
Workgroup: QUIC

Internet-Draft: draft-ietf-quic-tls-34

Published: 15 January 2021

Intended Status: Standards Track

Expires: 19 July 2021

Authors: M. Thomson, Ed.

Mozilla

S. Turner, Ed.

sn3rd

Using TLS to Secure QUIC

Abstract

This document describes how Transport Layer Security (TLS) is used

to secure QUIC.

Note to Readers

Discussion of this draft takes place on the QUIC working group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=quic.

Working Group information can be found at https://github.com/quicwg;

source code and issues list for this draft can be found at https://

github.com/quicwg/base-drafts/labels/-tls.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-tls
https://github.com/quicwg/base-drafts/labels/-tls
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

2.  Notational Conventions

2.1.  TLS Overview

3.  Protocol Overview

4.  Carrying TLS Messages

4.1.  Interface to TLS

4.1.1.  Handshake Complete

4.1.2.  Handshake Confirmed

4.1.3.  Sending and Receiving Handshake Messages

4.1.4.  Encryption Level Changes

4.1.5.  TLS Interface Summary

4.2.  TLS Version

4.3.  ClientHello Size

4.4.  Peer Authentication

4.5.  Session Resumption

4.6.  0-RTT

4.6.1.  Enabling 0-RTT

4.6.2.  Accepting and Rejecting 0-RTT

4.6.3.  Validating 0-RTT Configuration

4.7.  HelloRetryRequest

4.8.  TLS Errors

4.9.  Discarding Unused Keys

4.9.1.  Discarding Initial Keys

4.9.2.  Discarding Handshake Keys

4.9.3.  Discarding 0-RTT Keys

5.  Packet Protection

5.1.  Packet Protection Keys

5.2.  Initial Secrets

5.3.  AEAD Usage

5.4.  Header Protection

5.4.1.  Header Protection Application

5.4.2.  Header Protection Sample

5.4.3.  AES-Based Header Protection

5.4.4.  ChaCha20-Based Header Protection

5.5.  Receiving Protected Packets

5.6.  Use of 0-RTT Keys

5.7.  Receiving Out-of-Order Protected Packets

5.8.  Retry Packet Integrity

6.  Key Update

6.1.  Initiating a Key Update

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



6.2.  Responding to a Key Update

6.3.  Timing of Receive Key Generation

6.4.  Sending with Updated Keys

6.5.  Receiving with Different Keys

6.6.  Limits on AEAD Usage

6.7.  Key Update Error Code

7.  Security of Initial Messages

8.  QUIC-Specific Adjustments to the TLS Handshake

8.1.  Protocol Negotiation

8.2.  QUIC Transport Parameters Extension

8.3.  Removing the EndOfEarlyData Message

8.4.  Prohibit TLS Middlebox Compatibility Mode

9.  Security Considerations

9.1.  Session Linkability

9.2.  Replay Attacks with 0-RTT

9.3.  Packet Reflection Attack Mitigation

9.4.  Header Protection Analysis

9.5.  Header Protection Timing Side-Channels

9.6.  Key Diversity

9.7.  Randomness

10. IANA Considerations

11. References

11.1.  Normative References

11.2.  Informative References

Appendix A.  Sample Packet Protection

A.1.  Keys

A.2.  Client Initial

A.3.  Server Initial

A.4.  Retry

A.5.  ChaCha20-Poly1305 Short Header Packet

Appendix B.  AEAD Algorithm Analysis

B.1.  Analysis of AEAD_AES_128_GCM and AEAD_AES_256_GCM Usage

Limits

B.1.1.  Confidentiality Limit

B.1.2.  Integrity Limit

B.2.  Analysis of AEAD_AES_128_CCM Usage Limits

Appendix C.  Change Log

C.1.  Since draft-ietf-quic-tls-32

C.2.  Since draft-ietf-quic-tls-31

C.3.  Since draft-ietf-quic-tls-30

C.4.  Since draft-ietf-quic-tls-29

C.5.  Since draft-ietf-quic-tls-28

C.6.  Since draft-ietf-quic-tls-27

C.7.  Since draft-ietf-quic-tls-26

C.8.  Since draft-ietf-quic-tls-25

C.9.  Since draft-ietf-quic-tls-24

C.10. Since draft-ietf-quic-tls-23

C.11. Since draft-ietf-quic-tls-22

C.12. Since draft-ietf-quic-tls-21

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



C.13. Since draft-ietf-quic-tls-20

C.14. Since draft-ietf-quic-tls-18

C.15. Since draft-ietf-quic-tls-17

C.16. Since draft-ietf-quic-tls-14

C.17. Since draft-ietf-quic-tls-13

C.18. Since draft-ietf-quic-tls-12

C.19. Since draft-ietf-quic-tls-11

C.20. Since draft-ietf-quic-tls-10

C.21. Since draft-ietf-quic-tls-09

C.22. Since draft-ietf-quic-tls-08

C.23. Since draft-ietf-quic-tls-07

C.24. Since draft-ietf-quic-tls-05

C.25. Since draft-ietf-quic-tls-04

C.26. Since draft-ietf-quic-tls-03

C.27. Since draft-ietf-quic-tls-02

C.28. Since draft-ietf-quic-tls-01

C.29. Since draft-ietf-quic-tls-00

C.30. Since draft-thomson-quic-tls-01

Contributors

Authors' Addresses

1. Introduction

This document describes how QUIC [QUIC-TRANSPORT] is secured using

TLS [TLS13].

TLS 1.3 provides critical latency improvements for connection

establishment over previous versions. Absent packet loss, most new

connections can be established and secured within a single round

trip; on subsequent connections between the same client and server,

the client can often send application data immediately, that is,

using a zero round trip setup.

This document describes how TLS acts as a security component of

QUIC.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terminology established in [QUIC-TRANSPORT].

For brevity, the acronym TLS is used to refer to TLS 1.3, though a

newer version could be used; see Section 4.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



2.1. TLS Overview

TLS provides two endpoints with a way to establish a means of

communication over an untrusted medium (for example, the Internet).

TLS enables authentication of peers and provides confidentiality and

integrity protection for messages that endpoints exchange.

Internally, TLS is a layered protocol, with the structure shown in 

Figure 1.

Figure 1: TLS Layers

Each Content layer message (e.g., Handshake, Alerts, and Application

Data) is carried as a series of typed TLS records by the Record

layer. Records are individually cryptographically protected and then

transmitted over a reliable transport (typically TCP), which

provides sequencing and guaranteed delivery.

The TLS authenticated key exchange occurs between two endpoints:

client and server. The client initiates the exchange and the server

responds. If the key exchange completes successfully, both client

and server will agree on a secret. TLS supports both pre-shared key

(PSK) and Diffie-Hellman over either finite fields or elliptic

curves ((EC)DHE) key exchanges. PSK is the basis for Early Data (0-

RTT); the latter provides forward secrecy (FS) when the (EC)DHE keys

are destroyed. The two modes can also be combined, to provide

forward secrecy while using the PSK for authentication.

After completing the TLS handshake, the client will have learned and

authenticated an identity for the server and the server is

optionally able to learn and authenticate an identity for the

client. TLS supports X.509 [RFC5280] certificate-based

authentication for both server and client. When PSK key exchange is

used (as in resumption), knowledge of the PSK serves to authenticate

the peer.

The TLS key exchange is resistant to tampering by attackers and it

produces shared secrets that cannot be controlled by either

participating peer.

¶

¶

          +-------------+------------+--------------+---------+

Content   |             |            |  Application |         |

Layer     |  Handshake  |   Alerts   |     Data     |   ...   |

          |             |            |              |         |

          +-------------+------------+--------------+---------+

Record    |                                                   |

Layer     |                      Records                      |

          |                                                   |

          +---------------------------------------------------+

¶

¶

¶

¶



TLS provides two basic handshake modes of interest to QUIC:

A full 1-RTT handshake, in which the client is able to send

Application Data after one round trip and the server immediately

responds after receiving the first handshake message from the

client.

A 0-RTT handshake, in which the client uses information it has

previously learned about the server to send Application Data

immediately. This Application Data can be replayed by an attacker

so 0-RTT is not suitable for carrying instructions that might

initiate any action that could cause unwanted effects if

replayed.

A simplified TLS handshake with 0-RTT application data is shown in 

Figure 2.

Figure 2: TLS Handshake with 0-RTT

Figure 2 omits the EndOfEarlyData message, which is not used in

QUIC; see Section 8.3. Likewise, neither ChangeCipherSpec nor

KeyUpdate messages are used by QUIC. ChangeCipherSpec is redundant

in TLS 1.3; see Section 8.4. QUIC has its own key update mechanism;

see Section 6.

Data is protected using a number of encryption levels:

Initial Keys

Early Data (0-RTT) Keys

Handshake Keys

¶

*

¶

*

¶

¶

    Client                                             Server

    ClientHello

   (0-RTT Application Data)  -------->

                                                  ServerHello

                                         {EncryptedExtensions}

                                                    {Finished}

                             <--------      [Application Data]

   {Finished}                -------->

   [Application Data]        <------->      [Application Data]

    () Indicates messages protected by Early Data (0-RTT) Keys

    {} Indicates messages protected using Handshake Keys

    [] Indicates messages protected using Application Data

       (1-RTT) Keys

¶

¶

* ¶

* ¶

* ¶



Application Data (1-RTT) Keys

Application Data may appear only in the Early Data and Application

Data levels. Handshake and Alert messages may appear in any level.

The 0-RTT handshake can be used if the client and server have

previously communicated. In the 1-RTT handshake, the client is

unable to send protected Application Data until it has received all

of the Handshake messages sent by the server.

3. Protocol Overview

QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality

and integrity protection of packets. For this it uses keys derived

from a TLS handshake [TLS13], but instead of carrying TLS records

over QUIC (as with TCP), TLS Handshake and Alert messages are

carried directly over the QUIC transport, which takes over the

responsibilities of the TLS record layer, as shown in Figure 3.

Figure 3: QUIC Layers

QUIC also relies on TLS for authentication and negotiation of

parameters that are critical to security and performance.

Rather than a strict layering, these two protocols cooperate: QUIC

uses the TLS handshake; TLS uses the reliability, ordered delivery,

and record layer provided by QUIC.

At a high level, there are two main interactions between the TLS and

QUIC components:

The TLS component sends and receives messages via the QUIC

component, with QUIC providing a reliable stream abstraction to

TLS.

* ¶

¶

¶

¶

+--------------+--------------+ +-------------+

|     TLS      |     TLS      | |    QUIC     |

|  Handshake   |    Alerts    | | Applications|

|              |              | |  (h3, etc.) |

+--------------+--------------+-+-------------+

|                                             |

|                QUIC Transport               |

|   (streams, reliability, congestion, etc.)  |

|                                             |

+---------------------------------------------+

|                                             |

|            QUIC Packet Protection           |

|                                             |

+---------------------------------------------+

¶

¶

¶

*

¶



The TLS component provides a series of updates to the QUIC

component, including (a) new packet protection keys to install

(b) state changes such as handshake completion, the server

certificate, etc.

Figure 4 shows these interactions in more detail, with the QUIC

packet protection being called out specially.

Figure 4: QUIC and TLS Interactions

Unlike TLS over TCP, QUIC applications that want to send data do not

send it through TLS "application_data" records. Rather, they send it

as QUIC STREAM frames or other frame types, which are then carried

in QUIC packets.

4. Carrying TLS Messages

QUIC carries TLS handshake data in CRYPTO frames, each of which

consists of a contiguous block of handshake data identified by an

offset and length. Those frames are packaged into QUIC packets and

encrypted under the current encryption level. As with TLS over TCP,

once TLS handshake data has been delivered to QUIC, it is QUIC's

responsibility to deliver it reliably. Each chunk of data that is

produced by TLS is associated with the set of keys that TLS is

currently using. If QUIC needs to retransmit that data, it MUST use

the same keys even if TLS has already updated to newer keys.

Each encryption level corresponds to a packet number space. The

packet number space that is used determines the semantics of frames.

Some frames are prohibited in different packet number spaces; see

Section 12.5 of [QUIC-TRANSPORT].

*

¶

¶

+------------+                               +------------+

|            |<---- Handshake Messages ----->|            |

|            |<- Validate 0-RTT parameters ->|            |

|            |<--------- 0-RTT Keys ---------|            |

|    QUIC    |<------- Handshake Keys -------|    TLS     |

|            |<--------- 1-RTT Keys ---------|            |

|            |<------- Handshake Done -------|            |

+------------+                               +------------+

 |         ^

 | Protect | Protected

 v         | Packet

+------------+

|   QUIC     |

|  Packet    |

| Protection |

+------------+

¶

¶

¶



Because packets could be reordered on the wire, QUIC uses the packet

type to indicate which keys were used to protect a given packet, as

shown in Table 1. When packets of different types need to be sent,

endpoints SHOULD use coalesced packets to send them in the same UDP

datagram.

Packet Type Encryption Keys PN Space

Initial Initial secrets Initial

0-RTT Protected 0-RTT Application data

Handshake Handshake Handshake

Retry Retry N/A

Version Negotiation N/A N/A

Short Header 1-RTT Application data

Table 1: Encryption Keys by Packet Type

Section 17 of [QUIC-TRANSPORT] shows how packets at the various

encryption levels fit into the handshake process.

4.1. Interface to TLS

As shown in Figure 4, the interface from QUIC to TLS consists of

four primary functions:

Sending and receiving handshake messages

Processing stored transport and application state from a resumed

session and determining if it is valid to generate or accept

early data

Rekeying (both transmit and receive)

Handshake state updates

Additional functions might be needed to configure TLS. In

particular, QUIC and TLS need to agree on which is responsible for

validation of peer credentials, such as certificate validation

([RFC5280]).

4.1.1. Handshake Complete

In this document, the TLS handshake is considered complete when the

TLS stack has reported that the handshake is complete. This happens

when the TLS stack has both sent a Finished message and verified the

peer's Finished message. Verifying the peer's Finished provides the

endpoints with an assurance that previous handshake messages have

not been modified. Note that the handshake does not complete at both

endpoints simultaneously. Consequently, any requirement that is

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶



based on the completion of the handshake depends on the perspective

of the endpoint in question.

4.1.2. Handshake Confirmed

In this document, the TLS handshake is considered confirmed at the

server when the handshake completes. The server MUST send a

HANDSHAKE_DONE frame as soon as the handshake is complete. At the

client, the handshake is considered confirmed when a HANDSHAKE_DONE

frame is received.

Additionally, a client MAY consider the handshake to be confirmed

when it receives an acknowledgment for a 1-RTT packet. This can be

implemented by recording the lowest packet number sent with 1-RTT

keys, and comparing it to the Largest Acknowledged field in any

received 1-RTT ACK frame: once the latter is greater than or equal

to the former, the handshake is confirmed.

4.1.3. Sending and Receiving Handshake Messages

In order to drive the handshake, TLS depends on being able to send

and receive handshake messages. There are two basic functions on

this interface: one where QUIC requests handshake messages and one

where QUIC provides bytes that comprise handshake messages.

Before starting the handshake QUIC provides TLS with the transport

parameters (see Section 8.2) that it wishes to carry.

A QUIC client starts TLS by requesting TLS handshake bytes from TLS.

The client acquires handshake bytes before sending its first packet.

A QUIC server starts the process by providing TLS with the client's

handshake bytes.

At any time, the TLS stack at an endpoint will have a current

sending encryption level and receiving encryption level. TLS

encryption levels determine the QUIC packet type and keys that are

used for protecting data.

Each encryption level is associated with a different sequence of

bytes, which is reliably transmitted to the peer in CRYPTO frames.

When TLS provides handshake bytes to be sent, they are appended to

the handshake bytes for the current encryption level. The encryption

level then determines the type of packet that the resulting CRYPTO

frame is carried in; see Table 1.

Four encryption levels are used, producing keys for Initial, 0-RTT,

Handshake, and 1-RTT packets. CRYPTO frames are carried in just

three of these levels, omitting the 0-RTT level. These four levels

correspond to three packet number spaces: Initial and Handshake

¶

¶

¶

¶

¶

¶

¶

¶



encrypted packets use their own separate spaces; 0-RTT and 1-RTT

packets use the application data packet number space.

QUIC takes the unprotected content of TLS handshake records as the

content of CRYPTO frames. TLS record protection is not used by QUIC.

QUIC assembles CRYPTO frames into QUIC packets, which are protected

using QUIC packet protection.

QUIC CRYPTO frames only carry TLS handshake messages. TLS alerts are

turned into QUIC CONNECTION_CLOSE error codes; see Section 4.8. TLS

application data and other content types cannot be carried by QUIC

at any encryption level; it is an error if they are received from

the TLS stack.

When an endpoint receives a QUIC packet containing a CRYPTO frame

from the network, it proceeds as follows:

If the packet uses the current TLS receiving encryption level,

sequence the data into the input flow as usual. As with STREAM

frames, the offset is used to find the proper location in the

data sequence. If the result of this process is that new data is

available, then it is delivered to TLS in order.

If the packet is from a previously installed encryption level, it

MUST NOT contain data that extends past the end of previously

received data in that flow. Implementations MUST treat any

violations of this requirement as a connection error of type

PROTOCOL_VIOLATION.

If the packet is from a new encryption level, it is saved for

later processing by TLS. Once TLS moves to receiving from this

encryption level, saved data can be provided to TLS. When TLS

provides keys for a higher encryption level, if there is data

from a previous encryption level that TLS has not consumed, this

MUST be treated as a connection error of type PROTOCOL_VIOLATION.

Each time that TLS is provided with new data, new handshake bytes

are requested from TLS. TLS might not provide any bytes if the

handshake messages it has received are incomplete or it has no data

to send.

The content of CRYPTO frames might either be processed incrementally

by TLS or buffered until complete messages or flights are available.

TLS is responsible for buffering handshake bytes that have arrived

in order. QUIC is responsible for buffering handshake bytes that

arrive out of order or for encryption levels that are not yet ready.

QUIC does not provide any means of flow control for CRYPTO frames;

see Section 7.5 of [QUIC-TRANSPORT].

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶



Once the TLS handshake is complete, this is indicated to QUIC along

with any final handshake bytes that TLS needs to send. At this

stage, the transport parameters that the peer advertised during the

handshake are authenticated; see Section 8.2.

Once the handshake is complete, TLS becomes passive. TLS can still

receive data from its peer and respond in kind, but it will not need

to send more data unless specifically requested - either by an

application or QUIC. One reason to send data is that the server

might wish to provide additional or updated session tickets to a

client.

When the handshake is complete, QUIC only needs to provide TLS with

any data that arrives in CRYPTO streams. In the same manner that is

used during the handshake, new data is requested from TLS after

providing received data.

4.1.4. Encryption Level Changes

As keys at a given encryption level become available to TLS, TLS

indicates to QUIC that reading or writing keys at that encryption

level are available.

The availability of new keys is always a result of providing inputs

to TLS. TLS only provides new keys after being initialized (by a

client) or when provided with new handshake data.

However, a TLS implementation could perform some of its processing

asynchronously. In particular, the process of validating a

certificate can take some time. While waiting for TLS processing to

complete, an endpoint SHOULD buffer received packets if they might

be processed using keys that aren't yet available. These packets can

be processed once keys are provided by TLS. An endpoint SHOULD

continue to respond to packets that can be processed during this

time.

After processing inputs, TLS might produce handshake bytes, keys for

new encryption levels, or both.

TLS provides QUIC with three items as a new encryption level becomes

available:

A secret

An Authenticated Encryption with Associated Data (AEAD) function

A Key Derivation Function (KDF)

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶



These values are based on the values that TLS negotiates and are

used by QUIC to generate packet and header protection keys; see 

Section 5 and Section 5.4.

If 0-RTT is possible, it is ready after the client sends a TLS

ClientHello message or the server receives that message. After

providing a QUIC client with the first handshake bytes, the TLS

stack might signal the change to 0-RTT keys. On the server, after

receiving handshake bytes that contain a ClientHello message, a TLS

server might signal that 0-RTT keys are available.

Although TLS only uses one encryption level at a time, QUIC may use

more than one level. For instance, after sending its Finished

message (using a CRYPTO frame at the Handshake encryption level) an

endpoint can send STREAM data (in 1-RTT encryption). If the Finished

message is lost, the endpoint uses the Handshake encryption level to

retransmit the lost message. Reordering or loss of packets can mean

that QUIC will need to handle packets at multiple encryption levels.

During the handshake, this means potentially handling packets at

higher and lower encryption levels than the current encryption level

used by TLS.

In particular, server implementations need to be able to read

packets at the Handshake encryption level at the same time as the 0-

RTT encryption level. A client could interleave ACK frames that are

protected with Handshake keys with 0-RTT data and the server needs

to process those acknowledgments in order to detect lost Handshake

packets.

QUIC also needs access to keys that might not ordinarily be

available to a TLS implementation. For instance, a client might need

to acknowledge Handshake packets before it is ready to send CRYPTO

frames at that encryption level. TLS therefore needs to provide keys

to QUIC before it might produce them for its own use.

4.1.5. TLS Interface Summary

Figure 5 summarizes the exchange between QUIC and TLS for both

client and server. Solid arrows indicate packets that carry

handshake data; dashed arrows show where application data can be

sent. Each arrow is tagged with the encryption level used for that

transmission.

¶

¶

¶

¶

¶

¶



Figure 5: Interaction Summary between QUIC and TLS

Figure 5 shows the multiple packets that form a single "flight" of

messages being processed individually, to show what incoming

messages trigger different actions. This shows multiple "Get

Handshake" invocations to retrieve handshake messages at different

encryption levels. New handshake messages are requested after

incoming packets have been processed.

Figure 5 shows one possible structure for a simple handshake

exchange. The exact process varies based on the structure of

endpoint implementations and the order in which packets arrive.

Implementations could use a different number of operations or

execute them in other orders.

Client                                                    Server

======                                                    ======

Get Handshake

                     Initial ------------->

Install tx 0-RTT Keys

                     0-RTT - - - - - - - ->

                                              Handshake Received

                                                   Get Handshake

                     <------------- Initial

                                           Install rx 0-RTT keys

                                          Install Handshake keys

                                                   Get Handshake

                     <----------- Handshake

                                           Install tx 1-RTT keys

                     <- - - - - - - - 1-RTT

Handshake Received (Initial)

Install Handshake keys

Handshake Received (Handshake)

Get Handshake

                     Handshake ----------->

Handshake Complete

Install 1-RTT keys

                     1-RTT - - - - - - - ->

                                              Handshake Received

                                              Handshake Complete

                                             Handshake Confirmed

                                           Install rx 1-RTT keys

                     <--------------- 1-RTT

                           (HANDSHAKE_DONE)

Handshake Confirmed

¶

¶



4.2. TLS Version

This document describes how TLS 1.3 [TLS13] is used with QUIC.

In practice, the TLS handshake will negotiate a version of TLS to

use. This could result in a newer version of TLS than 1.3 being

negotiated if both endpoints support that version. This is

acceptable provided that the features of TLS 1.3 that are used by

QUIC are supported by the newer version.

Clients MUST NOT offer TLS versions older than 1.3. A badly

configured TLS implementation could negotiate TLS 1.2 or another

older version of TLS. An endpoint MUST terminate the connection if a

version of TLS older than 1.3 is negotiated.

4.3. ClientHello Size

The first Initial packet from a client contains the start or all of

its first cryptographic handshake message, which for TLS is the

ClientHello. Servers might need to parse the entire ClientHello

(e.g., to access extensions such as Server Name Identification (SNI)

or Application Layer Protocol Negotiation (ALPN)) in order to decide

whether to accept the new incoming QUIC connection. If the

ClientHello spans multiple Initial packets, such servers would need

to buffer the first received fragments, which could consume

excessive resources if the client's address has not yet been

validated. To avoid this, servers MAY use the Retry feature (see

Section 8.1 of [QUIC-TRANSPORT]) to only buffer partial ClientHello

messages from clients with a validated address.

QUIC packet and framing add at least 36 bytes of overhead to the

ClientHello message. That overhead increases if the client chooses a

source connection ID longer than zero bytes. Overheads also do not

include the token or a destination connection ID longer than 8

bytes, both of which might be required if a server sends a Retry

packet.

A typical TLS ClientHello can easily fit into a 1200-byte packet.

However, in addition to the overheads added by QUIC, there are

several variables that could cause this limit to be exceeded. Large

session tickets, multiple or large key shares, and long lists of

supported ciphers, signature algorithms, versions, QUIC transport

parameters, and other negotiable parameters and extensions could

cause this message to grow.

For servers, in addition to connection IDs and tokens, the size of

TLS session tickets can have an effect on a client's ability to

connect efficiently. Minimizing the size of these values increases

the probability that clients can use them and still fit their entire

ClientHello message in their first Initial packet.

¶

¶

¶

¶

¶

¶

¶



Note:

The TLS implementation does not need to ensure that the ClientHello

is large enough to meet the requirements for QUIC packets. QUIC

PADDING frames are added to increase the size of the packet as

necessary; see Section 14.1 of [QUIC-TRANSPORT].

4.4. Peer Authentication

The requirements for authentication depend on the application

protocol that is in use. TLS provides server authentication and

permits the server to request client authentication.

A client MUST authenticate the identity of the server. This

typically involves verification that the identity of the server is

included in a certificate and that the certificate is issued by a

trusted entity (see for example [RFC2818]).

Where servers provide certificates for authentication, the

size of the certificate chain can consume a large number of

bytes. Controlling the size of certificate chains is critical to

performance in QUIC as servers are limited to sending 3 bytes for

every byte received prior to validating the client address; see

Section 8.1 of [QUIC-TRANSPORT]. The size of a certificate chain

can be managed by limiting the number of names or extensions;

using keys with small public key representations, like ECDSA; or

by using certificate compression [COMPRESS].

A server MAY request that the client authenticate during the

handshake. A server MAY refuse a connection if the client is unable

to authenticate when requested. The requirements for client

authentication vary based on application protocol and deployment.

A server MUST NOT use post-handshake client authentication (as

defined in Section 4.6.2 of [TLS13]), because the multiplexing

offered by QUIC prevents clients from correlating the certificate

request with the application-level event that triggered it (see 

[HTTP2-TLS13]). More specifically, servers MUST NOT send post-

handshake TLS CertificateRequest messages and clients MUST treat

receipt of such messages as a connection error of type

PROTOCOL_VIOLATION.

4.5. Session Resumption

QUIC can use the session resumption feature of TLS 1.3. It does this

by carrying NewSessionTicket messages in CRYPTO frames after the

handshake is complete. Session resumption can be used to provide 0-

RTT, and can also be used when 0-RTT is disabled.

Endpoints that use session resumption might need to remember some

information about the current connection when creating a resumed

connection. TLS requires that some information be retained; see

¶

¶

¶

¶

¶

¶

¶



Section 4.6.1 of [TLS13]. QUIC itself does not depend on any state

being retained when resuming a connection, unless 0-RTT is also

used; see Section 7.4.1 of [QUIC-TRANSPORT] and Section 4.6.1.

Application protocols could depend on state that is retained between

resumed connections.

Clients can store any state required for resumption along with the

session ticket. Servers can use the session ticket to help carry

state.

Session resumption allows servers to link activity on the original

connection with the resumed connection, which might be a privacy

issue for clients. Clients can choose not to enable resumption to

avoid creating this correlation. Clients SHOULD NOT reuse tickets as

that allows entities other than the server to correlate connections;

see Section C.4 of [TLS13].

4.6. 0-RTT

The 0-RTT feature in QUIC allows a client to send application data

before the handshake is complete. This is made possible by reusing

negotiated parameters from a previous connection. To enable this, 0-

RTT depends on the client remembering critical parameters and

providing the server with a TLS session ticket that allows the

server to recover the same information.

This information includes parameters that determine TLS state, as

governed by [TLS13], QUIC transport parameters, the chosen

application protocol, and any information the application protocol

might need; see Section 4.6.3. This information determines how 0-RTT

packets and their contents are formed.

To ensure that the same information is available to both endpoints,

all information used to establish 0-RTT comes from the same

connection. Endpoints cannot selectively disregard information that

might alter the sending or processing of 0-RTT.

[TLS13] sets a limit of 7 days on the time between the original

connection and any attempt to use 0-RTT. There are other constraints

on 0-RTT usage, notably those caused by the potential exposure to

replay attack; see Section 9.2.

4.6.1. Enabling 0-RTT

The TLS "early_data" extension in the NewSessionTicket message is

defined to convey (in the "max_early_data_size" parameter) the

amount of TLS 0-RTT data the server is willing to accept. QUIC does

not use TLS 0-RTT data. QUIC uses 0-RTT packets to carry early data.

Accordingly, the "max_early_data_size" parameter is repurposed to

hold a sentinel value 0xffffffff to indicate that the server is

¶

¶

¶

¶

¶

¶

¶



willing to accept QUIC 0-RTT data; to indicate that the server does

not accept 0-RTT data, the "early_data" extension is omitted from

the NewSessionTicket. The amount of data that the client can send in

QUIC 0-RTT is controlled by the initial_max_data transport parameter

supplied by the server.

Servers MUST NOT send the early_data extension with a

max_early_data_size field set to any value other than 0xffffffff. A

client MUST treat receipt of a NewSessionTicket that contains an

early_data extension with any other value as a connection error of

type PROTOCOL_VIOLATION.

A client that wishes to send 0-RTT packets uses the early_data

extension in the ClientHello message of a subsequent handshake; see

Section 4.2.10 of [TLS13]. It then sends application data in 0-RTT

packets.

A client that attempts 0-RTT might also provide an address

validation token if the server has sent a NEW_TOKEN frame; see

Section 8.1 of [QUIC-TRANSPORT].

4.6.2. Accepting and Rejecting 0-RTT

A server accepts 0-RTT by sending an early_data extension in the

EncryptedExtensions; see Section 4.2.10 of [TLS13]. The server then

processes and acknowledges the 0-RTT packets that it receives.

A server rejects 0-RTT by sending the EncryptedExtensions without an

early_data extension. A server will always reject 0-RTT if it sends

a TLS HelloRetryRequest. When rejecting 0-RTT, a server MUST NOT

process any 0-RTT packets, even if it could. When 0-RTT was

rejected, a client SHOULD treat receipt of an acknowledgment for a

0-RTT packet as a connection error of type PROTOCOL_VIOLATION, if it

is able to detect the condition.

When 0-RTT is rejected, all connection characteristics that the

client assumed might be incorrect. This includes the choice of

application protocol, transport parameters, and any application

configuration. The client therefore MUST reset the state of all

streams, including application state bound to those streams.

A client MAY reattempt 0-RTT if it receives a Retry or Version

Negotiation packet. These packets do not signify rejection of 0-RTT.

4.6.3. Validating 0-RTT Configuration

When a server receives a ClientHello with the early_data extension,

it has to decide whether to accept or reject early data from the

client. Some of this decision is made by the TLS stack (e.g.,

checking that the cipher suite being resumed was included in the

¶

¶

¶

¶

¶

¶

¶

¶



ClientHello; see Section 4.2.10 of [TLS13]). Even when the TLS stack

has no reason to reject early data, the QUIC stack or the

application protocol using QUIC might reject early data because the

configuration of the transport or application associated with the

resumed session is not compatible with the server's current

configuration.

QUIC requires additional transport state to be associated with a 0-

RTT session ticket. One common way to implement this is using

stateless session tickets and storing this state in the session

ticket. Application protocols that use QUIC might have similar

requirements regarding associating or storing state. This associated

state is used for deciding whether early data must be rejected. For

example, HTTP/3 ([QUIC-HTTP]) settings determine how early data from

the client is interpreted. Other applications using QUIC could have

different requirements for determining whether to accept or reject

early data.

4.7. HelloRetryRequest

The HelloRetryRequest message (see Section 4.1.4 of [TLS13]) can be

used to request that a client provide new information, such as a key

share, or to validate some characteristic of the client. From the

perspective of QUIC, HelloRetryRequest is not differentiated from

other cryptographic handshake messages that are carried in Initial

packets. Although it is in principle possible to use this feature

for address verification, QUIC implementations SHOULD instead use

the Retry feature; see Section 8.1 of [QUIC-TRANSPORT].

4.8. TLS Errors

If TLS experiences an error, it generates an appropriate alert as

defined in Section 6 of [TLS13].

A TLS alert is converted into a QUIC connection error. The

AlertDescription value is added to 0x100 to produce a QUIC error

code from the range reserved for CRYPTO_ERROR. The resulting value

is sent in a QUIC CONNECTION_CLOSE frame of type 0x1c.

QUIC is only able to convey an alert level of "fatal". In TLS 1.3,

the only existing uses for the "warning" level are to signal

connection close; see Section 6.1 of [TLS13]. As QUIC provides

alternative mechanisms for connection termination and the TLS

connection is only closed if an error is encountered, a QUIC

endpoint MUST treat any alert from TLS as if it were at the "fatal"

level.

QUIC permits the use of a generic code in place of a specific error

code; see Section 11 of [QUIC-TRANSPORT]. For TLS alerts, this

includes replacing any alert with a generic alert, such as

¶

¶

¶

¶

¶

¶



handshake_failure (0x128 in QUIC). Endpoints MAY use a generic error

code to avoid possibly exposing confidential information.

4.9. Discarding Unused Keys

After QUIC has completed a move to a new encryption level, packet

protection keys for previous encryption levels can be discarded.

This occurs several times during the handshake, as well as when keys

are updated; see Section 6.

Packet protection keys are not discarded immediately when new keys

are available. If packets from a lower encryption level contain

CRYPTO frames, frames that retransmit that data MUST be sent at the

same encryption level. Similarly, an endpoint generates

acknowledgments for packets at the same encryption level as the

packet being acknowledged. Thus, it is possible that keys for a

lower encryption level are needed for a short time after keys for a

newer encryption level are available.

An endpoint cannot discard keys for a given encryption level unless

it has received all the cryptographic handshake messages from its

peer at that encryption level and its peer has done the same.

Different methods for determining this are provided for Initial keys

(Section 4.9.1) and Handshake keys (Section 4.9.2). These methods do

not prevent packets from being received or sent at that encryption

level because a peer might not have received all the acknowledgments

necessary.

Though an endpoint might retain older keys, new data MUST be sent at

the highest currently-available encryption level. Only ACK frames

and retransmissions of data in CRYPTO frames are sent at a previous

encryption level. These packets MAY also include PADDING frames.

4.9.1. Discarding Initial Keys

Packets protected with Initial secrets (Section 5.2) are not

authenticated, meaning that an attacker could spoof packets with the

intent to disrupt a connection. To limit these attacks, Initial

packet protection keys are discarded more aggressively than other

keys.

The successful use of Handshake packets indicates that no more

Initial packets need to be exchanged, as these keys can only be

produced after receiving all CRYPTO frames from Initial packets.

Thus, a client MUST discard Initial keys when it first sends a

Handshake packet and a server MUST discard Initial keys when it

first successfully processes a Handshake packet. Endpoints MUST NOT

send Initial packets after this point.

¶

¶

¶

¶

¶

¶

¶



This results in abandoning loss recovery state for the Initial

encryption level and ignoring any outstanding Initial packets.

4.9.2. Discarding Handshake Keys

An endpoint MUST discard its handshake keys when the TLS handshake

is confirmed (Section 4.1.2).

4.9.3. Discarding 0-RTT Keys

0-RTT and 1-RTT packets share the same packet number space, and

clients do not send 0-RTT packets after sending a 1-RTT packet

(Section 5.6).

Therefore, a client SHOULD discard 0-RTT keys as soon as it installs

1-RTT keys, since they have no use after that moment.

Additionally, a server MAY discard 0-RTT keys as soon as it receives

a 1-RTT packet. However, due to packet reordering, a 0-RTT packet

could arrive after a 1-RTT packet. Servers MAY temporarily retain 0-

RTT keys to allow decrypting reordered packets without requiring

their contents to be retransmitted with 1-RTT keys. After receiving

a 1-RTT packet, servers MUST discard 0-RTT keys within a short time;

the RECOMMENDED time period is three times the Probe Timeout (PTO,

see [QUIC-RECOVERY]). A server MAY discard 0-RTT keys earlier if it

determines that it has received all 0-RTT packets, which can be done

by keeping track of missing packet numbers.

5. Packet Protection

As with TLS over TCP, QUIC protects packets with keys derived from

the TLS handshake, using the AEAD algorithm [AEAD] negotiated by

TLS.

QUIC packets have varying protections depending on their type:

Version Negotiation packets have no cryptographic protection.

Retry packets use AEAD_AES_128_GCM to provide protection against

accidental modification and to limit the entities that can

produce a valid Retry; see Section 5.8.

Initial packets use AEAD_AES_128_GCM with keys derived from the

Destination Connection ID field of the first Initial packet sent

by the client; see Section 5.2.

All other packets have strong cryptographic protections for

confidentiality and integrity, using keys and algorithms

negotiated by TLS.

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶



This section describes how packet protection is applied to Handshake

packets, 0-RTT packets, and 1-RTT packets. The same packet

protection process is applied to Initial packets. However, as it is

trivial to determine the keys used for Initial packets, these

packets are not considered to have confidentiality or integrity

protection. Retry packets use a fixed key and so similarly lack

confidentiality and integrity protection.

5.1. Packet Protection Keys

QUIC derives packet protection keys in the same way that TLS derives

record protection keys.

Each encryption level has separate secret values for protection of

packets sent in each direction. These traffic secrets are derived by

TLS (see Section 7.1 of [TLS13]) and are used by QUIC for all

encryption levels except the Initial encryption level. The secrets

for the Initial encryption level are computed based on the client's

initial Destination Connection ID, as described in Section 5.2.

The keys used for packet protection are computed from the TLS

secrets using the KDF provided by TLS. In TLS 1.3, the HKDF-Expand-

Label function described in Section 7.1 of [TLS13] is used, using

the hash function from the negotiated cipher suite. All uses of

HKDF-Expand-Label in QUIC use a zero-length Context.

Note that labels, which are described using strings, are encoded as

bytes using ASCII [ASCII] without quotes or any trailing NUL byte.

Other versions of TLS MUST provide a similar function in order to be

used with QUIC.

The current encryption level secret and the label "quic key" are

input to the KDF to produce the AEAD key; the label "quic iv" is

used to derive the Initialization Vector (IV); see Section 5.3. The

header protection key uses the "quic hp" label; see Section 5.4.

Using these labels provides key separation between QUIC and TLS; see

Section 9.6.

Both "quic key" and "quic hp" are used to produce keys, so the

Length provided to HKDF-Expand-Label along with these labels is

determined by the size of keys in the AEAD or header protection

algorithm. The Length provided with "quic iv" is the minimum length

of the AEAD nonce, or 8 bytes if that is larger; see [AEAD].

The KDF used for initial secrets is always the HKDF-Expand-Label

function from TLS 1.3; see Section 5.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶



5.2. Initial Secrets

Initial packets apply the packet protection process, but use a

secret derived from the Destination Connection ID field from the

client's first Initial packet.

This secret is determined by using HKDF-Extract (see Section 2.2 of 

[HKDF]) with a salt of 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a

and a IKM of the Destination Connection ID field. This produces an

intermediate pseudorandom key (PRK) that is used to derive two

separate secrets for sending and receiving.

The secret used by clients to construct Initial packets uses the PRK

and the label "client in" as input to the HKDF-Expand-Label function

from TLS [TLS13] to produce a 32-byte secret. Packets constructed by

the server use the same process with the label "server in". The hash

function for HKDF when deriving initial secrets and keys is SHA-256 

[SHA].

This process in pseudocode is:

The connection ID used with HKDF-Expand-Label is the Destination

Connection ID in the Initial packet sent by the client. This will be

a randomly-selected value unless the client creates the Initial

packet after receiving a Retry packet, where the Destination

Connection ID is selected by the server.

Future versions of QUIC SHOULD generate a new salt value, thus

ensuring that the keys are different for each version of QUIC. This

prevents a middlebox that recognizes only one version of QUIC from

seeing or modifying the contents of packets from future versions.

The HKDF-Expand-Label function defined in TLS 1.3 MUST be used for

Initial packets even where the TLS versions offered do not include

TLS 1.3.

The secrets used for constructing subsequent Initial packets change

when a server sends a Retry packet, to use the connection ID value

selected by the server. The secrets do not change when a client

¶

¶

¶

¶

initial_salt = 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a

initial_secret = HKDF-Extract(initial_salt,

                              client_dst_connection_id)

client_initial_secret = HKDF-Expand-Label(initial_secret,

                                          "client in", "",

                                          Hash.length)

server_initial_secret = HKDF-Expand-Label(initial_secret,

                                          "server in", "",

                                          Hash.length)

¶

¶

¶

¶



Note:

Note:

changes the Destination Connection ID it uses in response to an

Initial packet from the server.

The Destination Connection ID field could be any length up to

20 bytes, including zero length if the server sends a Retry

packet with a zero-length Source Connection ID field. After a

Retry, the Initial keys provide the client no assurance that the

server received its packet, so the client has to rely on the

exchange that included the Retry packet to validate the server

address; see Section 8.1 of [QUIC-TRANSPORT].

Appendix A contains sample Initial packets.

5.3. AEAD Usage

The Authenticated Encryption with Associated Data (AEAD; see [AEAD])

function used for QUIC packet protection is the AEAD that is

negotiated for use with the TLS connection. For example, if TLS is

using the TLS_AES_128_GCM_SHA256 cipher suite, the AEAD_AES_128_GCM

function is used.

QUIC can use any of the cipher suites defined in [TLS13] with the

exception of TLS_AES_128_CCM_8_SHA256. A cipher suite MUST NOT be

negotiated unless a header protection scheme is defined for the

cipher suite. This document defines a header protection scheme for

all cipher suites defined in [TLS13] aside from

TLS_AES_128_CCM_8_SHA256. These cipher suites have a 16-byte

authentication tag and produce an output 16 bytes larger than their

input.

An endpoint MUST NOT reject a ClientHello that offers a

cipher suite that it does not support, or it would be impossible

to deploy a new cipher suite. This also applies to

TLS_AES_128_CCM_8_SHA256.

When constructing packets, the AEAD function is applied prior to

applying header protection; see Section 5.4. The unprotected packet

header is part of the associated data (A). When processing packets,

an endpoint first removes the header protection.

The key and IV for the packet are computed as described in Section

5.1. The nonce, N, is formed by combining the packet protection IV

with the packet number. The 62 bits of the reconstructed QUIC packet

number in network byte order are left-padded with zeros to the size

of the IV. The exclusive OR of the padded packet number and the IV

forms the AEAD nonce.

The associated data, A, for the AEAD is the contents of the QUIC

header, starting from the first byte of either the short or long

header, up to and including the unprotected packet number.

¶

¶

¶

¶

¶

¶

¶

¶

¶



The input plaintext, P, for the AEAD is the payload of the QUIC

packet, as described in [QUIC-TRANSPORT].

The output ciphertext, C, of the AEAD is transmitted in place of P.

Some AEAD functions have limits for how many packets can be

encrypted under the same key and IV; see Section 6.6. This might be

lower than the packet number limit. An endpoint MUST initiate a key

update (Section 6) prior to exceeding any limit set for the AEAD

that is in use.

5.4. Header Protection

Parts of QUIC packet headers, in particular the Packet Number field,

are protected using a key that is derived separately from the packet

protection key and IV. The key derived using the "quic hp" label is

used to provide confidentiality protection for those fields that are

not exposed to on-path elements.

This protection applies to the least-significant bits of the first

byte, plus the Packet Number field. The four least-significant bits

of the first byte are protected for packets with long headers; the

five least significant bits of the first byte are protected for

packets with short headers. For both header forms, this covers the

reserved bits and the Packet Number Length field; the Key Phase bit

is also protected for packets with a short header.

The same header protection key is used for the duration of the

connection, with the value not changing after a key update (see 

Section 6). This allows header protection to be used to protect the

key phase.

This process does not apply to Retry or Version Negotiation packets,

which do not contain a protected payload or any of the fields that

are protected by this process.

5.4.1. Header Protection Application

Header protection is applied after packet protection is applied (see

Section 5.3). The ciphertext of the packet is sampled and used as

input to an encryption algorithm. The algorithm used depends on the

negotiated AEAD.

The output of this algorithm is a 5-byte mask that is applied to the

protected header fields using exclusive OR. The least significant

bits of the first byte of the packet are masked by the least

significant bits of the first mask byte, and the packet number is

masked with the remaining bytes. Any unused bytes of mask that might

result from a shorter packet number encoding are unused.

¶

¶

¶

¶

¶

¶

¶

¶

¶



Figure 6 shows a sample algorithm for applying header protection.

Removing header protection only differs in the order in which the

packet number length (pn_length) is determined (here "^" is used to

represent exclusive or).

Figure 6: Header Protection Pseudocode

Specific header protection functions are defined based on the

selected cipher suite; see Section 5.4.3 and Section 5.4.4.

Figure 7 shows an example long header packet (Initial) and a short

header packet (1-RTT). Figure 7 shows the fields in each header that

are covered by header protection and the portion of the protected

packet payload that is sampled.

¶

mask = header_protection(hp_key, sample)

pn_length = (packet[0] & 0x03) + 1

if (packet[0] & 0x80) == 0x80:

   # Long header: 4 bits masked

   packet[0] ^= mask[0] & 0x0f

else:

   # Short header: 5 bits masked

   packet[0] ^= mask[0] & 0x1f

# pn_offset is the start of the Packet Number field.

packet[pn_offset:pn_offset+pn_length] ^= mask[1:1+pn_length]

¶

¶



Figure 7: Header Protection and Ciphertext Sample

Before a TLS cipher suite can be used with QUIC, a header protection

algorithm MUST be specified for the AEAD used with that cipher

suite. This document defines algorithms for AEAD_AES_128_GCM,

AEAD_AES_128_CCM, AEAD_AES_256_GCM (all these AES AEADs are defined

in [AEAD]), and AEAD_CHACHA20_POLY1305 (defined in [CHACHA]). Prior

to TLS selecting a cipher suite, AES header protection is used

(Section 5.4.3), matching the AEAD_AES_128_GCM packet protection.

5.4.2. Header Protection Sample

The header protection algorithm uses both the header protection key

and a sample of the ciphertext from the packet Payload field.

Initial Packet {

  Header Form (1) = 1,

  Fixed Bit (1) = 1,

  Long Packet Type (2) = 0,

  Reserved Bits (2),         # Protected

  Packet Number Length (2),  # Protected

  Version (32),

  DCID Len (8),

  Destination Connection ID (0..160),

  SCID Len (8),

  Source Connection ID (0..160),

  Token Length (i),

  Token (..),

  Length (i),

  Packet Number (8..32),     # Protected

  Protected Payload (0..24), # Skipped Part

  Protected Payload (128),   # Sampled Part

  Protected Payload (..)     # Remainder

}

1-RTT Packet {

  Header Form (1) = 0,

  Fixed Bit (1) = 1,

  Spin Bit (1),

  Reserved Bits (2),         # Protected

  Key Phase (1),             # Protected

  Packet Number Length (2),  # Protected

  Destination Connection ID (0..160),

  Packet Number (8..32),     # Protected

  Protected Payload (0..24), # Skipped Part

  Protected Payload (128),   # Sampled Part

  Protected Payload (..),    # Remainder

}

¶

¶



The same number of bytes are always sampled, but an allowance needs

to be made for the endpoint removing protection, which will not know

the length of the Packet Number field. The sample of ciphertext is

taken starting from an offset of 4 bytes after the start of the

Packet Number field. That is, in sampling packet ciphertext for

header protection, the Packet Number field is assumed to be 4 bytes

long (its maximum possible encoded length).

An endpoint MUST discard packets that are not long enough to contain

a complete sample.

To ensure that sufficient data is available for sampling, packets

are padded so that the combined lengths of the encoded packet number

and protected payload is at least 4 bytes longer than the sample

required for header protection. The cipher suites defined in [TLS13]

- other than TLS_AES_128_CCM_8_SHA256, for which a header protection

scheme is not defined in this document - have 16-byte expansions and

16-byte header protection samples. This results in needing at least

3 bytes of frames in the unprotected payload if the packet number is

encoded on a single byte, or 2 bytes of frames for a 2-byte packet

number encoding.

The sampled ciphertext can be determined by the following

pseudocode:

where the packet number offset of a short header packet can be

calculated as:

and the packet number offset of a long header packet can be

calculated as:

For example, for a packet with a short header, an 8-byte connection

ID, and protected with AEAD_AES_128_GCM, the sample takes bytes 13

to 28 inclusive (using zero-based indexing).

¶

¶

¶

¶

# pn_offset is the start of the Packet Number field.

sample_offset = pn_offset + 4

sample = packet[sample_offset..sample_offset+sample_length]

¶

¶

pn_offset = 1 + len(connection_id)¶

¶

pn_offset = 7 + len(destination_connection_id) +

                len(source_connection_id) +

                len(payload_length)

if packet_type == Initial:

    pn_offset += len(token_length) +

                 len(token)

¶

¶



Multiple QUIC packets might be included in the same UDP datagram.

Each packet is handled separately.

5.4.3. AES-Based Header Protection

This section defines the packet protection algorithm for

AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.

AEAD_AES_128_GCM and AEAD_AES_128_CCM use 128-bit AES in electronic

code-book (ECB) mode. AEAD_AES_256_GCM uses 256-bit AES in ECB mode.

AES is defined in [AES].

This algorithm samples 16 bytes from the packet ciphertext. This

value is used as the input to AES-ECB. In pseudocode, the header

protection function is defined as:

5.4.4. ChaCha20-Based Header Protection

When AEAD_CHACHA20_POLY1305 is in use, header protection uses the

raw ChaCha20 function as defined in Section 2.4 of [CHACHA]. This

uses a 256-bit key and 16 bytes sampled from the packet protection

output.

The first 4 bytes of the sampled ciphertext are the block counter. A

ChaCha20 implementation could take a 32-bit integer in place of a

byte sequence, in which case the byte sequence is interpreted as a

little-endian value.

The remaining 12 bytes are used as the nonce. A ChaCha20

implementation might take an array of three 32-bit integers in place

of a byte sequence, in which case the nonce bytes are interpreted as

a sequence of 32-bit little-endian integers.

The encryption mask is produced by invoking ChaCha20 to protect 5

zero bytes. In pseudocode, the header protection function is defined

as:

5.5. Receiving Protected Packets

Once an endpoint successfully receives a packet with a given packet

number, it MUST discard all packets in the same packet number space

with higher packet numbers if they cannot be successfully

unprotected with either the same key, or - if there is a key update

¶

¶

¶

header_protection(hp_key, sample):

  mask = AES-ECB(hp_key, sample)

¶

¶

¶

¶

¶

header_protection(hp_key, sample):

  counter = sample[0..3]

  nonce = sample[4..15]

  mask = ChaCha20(hp_key, counter, nonce, {0,0,0,0,0})

¶



- a subsequent packet protection key; see Section 6. Similarly, a

packet that appears to trigger a key update, but cannot be

unprotected successfully MUST be discarded.

Failure to unprotect a packet does not necessarily indicate the

existence of a protocol error in a peer or an attack. The truncated

packet number encoding used in QUIC can cause packet numbers to be

decoded incorrectly if they are delayed significantly.

5.6. Use of 0-RTT Keys

If 0-RTT keys are available (see Section 4.6.1), the lack of replay

protection means that restrictions on their use are necessary to

avoid replay attacks on the protocol.

Of the frames defined in [QUIC-TRANSPORT], the STREAM, RESET_STREAM,

STOP_SENDING, and CONNECTION_CLOSE frames are potentially unsafe for

use with 0-RTT as they carry application data. Application data that

is received in 0-RTT could cause an application at the server to

process the data multiple times rather than just once. Additional

actions taken by a server as a result of processing replayed

application data could have unwanted consequences. A client

therefore MUST NOT use 0-RTT for application data unless

specifically requested by the application that is in use.

An application protocol that uses QUIC MUST include a profile that

defines acceptable use of 0-RTT; otherwise, 0-RTT can only be used

to carry QUIC frames that do not carry application data. For

example, a profile for HTTP is described in [HTTP-REPLAY] and used

for HTTP/3; see Section 10.9 of [QUIC-HTTP].

Though replaying packets might result in additional connection

attempts, the effect of processing replayed frames that do not carry

application data is limited to changing the state of the affected

connection. A TLS handshake cannot be successfully completed using

replayed packets.

A client MAY wish to apply additional restrictions on what data it

sends prior to the completion of the TLS handshake.

A client otherwise treats 0-RTT keys as equivalent to 1-RTT keys,

except that it cannot send certain frames with 0-RTT keys; see

Section 12.5 of [QUIC-TRANSPORT].

A client that receives an indication that its 0-RTT data has been

accepted by a server can send 0-RTT data until it receives all of

the server's handshake messages. A client SHOULD stop sending 0-RTT

data if it receives an indication that 0-RTT data has been rejected.

¶

¶

¶

¶

¶

¶

¶

¶

¶



Note:

Note:

A server MUST NOT use 0-RTT keys to protect packets; it uses 1-RTT

keys to protect acknowledgments of 0-RTT packets. A client MUST NOT

attempt to decrypt 0-RTT packets it receives and instead MUST

discard them.

Once a client has installed 1-RTT keys, it MUST NOT send any more 0-

RTT packets.

0-RTT data can be acknowledged by the server as it receives

it, but any packets containing acknowledgments of 0-RTT data

cannot have packet protection removed by the client until the TLS

handshake is complete. The 1-RTT keys necessary to remove packet

protection cannot be derived until the client receives all server

handshake messages.

5.7. Receiving Out-of-Order Protected Packets

Due to reordering and loss, protected packets might be received by

an endpoint before the final TLS handshake messages are received. A

client will be unable to decrypt 1-RTT packets from the server,

whereas a server will be able to decrypt 1-RTT packets from the

client. Endpoints in either role MUST NOT decrypt 1-RTT packets from

their peer prior to completing the handshake.

Even though 1-RTT keys are available to a server after receiving the

first handshake messages from a client, it is missing assurances on

the client state:

The client is not authenticated, unless the server has chosen to

use a pre-shared key and validated the client's pre-shared key

binder; see Section 4.2.11 of [TLS13].

The client has not demonstrated liveness, unless the server has

validated the client's address with a Retry packet or other

means; see Section 8.1 of [QUIC-TRANSPORT].

Any received 0-RTT data that the server responds to might be due

to a replay attack.

Therefore, the server's use of 1-RTT keys before the handshake is

complete is limited to sending data. A server MUST NOT process

incoming 1-RTT protected packets before the TLS handshake is

complete. Because sending acknowledgments indicates that all frames

in a packet have been processed, a server cannot send

acknowledgments for 1-RTT packets until the TLS handshake is

complete. Received packets protected with 1-RTT keys MAY be stored

and later decrypted and used once the handshake is complete.

TLS implementations might provide all 1-RTT secrets prior to

handshake completion. Even where QUIC implementations have 1-RTT

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶



read keys, those keys are not to be used prior to completing the

handshake.

The requirement for the server to wait for the client Finished

message creates a dependency on that message being delivered. A

client can avoid the potential for head-of-line blocking that this

implies by sending its 1-RTT packets coalesced with a Handshake

packet containing a copy of the CRYPTO frame that carries the

Finished message, until one of the Handshake packets is

acknowledged. This enables immediate server processing for those

packets.

A server could receive packets protected with 0-RTT keys prior to

receiving a TLS ClientHello. The server MAY retain these packets for

later decryption in anticipation of receiving a ClientHello.

A client generally receives 1-RTT keys at the same time as the

handshake completes. Even if it has 1-RTT secrets, a client MUST NOT

process incoming 1-RTT protected packets before the TLS handshake is

complete.

5.8. Retry Packet Integrity

Retry packets (see the Retry Packet section of [QUIC-TRANSPORT])

carry a Retry Integrity Tag that provides two properties: it allows

discarding packets that have accidentally been corrupted by the

network; only an entity that observes an Initial packet can send a

valid Retry packet.

The Retry Integrity Tag is a 128-bit field that is computed as the

output of AEAD_AES_128_GCM ([AEAD]) used with the following inputs:

The secret key, K, is 128 bits equal to

0xbe0c690b9f66575a1d766b54e368c84e.

The nonce, N, is 96 bits equal to 0x461599d35d632bf2239825bb.

The plaintext, P, is empty.

The associated data, A, is the contents of the Retry Pseudo-

Packet, as illustrated in Figure 8:

The secret key and the nonce are values derived by calling HKDF-

Expand-Label using

0xd9c9943e6101fd200021506bcc02814c73030f25c79d71ce876eca876e6fca8e

as the secret, with labels being "quic key" and "quic iv" (Section

5.1).

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

¶



ODCID Length:

Original Destination Connection ID:

Figure 8: Retry Pseudo-Packet

The Retry Pseudo-Packet is not sent over the wire. It is computed by

taking the transmitted Retry packet, removing the Retry Integrity

Tag and prepending the two following fields:

The ODCID Length field contains the length in bytes

of the Original Destination Connection ID field that follows it,

encoded as an 8-bit unsigned integer.

The Original Destination

Connection ID contains the value of the Destination Connection ID

from the Initial packet that this Retry is in response to. The

length of this field is given in ODCID Length. The presence of

this field ensures that a valid Retry packet can only be sent by

an entity that observes the Initial packet.

6. Key Update

Once the handshake is confirmed (see Section 4.1.2), an endpoint MAY

initiate a key update.

The Key Phase bit indicates which packet protection keys are used to

protect the packet. The Key Phase bit is initially set to 0 for the

first set of 1-RTT packets and toggled to signal each subsequent key

update.

The Key Phase bit allows a recipient to detect a change in keying

material without needing to receive the first packet that triggered

the change. An endpoint that notices a changed Key Phase bit updates

keys and decrypts the packet that contains the changed value.

Initiating a key update results in both endpoints updating keys.

This differs from TLS where endpoints can update keys independently.

Retry Pseudo-Packet {

  ODCID Length (8),

  Original Destination Connection ID (0..160),

  Header Form (1) = 1,

  Fixed Bit (1) = 1,

  Long Packet Type (2) = 3,

  Unused (4),

  Version (32),

  DCID Len (8),

  Destination Connection ID (0..160),

  SCID Len (8),

  Source Connection ID (0..160),

  Retry Token (..),

}

¶

¶

¶

¶

¶

¶

¶



This mechanism replaces the key update mechanism of TLS, which

relies on KeyUpdate messages sent using 1-RTT encryption keys.

Endpoints MUST NOT send a TLS KeyUpdate message. Endpoints MUST

treat the receipt of a TLS KeyUpdate message as a connection error

of type 0x10a, equivalent to a fatal TLS alert of

unexpected_message; see Section 4.8.

Figure 9 shows a key update process, where the initial set of keys

used (identified with @M) are replaced by updated keys (identified

with @N). The value of the Key Phase bit is indicated in brackets

[].

Figure 9: Key Update

6.1. Initiating a Key Update

Endpoints maintain separate read and write secrets for packet

protection. An endpoint initiates a key update by updating its

packet protection write secret and using that to protect new

packets. The endpoint creates a new write secret from the existing

write secret as performed in Section 7.2 of [TLS13]. This uses the

KDF function provided by TLS with a label of "quic ku". The

corresponding key and IV are created from that secret as defined in 

Section 5.1. The header protection key is not updated.

For example, to update write keys with TLS 1.3, HKDF-Expand-Label is

used as:

¶

¶

   Initiating Peer                    Responding Peer

@M [0] QUIC Packets

... Update to @N

@N [1] QUIC Packets

                      -------->

                                         Update to @N ...

                                      QUIC Packets [1] @N

                      <--------

                                      QUIC Packets [1] @N

                                    containing ACK

                      <--------

... Key Update Permitted

@N [1] QUIC Packets

         containing ACK for @N packets

                      -------->

                                 Key Update Permitted ...

¶

¶



Note:

The endpoint toggles the value of the Key Phase bit and uses the

updated key and IV to protect all subsequent packets.

An endpoint MUST NOT initiate a key update prior to having confirmed

the handshake (Section 4.1.2). An endpoint MUST NOT initiate a

subsequent key update unless it has received an acknowledgment for a

packet that was sent protected with keys from the current key phase.

This ensures that keys are available to both peers before another

key update can be initiated. This can be implemented by tracking the

lowest packet number sent with each key phase, and the highest

acknowledged packet number in the 1-RTT space: once the latter is

higher than or equal to the former, another key update can be

initiated.

Keys of packets other than the 1-RTT packets are never

updated; their keys are derived solely from the TLS handshake

state.

The endpoint that initiates a key update also updates the keys that

it uses for receiving packets. These keys will be needed to process

packets the peer sends after updating.

An endpoint MUST retain old keys until it has successfully

unprotected a packet sent using the new keys. An endpoint SHOULD

retain old keys for some time after unprotecting a packet sent using

the new keys. Discarding old keys too early can cause delayed

packets to be discarded. Discarding packets will be interpreted as

packet loss by the peer and could adversely affect performance.

6.2. Responding to a Key Update

A peer is permitted to initiate a key update after receiving an

acknowledgment of a packet in the current key phase. An endpoint

detects a key update when processing a packet with a key phase that

differs from the value used to protect the last packet it sent. To

process this packet, the endpoint uses the next packet protection

key and IV. See Section 6.3 for considerations about generating

these keys.

If a packet is successfully processed using the next key and IV,

then the peer has initiated a key update. The endpoint MUST update

its send keys to the corresponding key phase in response, as

described in Section 6.1. Sending keys MUST be updated before

sending an acknowledgment for the packet that was received with

updated keys. By acknowledging the packet that triggered the key

update in a packet protected with the updated keys, the endpoint

signals that the key update is complete.

secret_<n+1> = HKDF-Expand-Label(secret_<n>, "quic ku",

                                 "", Hash.length)

¶

¶

¶

¶

¶

¶

¶

¶



An endpoint can defer sending the packet or acknowledgment according

to its normal packet sending behaviour; it is not necessary to

immediately generate a packet in response to a key update. The next

packet sent by the endpoint will use the updated keys. The next

packet that contains an acknowledgment will cause the key update to

be completed. If an endpoint detects a second update before it has

sent any packets with updated keys containing an acknowledgment for

the packet that initiated the key update, it indicates that its peer

has updated keys twice without awaiting confirmation. An endpoint

MAY treat such consecutive key updates as a connection error of type

KEY_UPDATE_ERROR.

An endpoint that receives an acknowledgment that is carried in a

packet protected with old keys where any acknowledged packet was

protected with newer keys MAY treat that as a connection error of

type KEY_UPDATE_ERROR. This indicates that a peer has received and

acknowledged a packet that initiates a key update, but has not

updated keys in response.

6.3. Timing of Receive Key Generation

Endpoints responding to an apparent key update MUST NOT generate a

timing side-channel signal that might indicate that the Key Phase

bit was invalid (see Section 9.4). Endpoints can use dummy packet

protection keys in place of discarded keys when key updates are not

yet permitted. Using dummy keys will generate no variation in the

timing signal produced by attempting to remove packet protection,

and results in all packets with an invalid Key Phase bit being

rejected.

The process of creating new packet protection keys for receiving

packets could reveal that a key update has occurred. An endpoint MAY

generate new keys as part of packet processing, but this creates a

timing signal that could be used by an attacker to learn when key

updates happen and thus leak the value of the Key Phase bit.

Endpoints are generally expected to have current and next receive

packet protection keys available. For a short period after a key

update completes, up to the PTO, endpoints MAY defer generation of

the next set of receive packet protection keys. This allows

endpoints to retain only two sets of receive keys; see Section 6.5.

Once generated, the next set of packet protection keys SHOULD be

retained, even if the packet that was received was subsequently

discarded. Packets containing apparent key updates are easy to forge

and - while the process of key update does not require significant

effort - triggering this process could be used by an attacker for

DoS.

¶

¶

¶

¶

¶

¶



For this reason, endpoints MUST be able to retain two sets of packet

protection keys for receiving packets: the current and the next.

Retaining the previous keys in addition to these might improve

performance, but this is not essential.

6.4. Sending with Updated Keys

An endpoint never sends packets that are protected with old keys.

Only the current keys are used. Keys used for protecting packets can

be discarded immediately after switching to newer keys.

Packets with higher packet numbers MUST be protected with either the

same or newer packet protection keys than packets with lower packet

numbers. An endpoint that successfully removes protection with old

keys when newer keys were used for packets with lower packet numbers

MUST treat this as a connection error of type KEY_UPDATE_ERROR.

6.5. Receiving with Different Keys

For receiving packets during a key update, packets protected with

older keys might arrive if they were delayed by the network.

Retaining old packet protection keys allows these packets to be

successfully processed.

As packets protected with keys from the next key phase use the same

Key Phase value as those protected with keys from the previous key

phase, it is necessary to distinguish between the two, if packets

protected with old keys are to be processed. This can be done using

packet numbers. A recovered packet number that is lower than any

packet number from the current key phase uses the previous packet

protection keys; a recovered packet number that is higher than any

packet number from the current key phase requires the use of the

next packet protection keys.

Some care is necessary to ensure that any process for selecting

between previous, current, and next packet protection keys does not

expose a timing side channel that might reveal which keys were used

to remove packet protection. See Section 9.5 for more information.

Alternatively, endpoints can retain only two sets of packet

protection keys, swapping previous for next after enough time has

passed to allow for reordering in the network. In this case, the Key

Phase bit alone can be used to select keys.

An endpoint MAY allow a period of approximately the Probe Timeout

(PTO; see [QUIC-RECOVERY]) after promoting the next set of receive

keys to be current before it creates the subsequent set of packet

protection keys. These updated keys MAY replace the previous keys at

that time. With the caveat that PTO is a subjective measure - that

is, a peer could have a different view of the RTT - this time is

¶

¶

¶

¶

¶

¶

¶



expected to be long enough that any reordered packets would be

declared lost by a peer even if they were acknowledged and short

enough to allow a peer to initiate further key updates.

Endpoints need to allow for the possibility that a peer might not be

able to decrypt packets that initiate a key update during the period

when the peer retains old keys. Endpoints SHOULD wait three times

the PTO before initiating a key update after receiving an

acknowledgment that confirms that the previous key update was

received. Failing to allow sufficient time could lead to packets

being discarded.

An endpoint SHOULD retain old read keys for no more than three times

the PTO after having received a packet protected using the new keys.

After this period, old read keys and their corresponding secrets

SHOULD be discarded.

6.6. Limits on AEAD Usage

This document sets usage limits for AEAD algorithms to ensure that

overuse does not give an adversary a disproportionate advantage in

attacking the confidentiality and integrity of communications when

using QUIC.

The usage limits defined in TLS 1.3 exist for protection against

attacks on confidentiality and apply to successful applications of

AEAD protection. The integrity protections in authenticated

encryption also depend on limiting the number of attempts to forge

packets. TLS achieves this by closing connections after any record

fails an authentication check. In comparison, QUIC ignores any

packet that cannot be authenticated, allowing multiple forgery

attempts.

QUIC accounts for AEAD confidentiality and integrity limits

separately. The confidentiality limit applies to the number of

packets encrypted with a given key. The integrity limit applies to

the number of packets decrypted within a given connection. Details

on enforcing these limits for each AEAD algorithm follow below.

Endpoints MUST count the number of encrypted packets for each set of

keys. If the total number of encrypted packets with the same key

exceeds the confidentiality limit for the selected AEAD, the

endpoint MUST stop using those keys. Endpoints MUST initiate a key

update before sending more protected packets than the

confidentiality limit for the selected AEAD permits. If a key update

is not possible or integrity limits are reached, the endpoint MUST

stop using the connection and only send stateless resets in response

to receiving packets. It is RECOMMENDED that endpoints immediately

close the connection with a connection error of type

¶

¶

¶

¶

¶

¶



AEAD_LIMIT_REACHED before reaching a state where key updates are not

possible.

For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the confidentiality limit

is 2^23 encrypted packets; see Appendix B.1. For

AEAD_CHACHA20_POLY1305, the confidentiality limit is greater than

the number of possible packets (2^62) and so can be disregarded. For

AEAD_AES_128_CCM, the confidentiality limit is 2^21.5 encrypted

packets; see Appendix B.2. Applying a limit reduces the probability

that an attacker can distinguish the AEAD in use from a random

permutation; see [AEBounds], [ROBUST], and [GCM-MU].

In addition to counting packets sent, endpoints MUST count the

number of received packets that fail authentication during the

lifetime of a connection. If the total number of received packets

that fail authentication within the connection, across all keys,

exceeds the integrity limit for the selected AEAD, the endpoint MUST

immediately close the connection with a connection error of type

AEAD_LIMIT_REACHED and not process any more packets.

For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the integrity limit is

2^52 invalid packets; see Appendix B.1. For AEAD_CHACHA20_POLY1305,

the integrity limit is 2^36 invalid packets; see [AEBounds]. For

AEAD_AES_128_CCM, the integrity limit is 2^21.5 invalid packets; see

Appendix B.2. Applying this limit reduces the probability that an

attacker can successfully forge a packet; see [AEBounds], [ROBUST],

and [GCM-MU].

Endpoints that limit the size of packets MAY use higher

confidentiality and integrity limits; see Appendix B for details.

Future analyses and specifications MAY relax confidentiality or

integrity limits for an AEAD.

Any TLS cipher suite that is specified for use with QUIC MUST define

limits on the use of the associated AEAD function that preserves

margins for confidentiality and integrity. That is, limits MUST be

specified for the number of packets that can be authenticated and

for the number of packets that can fail authentication. Providing a

reference to any analysis upon which values are based - and any

assumptions used in that analysis - allows limits to be adapted to

varying usage conditions.

6.7. Key Update Error Code

The KEY_UPDATE_ERROR error code (0xe) is used to signal errors

related to key updates.

¶

¶

¶

¶

¶

¶

¶

¶



7. Security of Initial Messages

Initial packets are not protected with a secret key, so they are

subject to potential tampering by an attacker. QUIC provides

protection against attackers that cannot read packets, but does not

attempt to provide additional protection against attacks where the

attacker can observe and inject packets. Some forms of tampering --

such as modifying the TLS messages themselves -- are detectable, but

some -- such as modifying ACKs -- are not.

For example, an attacker could inject a packet containing an ACK

frame that makes it appear that a packet had not been received or to

create a false impression of the state of the connection (e.g., by

modifying the ACK Delay). Note that such a packet could cause a

legitimate packet to be dropped as a duplicate. Implementations

SHOULD use caution in relying on any data that is contained in

Initial packets that is not otherwise authenticated.

It is also possible for the attacker to tamper with data that is

carried in Handshake packets, but because that tampering requires

modifying TLS handshake messages, that tampering will cause the TLS

handshake to fail.

8. QUIC-Specific Adjustments to the TLS Handshake

Certain aspects of the TLS handshake are different when used with

QUIC.

QUIC also requires additional features from TLS. In addition to

negotiation of cryptographic parameters, the TLS handshake carries

and authenticates values for QUIC transport parameters.

8.1. Protocol Negotiation

QUIC requires that the cryptographic handshake provide authenticated

protocol negotiation. TLS uses Application Layer Protocol

Negotiation ([ALPN]) to select an application protocol. Unless

another mechanism is used for agreeing on an application protocol,

endpoints MUST use ALPN for this purpose.

When using ALPN, endpoints MUST immediately close a connection (see

Section 10.2 of [QUIC-TRANSPORT]) with a no_application_protocol TLS

alert (QUIC error code 0x178; see Section 4.8) if an application

protocol is not negotiated. While [ALPN] only specifies that servers

use this alert, QUIC clients MUST use error 0x178 to terminate a

connection when ALPN negotiation fails.

An application protocol MAY restrict the QUIC versions that it can

operate over. Servers MUST select an application protocol compatible

with the QUIC version that the client has selected. The server MUST

¶

¶

¶

¶

¶

¶

¶



treat the inability to select a compatible application protocol as a

connection error of type 0x178 (no_application_protocol). Similarly,

a client MUST treat the selection of an incompatible application

protocol by a server as a connection error of type 0x178.

8.2. QUIC Transport Parameters Extension

QUIC transport parameters are carried in a TLS extension. Different

versions of QUIC might define a different method for negotiating

transport configuration.

Including transport parameters in the TLS handshake provides

integrity protection for these values.

The extension_data field of the quic_transport_parameters extension

contains a value that is defined by the version of QUIC that is in

use.

The quic_transport_parameters extension is carried in the

ClientHello and the EncryptedExtensions messages during the

handshake. Endpoints MUST send the quic_transport_parameters

extension; endpoints that receive ClientHello or EncryptedExtensions

messages without the quic_transport_parameters extension MUST close

the connection with an error of type 0x16d (equivalent to a fatal

TLS missing_extension alert, see Section 4.8).

Transport parameters become available prior to the completion of the

handshake. A server might use these values earlier than handshake

completion. However, the value of transport parameters is not

authenticated until the handshake completes, so any use of these

parameters cannot depend on their authenticity. Any tampering with

transport parameters will cause the handshake to fail.

Endpoints MUST NOT send this extension in a TLS connection that does

not use QUIC (such as the use of TLS with TCP defined in [TLS13]). A

fatal unsupported_extension alert MUST be sent by an implementation

that supports this extension if the extension is received when the

transport is not QUIC.

Negotiating the quic_transport_parameters extension causes the

EndOfEarlyData to be removed; see Section 8.3.

¶

¶

¶

   enum {

      quic_transport_parameters(0x39), (65535)

   } ExtensionType;

¶

¶

¶

¶

¶

¶



8.3. Removing the EndOfEarlyData Message

The TLS EndOfEarlyData message is not used with QUIC. QUIC does not

rely on this message to mark the end of 0-RTT data or to signal the

change to Handshake keys.

Clients MUST NOT send the EndOfEarlyData message. A server MUST

treat receipt of a CRYPTO frame in a 0-RTT packet as a connection

error of type PROTOCOL_VIOLATION.

As a result, EndOfEarlyData does not appear in the TLS handshake

transcript.

8.4. Prohibit TLS Middlebox Compatibility Mode

Appendix D.4 of [TLS13] describes an alteration to the TLS 1.3

handshake as a workaround for bugs in some middleboxes. The TLS 1.3

middlebox compatibility mode involves setting the legacy_session_id

field to a 32-byte value in the ClientHello and ServerHello, then

sending a change_cipher_spec record. Both field and record carry no

semantic content and are ignored.

This mode has no use in QUIC as it only applies to middleboxes that

interfere with TLS over TCP. QUIC also provides no means to carry a

change_cipher_spec record. A client MUST NOT request the use of the

TLS 1.3 compatibility mode. A server SHOULD treat the receipt of a

TLS ClientHello with a non-empty legacy_session_id field as a

connection error of type PROTOCOL_VIOLATION.

9. Security Considerations

All of the security considerations that apply to TLS also apply to

the use of TLS in QUIC. Reading all of [TLS13] and its appendices is

the best way to gain an understanding of the security properties of

QUIC.

This section summarizes some of the more important security aspects

specific to the TLS integration, though there are many security-

relevant details in the remainder of the document.

9.1. Session Linkability

Use of TLS session tickets allows servers and possibly other

entities to correlate connections made by the same client; see 

Section 4.5 for details.

¶

¶

¶

¶

¶

¶

¶

¶



Note:

9.2. Replay Attacks with 0-RTT

As described in Section 8 of [TLS13], use of TLS early data comes

with an exposure to replay attack. The use of 0-RTT in QUIC is

similarly vulnerable to replay attack.

Endpoints MUST implement and use the replay protections described in

[TLS13], however it is recognized that these protections are

imperfect. Therefore, additional consideration of the risk of replay

is needed.

QUIC is not vulnerable to replay attack, except via the application

protocol information it might carry. The management of QUIC protocol

state based on the frame types defined in [QUIC-TRANSPORT] is not

vulnerable to replay. Processing of QUIC frames is idempotent and

cannot result in invalid connection states if frames are replayed,

reordered or lost. QUIC connections do not produce effects that last

beyond the lifetime of the connection, except for those produced by

the application protocol that QUIC serves.

TLS session tickets and address validation tokens are used to

carry QUIC configuration information between connections.

Specifically, to enable a server to efficiently recover state

that is used in connection establishment and address validation.

These MUST NOT be used to communicate application semantics

between endpoints; clients MUST treat them as opaque values. The

potential for reuse of these tokens means that they require

stronger protections against replay.

A server that accepts 0-RTT on a connection incurs a higher cost

than accepting a connection without 0-RTT. This includes higher

processing and computation costs. Servers need to consider the

probability of replay and all associated costs when accepting 0-RTT.

Ultimately, the responsibility for managing the risks of replay

attacks with 0-RTT lies with an application protocol. An application

protocol that uses QUIC MUST describe how the protocol uses 0-RTT

and the measures that are employed to protect against replay attack.

An analysis of replay risk needs to consider all QUIC protocol

features that carry application semantics.

Disabling 0-RTT entirely is the most effective defense against

replay attack.

QUIC extensions MUST describe how replay attacks affect their

operation, or prohibit their use in 0-RTT. Application protocols

MUST either prohibit the use of extensions that carry application

semantics in 0-RTT or provide replay mitigation strategies.

¶

¶

¶

¶

¶

¶

¶

¶



9.3. Packet Reflection Attack Mitigation

A small ClientHello that results in a large block of handshake

messages from a server can be used in packet reflection attacks to

amplify the traffic generated by an attacker.

QUIC includes three defenses against this attack. First, the packet

containing a ClientHello MUST be padded to a minimum size. Second,

if responding to an unverified source address, the server is

forbidden to send more than three times as many bytes as the number

of bytes it has received (see Section 8.1 of [QUIC-TRANSPORT]).

Finally, because acknowledgments of Handshake packets are

authenticated, a blind attacker cannot forge them. Put together,

these defenses limit the level of amplification.

9.4. Header Protection Analysis

[NAN] analyzes authenticated encryption algorithms that provide

nonce privacy, referred to as "Hide Nonce" (HN) transforms. The

general header protection construction in this document is one of

those algorithms (HN1). Header protection is applied after the

packet protection AEAD, sampling a set of bytes (sample) from the

AEAD output and encrypting the header field using a pseudorandom

function (PRF) as follows:

The header protection variants in this document use a pseudorandom

permutation (PRP) in place of a generic PRF. However, since all PRPs

are also PRFs [IMC], these variants do not deviate from the HN1

construction.

As hp_key is distinct from the packet protection key, it follows

that header protection achieves AE2 security as defined in [NAN] and

therefore guarantees privacy of field, the protected packet header.

Future header protection variants based on this construction MUST

use a PRF to ensure equivalent security guarantees.

Use of the same key and ciphertext sample more than once risks

compromising header protection. Protecting two different headers

with the same key and ciphertext sample reveals the exclusive OR of

the protected fields. Assuming that the AEAD acts as a PRF, if L

bits are sampled, the odds of two ciphertext samples being identical

approach 2^(-L/2), that is, the birthday bound. For the algorithms

described in this document, that probability is one in 2^64.

To prevent an attacker from modifying packet headers, the header is

transitively authenticated using packet protection; the entire

packet header is part of the authenticated additional data.

¶

¶

¶

protected_field = field XOR PRF(hp_key, sample)¶

¶

¶

¶



Protected fields that are falsified or modified can only be detected

once the packet protection is removed.

9.5. Header Protection Timing Side-Channels

An attacker could guess values for packet numbers or Key Phase and

have an endpoint confirm guesses through timing side channels.

Similarly, guesses for the packet number length can be tried and

exposed. If the recipient of a packet discards packets with

duplicate packet numbers without attempting to remove packet

protection they could reveal through timing side-channels that the

packet number matches a received packet. For authentication to be

free from side-channels, the entire process of header protection

removal, packet number recovery, and packet protection removal MUST

be applied together without timing and other side-channels.

For the sending of packets, construction and protection of packet

payloads and packet numbers MUST be free from side-channels that

would reveal the packet number or its encoded size.

During a key update, the time taken to generate new keys could

reveal through timing side-channels that a key update has occurred.

Alternatively, where an attacker injects packets this side-channel

could reveal the value of the Key Phase on injected packets. After

receiving a key update, an endpoint SHOULD generate and save the

next set of receive packet protection keys, as described in Section

6.3. By generating new keys before a key update is received, receipt

of packets will not create timing signals that leak the value of the

Key Phase.

This depends on not doing this key generation during packet

processing and it can require that endpoints maintain three sets of

packet protection keys for receiving: for the previous key phase,

for the current key phase, and for the next key phase. Endpoints can

instead choose to defer generation of the next receive packet

protection keys until they discard old keys so that only two sets of

receive keys need to be retained at any point in time.

9.6. Key Diversity

In using TLS, the central key schedule of TLS is used. As a result

of the TLS handshake messages being integrated into the calculation

of secrets, the inclusion of the QUIC transport parameters extension

ensures that handshake and 1-RTT keys are not the same as those that

might be produced by a server running TLS over TCP. To avoid the

possibility of cross-protocol key synchronization, additional

measures are provided to improve key separation.

The QUIC packet protection keys and IVs are derived using a

different label than the equivalent keys in TLS.

¶

¶

¶

¶

¶

¶

¶



[AEAD]

[AES]

[ALPN]

[CHACHA]

To preserve this separation, a new version of QUIC SHOULD define new

labels for key derivation for packet protection key and IV, plus the

header protection keys. This version of QUIC uses the string "quic".

Other versions can use a version-specific label in place of that

string.

The initial secrets use a key that is specific to the negotiated

QUIC version. New QUIC versions SHOULD define a new salt value used

in calculating initial secrets.

9.7. Randomness

QUIC depends on endpoints being able to generate secure random

numbers, both directly for protocol values such as the connection

ID, and transitively via TLS. See [RFC4086] for guidance on secure

random number generation.

10. IANA Considerations

IANA has registered a codepoint of 57 (or 0x39) for the

quic_transport_parameters extension (defined in Section 8.2) in the

TLS ExtensionType Values Registry [TLS-REGISTRIES].

The Recommended column for this extension is marked Yes. The TLS 1.3

Column includes CH and EE.

11. References

11.1. Normative References

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>. 

"Advanced encryption standard (AES)", National Institute

of Standards and Technology report, DOI 10.6028/

nist.fips.197, November 2001, <https://doi.org/10.6028/

nist.fips.197>. 

Friedl, S., Popov, A., Langley, A., and E. Stephan, 

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>. 

Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF

Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018, 

<https://www.rfc-editor.org/info/rfc8439>. 

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.6028/nist.fips.197
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc8439


[HKDF]

[QUIC-RECOVERY]

[QUIC-TRANSPORT]

[RFC2119]

[RFC4086]

[RFC8174]

[SHA]

[TLS-REGISTRIES]

[TLS13]

[AEBounds]

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>. 

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", Work in Progress, 

Internet-Draft, draft-ietf-quic-recovery-34, 15 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

recovery-34>. 

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-34, 

15 January 2021, <https://tools.ietf.org/html/draft-ietf-

quic-transport-34>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Eastlake 3rd, D., Schiller, J., and S. Crocker, 

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Dang, Q., "Secure Hash Standard", National Institute of

Standards and Technology report, DOI 10.6028/nist.fips.

180-4, July 2015, <https://doi.org/10.6028/nist.fips.

180-4>. 

Salowey, J. and S. Turner, "IANA Registry Updates

for TLS and DTLS", RFC 8447, DOI 10.17487/RFC8447, August

2018, <https://www.rfc-editor.org/info/rfc8447>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

11.2. Informative References

Luykx, A. and K. Paterson, "Limits on Authenticated

Encryption Use in TLS", 8 March 2016, <http://

www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>. 

https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/html/draft-ietf-quic-recovery-34
https://tools.ietf.org/html/draft-ietf-quic-recovery-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8446
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf


[ASCII]

[CCM-ANALYSIS]

[COMPRESS]

[GCM-MU]

[HTTP-REPLAY]

[HTTP2-TLS13]

[IMC]

[NAN]

[QUIC-HTTP]

[RFC2818]

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>. 

Jonsson, J., "On the Security of CTR + CBC-MAC", 

Selected Areas in Cryptography pp. 76-93, DOI

10.1007/3-540-36492-7_7, 2003, <https://doi.org/

10.1007/3-540-36492-7_7>. 

Ghedini, A. and V. Vasiliev, "TLS Certificate

Compression", Work in Progress, Internet-Draft, draft-

ietf-tls-certificate-compression-10, 6 January 2020, 

<http://www.ietf.org/internet-drafts/draft-ietf-tls-

certificate-compression-10.txt>. 

Hoang, V., Tessaro, S., and A. Thiruvengadam, "The Multi-

user Security of GCM, Revisited: Tight Bounds for Nonce

Randomization", Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, DOI

10.1145/3243734.3243816, January 2018, <https://doi.org/

10.1145/3243734.3243816>. 

Thomson, M., Nottingham, M., and W. Tarreau, "Using

Early Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, 

September 2018, <https://www.rfc-editor.org/info/

rfc8470>. 

Benjamin, D., "Using TLS 1.3 with HTTP/2", RFC 8740, 

DOI 10.17487/RFC8740, February 2020, <https://www.rfc-

editor.org/info/rfc8740>. 

Katz, J. and Y. Lindell, "Introduction to Modern

Cryptography, Second Edition", ISBN 978-1466570269, 6

November 2014. 

Bellare, M., Ng, R., and B. Tackmann, "Nonces Are

Noticed: AEAD Revisited", Advances in Cryptology - CRYPTO

2019 pp. 235-265, DOI 10.1007/978-3-030-26948-7_9, 2019, 

<https://doi.org/10.1007/978-3-030-26948-7_9>. 

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-33, 15 January 2021, <https://tools.ietf.org/

html/draft-ietf-quic-http-33>. 

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>. 

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1007/3-540-36492-7_7
http://www.ietf.org/internet-drafts/draft-ietf-tls-certificate-compression-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-certificate-compression-10.txt
https://doi.org/10.1145/3243734.3243816
https://doi.org/10.1145/3243734.3243816
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8740
https://www.rfc-editor.org/info/rfc8740
https://doi.org/10.1007/978-3-030-26948-7_9
https://tools.ietf.org/html/draft-ietf-quic-http-33
https://tools.ietf.org/html/draft-ietf-quic-http-33
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818


[RFC5280]

[ROBUST]

client in:

server in:

quic key:

quic iv:

quic hp:

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>. 

Fischlin, M., Günther, F., and C. Janson, "Robust

Channels: Handling Unreliable Networks in the Record

Layers of QUIC and DTLS 1.3", 16 May 2020, <https://

eprint.iacr.org/2020/718>. 

Appendix A. Sample Packet Protection

This section shows examples of packet protection so that

implementations can be verified incrementally. Samples of Initial

packets from both client and server, plus a Retry packet are

defined. These packets use an 8-byte client-chosen Destination

Connection ID of 0x8394c8f03e515708. Some intermediate values are

included. All values are shown in hexadecimal.

A.1. Keys

The labels generated during the execution of the HKDF-Expand-Label

function (that is, HkdfLabel.label) and part of the value given to

the HKDF-Expand function in order to produce its output are:

00200f746c73313320636c69656e7420696e00

00200f746c7331332073657276657220696e00

00100e746c7331332071756963206b657900

000c0d746c733133207175696320697600

00100d746c733133207175696320687000

The initial secret is common:

The secrets for protecting client packets are:

¶

¶

¶

¶

¶

¶

¶

¶

initial_secret = HKDF-Extract(initial_salt, cid)

    = 7db5df06e7a69e432496adedb0085192

      3595221596ae2ae9fb8115c1e9ed0a44

¶

¶

https://www.rfc-editor.org/info/rfc5280
https://eprint.iacr.org/2020/718
https://eprint.iacr.org/2020/718


The secrets for protecting server packets are:

A.2. Client Initial

The client sends an Initial packet. The unprotected payload of this

packet contains the following CRYPTO frame, plus enough PADDING

frames to make a 1162-byte payload:

The unprotected header indicates a length of 1182 bytes: the 4-byte

packet number, 1162 bytes of frames, and the 16-byte authentication

tag. The header includes the connection ID and a packet number of 2:

client_initial_secret

    = HKDF-Expand-Label(initial_secret, "client in", "", 32)

    = c00cf151ca5be075ed0ebfb5c80323c4

      2d6b7db67881289af4008f1f6c357aea

key = HKDF-Expand-Label(client_initial_secret, "quic key", "", 16)

    = 1f369613dd76d5467730efcbe3b1a22d

iv  = HKDF-Expand-Label(client_initial_secret, "quic iv", "", 12)

    = fa044b2f42a3fd3b46fb255c

hp  = HKDF-Expand-Label(client_initial_secret, "quic hp", "", 16)

    = 9f50449e04a0e810283a1e9933adedd2

¶

¶

server_initial_secret

    = HKDF-Expand-Label(initial_secret, "server in", "", 32)

    = 3c199828fd139efd216c155ad844cc81

      fb82fa8d7446fa7d78be803acdda951b

key = HKDF-Expand-Label(server_initial_secret, "quic key", "", 16)

    = cf3a5331653c364c88f0f379b6067e37

iv  = HKDF-Expand-Label(server_initial_secret, "quic iv", "", 12)

    = 0ac1493ca1905853b0bba03e

hp  = HKDF-Expand-Label(server_initial_secret, "quic hp", "", 16)

    = c206b8d9b9f0f37644430b490eeaa314

¶

¶

060040f1010000ed0303ebf8fa56f129 39b9584a3896472ec40bb863cfd3e868

04fe3a47f06a2b69484c000004130113 02010000c000000010000e00000b6578

616d706c652e636f6dff01000100000a 00080006001d00170018001000070005

04616c706e0005000501000000000033 00260024001d00209370b2c9caa47fba

baf4559fedba753de171fa71f50f1ce1 5d43e994ec74d748002b000302030400

0d0010000e0403050306030203080408 050806002d00020101001c0002400100

3900320408ffffffffffffffff050480 00ffff07048000ffff08011001048000

75300901100f088394c8f03e51570806 048000ffff

¶

¶

c300000001088394c8f03e5157080000449e00000002¶



Protecting the payload produces output that is sampled for header

protection. Because the header uses a 4-byte packet number encoding,

the first 16 bytes of the protected payload is sampled, then applied

to the header:

The resulting protected packet is:

¶

sample = d1b1c98dd7689fb8ec11d242b123dc9b

mask = AES-ECB(hp, sample)[0..4]

     = 437b9aec36

header[0] ^= mask[0] & 0x0f

     = c0

header[18..21] ^= mask[1..4]

     = 7b9aec34

header = c000000001088394c8f03e5157080000449e7b9aec34

¶

¶



A.3. Server Initial

The server sends the following payload in response, including an ACK

frame, a CRYPTO frame, and no PADDING frames:

c000000001088394c8f03e5157080000 449e7b9aec34d1b1c98dd7689fb8ec11

d242b123dc9bd8bab936b47d92ec356c 0bab7df5976d27cd449f63300099f399

1c260ec4c60d17b31f8429157bb35a12 82a643a8d2262cad67500cadb8e7378c

8eb7539ec4d4905fed1bee1fc8aafba1 7c750e2c7ace01e6005f80fcb7df6212

30c83711b39343fa028cea7f7fb5ff89 eac2308249a02252155e2347b63d58c5

457afd84d05dfffdb20392844ae81215 4682e9cf012f9021a6f0be17ddd0c208

4dce25ff9b06cde535d0f920a2db1bf3 62c23e596d11a4f5a6cf3948838a3aec

4e15daf8500a6ef69ec4e3feb6b1d98e 610ac8b7ec3faf6ad760b7bad1db4ba3

485e8a94dc250ae3fdb41ed15fb6a8e5 eba0fc3dd60bc8e30c5c4287e53805db

059ae0648db2f64264ed5e39be2e20d8 2df566da8dd5998ccabdae053060ae6c

7b4378e846d29f37ed7b4ea9ec5d82e7 961b7f25a9323851f681d582363aa5f8

9937f5a67258bf63ad6f1a0b1d96dbd4 faddfcefc5266ba6611722395c906556

be52afe3f565636ad1b17d508b73d874 3eeb524be22b3dcbc2c7468d54119c74

68449a13d8e3b95811a198f3491de3e7 fe942b330407abf82a4ed7c1b311663a

c69890f4157015853d91e923037c227a 33cdd5ec281ca3f79c44546b9d90ca00

f064c99e3dd97911d39fe9c5d0b23a22 9a234cb36186c4819e8b9c5927726632

291d6a418211cc2962e20fe47feb3edf 330f2c603a9d48c0fcb5699dbfe58964

25c5bac4aee82e57a85aaf4e2513e4f0 5796b07ba2ee47d80506f8d2c25e50fd

14de71e6c418559302f939b0e1abd576 f279c4b2e0feb85c1f28ff18f58891ff

ef132eef2fa09346aee33c28eb130ff2 8f5b766953334113211996d20011a198

e3fc433f9f2541010ae17c1bf202580f 6047472fb36857fe843b19f5984009dd

c324044e847a4f4a0ab34f719595de37 252d6235365e9b84392b061085349d73

203a4a13e96f5432ec0fd4a1ee65accd d5e3904df54c1da510b0ff20dcc0c77f

cb2c0e0eb605cb0504db87632cf3d8b4 dae6e705769d1de354270123cb11450e

fc60ac47683d7b8d0f811365565fd98c 4c8eb936bcab8d069fc33bd801b03ade

a2e1fbc5aa463d08ca19896d2bf59a07 1b851e6c239052172f296bfb5e724047

90a2181014f3b94a4e97d117b4381303 68cc39dbb2d198065ae3986547926cd2

162f40a29f0c3c8745c0f50fba3852e5 66d44575c29d39a03f0cda721984b6f4

40591f355e12d439ff150aab7613499d bd49adabc8676eef023b15b65bfc5ca0

6948109f23f350db82123535eb8a7433 bdabcb909271a6ecbcb58b936a88cd4e

8f2e6ff5800175f113253d8fa9ca8885 c2f552e657dc603f252e1a8e308f76f0

be79e2fb8f5d5fbbe2e30ecadd220723 c8c0aea8078cdfcb3868263ff8f09400

54da48781893a7e49ad5aff4af300cd8 04a6b6279ab3ff3afb64491c85194aab

760d58a606654f9f4400e8b38591356f bf6425aca26dc85244259ff2b19c41b9

f96f3ca9ec1dde434da7d2d392b905dd f3d1f9af93d1af5950bd493f5aa731b4

056df31bd267b6b90a079831aaf579be 0a39013137aac6d404f518cfd4684064

7e78bfe706ca4cf5e9c5453e9f7cfd2b 8b4c8d169a44e55c88d4a9a7f9474241

e221af44860018ab0856972e194cd934

¶

¶

02000000000600405a020000560303ee fce7f7b37ba1d1632e96677825ddf739

88cfc79825df566dc5430b9a045a1200 130100002e00330024001d00209d3c94

0d89690b84d08a60993c144eca684d10 81287c834d5311bcf32bb9da1a002b00

020304

¶



The header from the server includes a new connection ID and a 2-byte

packet number encoding for a packet number of 1:

As a result, after protection, the header protection sample is taken

starting from the third protected byte:

The final protected packet is then:

A.4. Retry

This shows a Retry packet that might be sent in response to the

Initial packet in Appendix A.2. The integrity check includes the

client-chosen connection ID value of 0x8394c8f03e515708, but that

value is not included in the final Retry packet:

A.5. ChaCha20-Poly1305 Short Header Packet

This example shows some of the steps required to protect a packet

with a short header. This example uses AEAD_CHACHA20_POLY1305.

In this example, TLS produces an application write secret from which

a server uses HKDF-Expand-Label to produce four values: a key, an

IV, a header protection key, and the secret that will be used after

keys are updated (this last value is not used further in this

example).

¶

c1000000010008f067a5502a4262b50040750001¶

¶

sample = 2cd0991cd25b0aac406a5816b6394100

mask   = 2ec0d8356a

header = cf000000010008f067a5502a4262b5004075c0d9

¶

¶

cf000000010008f067a5502a4262b500 4075c0d95a482cd0991cd25b0aac406a

5816b6394100f37a1c69797554780bb3 8cc5a99f5ede4cf73c3ec2493a1839b3

dbcba3f6ea46c5b7684df3548e7ddeb9 c3bf9c73cc3f3bded74b562bfb19fb84

022f8ef4cdd93795d77d06edbb7aaf2f 58891850abbdca3d20398c276456cbc4

2158407dd074ee

¶

¶

ff000000010008f067a5502a4262b574 6f6b656e04a265ba2eff4d829058fb3f

0f2496ba

¶

¶

¶



The following shows the steps involved in protecting a minimal

packet with an empty Destination Connection ID. This packet contains

a single PING frame (that is, a payload of just 0x01) and has a

packet number of 654360564. In this example, using a packet number

of length 3 (that is, 49140 is encoded) avoids having to pad the

payload of the packet; PADDING frames would be needed if the packet

number is encoded on fewer bytes.

The resulting ciphertext is the minimum size possible. One byte is

skipped to produce the sample for header protection.

The protected packet is the smallest possible packet size of 21

bytes.

Appendix B. AEAD Algorithm Analysis

This section documents analyses used in deriving AEAD algorithm

limits for AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.

The analyses that follow use symbols for multiplication (*),

secret

    = 9ac312a7f877468ebe69422748ad00a1

      5443f18203a07d6060f688f30f21632b

key = HKDF-Expand-Label(secret, "quic key", "", 32)

    = c6d98ff3441c3fe1b2182094f69caa2e

      d4b716b65488960a7a984979fb23e1c8

iv  = HKDF-Expand-Label(secret, "quic iv", "", 12)

    = e0459b3474bdd0e44a41c144

hp  = HKDF-Expand-Label(secret, "quic hp", "", 32)

    = 25a282b9e82f06f21f488917a4fc8f1b

      73573685608597d0efcb076b0ab7a7a4

ku  = HKDF-Expand-Label(secret, "quic ku", "", 32)

    = 1223504755036d556342ee9361d25342

      1a826c9ecdf3c7148684b36b714881f9

¶

¶

pn                 = 654360564 (decimal)

nonce              = e0459b3474bdd0e46d417eb0

unprotected header = 4200bff4

payload plaintext  = 01

payload ciphertext = 655e5cd55c41f69080575d7999c25a5bfb

¶

¶

sample = 5e5cd55c41f69080575d7999c25a5bfb

mask   = aefefe7d03

header = 4cfe4189

¶

¶

packet = 4cfe4189655e5cd55c41f69080575d7999c25a5bfb¶



t:

n:

k:

l:

q:

v:

o:

division (/), and exponentiation (^), plus parentheses for

establishing precedence. The following symbols are also used:

The size of the authentication tag in bits. For these ciphers, t

is 128.

The size of the block function in bits. For these ciphers, n is

128.

The size of the key in bits. This is 128 for AEAD_AES_128_GCM

and AEAD_AES_128_CCM; 256 for AEAD_AES_256_GCM.

The number of blocks in each packet (see below).

The number of genuine packets created and protected by

endpoints. This value is the bound on the number of packets that

can be protected before updating keys.

The number of forged packets that endpoints will accept. This

value is the bound on the number of forged packets that an

endpoint can reject before updating keys.

The amount of offline ideal cipher queries made by an adversary.

The analyses that follow rely on a count of the number of block

operations involved in producing each message. This analysis is

performed for packets of size up to 2^11 (l = 2^7) and 2^16 (l =

2^12). A size of 2^11 is expected to be a limit that matches common

deployment patterns, whereas the 2^16 is the maximum possible size

of a QUIC packet. Only endpoints that strictly limit packet size can

use the larger confidentiality and integrity limits that are derived

using the smaller packet size.

For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the message length (l) is

the length of the associated data in blocks plus the length of the

plaintext in blocks.

For AEAD_AES_128_CCM, the total number of block cipher operations is

the sum of: the length of the associated data in blocks, the length

of the ciphertext in blocks, the length of the plaintext in blocks,

plus 1. In this analysis, this is simplified to a value of twice the

length of the packet in blocks (that is, 2l = 2^8 for packets that

are limited to 2^11 bytes, or 2l = 2^13 otherwise). This

simplification is based on the packet containing all of the

associated data and ciphertext. This results in a 1 to 3 block

overestimation of the number of operations per packet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



B.1. Analysis of AEAD_AES_128_GCM and AEAD_AES_256_GCM Usage Limits

[GCM-MU] specify concrete bounds for AEAD_AES_128_GCM and

AEAD_AES_256_GCM as used in TLS 1.3 and QUIC. This section documents

this analysis using several simplifying assumptions:

The number of ciphertext blocks an attacker uses in forgery

attempts is bounded by v * l, the number of forgery attempts and

the size of each packet (in blocks).

The amount of offline work done by an attacker does not dominate

other factors in the analysis.

The bounds in [GCM-MU] are tighter and more complete than those used

in [AEBounds], which allows for larger limits than those described

in [TLS13].

B.1.1. Confidentiality Limit

For confidentiality, Theorum (4.3) in [GCM-MU] establishes that -

for a single user that does not repeat nonces - the dominant term in

determining the distinguishing advantage between a real and random

AEAD algorithm gained by an attacker is:

For a target advantage of 2^-57, this results in the relation:

Thus, endpoints that do not send packets larger than 2^11 bytes

cannot protect more than 2^28 packets in a single connection without

causing an attacker to gain an larger advantage than the target of

2^-57. The limit for endpoints that allow for the packet size to be

as large as 2^16 is instead 2^23.

B.1.2. Integrity Limit

For integrity, Theorem (4.3) in [GCM-MU] establishes that an

attacker gains an advantage in successfully forging a packet of no

more than:

The goal is to limit this advantage to 2^-57. For AEAD_AES_128_GCM,

the fourth term in this inequality dominates the rest, so the others

can be removed without significant effect on the result. This

produces the following approximation:

¶

*

¶

*

¶

¶

¶

2 * (q * l)^2 / 2^n¶

¶

q <= 2^35 / l¶

¶

¶

(1 / 2^(8 * n)) + ((2 * v) / 2^(2 * n))

        + ((2 * o * v) / 2^(k + n)) + (n * (v + (v * l)) / 2^k)

¶

¶



Endpoints that do not attempt to remove protection from packets

larger than 2^11 bytes can attempt to remove protection from at most

2^57 packets. Endpoints that do not restrict the size of processed

packets can attempt to remove protection from at most 2^52 packets.

For AEAD_AES_256_GCM, the same term dominates, but the larger value

of k produces the following approximation:

This is substantially larger than the limit for AEAD_AES_128_GCM.

However, this document recommends that the same limit be applied to

both functions as either limit is acceptably large.

B.2. Analysis of AEAD_AES_128_CCM Usage Limits

TLS [TLS13] and [AEBounds] do not specify limits on usage for

AEAD_AES_128_CCM. However, any AEAD that is used with QUIC requires

limits on use that ensure that both confidentiality and integrity

are preserved. This section documents that analysis.

[CCM-ANALYSIS] is used as the basis of this analysis. The results of

that analysis are used to derive usage limits that are based on

those chosen in [TLS13].

For confidentiality, Theorem 2 in [CCM-ANALYSIS] establishes that an

attacker gains a distinguishing advantage over an ideal pseudorandom

permutation (PRP) of no more than:

The integrity limit in Theorem 1 in [CCM-ANALYSIS] provides an

attacker a strictly higher advantage for the same number of

messages. As the targets for the confidentiality advantage and the

integrity advantage are the same, only Theorem 1 needs to be

considered.

Theorem 1 establishes that an attacker gains an advantage over an

ideal PRP of no more than:

As t and n are both 128, the first term is negligible relative to

the second, so that term can be removed without a significant effect

on the result.

This produces a relation that combines both encryption and

decryption attempts with the same limit as that produced by the

v <= 2^64 / l¶

¶

¶

v <= 2^192 / l¶

¶

¶

¶

¶

(2l * q)^2 / 2^n¶

¶

¶

v / 2^t + (2l * (v + q))^2 / 2^n¶

¶



theorem for confidentiality alone. For a target advantage of 2^-57,

this results in:

By setting q = v, values for both confidentiality and integrity

limits can be produced. Endpoints that limit packets to 2^11 bytes

therefore have both confidentiality and integrity limits of 2^26.5

packets. Endpoints that do not restrict packet size have a limit of

2^21.5.

Appendix C. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-tls-32

Added final values for Initial key derivation, Retry

authentication, and TLS extension type for the QUIC Transport

Parameters extension (#4431) (#4431)

Corrected rules for handling of 0-RTT (#4393, #4394)

C.2. Since draft-ietf-quic-tls-31

Packet protection limits are based on maximum-sized packets;

improved analysis (#3701, #4175)

C.3. Since draft-ietf-quic-tls-30

Add a new error code for AEAD_LIMIT_REACHED code to avoid

conflict (#4087, #4088)

C.4. Since draft-ietf-quic-tls-29

Updated limits on packet protection (#3788, #3789)

Allow for packet processing to continue while waiting for TLS to

provide keys (#3821, #3874)

C.5. Since draft-ietf-quic-tls-28

Defined limits on the number of packets that can be protected

with a single key and limits on the number of packets that can

fail authentication (#3619, #3620)

Update Initial salt, Retry keys, and samples (#3711)

¶

v + q <= 2^34.5 / l¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶



C.6. Since draft-ietf-quic-tls-27

Allowed CONNECTION_CLOSE in any packet number space, with

restrictions on use of the application-specific variant (#3430,

#3435, #3440)

Prohibit the use of the compatibility mode from TLS 1.3 (#3594,

#3595)

C.7. Since draft-ietf-quic-tls-26

No changes

C.8. Since draft-ietf-quic-tls-25

No changes

C.9. Since draft-ietf-quic-tls-24

Rewrite key updates (#3050)

Allow but don't recommend deferring key updates (#2792, #3263)

More completely define received behavior (#2791)

Define the label used with HKDF-Expand-Label (#3054)

C.10. Since draft-ietf-quic-tls-23

Key update text update (#3050):

Recommend constant-time key replacement (#2792)

Provide explicit labels for key update key derivation (#3054)

Allow first Initial from a client to span multiple packets

(#2928, #3045)

PING can be sent at any encryption level (#3034, #3035)

C.11. Since draft-ietf-quic-tls-22

Update the salt used for Initial secrets (#2887, #2980)

C.12. Since draft-ietf-quic-tls-21

No changes

*

¶

*

¶

* ¶

* ¶

* ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶



C.13. Since draft-ietf-quic-tls-20

Mandate the use of the QUIC transport parameters extension

(#2528, #2560)

Define handshake completion and confirmation; define clearer

rules when it encryption keys should be discarded (#2214, #2267,

#2673)

C.14. Since draft-ietf-quic-tls-18

Increased the set of permissible frames in 0-RTT (#2344, #2355)

Transport parameter extension is mandatory (#2528, #2560)

C.15. Since draft-ietf-quic-tls-17

Endpoints discard initial keys as soon as handshake keys are

available (#1951, #2045)

Use of ALPN or equivalent is mandatory (#2263, #2284)

C.16. Since draft-ietf-quic-tls-14

Update the salt used for Initial secrets (#1970)

Clarify that TLS_AES_128_CCM_8_SHA256 isn't supported (#2019)

Change header protection

Sample from a fixed offset (#1575, #2030)

Cover part of the first byte, including the key phase (#1322,

#2006)

TLS provides an AEAD and KDF function (#2046)

Clarify that the TLS KDF is used with TLS (#1997)

Change the labels for calculation of QUIC keys (#1845, #1971,

#1991)

Initial keys are discarded once Handshake keys are available

(#1951, #2045)

C.17. Since draft-ietf-quic-tls-13

Updated to TLS 1.3 final (#1660)

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

- ¶

-

¶

* ¶

- ¶

-

¶

*

¶

* ¶



C.18. Since draft-ietf-quic-tls-12

Changes to integration of the TLS handshake (#829, #1018, #1094,

#1165, #1190, #1233, #1242, #1252, #1450)

The cryptographic handshake uses CRYPTO frames, not stream 0

QUIC packet protection is used in place of TLS record

protection

Separate QUIC packet number spaces are used for the handshake

Changed Retry to be independent of the cryptographic handshake

Limit the use of HelloRetryRequest to address TLS needs (like

key shares)

Changed codepoint of TLS extension (#1395, #1402)

C.19. Since draft-ietf-quic-tls-11

Encrypted packet numbers.

C.20. Since draft-ietf-quic-tls-10

No significant changes.

C.21. Since draft-ietf-quic-tls-09

Cleaned up key schedule and updated the salt used for handshake

packet protection (#1077)

C.22. Since draft-ietf-quic-tls-08

Specify value for max_early_data_size to enable 0-RTT (#942)

Update key derivation function (#1003, #1004)

C.23. Since draft-ietf-quic-tls-07

Handshake errors can be reported with CONNECTION_CLOSE (#608,

#891)

C.24. Since draft-ietf-quic-tls-05

No significant changes.

C.25. Since draft-ietf-quic-tls-04

Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

*

¶

- ¶

-

¶

- ¶

- ¶

-

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

* ¶



C.26. Since draft-ietf-quic-tls-03

No significant changes.

C.27. Since draft-ietf-quic-tls-02

Updates to match changes in transport draft

C.28. Since draft-ietf-quic-tls-01

Use TLS alerts to signal TLS errors (#272, #374)

Require ClientHello to fit in a single packet (#338)

The second client handshake flight is now sent in the clear

(#262, #337)

The QUIC header is included as AEAD Associated Data (#226, #243,

#302)

Add interface necessary for client address validation (#275)

Define peer authentication (#140)

Require at least TLS 1.3 (#138)

Define transport parameters as a TLS extension (#122)

Define handling for protected packets before the handshake

completes (#39)

Decouple QUIC version and ALPN (#12)

C.29. Since draft-ietf-quic-tls-00

Changed bit used to signal key phase

Updated key phase markings during the handshake

Added TLS interface requirements section

Moved to use of TLS exporters for key derivation

Moved TLS error code definitions into this document

C.30. Since draft-thomson-quic-tls-01

Adopted as base for draft-ietf-quic-tls

Updated authors/editors list

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶



Added status note

Contributors

The IETF QUIC Working Group received an enormous amount of support

from many people. The following people provided substantive

contributions to this document:

Adam Langley

Alessandro Ghedini

Christian Huitema

Christopher Wood

David Schinazi

Dragana Damjanovic

Eric Rescorla

Felix Guenther

Ian Swett

Jana Iyengar

奥  (Kazuho Oku)

Marten Seemann

Martin Duke

Mike Bishop

Mikkel Fahnøe Jørgensen

Nick Banks

Nick Harper

Roberto Peon

Rui Paulo

Ryan Hamilton

Victor Vasiliev

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶



Authors' Addresses

Martin Thomson (editor)

Mozilla

Email: mt@lowentropy.net

Sean Turner (editor)

sn3rd

Email: sean@sn3rd.com

mailto:mt@lowentropy.net
mailto:sean@sn3rd.com

	Using TLS to Secure QUIC
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	2.1. TLS Overview

	3. Protocol Overview
	4. Carrying TLS Messages
	4.1. Interface to TLS
	4.1.1. Handshake Complete
	4.1.2. Handshake Confirmed
	4.1.3. Sending and Receiving Handshake Messages
	4.1.4. Encryption Level Changes
	4.1.5. TLS Interface Summary

	4.2. TLS Version
	4.3. ClientHello Size
	4.4. Peer Authentication
	4.5. Session Resumption
	4.6. 0-RTT
	4.6.1. Enabling 0-RTT
	4.6.2. Accepting and Rejecting 0-RTT
	4.6.3. Validating 0-RTT Configuration

	4.7. HelloRetryRequest
	4.8. TLS Errors
	4.9. Discarding Unused Keys
	4.9.1. Discarding Initial Keys
	4.9.2. Discarding Handshake Keys
	4.9.3. Discarding 0-RTT Keys


	5. Packet Protection
	5.1. Packet Protection Keys
	5.2. Initial Secrets
	5.3. AEAD Usage
	5.4. Header Protection
	5.4.1. Header Protection Application
	5.4.2. Header Protection Sample
	5.4.3. AES-Based Header Protection
	5.4.4. ChaCha20-Based Header Protection

	5.5. Receiving Protected Packets
	5.6. Use of 0-RTT Keys
	5.7. Receiving Out-of-Order Protected Packets
	5.8. Retry Packet Integrity

	6. Key Update
	6.1. Initiating a Key Update
	6.2. Responding to a Key Update
	6.3. Timing of Receive Key Generation
	6.4. Sending with Updated Keys
	6.5. Receiving with Different Keys
	6.6. Limits on AEAD Usage
	6.7. Key Update Error Code

	7. Security of Initial Messages
	8. QUIC-Specific Adjustments to the TLS Handshake
	8.1. Protocol Negotiation
	8.2. QUIC Transport Parameters Extension
	8.3. Removing the EndOfEarlyData Message
	8.4. Prohibit TLS Middlebox Compatibility Mode

	9. Security Considerations
	9.1. Session Linkability
	9.2. Replay Attacks with 0-RTT
	9.3. Packet Reflection Attack Mitigation
	9.4. Header Protection Analysis
	9.5. Header Protection Timing Side-Channels
	9.6. Key Diversity
	9.7. Randomness

	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Sample Packet Protection
	A.1. Keys
	A.2. Client Initial
	A.3. Server Initial
	A.4. Retry
	A.5. ChaCha20-Poly1305 Short Header Packet
	Appendix B. AEAD Algorithm Analysis
	B.1. Analysis of AEAD_AES_128_GCM and AEAD_AES_256_GCM Usage Limits
	B.1.1. Confidentiality Limit
	B.1.2. Integrity Limit

	B.2. Analysis of AEAD_AES_128_CCM Usage Limits
	Appendix C. Change Log
	C.1. Since draft-ietf-quic-tls-32
	C.2. Since draft-ietf-quic-tls-31
	C.3. Since draft-ietf-quic-tls-30
	C.4. Since draft-ietf-quic-tls-29
	C.5. Since draft-ietf-quic-tls-28
	C.6. Since draft-ietf-quic-tls-27
	C.7. Since draft-ietf-quic-tls-26
	C.8. Since draft-ietf-quic-tls-25
	C.9. Since draft-ietf-quic-tls-24
	C.10. Since draft-ietf-quic-tls-23
	C.11. Since draft-ietf-quic-tls-22
	C.12. Since draft-ietf-quic-tls-21
	C.13. Since draft-ietf-quic-tls-20
	C.14. Since draft-ietf-quic-tls-18
	C.15. Since draft-ietf-quic-tls-17
	C.16. Since draft-ietf-quic-tls-14
	C.17. Since draft-ietf-quic-tls-13
	C.18. Since draft-ietf-quic-tls-12
	C.19. Since draft-ietf-quic-tls-11
	C.20. Since draft-ietf-quic-tls-10
	C.21. Since draft-ietf-quic-tls-09
	C.22. Since draft-ietf-quic-tls-08
	C.23. Since draft-ietf-quic-tls-07
	C.24. Since draft-ietf-quic-tls-05
	C.25. Since draft-ietf-quic-tls-04
	C.26. Since draft-ietf-quic-tls-03
	C.27. Since draft-ietf-quic-tls-02
	C.28. Since draft-ietf-quic-tls-01
	C.29. Since draft-ietf-quic-tls-00
	C.30. Since draft-thomson-quic-tls-01
	Contributors
	Authors' Addresses


