
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-tls-27

Published: 21 February 2020

Intended Status: Standards Track

Expires: 24 August 2020

Authors: M. Thomson, Ed.

Mozilla

S. Turner, Ed.

sn3rd

Using TLS to Secure QUIC

Abstract

This document describes how Transport Layer Security (TLS) is used

to secure QUIC.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-tls.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Notational Conventions

2.1. TLS Overview

3. Protocol Overview

4. Carrying TLS Messages

4.1. Interface to TLS

4.1.1. Handshake Complete

4.1.2. Handshake Confirmed

4.1.3. Sending and Receiving Handshake Messages

4.1.4. Encryption Level Changes

4.1.5. TLS Interface Summary

4.2. TLS Version

4.3. ClientHello Size

4.4. Peer Authentication

4.5. Enabling 0-RTT

4.6. Accepting and Rejecting 0-RTT

4.7. Validating 0-RTT Configuration

4.8. HelloRetryRequest

4.9. TLS Errors

4.10. Discarding Unused Keys

4.10.1. Discarding Initial Keys

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.10.2. Discarding Handshake Keys

4.10.3. Discarding 0-RTT Keys

5. Packet Protection

5.1. Packet Protection Keys

5.2. Initial Secrets

5.3. AEAD Usage

5.4. Header Protection

5.4.1. Header Protection Application

5.4.2. Header Protection Sample

5.4.3. AES-Based Header Protection

5.4.4. ChaCha20-Based Header Protection

5.5. Receiving Protected Packets

5.6. Use of 0-RTT Keys

5.7. Receiving Out-of-Order Protected Frames

5.8. Retry Packet Integrity

6. Key Update

6.1. Initiating a Key Update

6.2. Responding to a Key Update

6.3. Timing of Receive Key Generation

6.4. Sending with Updated Keys

6.5. Receiving with Different Keys

6.6. Key Update Frequency

6.7. Key Update Error Code

7. Security of Initial Messages

8. QUIC-Specific Additions to the TLS Handshake

8.1. Protocol Negotiation

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.2. QUIC Transport Parameters Extension

8.3. Removing the EndOfEarlyData Message

9. Security Considerations

9.1. Replay Attacks with 0-RTT

9.2. Packet Reflection Attack Mitigation

9.3. Header Protection Analysis

9.4. Header Protection Timing Side-Channels

9.5. Key Diversity

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Sample Packet Protection

A.1. Keys

A.2. Client Initial

A.3. Server Initial

A.4. Retry

Appendix B. Change Log

B.1. Since draft-ietf-quic-tls-26

B.2. Since draft-ietf-quic-tls-25

B.3. Since draft-ietf-quic-tls-24

B.4. Since draft-ietf-quic-tls-23

B.5. Since draft-ietf-quic-tls-22

B.6. Since draft-ietf-quic-tls-21

B.7. Since draft-ietf-quic-tls-20

B.8. Since draft-ietf-quic-tls-18

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

B.9. Since draft-ietf-quic-tls-17

B.10. Since draft-ietf-quic-tls-14

B.11. Since draft-ietf-quic-tls-13

B.12. Since draft-ietf-quic-tls-12

B.13. Since draft-ietf-quic-tls-11

B.14. Since draft-ietf-quic-tls-10

B.15. Since draft-ietf-quic-tls-09

B.16. Since draft-ietf-quic-tls-08

B.17. Since draft-ietf-quic-tls-07

B.18. Since draft-ietf-quic-tls-05

B.19. Since draft-ietf-quic-tls-04

B.20. Since draft-ietf-quic-tls-03

B.21. Since draft-ietf-quic-tls-02

B.22. Since draft-ietf-quic-tls-01

B.23. Since draft-ietf-quic-tls-00

B.24. Since draft-thomson-quic-tls-01

Contributors

Authors' Addresses

1. Introduction

This document describes how QUIC [QUIC-TRANSPORT] is secured using

TLS [TLS13].

TLS 1.3 provides critical latency improvements for connection

establishment over previous versions. Absent packet loss, most new

connections can be established and secured within a single round

trip; on subsequent connections between the same client and server,

the client can often send application data immediately, that is,

using a zero round trip setup.

This document describes how TLS acts as a security component of

QUIC.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terminology established in [QUIC-TRANSPORT].

For brevity, the acronym TLS is used to refer to TLS 1.3, though a

newer version could be used (see Section 4.2).

2.1. TLS Overview

TLS provides two endpoints with a way to establish a means of

communication over an untrusted medium (that is, the Internet) that

ensures that messages they exchange cannot be observed, modified, or

forged.

Internally, TLS is a layered protocol, with the structure shown in

Figure 1.

Figure 1: TLS Layers

Each Handshake layer message (e.g., Handshake, Alerts, and

Application Data) is carried as a series of typed TLS records by the

Record layer. Records are individually cryptographically protected

and then transmitted over a reliable transport (typically TCP) which

provides sequencing and guaranteed delivery.

The TLS authenticated key exchange occurs between two endpoints:

client and server. The client initiates the exchange and the server

responds. If the key exchange completes successfully, both client

and server will agree on a secret. TLS supports both pre-shared key

(PSK) and Diffie-Hellman over either finite fields or elliptic

curves ((EC)DHE) key exchanges. PSK is the basis for 0-RTT; the

latter provides perfect forward secrecy (PFS) when the (EC)DHE keys

are destroyed.

¶

¶

¶

¶

¶

 +-------------+------------+--------------+---------+

Handshake | | | Application | |

Layer | Handshake | Alerts | Data | ... |

 | | | | |

 +-------------+------------+--------------+---------+

Record | |

Layer | Records |

 | |

 +---+

¶

¶

After completing the TLS handshake, the client will have learned and

authenticated an identity for the server and the server is

optionally able to learn and authenticate an identity for the

client. TLS supports X.509 [RFC5280] certificate-based

authentication for both server and client.

The TLS key exchange is resistant to tampering by attackers and it

produces shared secrets that cannot be controlled by either

participating peer.

TLS provides two basic handshake modes of interest to QUIC:

A full 1-RTT handshake in which the client is able to send

Application Data after one round trip and the server immediately

responds after receiving the first handshake message from the

client.

A 0-RTT handshake in which the client uses information it has

previously learned about the server to send Application Data

immediately. This Application Data can be replayed by an attacker

so it MUST NOT carry a self-contained trigger for any non-

idempotent action.

A simplified TLS handshake with 0-RTT application data is shown in

Figure 2. Note that this omits the EndOfEarlyData message, which is

not used in QUIC (see Section 8.3). Likewise, neither

ChangeCipherSpec nor KeyUpdate messages are used by QUIC;

ChangeCipherSpec is redundant in TLS 1.3 and QUIC has defined its

own key update mechanism Section 6.

Figure 2: TLS Handshake with 0-RTT

¶

¶

¶

*

¶

*

¶

¶

 Client Server

 ClientHello

 (0-RTT Application Data) -------->

 ServerHello

 {EncryptedExtensions}

 {Finished}

 <-------- [Application Data]

 {Finished} -------->

 [Application Data] <-------> [Application Data]

 () Indicates messages protected by Early Data (0-RTT) Keys

 {} Indicates messages protected using Handshake Keys

 [] Indicates messages protected using Application Data

 (1-RTT) Keys

Data is protected using a number of encryption levels:

Initial Keys

Early Data (0-RTT) Keys

Handshake Keys

Application Data (1-RTT) Keys

Application Data may appear only in the Early Data and Application

Data levels. Handshake and Alert messages may appear in any level.

The 0-RTT handshake is only possible if the client and server have

previously communicated. In the 1-RTT handshake, the client is

unable to send protected Application Data until it has received all

of the Handshake messages sent by the server.

3. Protocol Overview

QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality

and integrity protection of packets. For this it uses keys derived

from a TLS handshake [TLS13], but instead of carrying TLS records

over QUIC (as with TCP), TLS Handshake and Alert messages are

carried directly over the QUIC transport, which takes over the

responsibilities of the TLS record layer, as shown in Figure 3.

Figure 3: QUIC Layers

QUIC also relies on TLS for authentication and negotiation of

parameters that are critical to security and performance.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

+--------------+--------------+ +-------------+

| TLS | TLS | | QUIC |

| Handshake | Alerts | | Applications|

| | | | (h3, etc.) |

+--------------+--------------+-+-------------+

| |

| QUIC Transport |

| (streams, reliability, congestion, etc.) |

| |

+---+

| |

| QUIC Packet Protection |

| |

+---+

¶

Rather than a strict layering, these two protocols cooperate: QUIC

uses the TLS handshake; TLS uses the reliability, ordered delivery,

and record layer provided by QUIC.

At a high level, there are two main interactions between the TLS and

QUIC components:

The TLS component sends and receives messages via the QUIC

component, with QUIC providing a reliable stream abstraction to

TLS.

The TLS component provides a series of updates to the QUIC

component, including (a) new packet protection keys to install

(b) state changes such as handshake completion, the server

certificate, etc.

Figure 4 shows these interactions in more detail, with the QUIC

packet protection being called out specially.

Figure 4: QUIC and TLS Interactions

Unlike TLS over TCP, QUIC applications which want to send data do

not send it through TLS "application_data" records. Rather, they

send it as QUIC STREAM frames or other frame types which are then

carried in QUIC packets.

4. Carrying TLS Messages

QUIC carries TLS handshake data in CRYPTO frames, each of which

consists of a contiguous block of handshake data identified by an

offset and length. Those frames are packaged into QUIC packets and

encrypted under the current TLS encryption level. As with TLS over

¶

¶

*

¶

*

¶

¶

+------------+ +------------+

| |<---- Handshake Messages ----->| |

| |<- Validate 0-RTT parameters ->| |

| |<--------- 0-RTT Keys ---------| |

| QUIC |<------- Handshake Keys -------| TLS |

| |<--------- 1-RTT Keys ---------| |

| |<------- Handshake Done -------| |

+------------+ +------------+

 | ^

 | Protect | Protected

 v | Packet

+------------+

| QUIC |

| Packet |

| Protection |

+------------+

¶

TCP, once TLS handshake data has been delivered to QUIC, it is

QUIC's responsibility to deliver it reliably. Each chunk of data

that is produced by TLS is associated with the set of keys that TLS

is currently using. If QUIC needs to retransmit that data, it MUST

use the same keys even if TLS has already updated to newer keys.

One important difference between TLS records (used with TCP) and

QUIC CRYPTO frames is that in QUIC multiple frames may appear in the

same QUIC packet as long as they are associated with the same

encryption level. For instance, an implementation might bundle a

Handshake message and an ACK for some Handshake data into the same

packet.

Some frames are prohibited in different encryption levels, others

cannot be sent. The rules here generalize those of TLS, in that

frames associated with establishing the connection can usually

appear at any encryption level, whereas those associated with

transferring data can only appear in the 0-RTT and 1-RTT encryption

levels:

PADDING and PING frames MAY appear in packets of any encryption

level.

CRYPTO frames and CONNECTION_CLOSE frames signaling errors at the

QUIC layer (type 0x1c) MAY appear in packets of any encryption

level except 0-RTT.

CONNECTION_CLOSE frames signaling application errors (type 0x1d)

MUST only be sent in packets at the 1-RTT encryption level.

ACK frames MAY appear in packets of any encryption level other

than 0-RTT, but can only acknowledge packets which appeared in

that packet number space.

All other frame types MUST only be sent in the 0-RTT and 1-RTT

levels.

Note that it is not possible to send the following frames in 0-RTT

for various reasons: ACK, CRYPTO, HANDSHAKE_DONE, NEW_TOKEN,

PATH_RESPONSE, and RETIRE_CONNECTION_ID.

Because packets could be reordered on the wire, QUIC uses the packet

type to indicate which level a given packet was encrypted under, as

shown in Table 1. When multiple packets of different encryption

levels need to be sent, endpoints SHOULD use coalesced packets to

send them in the same UDP datagram.

Packet Type Encryption Level PN Space

Initial Initial secrets Initial

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Packet Type Encryption Level PN Space

0-RTT Protected 0-RTT 0/1-RTT

Handshake Handshake Handshake

Retry N/A N/A

Version Negotiation N/A N/A

Short Header 1-RTT 0/1-RTT

Table 1: Encryption Levels by Packet Type

Section 17 of [QUIC-TRANSPORT] shows how packets at the various

encryption levels fit into the handshake process.

4.1. Interface to TLS

As shown in Figure 4, the interface from QUIC to TLS consists of

four primary functions:

Sending and receiving handshake messages

Processing stored transport and application state from a resumed

session and determining if it is valid to accept early data

Rekeying (both transmit and receive)

Handshake state updates

Additional functions might be needed to configure TLS.

4.1.1. Handshake Complete

In this document, the TLS handshake is considered complete when the

TLS stack has reported that the handshake is complete. This happens

when the TLS stack has both sent a Finished message and verified the

peer's Finished message. Verifying the peer's Finished provides the

endpoints with an assurance that previous handshake messages have

not been modified. Note that the handshake does not complete at both

endpoints simultaneously. Consequently, any requirement that is

based on the completion of the handshake depends on the perspective

of the endpoint in question.

4.1.2. Handshake Confirmed

In this document, the TLS handshake is considered confirmed at the

server when the handshake completes. At the client, the handshake is

considered confirmed when a HANDSHAKE_DONE frame is received.

A client MAY consider the handshake to be confirmed when it receives

an acknowledgement for a 1-RTT packet. This can be implemented by

recording the lowest packet number sent with 1-RTT keys, and

comparing it to the Largest Acknowledged field in any received 1-RTT

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

ACK frame: once the latter is greater than or equal to the former,

the handshake is confirmed.

4.1.3. Sending and Receiving Handshake Messages

In order to drive the handshake, TLS depends on being able to send

and receive handshake messages. There are two basic functions on

this interface: one where QUIC requests handshake messages and one

where QUIC provides handshake packets.

Before starting the handshake QUIC provides TLS with the transport

parameters (see Section 8.2) that it wishes to carry.

A QUIC client starts TLS by requesting TLS handshake bytes from TLS.

The client acquires handshake bytes before sending its first packet.

A QUIC server starts the process by providing TLS with the client's

handshake bytes.

At any time, the TLS stack at an endpoint will have a current

sending encryption level and receiving encryption level. Each

encryption level is associated with a different flow of bytes, which

is reliably transmitted to the peer in CRYPTO frames. When TLS

provides handshake bytes to be sent, they are appended to the

current flow and any packet that includes the CRYPTO frame is

protected using keys from the corresponding encryption level.

QUIC takes the unprotected content of TLS handshake records as the

content of CRYPTO frames. TLS record protection is not used by QUIC.

QUIC assembles CRYPTO frames into QUIC packets, which are protected

using QUIC packet protection.

QUIC is only capable of conveying TLS handshake records in CRYPTO

frames. TLS alerts are turned into QUIC CONNECTION_CLOSE error

codes; see Section 4.9. TLS application data and other message types

cannot be carried by QUIC at any encryption level and is an error if

they are received from the TLS stack.

When an endpoint receives a QUIC packet containing a CRYPTO frame

from the network, it proceeds as follows:

If the packet was in the TLS receiving encryption level, sequence

the data into the input flow as usual. As with STREAM frames, the

offset is used to find the proper location in the data sequence.

If the result of this process is that new data is available, then

it is delivered to TLS in order.

If the packet is from a previously installed encryption level, it

MUST not contain data which extends past the end of previously

received data in that flow. Implementations MUST treat any

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

violations of this requirement as a connection error of type

PROTOCOL_VIOLATION.

If the packet is from a new encryption level, it is saved for

later processing by TLS. Once TLS moves to receiving from this

encryption level, saved data can be provided. When providing data

from any new encryption level to TLS, if there is data from a

previous encryption level that TLS has not consumed, this MUST be

treated as a connection error of type PROTOCOL_VIOLATION.

Each time that TLS is provided with new data, new handshake bytes

are requested from TLS. TLS might not provide any bytes if the

handshake messages it has received are incomplete or it has no data

to send.

Once the TLS handshake is complete, this is indicated to QUIC along

with any final handshake bytes that TLS needs to send. TLS also

provides QUIC with the transport parameters that the peer advertised

during the handshake.

Once the handshake is complete, TLS becomes passive. TLS can still

receive data from its peer and respond in kind, but it will not need

to send more data unless specifically requested - either by an

application or QUIC. One reason to send data is that the server

might wish to provide additional or updated session tickets to a

client.

When the handshake is complete, QUIC only needs to provide TLS with

any data that arrives in CRYPTO streams. In the same way that is

done during the handshake, new data is requested from TLS after

providing received data.

4.1.4. Encryption Level Changes

As keys for new encryption levels become available, TLS provides

QUIC with those keys. Separately, as keys at a given encryption

level become available to TLS, TLS indicates to QUIC that reading or

writing keys at that encryption level are available. These events

are not asynchronous; they always occur immediately after TLS is

provided with new handshake bytes, or after TLS produces handshake

bytes.

TLS provides QUIC with three items as a new encryption level becomes

available:

A secret

An Authenticated Encryption with Associated Data (AEAD) function

A Key Derivation Function (KDF)

¶

*

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

These values are based on the values that TLS negotiates and are

used by QUIC to generate packet and header protection keys (see

Section 5 and Section 5.4).

If 0-RTT is possible, it is ready after the client sends a TLS

ClientHello message or the server receives that message. After

providing a QUIC client with the first handshake bytes, the TLS

stack might signal the change to 0-RTT keys. On the server, after

receiving handshake bytes that contain a ClientHello message, a TLS

server might signal that 0-RTT keys are available.

Although TLS only uses one encryption level at a time, QUIC may use

more than one level. For instance, after sending its Finished

message (using a CRYPTO frame at the Handshake encryption level) an

endpoint can send STREAM data (in 1-RTT encryption). If the Finished

message is lost, the endpoint uses the Handshake encryption level to

retransmit the lost message. Reordering or loss of packets can mean

that QUIC will need to handle packets at multiple encryption levels.

During the handshake, this means potentially handling packets at

higher and lower encryption levels than the current encryption level

used by TLS.

In particular, server implementations need to be able to read

packets at the Handshake encryption level at the same time as the 0-

RTT encryption level. A client could interleave ACK frames that are

protected with Handshake keys with 0-RTT data and the server needs

to process those acknowledgments in order to detect lost Handshake

packets.

QUIC also needs access to keys that might not ordinarily be

available to a TLS implementation. For instance, a client might need

to acknowledge Handshake packets before it is ready to send CRYPTO

frames at that encryption level. TLS therefore needs to provide keys

to QUIC before it might produce them for its own use.

4.1.5. TLS Interface Summary

Figure 5 summarizes the exchange between QUIC and TLS for both

client and server. Each arrow is tagged with the encryption level

used for that transmission.

¶

¶

¶

¶

¶

¶

Figure 5: Interaction Summary between QUIC and TLS

Figure 5 shows the multiple packets that form a single "flight" of

messages being processed individually, to show what incoming

messages trigger different actions. New handshake messages are

requested after all incoming packets have been processed. This

process might vary depending on how QUIC implementations and the

packets they receive are structured.

4.2. TLS Version

This document describes how TLS 1.3 [TLS13] is used with QUIC.

In practice, the TLS handshake will negotiate a version of TLS to

use. This could result in a newer version of TLS than 1.3 being

negotiated if both endpoints support that version. This is

acceptable provided that the features of TLS 1.3 that are used by

QUIC are supported by the newer version.

Client Server

Get Handshake

 Initial ------------->

 Handshake Received

Install tx 0-RTT Keys

 0-RTT --------------->

 Get Handshake

 <------------- Initial

Handshake Received

Install Handshake keys

 Install rx 0-RTT keys

 Install Handshake keys

 Get Handshake

 <----------- Handshake

Handshake Received

 Install tx 1-RTT keys

 <--------------- 1-RTT

Get Handshake

Handshake Complete

 Handshake ----------->

 Handshake Received

 Install rx 1-RTT keys

 Handshake Complete

Install 1-RTT keys

 1-RTT --------------->

 Get Handshake

 <--------------- 1-RTT

Handshake Received

¶

¶

¶

A badly configured TLS implementation could negotiate TLS 1.2 or

another older version of TLS. An endpoint MUST terminate the

connection if a version of TLS older than 1.3 is negotiated.

4.3. ClientHello Size

The first Initial packet from a client contains the start or all of

its first cryptographic handshake message, which for TLS is the

ClientHello. Servers might need to parse the entire ClientHello

(e.g., to access extensions such as Server Name Identification (SNI)

or Application Layer Protocol Negotiation (ALPN)) in order to decide

whether to accept the new incoming QUIC connection. If the

ClientHello spans multiple Initial packets, such servers would need

to buffer the first received fragments, which could consume

excessive resources if the client's address has not yet been

validated. To avoid this, servers MAY use the Retry feature (see

Section 8.1 of [QUIC-TRANSPORT]) to only buffer partial ClientHello

messages from clients with a validated address.

QUIC packet and framing add at least 36 bytes of overhead to the

ClientHello message. That overhead increases if the client chooses a

connection ID without zero length. Overheads also do not include the

token or a connection ID longer than 8 bytes, both of which might be

required if a server sends a Retry packet.

A typical TLS ClientHello can easily fit into a 1200 byte packet.

However, in addition to the overheads added by QUIC, there are

several variables that could cause this limit to be exceeded. Large

session tickets, multiple or large key shares, and long lists of

supported ciphers, signature algorithms, versions, QUIC transport

parameters, and other negotiable parameters and extensions could

cause this message to grow.

For servers, in addition to connection IDs and tokens, the size of

TLS session tickets can have an effect on a client's ability to

connect efficiently. Minimizing the size of these values increases

the probability that clients can use them and still fit their

ClientHello message in their first Initial packet.

The TLS implementation does not need to ensure that the ClientHello

is sufficiently large. QUIC PADDING frames are added to increase the

size of the packet as necessary.

4.4. Peer Authentication

The requirements for authentication depend on the application

protocol that is in use. TLS provides server authentication and

permits the server to request client authentication.

¶

¶

¶

¶

¶

¶

¶

A client MUST authenticate the identity of the server. This

typically involves verification that the identity of the server is

included in a certificate and that the certificate is issued by a

trusted entity (see for example [RFC2818]).

A server MAY request that the client authenticate during the

handshake. A server MAY refuse a connection if the client is unable

to authenticate when requested. The requirements for client

authentication vary based on application protocol and deployment.

A server MUST NOT use post-handshake client authentication (as

defined in Section 4.6.2 of [TLS13]), because the multiplexing

offered by QUIC prevents clients from correlating the certificate

request with the application-level event that triggered it (see

[HTTP2-TLS13]). More specifically, servers MUST NOT send post-

handshake TLS CertificateRequest messages and clients MUST treat

receipt of such messages as a connection error of type

PROTOCOL_VIOLATION.

4.5. Enabling 0-RTT

To communicate their willingness to process 0-RTT data, servers send

a NewSessionTicket message that contains the "early_data" extension

with a max_early_data_size of 0xffffffff; the amount of data which

the client can send in 0-RTT is controlled by the "initial_max_data"

transport parameter supplied by the server. Servers MUST NOT send

the "early_data" extension with a max_early_data_size set to any

value other than 0xffffffff. A client MUST treat receipt of a

NewSessionTicket that contains an "early_data" extension with any

other value as a connection error of type PROTOCOL_VIOLATION.

A client that wishes to send 0-RTT packets uses the "early_data"

extension in the ClientHello message of a subsequent handshake (see

Section 4.2.10 of [TLS13]). It then sends the application data in 0-

RTT packets.

4.6. Accepting and Rejecting 0-RTT

A server accepts 0-RTT by sending an early_data extension in the

EncryptedExtensions (see Section 4.2.10 of [TLS13]). The server then

processes and acknowledges the 0-RTT packets that it receives.

A server rejects 0-RTT by sending the EncryptedExtensions without an

early_data extension. A server will always reject 0-RTT if it sends

a TLS HelloRetryRequest. When rejecting 0-RTT, a server MUST NOT

process any 0-RTT packets, even if it could. When 0-RTT was

rejected, a client SHOULD treat receipt of an acknowledgement for a

0-RTT packet as a connection error of type PROTOCOL_VIOLATION, if it

is able to detect the condition.

¶

¶

¶

¶

¶

¶

¶

When 0-RTT is rejected, all connection characteristics that the

client assumed might be incorrect. This includes the choice of

application protocol, transport parameters, and any application

configuration. The client therefore MUST reset the state of all

streams, including application state bound to those streams.

A client MAY attempt to send 0-RTT again if it receives a Retry or

Version Negotiation packet. These packets do not signify rejection

of 0-RTT.

4.7. Validating 0-RTT Configuration

When a server receives a ClientHello with the "early_data"

extension, it has to decide whether to accept or reject early data

from the client. Some of this decision is made by the TLS stack

(e.g., checking that the cipher suite being resumed was included in

the ClientHello; see Section 4.2.10 of [TLS13]). Even when the TLS

stack has no reason to reject early data, the QUIC stack or the

application protocol using QUIC might reject early data because the

configuration of the transport or application associated with the

resumed session is not compatible with the server's current

configuration.

QUIC requires additional transport state to be associated with a 0-

RTT session ticket. One common way to implement this is using

stateless session tickets and storing this state in the session

ticket. Application protocols that use QUIC might have similar

requirements regarding associating or storing state. This associated

state is used for deciding whether early data must be rejected. For

example, HTTP/3 ([QUIC-HTTP]) settings determine how early data from

the client is interpreted. Other applications using QUIC could have

different requirements for determining whether to accept or reject

early data.

4.8. HelloRetryRequest

In TLS over TCP, the HelloRetryRequest feature (see Section 4.1.4 of

[TLS13]) can be used to correct a client's incorrect KeyShare

extension as well as for a stateless round-trip check. From the

perspective of QUIC, this just looks like additional messages

carried in the Initial encryption level. Although it is in principle

possible to use this feature for address verification in QUIC, QUIC

implementations SHOULD instead use the Retry feature (see Section

8.1 of [QUIC-TRANSPORT]). HelloRetryRequest is still used to request

key shares.

4.9. TLS Errors

If TLS experiences an error, it generates an appropriate alert as

defined in Section 6 of [TLS13].

¶

¶

¶

¶

¶

¶

A TLS alert is turned into a QUIC connection error by converting the

one-byte alert description into a QUIC error code. The alert

description is added to 0x100 to produce a QUIC error code from the

range reserved for CRYPTO_ERROR. The resulting value is sent in a

QUIC CONNECTION_CLOSE frame.

The alert level of all TLS alerts is "fatal"; a TLS stack MUST NOT

generate alerts at the "warning" level.

4.10. Discarding Unused Keys

After QUIC moves to a new encryption level, packet protection keys

for previous encryption levels can be discarded. This occurs several

times during the handshake, as well as when keys are updated; see

Section 6.

Packet protection keys are not discarded immediately when new keys

are available. If packets from a lower encryption level contain

CRYPTO frames, frames that retransmit that data MUST be sent at the

same encryption level. Similarly, an endpoint generates

acknowledgements for packets at the same encryption level as the

packet being acknowledged. Thus, it is possible that keys for a

lower encryption level are needed for a short time after keys for a

newer encryption level are available.

An endpoint cannot discard keys for a given encryption level unless

it has both received and acknowledged all CRYPTO frames for that

encryption level and when all CRYPTO frames for that encryption

level have been acknowledged by its peer. However, this does not

guarantee that no further packets will need to be received or sent

at that encryption level because a peer might not have received all

the acknowledgements necessary to reach the same state.

Though an endpoint might retain older keys, new data MUST be sent at

the highest currently-available encryption level. Only ACK frames

and retransmissions of data in CRYPTO frames are sent at a previous

encryption level. These packets MAY also include PADDING frames.

4.10.1. Discarding Initial Keys

Packets protected with Initial secrets (Section 5.2) are not

authenticated, meaning that an attacker could spoof packets with the

intent to disrupt a connection. To limit these attacks, Initial

packet protection keys can be discarded more aggressively than other

keys.

The successful use of Handshake packets indicates that no more

Initial packets need to be exchanged, as these keys can only be

produced after receiving all CRYPTO frames from Initial packets.

Thus, a client MUST discard Initial keys when it first sends a

¶

¶

¶

¶

¶

¶

¶

Handshake packet and a server MUST discard Initial keys when it

first successfully processes a Handshake packet. Endpoints MUST NOT

send Initial packets after this point.

This results in abandoning loss recovery state for the Initial

encryption level and ignoring any outstanding Initial packets.

4.10.2. Discarding Handshake Keys

An endpoint MUST discard its handshake keys when the TLS handshake

is confirmed (Section 4.1.2). The server MUST send a HANDSHAKE_DONE

frame as soon as it completes the handshake.

4.10.3. Discarding 0-RTT Keys

0-RTT and 1-RTT packets share the same packet number space, and

clients do not send 0-RTT packets after sending a 1-RTT packet

(Section 5.6).

Therefore, a client SHOULD discard 0-RTT keys as soon as it installs

1-RTT keys, since they have no use after that moment.

Additionally, a server MAY discard 0-RTT keys as soon as it receives

a 1-RTT packet. However, due to packet reordering, a 0-RTT packet

could arrive after a 1-RTT packet. Servers MAY temporarily retain 0-

RTT keys to allow decrypting reordered packets without requiring

their contents to be retransmitted with 1-RTT keys. After receiving

a 1-RTT packet, servers MUST discard 0-RTT keys within a short time;

the RECOMMENDED time period is three times the Probe Timeout (PTO,

see [QUIC-RECOVERY]). A server MAY discard 0-RTT keys earlier if it

determines that it has received all 0-RTT packets, which can be done

by keeping track of missing packet numbers.

5. Packet Protection

As with TLS over TCP, QUIC protects packets with keys derived from

the TLS handshake, using the AEAD algorithm negotiated by TLS.

5.1. Packet Protection Keys

QUIC derives packet protection keys in the same way that TLS derives

record protection keys.

Each encryption level has separate secret values for protection of

packets sent in each direction. These traffic secrets are derived by

TLS (see Section 7.1 of [TLS13]) and are used by QUIC for all

encryption levels except the Initial encryption level. The secrets

for the Initial encryption level are computed based on the client's

initial Destination Connection ID, as described in Section 5.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The keys used for packet protection are computed from the TLS

secrets using the KDF provided by TLS. In TLS 1.3, the HKDF-Expand-

Label function described in Section 7.1 of [TLS13] is used, using

the hash function from the negotiated cipher suite. Other versions

of TLS MUST provide a similar function in order to be used with

QUIC.

The current encryption level secret and the label "quic key" are

input to the KDF to produce the AEAD key; the label "quic iv" is

used to derive the IV; see Section 5.3. The header protection key

uses the "quic hp" label; see Section 5.4. Using these labels

provides key separation between QUIC and TLS; see Section 9.5.

The KDF used for initial secrets is always the HKDF-Expand-Label

function from TLS 1.3 (see Section 5.2).

5.2. Initial Secrets

Initial packets are protected with a secret derived from the

Destination Connection ID field from the client's Initial packet.

Specifically:

The hash function for HKDF when deriving initial secrets and keys is

SHA-256 [SHA].

The connection ID used with HKDF-Expand-Label is the Destination

Connection ID in the Initial packet sent by the client. This will be

a randomly-selected value unless the client creates the Initial

packet after receiving a Retry packet, where the Destination

Connection ID is selected by the server.

The value of initial_salt is a 20 byte sequence shown in the figure

in hexadecimal notation. Future versions of QUIC SHOULD generate a

new salt value, thus ensuring that the keys are different for each

version of QUIC. This prevents a middlebox that only recognizes one

version of QUIC from seeing or modifying the contents of packets

from future versions.

¶

¶

¶

¶

initial_salt = 0xc3eef712c72ebb5a11a7d2432bb46365bef9f502

initial_secret = HKDF-Extract(initial_salt,

 client_dst_connection_id)

client_initial_secret = HKDF-Expand-Label(initial_secret,

 "client in", "",

 Hash.length)

server_initial_secret = HKDF-Expand-Label(initial_secret,

 "server in", "",

 Hash.length)

¶

¶

¶

¶

Note:

Note:

The HKDF-Expand-Label function defined in TLS 1.3 MUST be used for

Initial packets even where the TLS versions offered do not include

TLS 1.3.

The secrets used for protecting Initial packets change when a server

sends a Retry packet to use the connection ID value selected by the

server. The secrets do not change when a client changes the

Destination Connection ID it uses in response to an Initial packet

from the server.

The Destination Connection ID is of arbitrary length, and it

could be zero length if the server sends a Retry packet with a

zero-length Source Connection ID field. In this case, the Initial

keys provide no assurance to the client that the server received

its packet; the client has to rely on the exchange that included

the Retry packet for that property.

Appendix A contains test vectors for packet encryption.

5.3. AEAD Usage

The Authentication Encryption with Associated Data (AEAD) [AEAD]

function used for QUIC packet protection is the AEAD that is

negotiated for use with the TLS connection. For example, if TLS is

using the TLS_AES_128_GCM_SHA256, the AEAD_AES_128_GCM function is

used.

Packets are protected prior to applying header protection (Section

5.4). The unprotected packet header is part of the associated data

(A). When removing packet protection, an endpoint first removes the

header protection.

All QUIC packets other than Version Negotiation and Retry packets

are protected with an AEAD algorithm [AEAD]. Prior to establishing a

shared secret, packets are protected with AEAD_AES_128_GCM and a key

derived from the Destination Connection ID in the client's first

Initial packet (see Section 5.2). This provides protection against

off-path attackers and robustness against QUIC version unaware

middleboxes, but not against on-path attackers.

QUIC can use any of the ciphersuites defined in [TLS13] with the

exception of TLS_AES_128_CCM_8_SHA256. A ciphersuite MUST NOT be

negotiated unless a header protection scheme is defined for the

ciphersuite. This document defines a header protection scheme for

all ciphersuites defined in [TLS13] aside from

TLS_AES_128_CCM_8_SHA256. These ciphersuites have a 16-byte

authentication tag and produce an output 16 bytes larger than their

input.

¶

¶

¶

¶

¶

¶

¶

¶

An endpoint MUST NOT reject a ClientHello that offers a

ciphersuite that it does not support, or it would be impossible

to deploy a new ciphersuite. This also applies to

TLS_AES_128_CCM_8_SHA256.

The key and IV for the packet are computed as described in Section

5.1. The nonce, N, is formed by combining the packet protection IV

with the packet number. The 62 bits of the reconstructed QUIC packet

number in network byte order are left-padded with zeros to the size

of the IV. The exclusive OR of the padded packet number and the IV

forms the AEAD nonce.

The associated data, A, for the AEAD is the contents of the QUIC

header, starting from the flags byte in either the short or long

header, up to and including the unprotected packet number.

The input plaintext, P, for the AEAD is the payload of the QUIC

packet, as described in [QUIC-TRANSPORT].

The output ciphertext, C, of the AEAD is transmitted in place of P.

Some AEAD functions have limits for how many packets can be

encrypted under the same key and IV (see for example [AEBounds]).

This might be lower than the packet number limit. An endpoint MUST

initiate a key update (Section 6) prior to exceeding any limit set

for the AEAD that is in use.

5.4. Header Protection

Parts of QUIC packet headers, in particular the Packet Number field,

are protected using a key that is derived separate to the packet

protection key and IV. The key derived using the "quic hp" label is

used to provide confidentiality protection for those fields that are

not exposed to on-path elements.

This protection applies to the least-significant bits of the first

byte, plus the Packet Number field. The four least-significant bits

of the first byte are protected for packets with long headers; the

five least significant bits of the first byte are protected for

packets with short headers. For both header forms, this covers the

reserved bits and the Packet Number Length field; the Key Phase bit

is also protected for packets with a short header.

The same header protection key is used for the duration of the

connection, with the value not changing after a key update (see

Section 6). This allows header protection to be used to protect the

key phase.

¶

¶

¶

¶

¶

¶

¶

¶

¶

This process does not apply to Retry or Version Negotiation packets,

which do not contain a protected payload or any of the fields that

are protected by this process.

5.4.1. Header Protection Application

Header protection is applied after packet protection is applied (see

Section 5.3). The ciphertext of the packet is sampled and used as

input to an encryption algorithm. The algorithm used depends on the

negotiated AEAD.

The output of this algorithm is a 5 byte mask which is applied to

the protected header fields using exclusive OR. The least

significant bits of the first byte of the packet are masked by the

least significant bits of the first mask byte, and the packet number

is masked with the remaining bytes. Any unused bytes of mask that

might result from a shorter packet number encoding are unused.

Figure 6 shows a sample algorithm for applying header protection.

Removing header protection only differs in the order in which the

packet number length (pn_length) is determined.

Figure 6: Header Protection Pseudocode

Figure 7 shows the protected fields of long and short headers marked

with an E. Figure 7 also shows the sampled fields.

¶

¶

¶

¶

mask = header_protection(hp_key, sample)

pn_length = (packet[0] & 0x03) + 1

if (packet[0] & 0x80) == 0x80:

 # Long header: 4 bits masked

 packet[0] ^= mask[0] & 0x0f

else:

 # Short header: 5 bits masked

 packet[0] ^= mask[0] & 0x1f

pn_offset is the start of the Packet Number field.

packet[pn_offset:pn_offset+pn_length] ^= mask[1:1+pn_length]

¶

Figure 7: Header Protection and Ciphertext Sample

Before a TLS ciphersuite can be used with QUIC, a header protection

algorithm MUST be specified for the AEAD used with that ciphersuite.

This document defines algorithms for AEAD_AES_128_GCM,

AEAD_AES_128_CCM, AEAD_AES_256_GCM (all AES AEADs are defined in

[AEAD]), and AEAD_CHACHA20_POLY1305 [CHACHA]. Prior to TLS selecting

a ciphersuite, AES header protection is used (Section 5.4.3),

matching the AEAD_AES_128_GCM packet protection.

5.4.2. Header Protection Sample

The header protection algorithm uses both the header protection key

and a sample of the ciphertext from the packet Payload field.

The same number of bytes are always sampled, but an allowance needs

to be made for the endpoint removing protection, which will not know

the length of the Packet Number field. In sampling the packet

ciphertext, the Packet Number field is assumed to be 4 bytes long

(its maximum possible encoded length).

An endpoint MUST discard packets that are not long enough to contain

a complete sample.

Long Header:

+-+-+-+-+-+-+-+-+

|1|1|T T|E E E E|

+-+

| Version -> Length Fields ...

+-+

Short Header:

+-+-+-+-+-+-+-+-+

|0|1|S|E E E E E|

+-+

| Destination Connection ID (0/32..144) ...

+-+

Common Fields:

+-+

|E E E E E E E E E Packet Number (8/16/24/32) E E E E E E E E...

+-+

| [Protected Payload (8/16/24)] ...

+-+

| Sampled part of Protected Payload (128) ...

+-+

| Protected Payload Remainder (*) ...

+-+

¶

¶

¶

¶

To ensure that sufficient data is available for sampling, packets

are padded so that the combined lengths of the encoded packet number

and protected payload is at least 4 bytes longer than the sample

required for header protection. The ciphersuites defined in [TLS13]

- other than TLS_AES_128_CCM_8_SHA256, for which a header protection

scheme is not defined in this document - have 16-byte expansions and

16-byte header protection samples. This results in needing at least

3 bytes of frames in the unprotected payload if the packet number is

encoded on a single byte, or 2 bytes of frames for a 2-byte packet

number encoding.

The sampled ciphertext for a packet with a short header can be

determined by the following pseudocode:

For example, for a packet with a short header, an 8 byte connection

ID, and protected with AEAD_AES_128_GCM, the sample takes bytes 13

to 28 inclusive (using zero-based indexing).

A packet with a long header is sampled in the same way, noting that

multiple QUIC packets might be included in the same UDP datagram and

that each one is handled separately.

5.4.3. AES-Based Header Protection

This section defines the packet protection algorithm for

AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.

AEAD_AES_128_GCM and AEAD_AES_128_CCM use 128-bit AES [AES] in

electronic code-book (ECB) mode. AEAD_AES_256_GCM uses 256-bit AES

in ECB mode.

This algorithm samples 16 bytes from the packet ciphertext. This

value is used as the input to AES-ECB. In pseudocode:

¶

¶

sample_offset = 1 + len(connection_id) + 4

sample = packet[sample_offset..sample_offset+sample_length]

¶

¶

¶

sample_offset = 7 + len(destination_connection_id) +

 len(source_connection_id) +

 len(payload_length) + 4

if packet_type == Initial:

 sample_offset += len(token_length) +

 len(token)

sample = packet[sample_offset..sample_offset+sample_length]

¶

¶

¶

mask = AES-ECB(hp_key, sample)¶

5.4.4. ChaCha20-Based Header Protection

When AEAD_CHACHA20_POLY1305 is in use, header protection uses the

raw ChaCha20 function as defined in Section 2.4 of [CHACHA]. This

uses a 256-bit key and 16 bytes sampled from the packet protection

output.

The first 4 bytes of the sampled ciphertext are the block counter. A

ChaCha20 implementation could take a 32-bit integer in place of a

byte sequence, in which case the byte sequence is interpreted as a

little-endian value.

The remaining 12 bytes are used as the nonce. A ChaCha20

implementation might take an array of three 32-bit integers in place

of a byte sequence, in which case the nonce bytes are interpreted as

a sequence of 32-bit little-endian integers.

The encryption mask is produced by invoking ChaCha20 to protect 5

zero bytes. In pseudocode:

5.5. Receiving Protected Packets

Once an endpoint successfully receives a packet with a given packet

number, it MUST discard all packets in the same packet number space

with higher packet numbers if they cannot be successfully

unprotected with either the same key, or - if there is a key update

- the next packet protection key (see Section 6). Similarly, a

packet that appears to trigger a key update, but cannot be

unprotected successfully MUST be discarded.

Failure to unprotect a packet does not necessarily indicate the

existence of a protocol error in a peer or an attack. The truncated

packet number encoding used in QUIC can cause packet numbers to be

decoded incorrectly if they are delayed significantly.

5.6. Use of 0-RTT Keys

If 0-RTT keys are available (see Section 4.5), the lack of replay

protection means that restrictions on their use are necessary to

avoid replay attacks on the protocol.

A client MUST only use 0-RTT keys to protect data that is

idempotent. A client MAY wish to apply additional restrictions on

what data it sends prior to the completion of the TLS handshake. A

client otherwise treats 0-RTT keys as equivalent to 1-RTT keys,

except that it MUST NOT send ACKs with 0-RTT keys.

¶

¶

¶

¶

counter = sample[0..3]

nonce = sample[4..15]

mask = ChaCha20(hp_key, counter, nonce, {0,0,0,0,0})

¶

¶

¶

¶

¶

Note:

A client that receives an indication that its 0-RTT data has been

accepted by a server can send 0-RTT data until it receives all of

the server's handshake messages. A client SHOULD stop sending 0-RTT

data if it receives an indication that 0-RTT data has been rejected.

A server MUST NOT use 0-RTT keys to protect packets; it uses 1-RTT

keys to protect acknowledgements of 0-RTT packets. A client MUST NOT

attempt to decrypt 0-RTT packets it receives and instead MUST

discard them.

Once a client has installed 1-RTT keys, it MUST NOT send any more 0-

RTT packets.

0-RTT data can be acknowledged by the server as it receives

it, but any packets containing acknowledgments of 0-RTT data

cannot have packet protection removed by the client until the TLS

handshake is complete. The 1-RTT keys necessary to remove packet

protection cannot be derived until the client receives all server

handshake messages.

5.7. Receiving Out-of-Order Protected Frames

Due to reordering and loss, protected packets might be received by

an endpoint before the final TLS handshake messages are received. A

client will be unable to decrypt 1-RTT packets from the server,

whereas a server will be able to decrypt 1-RTT packets from the

client. Endpoints in either role MUST NOT decrypt 1-RTT packets from

their peer prior to completing the handshake.

Even though 1-RTT keys are available to a server after receiving the

first handshake messages from a client, it is missing assurances on

the client state:

The client is not authenticated, unless the server has chosen to

use a pre-shared key and validated the client's pre-shared key

binder; see Section 4.2.11 of [TLS13].

The client has not demonstrated liveness, unless a RETRY packet

was used.

Any received 0-RTT data that the server responds to might be due

to a replay attack.

Therefore, the server's use of 1-RTT keys MUST be limited to sending

data before the handshake is complete. A server MUST NOT process

incoming 1-RTT protected packets before the TLS handshake is

complete. Because sending acknowledgments indicates that all frames

in a packet have been processed, a server cannot send

acknowledgments for 1-RTT packets until the TLS handshake is

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

Note:

complete. Received packets protected with 1-RTT keys MAY be stored

and later decrypted and used once the handshake is complete.

TLS implementations might provide all 1-RTT secrets prior to

handshake completion. Even where QUIC implementations have 1-RTT

read keys, those keys cannot be used prior to completing the

handshake.

The requirement for the server to wait for the client Finished

message creates a dependency on that message being delivered. A

client can avoid the potential for head-of-line blocking that this

implies by sending its 1-RTT packets coalesced with a handshake

packet containing a copy of the CRYPTO frame that carries the

Finished message, until one of the handshake packets is

acknowledged. This enables immediate server processing for those

packets.

A server could receive packets protected with 0-RTT keys prior to

receiving a TLS ClientHello. The server MAY retain these packets for

later decryption in anticipation of receiving a ClientHello.

5.8. Retry Packet Integrity

Retry packets (see the Retry Packet section of [QUIC-TRANSPORT])

carry a Retry Integrity Tag that provides two properties: it allows

discarding packets that have accidentally been corrupted by the

network, and it diminishes off-path attackers' ability to send valid

Retry packets.

The Retry Integrity Tag is a 128-bit field that is computed as the

output of AEAD_AES_128_GCM [AEAD] used with the following inputs:

The secret key, K, is 128 bits equal to

0x4d32ecdb2a2133c841e4043df27d4430.

The nonce, N, is 96 bits equal to 0x4d1611d05513a552c587d575.

The plaintext, P, is empty.

The associated data, A, is the contents of the Retry Pseudo-

Packet, as illustrated in Figure 8:

The secret key and the nonce are values derived by calling HKDF-

Expand-Label using

0x656e61e336ae9417f7f0edd8d78d461e2aa7084aba7a14c1e9f726d55709169a

as the secret, with labels being "quic key" and "quic iv" (Section

5.1).

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

¶

ODCID Len:

Original Destination Connection ID:

Figure 8: Retry Pseudo-Packet

The Retry Pseudo-Packet is not sent over the wire. It is computed by

taking the transmitted Retry packet, removing the Retry Integrity

Tag and prepending the two following fields:

The ODCID Len contains the length in bytes of the

Original Destination Connection ID field that follows it, encoded

as an 8-bit unsigned integer.

The Original Destination

Connection ID contains the value of the Destination Connection ID

from the Initial packet that this Retry is in response to. The

length of this field is given in ODCID Len. The presence of this

field mitigates an off-path attacker's ability to inject a Retry

packet.

6. Key Update

Once the handshake is confirmed (see Section 4.1.2), an endpoint MAY

initiate a key update.

The Key Phase bit indicates which packet protection keys are used to

protect the packet. The Key Phase bit is initially set to 0 for the

first set of 1-RTT packets and toggled to signal each subsequent key

update.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ODCID Len (8) |

+-+

| Original Destination Connection ID (0..160) ...

+-+

|1|1| 3 | Unused|

+-+

| Version (32) |

+-+

| DCID Len (8) |

+-+

| Destination Connection ID (0..160) ...

+-+

| SCID Len (8) |

+-+

| Source Connection ID (0..160) ...

+-+

| Retry Token (*) ...

+-+

¶

¶

¶

¶

¶

The Key Phase bit allows a recipient to detect a change in keying

material without needing to receive the first packet that triggered

the change. An endpoint that notices a changed Key Phase bit updates

keys and decrypts the packet that contains the changed value.

This mechanism replaces the TLS KeyUpdate message. Endpoints MUST

NOT send a TLS KeyUpdate message. Endpoints MUST treat the receipt

of a TLS KeyUpdate message as a connection error of type 0x10a,

equivalent to a fatal TLS alert of unexpected_message (see Section

4.9).

Figure 9 shows a key update process, where the initial set of keys

used (identified with @M) are replaced by updated keys (identified

with @N). The value of the Key Phase bit is indicated in brackets

[].

Figure 9: Key Update

6.1. Initiating a Key Update

Endpoints maintain separate read and write secrets for packet

protection. An endpoint initiates a key update by updating its

packet protection write secret and using that to protect new

packets. The endpoint creates a new write secret from the existing

write secret as performed in Section 7.2 of [TLS13]. This uses the

KDF function provided by TLS with a label of "quic ku". The

corresponding key and IV are created from that secret as defined in

Section 5.1. The header protection key is not updated.

¶

¶

¶

 Initiating Peer Responding Peer

@M [0] QUIC Packets

... Update to @N

@N [1] QUIC Packets

 -------->

 Update to @N ...

 QUIC Packets [1] @N

 <--------

 QUIC Packets [1] @N

 containing ACK

 <--------

... Key Update Permitted

@N [1] QUIC Packets

 containing ACK for @N packets

 -------->

 Key Update Permitted ...

¶

Note:

For example, to update write keys with TLS 1.3, HKDF-Expand-Label is

used as:

The endpoint toggles the value of the Key Phase bit and uses the

updated key and IV to protect all subsequent packets.

An endpoint MUST NOT initiate a key update prior to having confirmed

the handshake (Section 4.1.2). An endpoint MUST NOT initiate a

subsequent key update prior unless it has received an acknowledgment

for a packet that was sent protected with keys from the current key

phase. This ensures that keys are available to both peers before

another key update can be initiated. This can be implemented by

tracking the lowest packet number sent with each key phase, and the

highest acknowledged packet number in the 1-RTT space: once the

latter is higher than or equal to the former, another key update can

be initiated.

Keys of packets other than the 1-RTT packets are never

updated; their keys are derived solely from the TLS handshake

state.

The endpoint that initiates a key update also updates the keys that

it uses for receiving packets. These keys will be needed to process

packets the peer sends after updating.

An endpoint SHOULD retain old keys so that packets sent by its peer

prior to receiving the key update can be processed. Discarding old

keys too early can cause delayed packets to be discarded. Discarding

packets will be interpreted as packet loss by the peer and could

adversely affect performance.

6.2. Responding to a Key Update

A peer is permitted to initiate a key update after receiving an

acknowledgement of a packet in the current key phase. An endpoint

detects a key update when processing a packet with a key phase that

differs from the value last used to protect the last packet it sent.

To process this packet, the endpoint uses the next packet protection

key and IV. See Section 6.3 for considerations about generating

these keys.

If a packet is successfully processed using the next key and IV,

then the peer has initiated a key update. The endpoint MUST update

its send keys to the corresponding key phase in response, as

described in Section 6.1. Sending keys MUST be updated before

sending an acknowledgement for the packet that was received with

updated keys. By acknowledging the packet that triggered the key

¶

secret_<n+1> = HKDF-Expand-Label(secret_<n>, "quic ku",

 "", Hash.length)

¶

¶

¶

¶

¶

¶

¶

update in a packet protected with the updated keys, the endpoint

signals that the key update is complete.

An endpoint can defer sending the packet or acknowledgement

according to its normal packet sending behaviour; it is not

necessary to immediately generate a packet in response to a key

update. The next packet sent by the endpoint will use the updated

keys. The next packet that contains an acknowledgement will cause

the key update to be completed. If an endpoint detects a second

update before it has sent any packets with updated keys containing

an acknowledgement for the packet that initiated the key update, it

indicates that its peer has updated keys twice without awaiting

confirmation. An endpoint MAY treat consecutive key updates as a

connection error of type KEY_UPDATE_ERROR.

An endpoint that receives an acknowledgement that is carried in a

packet protected with old keys where any acknowledged packet was

protected with newer keys MAY treat that as a connection error of

type KEY_UPDATE_ERROR. This indicates that a peer has received and

acknowledged a packet that initiates a key update, but has not

updated keys in response.

6.3. Timing of Receive Key Generation

Endpoints responding to an apparent key update MUST NOT generate a

timing side-channel signal that might indicate that the Key Phase

bit was invalid (see Section 9.3). Endpoints can use dummy packet

protection keys in place of discarded keys when key updates are not

yet permitted. Using dummy keys will generate no variation in the

timing signal produced by attempting to remove packet protection,

and results in all packets with an invalid Key Phase bit being

rejected.

The process of creating new packet protection keys for receiving

packets could reveal that a key update has occurred. An endpoint MAY

perform this process as part of packet processing, but this creates

a timing signal that can be used by an attacker to learn when key

updates happen and thus the value of the Key Phase bit in certain

packets. Endpoints MAY instead defer the creation of the next set of

receive packet protection keys until some time after a key update

completes, up to three times the PTO; see Section 6.5.

Once generated, the next set of packet protection keys SHOULD be

retained, even if the packet that was received was subsequently

discarded. Packets containing apparent key updates are easy to forge

and - while the process of key update does not require significant

effort - triggering this process could be used by an attacker for

DoS.

¶

¶

¶

¶

¶

¶

For this reason, endpoints MUST be able to retain two sets of packet

protection keys for receiving packets: the current and the next.

Retaining the previous keys in addition to these might improve

performance, but this is not essential.

6.4. Sending with Updated Keys

An endpoint always sends packets that are protected with the newest

keys. Keys used for packet protection can be discarded immediately

after switching to newer keys.

Packets with higher packet numbers MUST be protected with either the

same or newer packet protection keys than packets with lower packet

numbers. An endpoint that successfully removes protection with old

keys when newer keys were used for packets with lower packet numbers

MUST treat this as a connection error of type KEY_UPDATE_ERROR.

6.5. Receiving with Different Keys

For receiving packets during a key update, packets protected with

older keys might arrive if they were delayed by the network.

Retaining old packet protection keys allows these packets to be

successfully processed.

As packets protected with keys from the next key phase use the same

Key Phase value as those protected with keys from the previous key

phase, it can be necessary to distinguish between the two. This can

be done using packet numbers. A recovered packet number that is

lower than any packet number from the current key phase uses the

previous packet protection keys; a recovered packet number that is

higher than any packet number from the current key phase requires

the use of the next packet protection keys.

Some care is necessary to ensure that any process for selecting

between previous, current, and next packet protection keys does not

expose a timing side channel that might reveal which keys were used

to remove packet protection. See Section 9.4 for more information.

Alternatively, endpoints can retain only two sets of packet

protection keys, swapping previous for next after enough time has

passed to allow for reordering in the network. In this case, the Key

Phase bit alone can be used to select keys.

An endpoint MAY allow a period of approximately the Probe Timeout

(PTO; see [QUIC-RECOVERY]) after a key update before it creates the

next set of packet protection keys. These updated keys MAY replace

the previous keys at that time. With the caveat that PTO is a

subjective measure - that is, a peer could have a different view of

the RTT - this time is expected to be long enough that any reordered

¶

¶

¶

¶

¶

¶

¶

packets would be declared lost by a peer even if they were

acknowledged and short enough to allow for subsequent key updates.

Endpoints need to allow for the possibility that a peer might not be

able to decrypt packets that initiate a key update during the period

when it retains old keys. Endpoints SHOULD wait three times the PTO

before initiating a key update after receiving an acknowledgment

that confirms that the previous key update was received. Failing to

allow sufficient time could lead to packets being discarded.

An endpoint SHOULD retain old read keys for no more than three times

the PTO. After this period, old read keys and their corresponding

secrets SHOULD be discarded.

6.6. Key Update Frequency

Key updates MUST be initiated before usage limits on packet

protection keys are exceeded. For the cipher suites mentioned in

this document, the limits in Section 5.5 of [TLS13] apply. Other

cipher suites MUST define usage limits in order to be used with

QUIC.

6.7. Key Update Error Code

The KEY_UPDATE_ERROR error code (0xE) is used to signal errors

related to key updates.

7. Security of Initial Messages

Initial packets are not protected with a secret key, so they are

subject to potential tampering by an attacker. QUIC provides

protection against attackers that cannot read packets, but does not

attempt to provide additional protection against attacks where the

attacker can observe and inject packets. Some forms of tampering -

such as modifying the TLS messages themselves - are detectable, but

some - such as modifying ACKs - are not.

For example, an attacker could inject a packet containing an ACK

frame that makes it appear that a packet had not been received or to

create a false impression of the state of the connection (e.g., by

modifying the ACK Delay). Note that such a packet could cause a

legitimate packet to be dropped as a duplicate. Implementations

SHOULD use caution in relying on any data which is contained in

Initial packets that is not otherwise authenticated.

It is also possible for the attacker to tamper with data that is

carried in Handshake packets, but because that tampering requires

modifying TLS handshake messages, that tampering will cause the TLS

handshake to fail.

¶

¶

¶

¶

¶

¶

¶

¶

8. QUIC-Specific Additions to the TLS Handshake

QUIC uses the TLS handshake for more than just negotiation of

cryptographic parameters. The TLS handshake provides preliminary

values for QUIC transport parameters and allows a server to perform

return routability checks on clients.

8.1. Protocol Negotiation

QUIC requires that the cryptographic handshake provide authenticated

protocol negotiation. TLS uses Application Layer Protocol

Negotiation (ALPN) [ALPN] to select an application protocol. Unless

another mechanism is used for agreeing on an application protocol,

endpoints MUST use ALPN for this purpose. When using ALPN, endpoints

MUST immediately close a connection (see Section 10.3 in [QUIC-

TRANSPORT]) if an application protocol is not negotiated with a

no_application_protocol TLS alert (QUIC error code 0x178, see

Section 4.9). While [ALPN] only specifies that servers use this

alert, QUIC clients MUST also use it to terminate a connection when

ALPN negotiation fails.

An application protocol MAY restrict the QUIC versions that it can

operate over. Servers MUST select an application protocol compatible

with the QUIC version that the client has selected. The server MUST

treat the inability to select a compatible application protocol as a

connection error of type 0x178 (no_application_protocol). Similarly,

a client MUST treat the selection of an incompatible application

protocol by a server as a connection error of type 0x178.

8.2. QUIC Transport Parameters Extension

QUIC transport parameters are carried in a TLS extension. Different

versions of QUIC might define a different method for negotiating

transport configuration.

Including transport parameters in the TLS handshake provides

integrity protection for these values.

The extension_data field of the quic_transport_parameters extension

contains a value that is defined by the version of QUIC that is in

use.

The quic_transport_parameters extension is carried in the

ClientHello and the EncryptedExtensions messages during the

handshake. Endpoints MUST send the quic_transport_parameters

extension; endpoints that receive ClientHello or EncryptedExtensions

¶

¶

¶

¶

¶

 enum {

 quic_transport_parameters(0xffa5), (65535)

 } ExtensionType;

¶

¶

messages without the quic_transport_parameters extension MUST close

the connection with an error of type 0x16d (equivalent to a fatal

TLS missing_extension alert, see Section 4.9).

While the transport parameters are technically available prior to

the completion of the handshake, they cannot be fully trusted until

the handshake completes, and reliance on them should be minimized.

However, any tampering with the parameters will cause the handshake

to fail.

Endpoints MUST NOT send this extension in a TLS connection that does

not use QUIC (such as the use of TLS with TCP defined in [TLS13]). A

fatal unsupported_extension alert MUST be sent by an implementation

that supports this extension if the extension is received when the

transport is not QUIC.

8.3. Removing the EndOfEarlyData Message

The TLS EndOfEarlyData message is not used with QUIC. QUIC does not

rely on this message to mark the end of 0-RTT data or to signal the

change to Handshake keys.

Clients MUST NOT send the EndOfEarlyData message. A server MUST

treat receipt of a CRYPTO frame in a 0-RTT packet as a connection

error of type PROTOCOL_VIOLATION.

As a result, EndOfEarlyData does not appear in the TLS handshake

transcript.

9. Security Considerations

There are likely to be some real clangers here eventually, but the

current set of issues is well captured in the relevant sections of

the main text.

Never assume that because it isn't in the security considerations

section it doesn't affect security. Most of this document does.

9.1. Replay Attacks with 0-RTT

As described in Section 8 of [TLS13], use of TLS early data comes

with an exposure to replay attack. The use of 0-RTT in QUIC is

similarly vulnerable to replay attack.

Endpoints MUST implement and use the replay protections described in

[TLS13], however it is recognized that these protections are

imperfect. Therefore, additional consideration of the risk of replay

is needed.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note:

QUIC is not vulnerable to replay attack, except via the application

protocol information it might carry. The management of QUIC protocol

state based on the frame types defined in [QUIC-TRANSPORT] is not

vulnerable to replay. Processing of QUIC frames is idempotent and

cannot result in invalid connection states if frames are replayed,

reordered or lost. QUIC connections do not produce effects that last

beyond the lifetime of the connection, except for those produced by

the application protocol that QUIC serves.

TLS session tickets and address validation tokens are used to

carry QUIC configuration information between connections. These

MUST NOT be used to carry application semantics. The potential

for reuse of these tokens means that they require stronger

protections against replay.

A server that accepts 0-RTT on a connection incurs a higher cost

than accepting a connection without 0-RTT. This includes higher

processing and computation costs. Servers need to consider the

probability of replay and all associated costs when accepting 0-RTT.

Ultimately, the responsibility for managing the risks of replay

attacks with 0-RTT lies with an application protocol. An application

protocol that uses QUIC MUST describe how the protocol uses 0-RTT

and the measures that are employed to protect against replay attack.

An analysis of replay risk needs to consider all QUIC protocol

features that carry application semantics.

Disabling 0-RTT entirely is the most effective defense against

replay attack.

QUIC extensions MUST describe how replay attacks affect their

operation, or prohibit their use in 0-RTT. Application protocols

MUST either prohibit the use of extensions that carry application

semantics in 0-RTT or provide replay mitigation strategies.

9.2. Packet Reflection Attack Mitigation

A small ClientHello that results in a large block of handshake

messages from a server can be used in packet reflection attacks to

amplify the traffic generated by an attacker.

QUIC includes three defenses against this attack. First, the packet

containing a ClientHello MUST be padded to a minimum size. Second,

if responding to an unverified source address, the server is

forbidden to send more than three UDP datagrams in its first flight

(see Section 8.1 of [QUIC-TRANSPORT]). Finally, because

acknowledgements of Handshake packets are authenticated, a blind

attacker cannot forge them. Put together, these defenses limit the

level of amplification.

¶

¶

¶

¶

¶

¶

¶

¶

Note:

9.3. Header Protection Analysis

[NAN] analyzes authenticated encryption algorithms which provide

nonce privacy, referred to as "Hide Nonce" (HN) transforms. The

general header protection construction in this document is one of

those algorithms (HN1). Header protection uses the output of the

packet protection AEAD to derive sample, and then encrypts the

header field using a pseudorandom function (PRF) as follows:

The header protection variants in this document use a pseudorandom

permutation (PRP) in place of a generic PRF. However, since all PRPs

are also PRFs [IMC], these variants do not deviate from the HN1

construction.

As hp_key is distinct from the packet protection key, it follows

that header protection achieves AE2 security as defined in [NAN] and

therefore guarantees privacy of field, the protected packet header.

Future header protection variants based on this construction MUST

use a PRF to ensure equivalent security guarantees.

Use of the same key and ciphertext sample more than once risks

compromising header protection. Protecting two different headers

with the same key and ciphertext sample reveals the exclusive OR of

the protected fields. Assuming that the AEAD acts as a PRF, if L

bits are sampled, the odds of two ciphertext samples being identical

approach 2^(-L/2), that is, the birthday bound. For the algorithms

described in this document, that probability is one in 2^64.

In some cases, inputs shorter than the full size required by

the packet protection algorithm might be used.

To prevent an attacker from modifying packet headers, the header is

transitively authenticated using packet protection; the entire

packet header is part of the authenticated additional data.

Protected fields that are falsified or modified can only be detected

once the packet protection is removed.

9.4. Header Protection Timing Side-Channels

An attacker could guess values for packet numbers or Key Phase and

have an endpoint confirm guesses through timing side channels.

Similarly, guesses for the packet number length can be trialed and

exposed. If the recipient of a packet discards packets with

duplicate packet numbers without attempting to remove packet

protection they could reveal through timing side-channels that the

packet number matches a received packet. For authentication to be

free from side-channels, the entire process of header protection

¶

protected_field = field XOR PRF(hp_key, sample)¶

¶

¶

¶

¶

¶

removal, packet number recovery, and packet protection removal MUST

be applied together without timing and other side-channels.

For the sending of packets, construction and protection of packet

payloads and packet numbers MUST be free from side-channels that

would reveal the packet number or its encoded size.

During a key update, the time taken to generate new keys could

reveal through timing side-channels that a key update has occurred.

Alternatively, where an attacker injects packets this side-channel

could reveal the value of the Key Phase on injected packets. After

receiving a key update, an endpoint SHOULD generate and save the

next set of receive packet protection keys, as described in Section

6.3. By generating new keys before a key update is received, receipt

of packets will not create timing signals that leak the value of the

Key Phase.

This depends on not doing this key generation during packet

processing and it can require that endpoints maintain three sets of

packet protection keys for receiving: for the previous key phase,

for the current key phase, and for the next key phase. Endpoints can

instead choose to defer generation of the next receive packet

protection keys until they discard old keys so that only two sets of

receive keys need to be retained at any point in time.

9.5. Key Diversity

In using TLS, the central key schedule of TLS is used. As a result

of the TLS handshake messages being integrated into the calculation

of secrets, the inclusion of the QUIC transport parameters extension

ensures that handshake and 1-RTT keys are not the same as those that

might be produced by a server running TLS over TCP. To avoid the

possibility of cross-protocol key synchronization, additional

measures are provided to improve key separation.

The QUIC packet protection keys and IVs are derived using a

different label than the equivalent keys in TLS.

To preserve this separation, a new version of QUIC SHOULD define new

labels for key derivation for packet protection key and IV, plus the

header protection keys. This version of QUIC uses the string "quic".

Other versions can use a version-specific label in place of that

string.

The initial secrets use a key that is specific to the negotiated

QUIC version. New QUIC versions SHOULD define a new salt value used

in calculating initial secrets.

¶

¶

¶

¶

¶

¶

¶

¶

[AEAD]

[AES]

[ALPN]

[CHACHA]

[QUIC-RECOVERY]

[QUIC-TRANSPORT]

10. IANA Considerations

This document does not create any new IANA registries, but it

registers the values in the following registries:

TLS ExtensionType Values Registry [TLS-REGISTRIES] - IANA is to

register the quic_transport_parameters extension found in Section

8.2. The Recommended column is to be marked Yes. The TLS 1.3

Column is to include CH and EE.

QUIC Transport Error Codes Registry [QUIC-TRANSPORT] - IANA is to

register the KEY_UPDATE_ERROR (0xE), as described in Section 6.7.

11. References

11.1. Normative References

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

"Advanced encryption standard (AES)", DOI 10.6028/

nist.fips.197, National Institute of Standards and

Technology report, November 2001, <https://doi.org/

10.6028/nist.fips.197>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF

Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,

<https://www.rfc-editor.org/info/rfc8439>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", Work in Progress,

Internet-Draft, draft-ietf-quic-recovery-27, 21 February

2020, <https://tools.ietf.org/html/draft-ietf-quic-

recovery-27>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-27,

¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.6028/nist.fips.197
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc8439
https://tools.ietf.org/html/draft-ietf-quic-recovery-27
https://tools.ietf.org/html/draft-ietf-quic-recovery-27

[RFC2119]

[RFC8174]

[SHA]

[TLS-REGISTRIES]

[TLS13]

[AEBounds]

[HTTP2-TLS13]

[IMC]

[NAN]

[QUIC-HTTP]

21 February 2020, <https://tools.ietf.org/html/draft-

ietf-quic-transport-27>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Dang, Q., "Secure Hash Standard", DOI 10.6028/nist.fips.

180-4, National Institute of Standards and Technology

report, July 2015, <https://doi.org/10.6028/nist.fips.

180-4>.

Salowey, J. and S. Turner, "IANA Registry Updates

for TLS and DTLS", RFC 8447, DOI 10.17487/RFC8447, August

2018, <https://www.rfc-editor.org/info/rfc8447>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

Luykx, A. and K. Paterson, "Limits on Authenticated

Encryption Use in TLS", 8 March 2016, <http://

www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

Benjamin, D., "Using TLS 1.3 with HTTP/2", Work in

Progress, Internet-Draft, draft-ietf-httpbis-http2-

tls13-03, 17 October 2019, <http://www.ietf.org/internet-

drafts/draft-ietf-httpbis-http2-tls13-03.txt>.

Katz, J. and Y. Lindell, "Introduction to Modern

Cryptography, Second Edition", ISBN 978-1466570269, 6

November 2014.

Bellare, M., Ng, R., and B. Tackmann, "Nonces Are

Noticed: AEAD Revisited", DOI

10.1007/978-3-030-26948-7_9, Advances in Cryptology -

CRYPTO 2019 pp. 235-265, 2019, <https://doi.org/

10.1007/978-3-030-26948-7_9>.

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-27, 21 February 2020, <https://tools.ietf.org/

html/draft-ietf-quic-http-27>.

https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8446
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-http2-tls13-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-http2-tls13-03.txt
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9
https://tools.ietf.org/html/draft-ietf-quic-http-27
https://tools.ietf.org/html/draft-ietf-quic-http-27

[RFC2818]

[RFC5280]

client in:

server in:

quic key:

quic iv:

quic hp:

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Appendix A. Sample Packet Protection

This section shows examples of packet protection so that

implementations can be verified incrementally. Samples of Initial

packets from both client and server, plus a Retry packet are

defined. These packets use an 8-byte client-chosen Destination

Connection ID of 0x8394c8f03e515708. Some intermediate values are

included. All values are shown in hexadecimal.

A.1. Keys

The labels generated by the HKDF-Expand-Label function are:

00200f746c73313320636c69656e7420696e00

00200f746c7331332073657276657220696e00

00100e746c7331332071756963206b657900

000c0d746c733133207175696320697600

00100d746c733133207175696320687000

The initial secret is common:

The secrets for protecting client packets are:

¶

¶

¶

¶

¶

¶

¶

¶

initial_secret = HKDF-Extract(initial_salt, cid)

 = 524e374c6da8cf8b496f4bcb69678350

 7aafee6198b202b4bc823ebf7514a423

¶

¶

https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc5280

The secrets for protecting server packets are:

A.2. Client Initial

The client sends an Initial packet. The unprotected payload of this

packet contains the following CRYPTO frame, plus enough PADDING

frames to make a 1162 byte payload:

The unprotected header includes the connection ID and a 4 byte

packet number encoding for a packet number of 2:

client_initial_secret

 = HKDF-Expand-Label(initial_secret, "client in", _, 32)

 = fda3953aecc040e48b34e27ef87de3a6

 098ecf0e38b7e032c5c57bcbd5975b84

key = HKDF-Expand-Label(client_initial_secret, "quic key", _, 16)

 = af7fd7efebd21878ff66811248983694

iv = HKDF-Expand-Label(client_initial_secret, "quic iv", _, 12)

 = 8681359410a70bb9c92f0420

hp = HKDF-Expand-Label(client_initial_secret, "quic hp", _, 16)

 = a980b8b4fb7d9fbc13e814c23164253d

¶

¶

server_initial_secret

 = HKDF-Expand-Label(initial_secret, "server in", _, 32)

 = 554366b81912ff90be41f17e80222130

 90ab17d8149179bcadf222f29ff2ddd5

key = HKDF-Expand-Label(server_initial_secret, "quic key", _, 16)

 = 5d51da9ee897a21b2659ccc7e5bfa577

iv = HKDF-Expand-Label(server_initial_secret, "quic iv", _, 12)

 = 5e5ae651fd1e8495af13508b

hp = HKDF-Expand-Label(server_initial_secret, "quic hp", _, 16)

 = a8ed82e6664f865aedf6106943f95fb8

¶

¶

060040c4010000c003036660261ff947 cea49cce6cfad687f457cf1b14531ba1

4131a0e8f309a1d0b9c4000006130113 031302010000910000000b0009000006

736572766572ff01000100000a001400 12001d00170018001901000101010201

03010400230000003300260024001d00 204cfdfcd178b784bf328cae793b136f

2aedce005ff183d7bb14952072366470 37002b0003020304000d0020001e0403

05030603020308040805080604010501 060102010402050206020202002d0002

0101001c00024001

¶

¶

c3ff00001b088394c8f03e5157080000449e00000002¶

Protecting the payload produces output that is sampled for header

protection. Because the header uses a 4 byte packet number encoding,

the first 16 bytes of the protected payload is sampled, then applied

to the header:

The resulting protected packet is:

¶

sample = 535064a4268a0d9d7b1c9d250ae35516

mask = AES-ECB(hp, sample)[0..4]

 = 833b343aaa

header[0] ^= mask[0] & 0x0f

 = c0

header[18..21] ^= mask[1..4]

 = 3b343aa8

header = c0ff00001b088394c8f03e5157080000449e3b343aa8

¶

¶

A.3. Server Initial

The server sends the following payload in response, including an ACK

frame, a CRYPTO frame, and no PADDING frames:

c0ff00001b088394c8f03e5157080000 449e3b343aa8535064a4268a0d9d7b1c

9d250ae355162276e9b1e3011ef6bbc0 ab48ad5bcc2681e953857ca62becd752

4daac473e68d7405fbba4e9ee616c870 38bdbe908c06d9605d9ac49030359eec

b1d05a14e117db8cede2bb09d0dbbfee 271cb374d8f10abec82d0f59a1dee29f

e95638ed8dd41da07487468791b719c5 5c46968eb3b54680037102a28e53dc1d

12903db0af5821794b41c4a93357fa59 ce69cfe7f6bdfa629eef78616447e1d6

11c4baf71bf33febcb03137c2c75d253 17d3e13b684370f668411c0f00304b50

1c8fd422bd9b9ad81d643b20da89ca05 25d24d2b142041cae0af205092e43008

0cd8559ea4c5c6e4fa3f66082b7d303e 52ce0162baa958532b0bbc2bc785681f

cf37485dff6595e01e739c8ac9efba31 b985d5f656cc092432d781db95221724

87641c4d3ab8ece01e39bc85b1543661 4775a98ba8fa12d46f9b35e2a55eb72d

7f85181a366663387ddc20551807e007 673bd7e26bf9b29b5ab10a1ca87cbb7a

d97e99eb66959c2a9bc3cbde4707ff77 20b110fa95354674e395812e47a0ae53

b464dcb2d1f345df360dc227270c7506 76f6724eb479f0d2fbb6124429990457

ac6c9167f40aab739998f38b9eccb24f d47c8410131bf65a52af841275d5b3d1

880b197df2b5dea3e6de56ebce3ffb6e 9277a82082f8d9677a6767089b671ebd

244c214f0bde95c2beb02cd1172d58bd f39dce56ff68eb35ab39b49b4eac7c81

5ea60451d6e6ab82119118df02a58684 4a9ffe162ba006d0669ef57668cab38b

62f71a2523a084852cd1d079b3658dc2 f3e87949b550bab3e177cfc49ed190df

f0630e43077c30de8f6ae081537f1e83 da537da980afa668e7b7fb25301cf741

524be3c49884b42821f17552fbd1931a 813017b6b6590a41ea18b6ba49cd48a4

40bd9a3346a7623fb4ba34a3ee571e3c 731f35a7a3cf25b551a680fa68763507

b7fde3aaf023c50b9d22da6876ba337e b5e9dd9ec3daf970242b6c5aab3aa4b2

96ad8b9f6832f686ef70fa938b31b4e5 ddd7364442d3ea72e73d668fb0937796

f462923a81a47e1cee7426ff6d922126 9b5a62ec03d6ec94d12606cb485560ba

b574816009e96504249385bb61a819be 04f62c2066214d8360a2022beb316240

b6c7d78bbe56c13082e0ca272661210a bf020bf3b5783f1426436cf9ff418405

93a5d0638d32fc51c5c65ff291a3a7a5 2fd6775e623a4439cc08dd25582febc9

44ef92d8dbd329c91de3e9c9582e41f1 7f3d186f104ad3f90995116c682a2a14

a3b4b1f547c335f0be710fc9fc03e0e5 87b8cda31ce65b969878a4ad4283e6d5

b0373f43da86e9e0ffe1ae0fddd35162 55bd74566f36a38703d5f34249ded1f6

6b3d9b45b9af2ccfefe984e13376b1b2 c6404aa48c8026132343da3f3a33659e

c1b3e95080540b28b7f3fcd35fa5d843 b579a84c089121a60d8c1754915c344e

eaf45a9bf27dc0c1e784161691220913 13eb0e87555abd706626e557fc36a04f

cd191a58829104d6075c5594f627ca50 6bf181daec940f4a4f3af0074eee89da

acde6758312622d4fa675b39f728e062 d2bee680d8f41a597c262648bb18bcfc

13c8b3d97b1a77b2ac3af745d61a34cc 4709865bac824a94bb19058015e4e42d

38d3b779d72edc00c5cd088eff802b05

¶

¶

0d0000000018410a020000560303eefc e7f7b37ba1d1632e96677825ddf73988

cfc79825df566dc5430b9a045a120013 0100002e00330024001d00209d3c940d

89690b84d08a60993c144eca684d1081 287c834d5311bcf32bb9da1a002b0002

0304

¶

The header from the server includes a new connection ID and a 2-byte

packet number encoding for a packet number of 1:

As a result, after protection, the header protection sample is taken

starting from the third protected octet:

The final protected packet is then:

A.4. Retry

This shows a Retry packet that might be sent in response to the

Initial packet in Appendix A.2. The integrity check includes the

client-chosen connection ID value of 0x8394c8f03e515708, but that

value is not included in the final Retry packet:

Appendix B. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Issue and pull request numbers are listed with a leading octothorp.

B.1. Since draft-ietf-quic-tls-26

Updated examples

B.2. Since draft-ietf-quic-tls-25

No changes

B.3. Since draft-ietf-quic-tls-24

Rewrite key updates (#3050)

Allow but don't recommend deferring key updates (#2792, #3263)

¶

c1ff00001b0008f067a5502a4262b50040740001¶

¶

sample = 7002596f99ae67abf65a5852f54f58c3

mask = 38168a0c25

header = c9ff00001b0008f067a5502a4262b5004074168b

¶

¶

c9ff00001b0008f067a5502a4262b500 4074168bf22b7002596f99ae67abf65a

5852f54f58c37c808682e2e40492d8a3 899fb04fc0afe9aabc8767b18a0aa493

537426373b48d502214dd856d63b78ce e37bc664b3fe86d487ac7a77c53038a3

cd32f0b5004d9f5754c4f7f2d1f35cf3 f7116351c92bd8c3a9528d2b6aca20f0

8047d9f017f0

¶

¶

ffff00001b0008f067a5502a4262b574 6f6b656ea523cb5ba524695f6569f293

a1359d8e

¶

¶

¶

* ¶

* ¶

* ¶

- ¶

More completely define received behavior (#2791)

Define the label used with HKDF-Expand-Label (#3054)

B.4. Since draft-ietf-quic-tls-23

Key update text update (#3050):

Recommend constant-time key replacement (#2792)

Provide explicit labels for key update key derivation (#3054)

Allow first Initial from a client to span multiple packets

(#2928, #3045)

PING can be sent at any encryption level (#3034, #3035)

B.5. Since draft-ietf-quic-tls-22

Update the salt used for Initial secrets (#2887, #2980)

B.6. Since draft-ietf-quic-tls-21

No changes

B.7. Since draft-ietf-quic-tls-20

Mandate the use of the QUIC transport parameters extension

(#2528, #2560)

Define handshake completion and confirmation; define clearer

rules when it encryption keys should be discarded (#2214, #2267,

#2673)

B.8. Since draft-ietf-quic-tls-18

Increased the set of permissible frames in 0-RTT (#2344, #2355)

Transport parameter extension is mandatory (#2528, #2560)

B.9. Since draft-ietf-quic-tls-17

Endpoints discard initial keys as soon as handshake keys are

available (#1951, #2045)

Use of ALPN or equivalent is mandatory (#2263, #2284)

B.10. Since draft-ietf-quic-tls-14

Update the salt used for Initial secrets (#1970)

- ¶

- ¶

* ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

Clarify that TLS_AES_128_CCM_8_SHA256 isn't supported (#2019)

Change header protection

Sample from a fixed offset (#1575, #2030)

Cover part of the first byte, including the key phase (#1322,

#2006)

TLS provides an AEAD and KDF function (#2046)

Clarify that the TLS KDF is used with TLS (#1997)

Change the labels for calculation of QUIC keys (#1845, #1971,

#1991)

Initial keys are discarded once Handshake keys are available

(#1951, #2045)

B.11. Since draft-ietf-quic-tls-13

Updated to TLS 1.3 final (#1660)

B.12. Since draft-ietf-quic-tls-12

Changes to integration of the TLS handshake (#829, #1018, #1094,

#1165, #1190, #1233, #1242, #1252, #1450)

The cryptographic handshake uses CRYPTO frames, not stream 0

QUIC packet protection is used in place of TLS record

protection

Separate QUIC packet number spaces are used for the handshake

Changed Retry to be independent of the cryptographic handshake

Limit the use of HelloRetryRequest to address TLS needs (like

key shares)

Changed codepoint of TLS extension (#1395, #1402)

B.13. Since draft-ietf-quic-tls-11

Encrypted packet numbers.

B.14. Since draft-ietf-quic-tls-10

No significant changes.

* ¶

* ¶

- ¶

-

¶

* ¶

- ¶

-

¶

*

¶

* ¶

*

¶

- ¶

-

¶

- ¶

- ¶

-

¶

* ¶

* ¶

* ¶

B.15. Since draft-ietf-quic-tls-09

Cleaned up key schedule and updated the salt used for handshake

packet protection (#1077)

B.16. Since draft-ietf-quic-tls-08

Specify value for max_early_data_size to enable 0-RTT (#942)

Update key derivation function (#1003, #1004)

B.17. Since draft-ietf-quic-tls-07

Handshake errors can be reported with CONNECTION_CLOSE (#608,

#891)

B.18. Since draft-ietf-quic-tls-05

No significant changes.

B.19. Since draft-ietf-quic-tls-04

Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

B.20. Since draft-ietf-quic-tls-03

No significant changes.

B.21. Since draft-ietf-quic-tls-02

Updates to match changes in transport draft

B.22. Since draft-ietf-quic-tls-01

Use TLS alerts to signal TLS errors (#272, #374)

Require ClientHello to fit in a single packet (#338)

The second client handshake flight is now sent in the clear

(#262, #337)

The QUIC header is included as AEAD Associated Data (#226, #243,

#302)

Add interface necessary for client address validation (#275)

Define peer authentication (#140)

Require at least TLS 1.3 (#138)

Define transport parameters as a TLS extension (#122)

*

¶

* ¶

* ¶

*

¶

¶

* ¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

Define handling for protected packets before the handshake

completes (#39)

Decouple QUIC version and ALPN (#12)

B.23. Since draft-ietf-quic-tls-00

Changed bit used to signal key phase

Updated key phase markings during the handshake

Added TLS interface requirements section

Moved to use of TLS exporters for key derivation

Moved TLS error code definitions into this document

B.24. Since draft-thomson-quic-tls-01

Adopted as base for draft-ietf-quic-tls

Updated authors/editors list

Added status note

Contributors

The IETF QUIC Working Group received an enormous amount of support

from many people. The following people provided substantive

contributions to this document: Adam Langley, Alessandro Ghedini,

Christian Huitema, Christopher Wood, David Schinazi, Dragana

Damjanovic, Eric Rescorla, Ian Swett, Jana Iyengar, 奥 (Kazuho

Oku), Marten Seemann, Martin Duke, Mike Bishop, Mikkel Fahnøe

Jørgensen, Nick Banks, Nick Harper, Roberto Peon, Rui Paulo, Ryan

Hamilton, and Victor Vasiliev.

Authors' Addresses

Martin Thomson (editor)

Mozilla

Email: mt@lowentropy.net

Sean Turner (editor)

sn3rd

Email: sean@sn3rd.com

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

mailto:mt@lowentropy.net
mailto:sean@sn3rd.com

	Using TLS to Secure QUIC
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	2.1. TLS Overview

	3. Protocol Overview
	4. Carrying TLS Messages
	4.1. Interface to TLS
	4.1.1. Handshake Complete
	4.1.2. Handshake Confirmed
	4.1.3. Sending and Receiving Handshake Messages
	4.1.4. Encryption Level Changes
	4.1.5. TLS Interface Summary

	4.2. TLS Version
	4.3. ClientHello Size
	4.4. Peer Authentication
	4.5. Enabling 0-RTT
	4.6. Accepting and Rejecting 0-RTT
	4.7. Validating 0-RTT Configuration
	4.8. HelloRetryRequest
	4.9. TLS Errors
	4.10. Discarding Unused Keys
	4.10.1. Discarding Initial Keys
	4.10.2. Discarding Handshake Keys
	4.10.3. Discarding 0-RTT Keys

	5. Packet Protection
	5.1. Packet Protection Keys
	5.2. Initial Secrets
	5.3. AEAD Usage
	5.4. Header Protection
	5.4.1. Header Protection Application
	5.4.2. Header Protection Sample
	5.4.3. AES-Based Header Protection
	5.4.4. ChaCha20-Based Header Protection

	5.5. Receiving Protected Packets
	5.6. Use of 0-RTT Keys
	5.7. Receiving Out-of-Order Protected Frames
	5.8. Retry Packet Integrity

	6. Key Update
	6.1. Initiating a Key Update
	6.2. Responding to a Key Update
	6.3. Timing of Receive Key Generation
	6.4. Sending with Updated Keys
	6.5. Receiving with Different Keys
	6.6. Key Update Frequency
	6.7. Key Update Error Code

	7. Security of Initial Messages
	8. QUIC-Specific Additions to the TLS Handshake
	8.1. Protocol Negotiation
	8.2. QUIC Transport Parameters Extension
	8.3. Removing the EndOfEarlyData Message

	9. Security Considerations
	9.1. Replay Attacks with 0-RTT
	9.2. Packet Reflection Attack Mitigation
	9.3. Header Protection Analysis
	9.4. Header Protection Timing Side-Channels
	9.5. Key Diversity

	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Sample Packet Protection
	A.1. Keys
	A.2. Client Initial
	A.3. Server Initial
	A.4. Retry
	Appendix B. Change Log
	B.1. Since draft-ietf-quic-tls-26
	B.2. Since draft-ietf-quic-tls-25
	B.3. Since draft-ietf-quic-tls-24
	B.4. Since draft-ietf-quic-tls-23
	B.5. Since draft-ietf-quic-tls-22
	B.6. Since draft-ietf-quic-tls-21
	B.7. Since draft-ietf-quic-tls-20
	B.8. Since draft-ietf-quic-tls-18
	B.9. Since draft-ietf-quic-tls-17
	B.10. Since draft-ietf-quic-tls-14
	B.11. Since draft-ietf-quic-tls-13
	B.12. Since draft-ietf-quic-tls-12
	B.13. Since draft-ietf-quic-tls-11
	B.14. Since draft-ietf-quic-tls-10
	B.15. Since draft-ietf-quic-tls-09
	B.16. Since draft-ietf-quic-tls-08
	B.17. Since draft-ietf-quic-tls-07
	B.18. Since draft-ietf-quic-tls-05
	B.19. Since draft-ietf-quic-tls-04
	B.20. Since draft-ietf-quic-tls-03
	B.21. Since draft-ietf-quic-tls-02
	B.22. Since draft-ietf-quic-tls-01
	B.23. Since draft-ietf-quic-tls-00
	B.24. Since draft-thomson-quic-tls-01
	Contributors
	Authors' Addresses

