner Expires January 9, 2020 [Page 35]

Internet-Draft QUIC over TLS July 2019

11.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-tls

Appendix A. Sample Initial Packet Protection

 This section shows examples of packet protection for Initial packets
 so that implementations can be verified incrementally. These packets
 use an 8-byte client-chosen Destination Connection ID of
 0x8394c8f03e515708. Values for both server and client packet
 protection are shown together with values in hexadecimal.

A.1. Keys

 The labels generated by the HKDF-Expand-Label function are:

 client in: 00200f746c73313320636c69656e7420696e00

 server in: 00200f746c7331332073657276657220696e00

 quic key: 00100e746c7331332071756963206b657900

 quic iv: 000c0d746c733133207175696320697600

 quic hp: 00100d746c733133207175696320687000

 The initial secret is common:

 initial_secret = HKDF-Extract(initial_salt, cid)
 = 4496d3903d3f97cc5e45ac5790ddc686
 683c7c0067012bb09d900cc21832d596

 The secrets for protecting client packets are:

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls

Thomson & Turner Expires January 9, 2020 [Page 36]

Internet-Draft QUIC over TLS July 2019

 client_initial_secret
 = HKDF-Expand-Label(initial_secret, "client in", _, 32)
 = 8a3515a14ae3c31b9c2d6d5bc58538ca
 5cd2baa119087143e60887428dcb52f6

 key = HKDF-Expand-Label(client_initial_secret, "quic key", _, 16)
 = 98b0d7e5e7a402c67c33f350fa65ea54

 iv = HKDF-Expand-Label(client_initial_secret, "quic iv", _, 12)
 = 19e94387805eb0b46c03a788

 hp = HKDF-Expand-Label(client_initial_secret, "quic hp", _, 16)
 = 0edd982a6ac527f2eddcbb7348dea5d7

 The secrets for protecting server packets are:

 server_initial_secret
 = HKDF-Expand-Label(initial_secret, "server in", _, 32)
 = 47b2eaea6c266e32c0697a9e2a898bdf
 5c4fb3e5ac34f0e549bf2c58581a3811

 key = HKDF-Expand-Label(server_initial_secret, "quic key", _, 16)
 = 9a8be902a9bdd91d16064ca118045fb4

 iv = HKDF-Expand-Label(server_initial_secret, "quic iv", _, 12)
 = 0a82086d32205ba22241d8dc

 hp = HKDF-Expand-Label(server_initial_secret, "quic hp", _, 16)
 = 94b9452d2b3c7c7f6da7fdd8593537fd

A.2. Client Initial

 The client sends an Initial packet. The unprotected payload of this
 packet contains the following CRYPTO frame, plus enough PADDING
 frames to make an 1163 byte payload:

 060040c4010000c003036660261ff947 cea49cce6cfad687f457cf1b14531ba1
 4131a0e8f309a1d0b9c4000006130113 031302010000910000000b0009000006
 736572766572ff01000100000a001400 12001d00170018001901000101010201
 03010400230000003300260024001d00 204cfdfcd178b784bf328cae793b136f
 2aedce005ff183d7bb14952072366470 37002b0003020304000d0020001e0403
 05030603020308040805080604010501 060102010402050206020202002d0002
 0101001c00024001

 The unprotected header includes the connection ID and a 4 byte packet
 number encoding for a packet number of 2:

 c3ff000015508394c8f03e51570800449f00000002

Thomson & Turner Expires January 9, 2020 [Page 37]

Internet-Draft QUIC over TLS July 2019

 Protecting the payload produces output that is sampled for header
 protection. Because the header uses a 4 byte packet number encoding,
 the first 16 bytes of the protected payload is sampled, then applied
 to the header:

 sample = 65f354ebb400418b614f73765009c016

 mask = AES-ECB(hp, sample)[0..4]
 = 519bd343ff

 header[0] ^= mask[0] & 0x0f
 = c2
 header[17..20] ^= mask[1..4]
 = 9bd343fd
 header = c2ff000015508394c8f03e51570800449f9bd343fd

 The resulting protected packet is:

Thomson & Turner Expires January 9, 2020 [Page 38]

Internet-Draft QUIC over TLS July 2019

 c2ff000015508394c8f03e5157080044 9f9bd343fd65f354ebb400418b614f73
 765009c0162d594777f9e6ddeb32fba3 865cffd7e26e3724d4997cdde8df34f8
 868772fed2412d43046f44dc7c6adf5e e10da456d56c892c8f69594594e8dcab
 edb10d591130ca464588f2834eab931b 10feb963c1947a05f57062692c242248
 ad0133b31f6dcc585ba344ca5beb382f b619272e65dfccae59c08eb00b7d2a5b
 bccd888582df1d1aee040aea76ab4dfd cae126791e71561b1f58312edb31c164
 ff1341fd2820e2399946bad901e425da e58a9859ef1825e7d757a6291d9ba6ee
 1a8c836dc0027cd705bd2bc67f56bad0 024efaa3819cbb5d46cefdb7e0df3ad9
 2b0689650e2b49ac29e6398bedc75554 1a3f3865bc4759bec74d721a28a0452c
 1260189e8e92f844c91b27a00fc5ed6d 14d8fceb5a848bea0a3208162c7a9578
 2fcf9a045b20b76710a2565372f25411 81030e4350e199e62fa4e2e0bba19ff6
 6662ab8cc6815eeaa20b80d5f31c41e5 51f558d2c836a215ccff4e8afd2fec4b
 fcb9ea9d051d12162f1b14842489b69d 72a307d9144fced64fc4aa21ebd310f8
 97cf00062e90dad5dbf04186622e6c12 96d388176585fdb395358ecfec4d95db
 4429f4473a76210866fd180eaeb60da4 33500c74c00aef24d77eae81755faa03
 e71a8879937b32d31be2ba51d41b5d7a 1fbb4d952b10dd2d6ec171a3187cf3f6
 4d520afad796e4188bc32d153241c083 f225b6e6b845ce9911bd3fe1eb4737b7
 1c8d55e3962871b73657b1e2cce368c7 400658d47cfd9290ed16cdc2a6e3e7dc
 ea77fb5c6459303a32d58f62969d8f46 70ce27f591c7a59cc3e7556eda4c58a3
 2e9f53fd7f9d60a9c05cd6238c71e3c8 2d2efabd3b5177670b8d595151d7eb44
 aa401fe3b5b87bdb88dffb2bfb6d1d0d 8868a41ba96265ca7a68d06fc0b74bcc
 ac55b038f8362b84d47f52744323d08b 46bfec8c421f991e1394938a546a7482
 a17c72be109ea4b0c71abc7d9c0ac096 0327754e1043f18a32b9fb402fc33fdc
 b6a0b4fdbbddbdf0d85779879e98ef21 1d104a5271f22823f16942cfa8ace68d
 0c9e5b52297da9702d8f1de24bcd0628 4ac8aa1068fa21a82abbca7e7454b848
 d7de8c3d43560541a362ff4f6be06c01 15e3a733bff44417da11ae668857bba2
 c53ba17db8c100f1b5c7c9ea960d3f3d 3b9e77c16c31a222b498a7384e286b9b
 7c45167d5703de715f9b06708403562d cff77fdf2793f94e294888cebe8da4ee
 88a53e38f2430addc161e8b2e2f2d405 41d10cda9a7aa518ac14d0195d8c2012
 0b4f1d47d6d0909e69c4a0e641b83c1a d4fff85af4751035bc5698b6141ecc3f
 bffcf2f55036880071ba118927400796 7f64468172854d140d229320d689f576
 60f6c445e629d15ff2dcdff4b71a41ec 0c24bd2fd8f5ad13b2c3688e0fdb8dbc
 ce42e6cf49cf60d022ccd5b19b4fd5d9 8dc10d9ce3a626851b1fdd23e1fa3a96
 1f9b0333ab8d632e48c944b82bdd9e80 0fa2b2b9e31e96aee54b40edaf6b79ec
 211fdc95d95ef552aa532583d76a539e 988e416a0a10df2550cdeacafc3d61b0
 b0a79337960a0be8cf6169e4d55fa6e7 a9c2e8efabab3da008f5bcc38c1bbabd
 b6c10368723da0ae83c4b1819ff54946 e7806458d80d7be2c867d46fe1f029c5
 e952eb19ded16fabb19980480eb0fbcd

A.3. Server Initial

 The server sends the following payload in response, including an ACK
 frame, a CRYPTO frame, and no PADDING frames:

 0d0000000018410a020000560303eefc e7f7b37ba1d1632e96677825ddf73988
 cfc79825df566dc5430b9a045a120013 0100002e00330024001d00209d3c940d
 89690b84d08a60993c144eca684d1081 287c834d5311bcf32bb9da1a002b0002
 0304

Thomson & Turner Expires January 9, 2020 [Page 39]

Internet-Draft QUIC over TLS July 2019

 The header from the server includes a new connection ID and a 2-byte
 packet number encoding for a packet number of 1:

 c1ff00001505f067a5502a4262b50040740001

 As a result, after protection, the header protection sample is taken
 starting from the third protected octet:

 sample = 6176fa3b713f272a9bf03ee28d3c8add
 mask = 5bd74a846c
 header = caff00001505f067a5502a4262b5004074d74b

 The final protected packet is then:

 caff00001505f067a5502a4262b50040 74d74b7e486176fa3b713f272a9bf03e
 e28d3c8addb4e805b3a110b663122a75 eee93c9177ac6b7a6b548e15a7b8f884
 65e9eab253a760779b2e6a2c574882b4 8d3a3eed696e50d04d5ec59af85261e4
 cdbe264bd65f2b076760c69beef23aa7 14c9a174d69034c09a2863e1e1863508
 8d4afdeab9

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

B.1. Since draft-ietf-quic-tls-20

 o Mandate the use of the QUIC transport parameters extension (#2528,
 #2560)

 o Define handshake completion and confirmation; define clearer rules
 when it encryption keys should be discarded (#2214, #2267, #2673)

B.2. Since draft-ietf-quic-tls-18

 o Increased the set of permissible frames in 0-RTT (#2344, #2355)

 o Transport parameter extension is mandatory (#2528, #2560)

B.3. Since draft-ietf-quic-tls-17

 o Endpoints discard initial keys as soon as handshake keys are
 available (#1951, #2045)

 o Use of ALPN or equivalent is mandatory (#2263, #2284)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-17

Thomson & Turner Expires January 9, 2020 [Page 40]

Internet-Draft QUIC over TLS July 2019

B.4. Since draft-ietf-quic-tls-14

 o Update the salt used for Initial secrets (#1970)

 o Clarify that TLS_AES_128_CCM_8_SHA256 isn't supported (#2019)

 o Change header protection

 * Sample from a fixed offset (#1575, #2030)

 * Cover part of the first byte, including the key phase (#1322,
 #2006)

 o TLS provides an AEAD and KDF function (#2046)

 * Clarify that the TLS KDF is used with TLS (#1997)

 * Change the labels for calculation of QUIC keys (#1845, #1971,
 #1991)

 o Initial keys are discarded once Handshake are avaialble (#1951,
 #2045)

B.5. Since draft-ietf-quic-tls-13

 o Updated to TLS 1.3 final (#1660)

B.6. Since draft-ietf-quic-tls-12

 o Changes to integration of the TLS handshake (#829, #1018, #1094,
 #1165, #1190, #1233, #1242, #1252, #1450)

 * The cryptographic handshake uses CRYPTO frames, not stream 0

 * QUIC packet protection is used in place of TLS record
 protection

 * Separate QUIC packet number spaces are used for the handshake

 * Changed Retry to be independent of the cryptographic handshake

 * Limit the use of HelloRetryRequest to address TLS needs (like
 key shares)

 o Changed codepoint of TLS extension (#1395, #1402)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-12

Thomson & Turner Expires January 9, 2020 [Page 41]

Internet-Draft QUIC over TLS July 2019

B.7. Since draft-ietf-quic-tls-11

 o Encrypted packet numbers.

B.8. Since draft-ietf-quic-tls-10

 o No significant changes.

B.9. Since draft-ietf-quic-tls-09

 o Cleaned up key schedule and updated the salt used for handshake
 packet protection (#1077)

B.10. Since draft-ietf-quic-tls-08

 o Specify value for max_early_data_size to enable 0-RTT (#942)

 o Update key derivation function (#1003, #1004)

B.11. Since draft-ietf-quic-tls-07

 o Handshake errors can be reported with CONNECTION_CLOSE (#608,
 #891)

B.12. Since draft-ietf-quic-tls-05

 No significant changes.

B.13. Since draft-ietf-quic-tls-04

 o Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

B.14. Since draft-ietf-quic-tls-03

 No significant changes.

B.15. Since draft-ietf-quic-tls-02

 o Updates to match changes in transport draft

B.16. Since draft-ietf-quic-tls-01

 o Use TLS alerts to signal TLS errors (#272, #374)

 o Require ClientHello to fit in a single packet (#338)

 o The second client handshake flight is now sent in the clear (#262,
 #337)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01

Thomson & Turner Expires January 9, 2020 [Page 42]

Internet-Draft QUIC over TLS July 2019

 o The QUIC header is included as AEAD Associated Data (#226, #243,
 #302)

 o Add interface necessary for client address validation (#275)

 o Define peer authentication (#140)

 o Require at least TLS 1.3 (#138)

 o Define transport parameters as a TLS extension (#122)

 o Define handling for protected packets before the handshake
 completes (#39)

 o Decouple QUIC version and ALPN (#12)

B.17. Since draft-ietf-quic-tls-00

 o Changed bit used to signal key phase

 o Updated key phase markings during the handshake

 o Added TLS interface requirements section

 o Moved to use of TLS exporters for key derivation

 o Moved TLS error code definitions into this document

B.18. Since draft-thomson-quic-tls-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added status note

Acknowledgments

 This document has benefited from input from Dragana Damjanovic,
 Christian Huitema, Jana Iyengar, Adam Langley, Roberto Peon, Eric
 Rescorla, Ian Swett, and many others.

Contributors

 Ryan Hamilton was originally an author of this specification.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Thomson & Turner Expires January 9, 2020 [Page 43]

Internet-Draft QUIC over TLS July 2019

Authors' Addresses

 Martin Thomson (editor)
 Mozilla

 Email: mt@lowentropy.net

 Sean Turner (editor)
 sn3rd

 Email: sean@sn3rd.com

Thomson & Turner Expires January 9, 2020 [Page 44]

