
QUIC J. Iyengar, Ed.
Internet-Draft Google
Intended status: Standards Track M. Thomson, Ed.
Expires: November 22, 2017 Mozilla
 May 21, 2017

QUIC: A UDP-Based Multiplexed and Secure Transport
draft-ietf-quic-transport-03

Abstract

 This document defines the core of the QUIC transport protocol. This
 document describes connection establishment, packet format,
 multiplexing and reliability. Accompanying documents describe the
 cryptographic handshake and loss detection.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic .

 Working Group information can be found at https://github.com/quicwg ;
 source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/transport .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 22, 2017.

Iyengar & Thomson Expires November 22, 2017 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/transport
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Transport Protocol May 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Definitions 5
2.1. Notational Conventions 5

3. A QUIC Overview . 6
3.1. Low-Latency Connection Establishment 6
3.2. Stream Multiplexing 6

 3.3. Rich Signaling for Congestion Control and Loss Recovery . 7
3.4. Stream and Connection Flow Control 7
3.5. Authenticated and Encrypted Header and Payload 7
3.6. Connection Migration and Resilience to NAT Rebinding . . 8
3.7. Version Negotiation 8

4. Versions . 8
5. Packet Types and Formats 9
5.1. Long Header . 9
5.2. Short Header . 11
5.3. Version Negotiation Packet 13
5.4. Cleartext Packets . 14
5.4.1. Client Initial Packet 14
5.4.2. Server Stateless Retry Packet 15
5.4.3. Server Cleartext Packet 15
5.4.4. Client Cleartext Packet 16

5.5. Protected Packets . 16
5.6. Public Reset Packet 17
5.6.1. Public Reset Proof 18

5.7. Connection ID . 18
5.8. Packet Numbers . 18
5.8.1. Initial Packet Number 19

5.9. Handling Packets from Different Versions 20
6. Frames and Frame Types 20
7. Life of a Connection . 22
7.1. Version Negotiation 23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Iyengar & Thomson Expires November 22, 2017 [Page 2]

Internet-Draft QUIC Transport Protocol May 2017

7.1.1. Using Reserved Versions 24
7.2. Cryptographic and Transport Handshake 24
7.3. Transport Parameters 25
7.3.1. Transport Parameter Definitions 27
7.3.2. Values of Transport Parameters for 0-RTT 27
7.3.3. New Transport Parameters 28
7.3.4. Version Negotiation Validation 28

7.4. Stateless Retries . 29
7.5. Proof of Source Address Ownership 30
7.5.1. Client Address Validation Procedure 31
7.5.2. Address Validation on Session Resumption 31
7.5.3. Address Validation Token Integrity 32

7.6. Connection Migration 32
7.6.1. Privacy Implications of Connection Migration 33
7.6.2. Address Validation for Migrated Connections 34

7.7. Connection Termination 34
8. Frame Types and Formats 35
8.1. STREAM Frame . 35
8.2. ACK Frame . 37
8.2.1. ACK Block Section 39
8.2.2. Timestamp Section 40
8.2.3. ACK Frames and Packet Protection 41

8.3. MAX_DATA Frame . 42
8.4. MAX_STREAM_DATA Frame 43
8.5. MAX_STREAM_ID Frame 44
8.6. BLOCKED Frame . 44
8.7. STREAM_BLOCKED Frame 44
8.8. STREAM_ID_NEEDED Frame 45
8.9. RST_STREAM Frame . 45
8.10. PADDING Frame . 46
8.11. PING frame . 46
8.12. NEW_CONNECTION_ID Frame 46
8.13. CONNECTION_CLOSE frame 47
8.14. GOAWAY Frame . 48

9. Packetization and Reliability 49
9.1. Special Considerations for PMTU Discovery 51

10. Streams: QUIC's Data Structuring Abstraction 51
10.1. Stream Identifiers 52
10.2. Life of a Stream . 52
10.2.1. idle . 54
10.2.2. open . 54
10.2.3. half-closed (local) 55
10.2.4. half-closed (remote) 55
10.2.5. closed . 56

10.3. Stream Concurrency 56
10.4. Sending and Receiving Data 57
10.5. Stream Prioritization 57

11. Flow Control . 58

Iyengar & Thomson Expires November 22, 2017 [Page 3]

Internet-Draft QUIC Transport Protocol May 2017

11.1. Edge Cases and Other Considerations 59
11.1.1. Response to a RST_STREAM 60
11.1.2. Data Limit Increments 60

11.2. Stream Limit Increment 61
11.2.1. Blocking on Flow Control 61

11.3. Stream Final Offset 61
12. Error Handling . 62
12.1. Connection Errors 62
12.2. Stream Errors . 63
12.3. Error Codes . 63

13. Security and Privacy Considerations 67
13.1. Spoofed ACK Attack 67
13.2. Slowloris Attacks 68
13.3. Stream Fragmentation and Reassembly Attacks 68
13.4. Stream Commitment Attack 68

14. IANA Considerations . 69
14.1. QUIC Transport Parameter Registry 69

15. References . 70
15.1. Normative References 70
15.2. Informative References 71
15.3. URIs . 72

Appendix A. Contributors . 72
Appendix B. Acknowledgments 72
Appendix C. Change Log . 72
C.1. Since draft-ietf-quic-transport-02 72
C.2. Since draft-ietf-quic-transport-01 73
C.3. Since draft-ietf-quic-transport-00 75
C.4. Since draft-hamilton-quic-transport-protocol-01 76

 Authors' Addresses . 76

1. Introduction

 QUIC is a multiplexed and secure transport protocol that runs on top
 of UDP. QUIC aims to provide a flexible set of features that allow
 it to be a general-purpose transport for multiple applications.

 QUIC implements techniques learned from experience with TCP, SCTP and
 other transport protocols. Using UDP as the substrate, QUIC seeks to
 be compatible with legacy clients and middleboxes. QUIC
 authenticates all of its headers and encrypts most of the data it
 exchanges, including its signaling. This allows the protocol to
 evolve without incurring a dependency on upgrades to middleboxes.
 This document describes the core QUIC protocol, including the
 conceptual design, wire format, and mechanisms of the QUIC protocol
 for connection establishment, stream multiplexing, stream and
 connection-level flow control, and data reliability.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01

Iyengar & Thomson Expires November 22, 2017 [Page 4]

Internet-Draft QUIC Transport Protocol May 2017

 Accompanying documents describe QUIC's loss detection and congestion
 control [QUIC-RECOVERY], and the use of TLS 1.3 for key negotiation
 [QUIC-TLS].

2. Conventions and Definitions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

 Definitions of terms that are used in this document:

 Client: The endpoint initiating a QUIC connection.

 Server: The endpoint accepting incoming QUIC connections.

 Endpoint: The client or server end of a connection.

 Stream: A logical, bi-directional channel of ordered bytes within a
 QUIC connection.

 Connection: A conversation between two QUIC endpoints with a single
 encryption context that multiplexes streams within it.

 Connection ID: The identifier for a QUIC connection.

 QUIC packet: A well-formed UDP payload that can be parsed by a QUIC
 receiver. QUIC packet size in this document refers to the UDP
 payload size.

2.1. Notational Conventions

 Packet and frame diagrams use the format described in [RFC2360]
 Section 3.1, with the following additional conventions:

 [x] Indicates that x is optional

 {x} Indicates that x is encrypted

 x (A) Indicates that x is A bits long

 x (A/B/C) ... Indicates that x is one of A, B, or C bits long

 x (*) ... Indicates that x is variable-length

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2360#section-3.1
https://datatracker.ietf.org/doc/html/rfc2360#section-3.1

Iyengar & Thomson Expires November 22, 2017 [Page 5]

Internet-Draft QUIC Transport Protocol May 2017

3. A QUIC Overview

 This section briefly describes QUIC's key mechanisms and benefits.
 Key strengths of QUIC include:

 o Low-latency connection establishment

 o Multiplexing without head-of-line blocking

 o Authenticated and encrypted header and payload

 o Rich signaling for congestion control and loss recovery

 o Stream and connection flow control

 o Connection migration and resilience to NAT rebinding

 o Version negotiation

3.1. Low-Latency Connection Establishment

 QUIC relies on a combined cryptographic and transport handshake for
 setting up a secure transport connection. QUIC connections are
 expected to commonly use 0-RTT handshakes, meaning that for most QUIC
 connections, data can be sent immediately following the client
 handshake packet, without waiting for a reply from the server. QUIC
 provides a dedicated stream (Stream ID 0) to be used for performing
 the cryptographic handshake and QUIC options negotiation. The format
 of the QUIC options and parameters used during negotiation are
 described in this document, but the handshake protocol that runs on
 Stream ID 0 is described in the accompanying cryptographic handshake
 draft [QUIC-TLS].

3.2. Stream Multiplexing

 When application messages are transported over TCP, independent
 application messages can suffer from head-of-line blocking. When an
 application multiplexes many streams atop TCP's single-bytestream
 abstraction, a loss of a TCP segment results in blocking of all
 subsequent segments until a retransmission arrives, irrespective of
 the application streams that are encapsulated in subsequent segments.
 QUIC ensures that lost packets carrying data for an individual stream
 only impact that specific stream. Data received on other streams can
 continue to be reassembled and delivered to the application.

Iyengar & Thomson Expires November 22, 2017 [Page 6]

Internet-Draft QUIC Transport Protocol May 2017

3.3. Rich Signaling for Congestion Control and Loss Recovery

 QUIC's packet framing and acknowledgments carry rich information that
 help both congestion control and loss recovery in fundamental ways.
 Each QUIC packet carries a new packet number, including those
 carrying retransmitted data. This obviates the need for a separate
 mechanism to distinguish acknowledgments for retransmissions from
 those for original transmissions, avoiding TCP's retransmission
 ambiguity problem. QUIC acknowledgments also explicitly encode the
 delay between the receipt of a packet and its acknowledgment being
 sent, and together with the monotonically-increasing packet numbers,
 this allows for precise network roundtrip-time (RTT) calculation.
 QUIC's ACK frames support up to 256 ACK blocks, so QUIC is more
 resilient to reordering than TCP with SACK support, as well as able
 to keep more bytes on the wire when there is reordering or loss.

3.4. Stream and Connection Flow Control

 QUIC implements stream- and connection-level flow control. At a high
 level, a QUIC receiver advertises the maximum amount of data that it
 is willing to receive on each stream. As data is sent, received, and
 delivered on a particular stream, the receiver sends MAX_STREAM_DATA
 frames that increase the advertised limit for that stream, allowing
 the peer to send more data on that stream.

 In addition to this stream-level flow control, QUIC implements
 connection-level flow control to limit the aggregate buffer that a
 QUIC receiver is willing to allocate to all streams on a connection.
 Connection-level flow control works in the same way as stream-level
 flow control, but the bytes delivered and the limits are aggregated
 across all streams.

3.5. Authenticated and Encrypted Header and Payload

 TCP headers appear in plaintext on the wire and are not
 authenticated, causing a plethora of injection and header
 manipulation issues for TCP, such as receive-window manipulation and
 sequence-number overwriting. While some of these are mechanisms used
 by middleboxes to improve TCP performance, others are active attacks.
 Even "performance-enhancing" middleboxes that routinely interpose on
 the transport state machine end up limiting the evolvability of the
 transport protocol, as has been observed in the design of MPTCP
 [RFC6824] and in its subsequent deployability issues.

 Generally, QUIC packets are always authenticated and the payload is
 typically fully encrypted. The parts of the packet header which are
 not encrypted are still authenticated by the receiver, so as to
 thwart any packet injection or manipulation by third parties. Some

https://datatracker.ietf.org/doc/html/rfc6824

Iyengar & Thomson Expires November 22, 2017 [Page 7]

Internet-Draft QUIC Transport Protocol May 2017

 early handshake packets, such as the Version Negotiation packet, are
 not encrypted, but information sent in these unencrypted handshake
 packets is later verified as part of cryptographic processing.

 PUBLIC_RESET packets that reset a connection are currently not
 authenticated.

3.6. Connection Migration and Resilience to NAT Rebinding

 QUIC connections are identified by a 64-bit Connection ID, randomly
 generated by the client. QUIC's consistent connection ID allows
 connections to survive changes to the client's IP and port, such as
 those caused by NAT rebindings or by the client changing network
 connectivity to a new address. QUIC provides automatic cryptographic
 verification of a rebound client, since the client continues to use
 the same session key for encrypting and decrypting packets. The
 consistent connection ID can be used to allow migration of the
 connection to a new server IP address as well, since the Connection
 ID remains consistent across changes in the client's and the server's
 network addresses.

3.7. Version Negotiation

 QUIC version negotiation allows for multiple versions of the protocol
 to be deployed and used concurrently. Version negotiation is
 described in Section 7.1.

4. Versions

 QUIC versions are identified using a 32-bit value.

 The version 0x00000000 is reserved to represent an invalid version.
 This version of the specification is identified by the number
 0x00000001.

 Version 0x000000001 of QUIC uses TLS as a cryptographic handshake
 protocol, as described in [QUIC-TLS].

 Versions with the most significant 16 bits of the version number
 cleared are reserved for use in future IETF consensus documents.

 Versions that follow the pattern 0x?a?a?a?a are reserved for use in
 forcing version negotiation to be exercised. That is, any version
 number where the low four bits of all octets is 1010 (in binary). A
 client or server MAY advertise support for any of these reserved
 versions.

Iyengar & Thomson Expires November 22, 2017 [Page 8]

Internet-Draft QUIC Transport Protocol May 2017

 Reserved version numbers will probably never represent a real
 protocol; a client MAY use one of these version numbers with the
 expectation that the server will initiate version negotiation; a
 server MAY advertise support for one of these versions and can expect
 that clients ignore the value.

 [[RFC editor: please remove the remainder of this section before
 publication.]]

 The version number for the final version of this specification
 (0x00000001), is reserved for the version of the protocol that is
 published as an RFC.

 Version numbers used to identify IETF drafts are created by adding
 the draft number to 0xff000000. For example, draft-ietf-quic-

transport-13 would be identified as 0xff00000D.

 Implementors are encouraged to register version numbers of QUIC that
 they are using for private experimentation on the github wiki [4].

5. Packet Types and Formats

 We first describe QUIC's packet types and their formats, since some
 are referenced in subsequent mechanisms.

 All numeric values are encoded in network byte order (that is, big-
 endian) and all field sizes are in bits. When discussing individual
 bits of fields, the least significant bit is referred to as bit 0.
 Hexadecimal notation is used for describing the value of fields.

 Any QUIC packet has either a long or a short header, as indicated by
 the Header Form bit. Long headers are expected to be used early in
 the connection before version negotiation and establishment of 1-RTT
 keys, and for public resets. Short headers are minimal version-
 specific headers, which can be used after version negotiation and
 1-RTT keys are established.

5.1. Long Header

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13

Iyengar & Thomson Expires November 22, 2017 [Page 9]

Internet-Draft QUIC Transport Protocol May 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1| Type (7) |
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+
 | Packet Number (32) |
 +-+
 | Version (32) |
 +-+
 | Payload (*) ...
 +-+

 Figure 1: Long Header Format

 Long headers are used for packets that are sent prior to the
 completion of version negotiation and establishment of 1-RTT keys.
 Once both conditions are met, a sender SHOULD switch to sending
 short-form headers. While inefficient, long headers MAY be used for
 packets encrypted with 1-RTT keys. The long form allows for special
 packets, such as the Version Negotiation and the Public Reset packets
 to be represented in this uniform fixed-length packet format. A long
 header contains the following fields:

 Header Form: The most significant bit (0x80) of the first octet is
 set to 1 for long headers and 0 for short headers.

 Long Packet Type: The remaining seven bits of first octet of a long
 packet is the packet type. This field can indicate one of 128
 packet types. The types specified for this version are listed in
 Table 1.

 Connection ID: Octets 1 through 8 contain the connection ID.
Section 5.7 describes the use of this field in more detail.

 Packet Number: Octets 9 to 12 contain the packet number. {{packet-
 numbers} describes the use of packet numbers.

 Version: Octets 13 to 16 contain the selected protocol version.
 This field indicates which version of QUIC is in use and
 determines how the rest of the protocol fields are interpreted.

 Payload: Octets from 17 onwards (the rest of QUIC packet) are the
 payload of the packet.

Iyengar & Thomson Expires November 22, 2017 [Page 10]

Internet-Draft QUIC Transport Protocol May 2017

 The following packet types are defined:

 +------+-------------------------------+---------------+
 | Type | Name | Section |
 +------+-------------------------------+---------------+
 | 01 | Version Negotiation | Section 5.3 |
 | | | |
 | 02 | Client Initial | Section 5.4.1 |
 | | | |
 | 03 | Server Stateless Retry | Section 5.4.2 |
 | | | |
 | 04 | Server Cleartext | Section 5.4.3 |
 | | | |
 | 05 | Client Cleartext | Section 5.4.4 |
 | | | |
 | 06 | 0-RTT Protected | Section 5.5 |
 | | | |
 | 07 | 1-RTT Protected (key phase 0) | Section 5.5 |
 | | | |
 | 08 | 1-RTT Protected (key phase 1) | Section 5.5 |
 | | | |
 | 09 | Public Reset | Section 5.6 |
 +------+-------------------------------+---------------+

 Table 1: Long Header Packet Types

 The header form, packet type, connection ID, packet number and
 version fields of a long header packet are version-independent. The
 types of packets defined in Table 1 are version-specific. See

Section 5.9 for details on how packets from different versions of
 QUIC are interpreted.

 (TODO: Should the list of packet types be version-independent?)

 The interpretation of the fields and the payload are specific to a
 version and packet type. Type-specific semantics for this version
 are described in the following sections.

5.2. Short Header

Iyengar & Thomson Expires November 22, 2017 [Page 11]

Internet-Draft QUIC Transport Protocol May 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |0|C|K| Type (5)|
 +-+
 | |
 + [Connection ID (64)] +
 | |
 +-+
 | Packet Number (8/16/32) ...
 +-+
 | Protected Payload (*) ...
 +-+

 Figure 2: Short Header Format

 The short header can be used after the version and 1-RTT keys are
 negotiated. This header form has the following fields:

 Header Form: The most significant bit (0x80) of the first octet of a
 packet is the header form. This bit is set to 0 for the short
 header.

 Connection ID Flag: The second bit (0x40) of the first octet
 indicates whether the Connection ID field is present. If set to
 1, then the Connection ID field is present; if set to 0, the
 Connection ID field is omitted.

 Key Phase Bit: The third bit (0x20) of the first octet indicates the
 key phase, which allows a recipient of a packet to identify the
 packet protection keys that are used to protect the packet. See
 [QUIC-TLS] for details.

 Short Packet Type: The remaining 5 bits of the first octet include
 one of 32 packet types. Table 2 lists the types that are defined
 for short packets.

 Connection ID: If the Connection ID Flag is set, a connection ID
 occupies octets 1 through 8 of the packet. See Section 5.7 for
 more details.

 Packet Number: The length of the packet number field depends on the
 packet type. This field can be 1, 2 or 4 octets long depending on
 the short packet type.

 Protected Payload: Packets with a short header always include a
 1-RTT protected payload.

Iyengar & Thomson Expires November 22, 2017 [Page 12]

Internet-Draft QUIC Transport Protocol May 2017

 The packet type in a short header currently determines only the size
 of the packet number field. Additional types can be used to signal
 the presence of other fields.

 +------+--------------------+
 | Type | Packet Number Size |
 +------+--------------------+
 | 01 | 1 octet |
 | | |
 | 02 | 2 octets |
 | | |
 | 03 | 4 octets |
 +------+--------------------+

 Table 2: Short Header Packet Types

 The header form, connection ID flag and connection ID of a short
 header packet are version-independent. The remaining fields are
 specific to the selected QUIC version. See Section 5.9 for details
 on how packets from different versions of QUIC are interpreted.

5.3. Version Negotiation Packet

 A Version Negotiation packet has long headers with a type value of
 0x01 and is sent only by servers. The Version Negotiation packet is
 a response to a client packet that contains a version that is not
 supported by the server.

 The connection ID field contains a server-selected connection ID that
 the client MUST use for subsequent packets, see Section 5.7.

 The packet number and version fields echo corresponding values from
 the triggering client packet. This allows clients some assurance
 that the server received the packet and that the Version Negotiation
 packet was not carried in a packet with a spoofed source address.

 The payload of the Version Negotiation packet is a list of 32-bit
 versions which the server supports, as shown below.

Iyengar & Thomson Expires November 22, 2017 [Page 13]

Internet-Draft QUIC Transport Protocol May 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Supported Version 1 (32) ...
 +-+
 | [Supported Version 2 (32)] ...
 +-+
 ...
 +-+
 | [Supported Version N (32)] ...
 +-+

 Figure 3: Version Negotiation Packet

 See Section 7.1 for a description of the version negotiation process.

5.4. Cleartext Packets

 Cleartext packets are sent during the handshake prior to key
 negotiation.

 All cleartext packets contain the current QUIC version in the version
 field.

 The payload of cleartext packets also includes an integrity check,
 which is described in [QUIC-TLS].

5.4.1. Client Initial Packet

 The Client Initial packet uses long headers with a type value of
 0x02. It carries the first cryptographic handshake message sent by
 the client.

 The client populates the connection ID field with randomly selected
 values, unless it has received a packet from the server. If the
 client has received a packet from the server, the connection ID field
 uses the value provided by the server.

 The packet number used for Client Initial packets is initialized with
 a random value each time the new contents are created for the packet.
 Retransmissions of the packet contents increment the packet number by
 one, see (Section 5.8).

 The payload of a Client Initial packet consists of a STREAM frame (or
 frames) for stream 0 containing a cryptographic handshake message,
 plus any PADDING frames necessary to ensure that the packet is at
 least the minimum size (see Section 9). This stream frame always
 starts at an offset of 0 (see Section 7.4).

Iyengar & Thomson Expires November 22, 2017 [Page 14]

Internet-Draft QUIC Transport Protocol May 2017

 The client uses the Client Initial Packet type for any packet that
 contains an initial cryptographic handshake message. This includes
 all cases where a new packet containing the initial cryptographic
 message needs to be created, this includes the packets sent after
 receiving a Version Negotiation (Section 5.3) or Server Stateless
 Retry packet (Section 5.4.2).

5.4.2. Server Stateless Retry Packet

 A Server Stateless Retry packet uses long headers with a type value
 of 0x03. It carries cryptographic handshake messages and
 acknowledgments. It is used by a server that wishes to perform a
 stateless retry (see Section 7.4).

 The connection ID field in a Server Stateless Retry packet contains a
 server selected value, see Section 5.7.

 The packet number field echoes the packet number of the triggering
 client packet. This allows a client to verify that the server
 received its packet.

 After receiving a Server Stateless Retry packet, the client uses a
 new Client Initial packet containing the next cryptographic handshake
 message. The client retains the state of its cryptographic
 handshake, but discards all transport state. In effect, the next
 cryptographic handshake message is sent on a new connection. The new
 Client Initial packet is sent in a packet with a newly randomized
 packet number and starting at a stream offset of 0.

 Continuing the cryptographic handshake is necessary to ensure that an
 attacker cannot force a downgrade of any cryptographic parameters.
 In addition to continuing the cryptographic handshake, the client
 MUST remember the results of any version negotiation that occurred
 (see Section 7.1). The client MAY also retain any observed RTT or
 congestion state that it has accumulated for the flow, but other
 transport state MUST be discarded.

 The payload of the Server Stateless Retry packet contains STREAM
 frames and could contain PADDING and ACK frames. A server can only
 send a single Server Stateless Retry packet in response to each
 Client Initial packet that is receives.

5.4.3. Server Cleartext Packet

 A Server Cleartext packet uses long headers with a type value of
 0x04. It is used to carry acknowledgments and cryptographic
 handshake messages from the server.

Iyengar & Thomson Expires November 22, 2017 [Page 15]

Internet-Draft QUIC Transport Protocol May 2017

 The connection ID field in a Server Cleartext packet contains a
 connection ID that is chosen by the server (see Section 5.7).

 The first Server Cleartext packet contains a randomized packet
 number. This value is increased for each subsequent packet sent by
 the server as described in Section 5.8.

 The payload of this packet contains STREAM frames and could contain
 PADDING and ACK frames.

5.4.4. Client Cleartext Packet

 A Client Cleartext packet uses long headers with a type value of
 0x05, and is sent when the client has received a Server Cleartext
 packet from the server.

 The connection ID field in a Client Cleartext packet contains a
 server-selected connection ID, see Section 5.7.

 The Client Cleartext packet includes a packet number that is one
 higher than the last Client Initial, 0-RTT Protected or Client
 Cleartext packet that was sent. The packet number is incremented for
 each subsequent packet, see Section 5.8.

 The payload of this packet contains STREAM frames and could contain
 PADDING and ACK frames.

5.5. Protected Packets

 Packets that are protected with 0-RTT keys are sent with long
 headers. Packets that are protected with 1-RTT keys MAY be sent with
 long headers. The different packet types explicitly indicate the
 encryption level and therefore the keys that are used to remove
 packet protection.

 Packets protected with 0-RTT keys use a type value of 0x06. The
 connection ID field for a 0-RTT packet is selected by the client.

 The client can send 0-RTT packets after having received a packet from
 the server if that packet does not complete the handshake. Even if
 the client receives a different connection ID from the server, it
 MUST NOT update the connection ID it uses for 0-RTT packets. This
 enables consistent routing for all 0-RTT packets.

 Packets protected with 1-RTT keys that use long headers use a type
 value of 0x07 for key phase 0 and 0x08 for key phase 1; see
 [QUIC-TLS] for more details on the use of key phases. The connection

Iyengar & Thomson Expires November 22, 2017 [Page 16]

Internet-Draft QUIC Transport Protocol May 2017

 ID field for these packet types MUST contain the value selected by
 the server, see Section 5.7.

 The version field for protected packets is the current QUIC version.

 The packet number field contains a packet number, which increases
 with each packet sent, see Section 5.8 for details.

 The payload is protected using authenticated encryption. [QUIC-TLS]
 describes packet protection in detail. After decryption, the
 plaintext consists of a sequence of frames, as described in

Section 6.

5.6. Public Reset Packet

 A Public Reset packet is only sent by servers and is used to abruptly
 terminate communications. Public Reset is provided as an option of
 last resort for a server that does not have access to the state of a
 connection. This is intended for use by a server that has lost state
 (for example, through a crash or outage). A server that wishes to
 communicate a fatal connection error MUST use a CONNECTION_CLOSE
 frame if it has sufficient state to do so.

 A Public Reset packet uses long headers with a type value of 0x09.

 The connection ID and packet number of fields together contain octets
 1 through 12 from the packet that triggered the reset. For a client
 that sends a connection ID on every packet, the Connection ID field
 is simply an echo of the client's Connection ID, and the Packet
 Number field includes an echo of the client's packet number.
 Depending on the client's packet number length it might also include
 0, 2, or 3 additional octets from the protected payload of the client
 packet.

 The version field contains the current QUIC version.

 A Public Reset packet sent by a server indicates that it does not
 have the state necessary to continue with a connection. In this
 case, the server will include the fields that prove that it
 originally participated in the connection (see Section 5.6.1 for
 details).

 Upon receipt of a Public Reset packet that contains a valid proof, a
 client MUST tear down state associated with the connection. The
 client MUST then cease sending packets on the connection and SHOULD
 discard any subsequent packets that arrive. A Public Reset that does
 not contain a valid proof MUST be ignored.

Iyengar & Thomson Expires November 22, 2017 [Page 17]

Internet-Draft QUIC Transport Protocol May 2017

5.6.1. Public Reset Proof

 TODO: Details to be added.

5.7. Connection ID

 QUIC connections are identified by their 64-bit Connection ID. All
 long headers contain a Connection ID. Short headers indicate the
 presence of a Connection ID using the CONNECTION_ID flag. When
 present, the Connection ID is in the same location in all packet
 headers, making it straightforward for middleboxes, such as load
 balancers, to locate and use it.

 The client MUST choose a random connection ID and use it in Client
 Initial packets (Section 5.4.1). If the client has received any
 packet from the server, it uses the connection ID it received from
 the server.

 When the server receives a Client Initial packet, it chooses a new
 value for the connection ID and sends that in its response. The
 server MUST send a new connection ID in any packet that is sent in
 response to a Client Initial packet. This includes Version
 Negotiation (Section 5.3), Server Stateless Retry (Section 5.4.2),
 and the first Server Cleartext packet (Section 5.4.3). The server
 MAY choose to use the value that the client initially selects.

 A server MUST NOT propose a different connection ID in response to a
 Client Cleartext packet (Section 5.4.4). A Client Cleartext packet
 is only sent after the server has committed to maintaining connection
 state.

5.8. Packet Numbers

 The packet number is a 64-bit unsigned number and is used as part of
 a cryptographic nonce for packet encryption. Each endpoint maintains
 a separate packet number for sending and receiving. The packet
 number for sending MUST increase by at least one after sending any
 packet, unless otherwise specified (see Section 5.8.1).

 A QUIC endpoint MUST NOT reuse a packet number within the same
 connection (that is, under the same cryptographic keys). If the
 packet number for sending reaches 2^64 - 1, the sender MUST close the
 connection by sending a CONNECTION_CLOSE frame with the error code
 QUIC_SEQUENCE_NUMBER_LIMIT_REACHED (connection termination is
 described in Section 7.7.)

 To reduce the number of bits required to represent the packet number
 over the wire, only the least significant bits of the packet number

Iyengar & Thomson Expires November 22, 2017 [Page 18]

Internet-Draft QUIC Transport Protocol May 2017

 are transmitted over the wire, up to 32 bits. The actual packet
 number for each packet is reconstructed at the receiver based on the
 largest packet number received on a successfully authenticated
 packet.

 A packet number is decoded by finding the packet number value that is
 closest to the next expected packet. The next expected packet is the
 highest received packet number plus one. For example, if the highest
 successfully authenticated packet had a packet number of 0xaa82f30e,
 then a packet containing a 16-bit value of 0x1f94 will be decoded as
 0xaa831f94.

 The sender MUST use a packet number size able to represent more than
 twice as large a range than the difference between the largest
 acknowledged packet and packet number being sent. A peer receiving
 the packet will then correctly decode the packet number, unless the
 packet is delayed in transit such that it arrives after many higher-
 numbered packets have been received. An endpoint MAY use a larger
 packet number size to safeguard against such reordering.

 As a result, the size of the packet number encoding is at least one
 more than the base 2 logarithm of the number of contiguous
 unacknowledged packet numbers, including the new packet.

 For example, if an endpoint has received an acknowledgment for packet
 0x6afa2f, sending a packet with a number of 0x6b4264 requires a
 16-bit or larger packet number encoding; whereas a 32-bit packet
 number is needed to send a packet with a number of 0x6bc107.

 Version Negotiation (Section 5.3), Server Stateless Retry
 (Section 5.4.2), and Public Reset (Section 5.6) packets have special
 rules for populating the packet number field.

5.8.1. Initial Packet Number

 The initial value for packet number MUST be selected from an uniform
 random distribution between 0 and 2^31-1. That is, the lower 31 bits
 of the packet number are randomized. [RFC4086] provides guidance on
 the generation of random values.

 The first set of packets sent by an endpoint MUST include the low
 32-bits of the packet number. Once any packet has been acknowledged,
 subsequent packets can use a shorter packet number encoding.

 A client that receives a Version Negotiation (Section 5.3) or Server
 Stateless Retry packet (Section 5.4.2) MUST generate a new initial
 packet number. This ensures that the first transmission attempt for
 a Client Initial packet (Section 5.4.1) always contains a randomized

https://datatracker.ietf.org/doc/html/rfc4086

Iyengar & Thomson Expires November 22, 2017 [Page 19]

Internet-Draft QUIC Transport Protocol May 2017

 packet number, but packets that contain retransmissions increment the
 packet number.

 A client MUST NOT generate a new initial packet number if it discards
 the server packet. This might happen if the information the client
 retransmits its Client Initial packet.

5.9. Handling Packets from Different Versions

 Between different versions the following things are guaranteed to
 remain constant:

 o the location of the header form flag,

 o the location of the Connection ID flag in short headers,

 o the location and size of the Connection ID field in both header
 forms,

 o the location and size of the Version field in long headers, and

 o the location and size of the Packet Number field in long headers.

 Implementations MUST assume that an unsupported version uses an
 unknown packet format. All other fields MUST be ignored when
 processing a packet that contains an unsupported version.

6. Frames and Frame Types

 The payload of cleartext packets and the plaintext after decryption
 of protected payloads consists of a sequence of frames, as shown in
 Figure 4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Frame 1 (*) ...
 +-+
 | Frame 2 (*) ...
 +-+
 ...
 +-+
 | Frame N (*) ...
 +-+

 Figure 4: Contents of Protected Payload

Iyengar & Thomson Expires November 22, 2017 [Page 20]

Internet-Draft QUIC Transport Protocol May 2017

 Protected payloads MUST contain at least one frame, and MAY contain
 multiple frames and multiple frame types.

 Frames MUST fit within a single QUIC packet and MUST NOT span a QUIC
 packet boundary. Each frame begins with a Frame Type byte,
 indicating its type, followed by additional type-dependent fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (8) | Type-Dependent Fields (*) ...
 +-+

 Figure 5: Generic Frame Layout

 Frame types are listed in Table 3. Note that the Frame Type byte in
 STREAM and ACK frames is used to carry other frame-specific flags.
 For all other frames, the Frame Type byte simply identifies the
 frame. These frames are explained in more detail as they are
 referenced later in the document.

Iyengar & Thomson Expires November 22, 2017 [Page 21]

Internet-Draft QUIC Transport Protocol May 2017

 +-------------+-------------------+--------------+
 | Type Value | Frame Type Name | Definition |
 +-------------+-------------------+--------------+
 | 0x00 | PADDING | Section 8.10 |
 | | | |
 | 0x01 | RST_STREAM | Section 8.9 |
 | | | |
 | 0x02 | CONNECTION_CLOSE | Section 8.13 |
 | | | |
 | 0x03 | GOAWAY | Section 8.14 |
 | | | |
 | 0x04 | MAX_DATA | Section 8.3 |
 | | | |
 | 0x05 | MAX_STREAM_DATA | Section 8.4 |
 | | | |
 | 0x06 | MAX_STREAM_ID | Section 8.5 |
 | | | |
 | 0x07 | PING | Section 8.11 |
 | | | |
 | 0x08 | BLOCKED | Section 8.6 |
 | | | |
 | 0x09 | STREAM_BLOCKED | Section 8.7 |
 | | | |
 | 0x0a | STREAM_ID_NEEDED | Section 8.8 |
 | | | |
 | 0x0b | NEW_CONNECTION_ID | Section 8.12 |
 | | | |
 | 0xa0 - 0xbf | ACK | Section 8.2 |
 | | | |
 | 0xc0 - 0xff | STREAM | Section 8.1 |
 +-------------+-------------------+--------------+

 Table 3: Frame Types

7. Life of a Connection

 A QUIC connection is a single conversation between two QUIC
 endpoints. QUIC's connection establishment intertwines version
 negotiation with the cryptographic and transport handshakes to reduce
 connection establishment latency, as described in Section 7.2. Once
 established, a connection may migrate to a different IP or port at
 either endpoint, due to NAT rebinding or mobility, as described in

Section 7.6. Finally a connection may be terminated by either
 endpoint, as described in Section 7.7.

Iyengar & Thomson Expires November 22, 2017 [Page 22]

Internet-Draft QUIC Transport Protocol May 2017

7.1. Version Negotiation

 QUIC's connection establishment begins with version negotiation,
 since all communication between the endpoints, including packet and
 frame formats, relies on the two endpoints agreeing on a version.

 A QUIC connection begins with a client sending a handshake packet.
 The details of the handshake mechanisms are described in Section 7.2,
 but all of the initial packets sent from the client to the server
 MUST use the long header format and MUST specify the version of the
 protocol being used.

 When the server receives a packet from a client with the long header
 format, it compares the client's version to the versions it supports.

 If the version selected by the client is not acceptable to the
 server, the server discards the incoming packet and responds with a
 Version Negotiation packet (Section 5.3). This includes a list of
 versions that the server will accept.

 A server sends a Version Negotiation packet for every packet that it
 receives with an unacceptable version. This allows a server to
 process packets with unsupported versions without retaining state.
 Though either the initial client packet or the version negotiation
 packet that is sent in response could be lost, the client will send
 new packets until it successfully receives a response.

 If the packet contains a version that is acceptable to the server,
 the server proceeds with the handshake (Section 7.2). This commits
 the server to the version that the client selected.

 When the client receives a Version Negotiation packet from the
 server, it should select an acceptable protocol version. If the
 server lists an acceptable version, the client selects that version
 and reattempts to create a connection using that version. Though the
 contents of a packet might not change in response to version
 negotiation, a client MUST increase the packet number it uses on
 every packet it sends. Packets MUST continue to use long headers and
 MUST include the new negotiated protocol version.

 The client MUST use the long header format and include its selected
 version on all packets until it has 1-RTT keys and it has received a
 packet from the server which is not a Version Negotiation packet.

 A client MUST NOT change the version it uses unless it is in response
 to a Version Negotiation packet from the server. Once a client
 receives a packet from the server which is not a Version Negotiation
 packet, it MUST ignore other Version Negotiation packets on the same

Iyengar & Thomson Expires November 22, 2017 [Page 23]

Internet-Draft QUIC Transport Protocol May 2017

 connection. Similarly, a client MUST ignore a Version Negotiation
 packet if it has already received and acted on a Version Negotiation
 packet.

 A client MUST ignore a Version Negotiation packet that lists the
 client's chosen version.

 Version negotiation uses unprotected data. The result of the
 negotiation MUST be revalidated as part of the cryptographic
 handshake (see Section 7.3.4).

7.1.1. Using Reserved Versions

 For a server to use a new version in the future, clients must
 correctly handle unsupported versions. To help ensure this, a server
 SHOULD include a reserved version (see Section 4) while generating a
 Version Negotiation packet.

 The design of version negotiation permits a server to avoid
 maintaining state for packets that it rejects in this fashion.
 However, when the server generates a Version Negotiation packet, it
 cannot randomly generate a reserved version number. This is because
 the server is required to include the same value in its transport
 parameters (see Section 7.3.4). To avoid the selected version number
 changing during connection establishment, the reserved version SHOULD
 be generated as a function of values that will be available to the
 server when later generating its handshake packets.

 A pseudorandom function that takes client address information (IP and
 port) and the client selected version as input would ensure that
 there is sufficient variability in the values that a server uses.

 A client MAY send a packet using a reserved version number. This can
 be used to solicit a list of supported versions from a server.

7.2. Cryptographic and Transport Handshake

 QUIC relies on a combined cryptographic and transport handshake to
 minimize connection establishment latency. QUIC allocates stream 0
 for the cryptographic handshake. Version 0x00000001 of QUIC uses TLS
 1.3 as described in [QUIC-TLS]; a different QUIC version number could
 indicate that a different cryptographic handshake protocol is in use.

 QUIC provides this stream with reliable, ordered delivery of data.
 In return, the cryptographic handshake provides QUIC with:

 o authenticated key exchange, where

Iyengar & Thomson Expires November 22, 2017 [Page 24]

Internet-Draft QUIC Transport Protocol May 2017

 * a server is always authenticated,

 * a client is optionally authenticated,

 * every connection produces distinct and unrelated keys,

 * keying material is usable for packet protection for both 0-RTT
 and 1-RTT packets, and

 * 1-RTT keys have forward secrecy

 o authenticated values for the transport parameters of the peer (see
Section 7.3)

 o authenticated confirmation of version negotiation (see
Section 7.3.4)

 o authenticated negotiation of an application protocol (TLS uses
 ALPN [RFC7301] for this purpose)

 o for the server, the ability to carry data that provides assurance
 that the client can receive packets that are addressed with the
 transport address that is claimed by the client (see Section 7.5)

 The initial cryptographic handshake message MUST be sent in a single
 packet. Any second attempt that is triggered by address validation
 MUST also be sent within a single packet. This avoids having to
 reassemble a message from multiple packets. Reassembling messages
 requires that a server maintain state prior to establishing a
 connection, exposing the server to a denial of service risk.

 The first client packet of the cryptographic handshake protocol MUST
 fit within a 1232 octet QUIC packet payload. This includes overheads
 that reduce the space available to the cryptographic handshake
 protocol.

 Details of how TLS is integrated with QUIC is provided in more detail
 in [QUIC-TLS].

7.3. Transport Parameters

 During connection establishment, both endpoints make authenticated
 declarations of their transport parameters. These declarations are
 made unilaterally by each endpoint. Endpoints are required to comply
 with the restrictions implied by these parameters; the description of
 each parameter includes rules for its handling.

https://datatracker.ietf.org/doc/html/rfc7301

Iyengar & Thomson Expires November 22, 2017 [Page 25]

Internet-Draft QUIC Transport Protocol May 2017

 The format of the transport parameters is the TransportParameters
 struct from Figure 6. This is described using the presentation
 language from Section 3 of [I-D.ietf-tls-tls13].

 uint32 QuicVersion;

 enum {
 initial_max_stream_data(0),
 initial_max_data(1),
 initial_max_stream_id(2),
 idle_timeout(3),
 truncate_connection_id(4),
 (65535)
 } TransportParameterId;

 struct {
 TransportParameterId parameter;
 opaque value<0..2^16-1>;
 } TransportParameter;

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 QuicVersion negotiated_version;
 QuicVersion initial_version;

 case encrypted_extensions:
 QuicVersion supported_versions<2..2^8-4>;
 };
 TransportParameter parameters<30..2^16-1>;
 } TransportParameters;

 Figure 6: Definition of TransportParameters

 The "extension_data" field of the quic_transport_parameters extension
 defined in [QUIC-TLS] contains a TransportParameters value. TLS
 encoding rules are therefore used to encode the transport parameters.

 QUIC encodes transport parameters into a sequence of octets, which
 are then included in the cryptographic handshake. Once the handshake
 completes, the transport parameters declared by the peer are
 available. Each endpoint validates the value provided by its peer.
 In particular, version negotiation MUST be validated (see

Section 7.3.4) before the connection establishment is considered
 properly complete.

 Definitions for each of the defined transport parameters are included
 in Section 7.3.1.

Iyengar & Thomson Expires November 22, 2017 [Page 26]

Internet-Draft QUIC Transport Protocol May 2017

7.3.1. Transport Parameter Definitions

 An endpoint MUST include the following parameters in its encoded
 TransportParameters:

 initial_max_stream_data (0x0000): The initial stream maximum data
 parameter contains the initial value for the maximum data that can
 be sent on any newly created stream. This parameter is encoded as
 an unsigned 32-bit integer in units of octets. This is equivalent
 to an implicit MAX_STREAM_DATA frame (Section 8.4) being sent on
 all streams immediately after opening.

 initial_max_data (0x0001): The initial maximum data parameter
 contains the initial value for the maximum amount of data that can
 be sent on the connection. This parameter is encoded as an
 unsigned 32-bit integer in units of 1024 octets. That is, the
 value here is multiplied by 1024 to determine the actual maximum
 value. This is equivalent to sending a MAX_DATA (Section 8.3) for
 the connection immediately after completing the handshake.

 initial_max_stream_id (0x0002): The initial maximum stream ID
 parameter contains the initial maximum stream number the peer may
 initiate, encoded as an unsigned 32-bit integer. This is
 equivalent to sending a MAX_STREAM_ID (Section 8.5) immediately
 after completing the handshake.

 idle_timeout (0x0003): The idle timeout is a value in seconds that
 is encoded as an unsigned 16-bit integer. The maximum value is
 600 seconds (10 minutes).

 An endpoint MAY use the following transport parameters:

 truncate_connection_id (0x0004): The truncated connection identifier
 parameter indicates that packets sent to the peer can omit the
 connection ID. This can be used by an endpoint where the 5-tuple
 is sufficient to identify a connection. This parameter is zero
 length. Omitting the parameter indicates that the endpoint relies
 on the connection ID being present in every packet.

7.3.2. Values of Transport Parameters for 0-RTT

 Transport parameters from the server MUST be remembered by the client
 for use with 0-RTT data. If the TLS NewSessionTicket message
 includes the quic_transport_parameters extension, then those values
 are used for the server values when establishing a new connection
 using that ticket. Otherwise, the transport parameters that the
 server advertises during connection establishment are used.

Iyengar & Thomson Expires November 22, 2017 [Page 27]

Internet-Draft QUIC Transport Protocol May 2017

 A server can remember the transport parameters that it advertised, or
 store an integrity-protected copy of the values in the ticket and
 recover the information when accepting 0-RTT data. A server uses the
 transport parameters in determining whether to accept 0-RTT data.

 A server MAY accept 0-RTT and subsequently provide different values
 for transport parameters for use in the new connection. If 0-RTT
 data is accepted by the server, the server MUST NOT reduce any limits
 or alter any values that might be violated by the client with its
 0-RTT data. In particular, a server that accepts 0-RTT data MUST NOT
 set values for initial_max_data or initial_max_stream_data that are
 smaller than the remembered value of those parameters. Similarly, a
 server MUST NOT reduce the value of initial_max_stream_id.

 A server MUST reject 0-RTT data or even abort a handshake if the
 implied values for transport parameters cannot be supported.

7.3.3. New Transport Parameters

 New transport parameters can be used to negotiate new protocol
 behavior. An endpoint MUST ignore transport parameters that it does
 not support. Absence of a transport parameter therefore disables any
 optional protocol feature that is negotiated using the parameter.

 New transport parameters can be registered according to the rules in
Section 14.1.

7.3.4. Version Negotiation Validation

 The transport parameters include three fields that encode version
 information. These retroactively authenticate the version
 negotiation (see Section 7.1) that is performed prior to the
 cryptographic handshake.

 The cryptographic handshake provides integrity protection for the
 negotiated version as part of the transport parameters (see

Section 7.3). As a result, modification of version negotiation
 packets by an attacker can be detected.

 The client includes two fields in the transport parameters:

 o The negotiated_version is the version that was finally selected
 for use. This MUST be identical to the value that is on the
 packet that carries the ClientHello. A server that receives a
 negotiated_version that does not match the version of QUIC that is
 in use MUST terminate the connection with a
 QUIC_VERSION_NEGOTIATION_MISMATCH error code.

Iyengar & Thomson Expires November 22, 2017 [Page 28]

Internet-Draft QUIC Transport Protocol May 2017

 o The initial_version is the version that the client initially
 attempted to use. If the server did not send a version
 negotiation packet Section 5.3, this will be identical to the
 negotiated_version.

 A server that processes all packets in a stateful fashion can
 remember how version negotiation was performed and validate the
 initial_version value.

 A server that does not maintain state for every packet it receives
 (i.e., a stateless server) uses a different process. If the initial
 and negotiated versions are the same, a stateless server can accept
 the value.

 If the initial version is different from the negotiated_version, a
 stateless server MUST check that it would have sent a version
 negotiation packet if it had received a packet with the indicated
 initial_version. If a server would have accepted the version
 included in the initial_version and the value differs from the value
 of negotiated_version, the server MUST terminate the connection with
 a QUIC_VERSION_NEGOTIATION_MISMATCH error.

 The server includes a list of versions that it would send in any
 version negotiation packet (Section 5.3) in supported_versions. This
 value is set even if it did not send a version negotiation packet.

 The client can validate that the negotiated_version is included in
 the supported_versions list and - if version negotiation was
 performed - that it would have selected the negotiated version. A
 client MUST terminate the connection with a
 QUIC_VERSION_NEGOTIATION_MISMATCH error code if the
 negotiated_version value is not included in the supported_versions
 list. A client MUST terminate with a
 QUIC_VERSION_NEGOTIATION_MISMATCH error code if version negotiation
 occurred but it would have selected a different version based on the
 value of the supported_versions list.

7.4. Stateless Retries

 A server can process an initial cryptographic handshake messages from
 a client without committing any state. This allows a server to
 perform address validation (Section 7.5, or to defer connection
 establishment costs.

 A server that generates a response to an initial packet without
 retaining connection state MUST use the Server Stateless Retry packet
 (Section 5.4.2). This packet causes a client to reset its transport

Iyengar & Thomson Expires November 22, 2017 [Page 29]

Internet-Draft QUIC Transport Protocol May 2017

 state and to continue the connection attempt with new connection
 state while maintaining the state of the cryptographic handshake.

 A server MUST NOT send multiple Server Stateless Retry packets in
 response to a client handshake packet. Thus, any cryptographic
 handshake message that is sent MUST fit within a single packet.

 In TLS, the Server Stateless Retry packet type is used to carry the
 HelloRetryRequest message.

7.5. Proof of Source Address Ownership

 Transport protocols commonly spend a round trip checking that a
 client owns the transport address (IP and port) that it claims.
 Verifying that a client can receive packets sent to its claimed
 transport address protects against spoofing of this information by
 malicious clients.

 This technique is used primarily to avoid QUIC from being used for
 traffic amplification attack. In such an attack, a packet is sent to
 a server with spoofed source address information that identifies a
 victim. If a server generates more or larger packets in response to
 that packet, the attacker can use the server to send more data toward
 the victim than it would be able to send on its own.

 Several methods are used in QUIC to mitigate this attack. Firstly,
 the initial handshake packet is padded to at least 1280 octets. This
 allows a server to send a similar amount of data without risking
 causing an amplification attack toward an unproven remote address.

 A server eventually confirms that a client has received its messages
 when the cryptographic handshake successfully completes. This might
 be insufficient, either because the server wishes to avoid the
 computational cost of completing the handshake, or it might be that
 the size of the packets that are sent during the handshake is too
 large. This is especially important for 0-RTT, where the server
 might wish to provide application data traffic - such as a response
 to a request - in response to the data carried in the early data from
 the client.

 To send additional data prior to completing the cryptographic
 handshake, the server then needs to validate that the client owns the
 address that it claims.

 Source address validation is therefore performed during the
 establishment of a connection. TLS provides the tools that support
 the feature, but basic validation is performed by the core transport
 protocol.

Iyengar & Thomson Expires November 22, 2017 [Page 30]

Internet-Draft QUIC Transport Protocol May 2017

7.5.1. Client Address Validation Procedure

 QUIC uses token-based address validation. Any time the server wishes
 to validate a client address, it provides the client with a token.
 As long as the token cannot be easily guessed (see Section 7.5.3), if
 the client is able to return that token, it proves to the server that
 it received the token.

 During the processing of the cryptographic handshake messages from a
 client, TLS will request that QUIC make a decision about whether to
 proceed based on the information it has. TLS will provide QUIC with
 any token that was provided by the client. For an initial packet,
 QUIC can decide to abort the connection, allow it to proceed, or
 request address validation.

 If QUIC decides to request address validation, it provides the
 cryptographic handshake with a token. The contents of this token are
 consumed by the server that generates the token, so there is no need
 for a single well-defined format. A token could include information
 about the claimed client address (IP and port), a timestamp, and any
 other supplementary information the server will need to validate the
 token in the future.

 The cryptographic handshake is responsible for enacting validation by
 sending the address validation token to the client. A legitimate
 client will include a copy of the token when it attempts to continue
 the handshake. The cryptographic handshake extracts the token then
 asks QUIC a second time whether the token is acceptable. In
 response, QUIC can either abort the connection or permit it to
 proceed.

 A connection MAY be accepted without address validation - or with
 only limited validation - but a server SHOULD limit the data it sends
 toward an unvalidated address. Successful completion of the
 cryptographic handshake implicitly provides proof that the client has
 received packets from the server.

7.5.2. Address Validation on Session Resumption

 A server MAY provide clients with an address validation token during
 one connection that can be used on a subsequent connection. Address
 validation is especially important with 0-RTT because a server
 potentially sends a significant amount of data to a client in
 response to 0-RTT data.

 A different type of token is needed when resuming. Unlike the token
 that is created during a handshake, there might be some time between
 when the token is created and when the token is subsequently used.

Iyengar & Thomson Expires November 22, 2017 [Page 31]

Internet-Draft QUIC Transport Protocol May 2017

 Thus, a resumption token SHOULD include an expiration time. It is
 also unlikely that the client port number is the same on two
 different connections; validating the port is therefore unlikely to
 be successful.

 This token can be provided to the cryptographic handshake immediately
 after establishing a connection. QUIC might also generate an updated
 token if significant time passes or the client address changes for
 any reason (see Section 7.6). The cryptographic handshake is
 responsible for providing the client with the token. In TLS the
 token is included in the ticket that is used for resumption and
 0-RTT, which is carried in a NewSessionTicket message.

7.5.3. Address Validation Token Integrity

 An address validation token MUST be difficult to guess. Including a
 large enough random value in the token would be sufficient, but this
 depends on the server remembering the value it sends to clients.

 A token-based scheme allows the server to offload any state
 associated with validation to the client. For this design to work,
 the token MUST be covered by integrity protection against
 modification or falsification by clients. Without integrity
 protection, malicious clients could generate or guess values for
 tokens that would be accepted by the server. Only the server
 requires access to the integrity protection key for tokens.

 In TLS the address validation token is often bundled with the
 information that TLS requires, such as the resumption secret. In
 this case, adding integrity protection can be delegated to the
 cryptographic handshake protocol, avoiding redundant protection. If
 integrity protection is delegated to the cryptographic handshake, an
 integrity failure will result in immediate cryptographic handshake
 failure. If integrity protection is performed by QUIC, QUIC MUST
 abort the connection if the integrity check fails with a
 QUIC_ADDRESS_VALIDATION_FAILURE error code.

7.6. Connection Migration

 QUIC connections are identified by their 64-bit Connection ID.
 QUIC's consistent connection ID allows connections to survive changes
 to the client's IP and/or port, such as those caused by client or
 server migrating to a new network. Connection migration allows a
 client to retain any shared state with a connection when they move
 networks. This includes state that can be hard to recover such as
 outstanding requests, which might otherwise be lost with no easy way
 to retry them.

Iyengar & Thomson Expires November 22, 2017 [Page 32]

Internet-Draft QUIC Transport Protocol May 2017

7.6.1. Privacy Implications of Connection Migration

 Using a stable connection ID on multiple network paths allows a
 passive observer to correlate activity between those paths. A client
 that moves between networks might not wish to have their activity
 correlated by any entity other than a server. The NEW_CONNECTION_ID
 message can be sent by a server to provide an unlinkable connection
 ID for use in case the client wishes to explicitly break linkability
 between two points of network attachment.

 A client which wishes to break linkability upon changing networks
 MUST use the NEW_CONNECTION_ID as well as incrementing the packet
 sequence number by an externally unpredictable value computed as
 described in Section 7.6.1.1. Packet number gaps are cumulative. A
 client might skip connection IDs, but it MUST ensure that it applies
 the associated packet number gaps in addition to the packet number
 gap associated with the connection ID that it does use.

 A client might need to send packets on multiple networks without
 receiving any response from the server. To ensure that the client is
 not linkable across each of these changes, a new connection ID and
 packet number gap are needed for each network. To support this, a
 server sends multiple NEW_CONNECTION_ID messages. Each
 NEW_CONNECTION_ID is marked with a sequence number. Connection IDs
 MUST be used in the order in which they are numbered.

 A server that receives a packet that is marked with a new connection
 ID recovers the packet number by adding the cumulative packet number
 gap to its expected packet number. A server SHOULD discard packets
 that contain a smaller gap than it advertised.

 For instance, a server might provide a packet number gap of 7
 associated with a new connection ID. If the server received packet
 10 using the previous connection ID, it should expect packets on the
 new connection ID to start at 18. A packet with the new connection
 ID and a packet number of 17 is discarded as being in error.

7.6.1.1. Packet Number Gap

 In order to avoid linkage, the packet number gap MUST be externally
 indistinguishable from random. The packet number gap for a
 connection ID with sequence number is computed by encoding the
 sequence number as a 32-bit integer in big-endian format, and then
 computing:

 Gap = HKDF-Expand-Label(packet_number_secret,
 "QUIC packet sequence gap", sequence, 4)

Iyengar & Thomson Expires November 22, 2017 [Page 33]

Internet-Draft QUIC Transport Protocol May 2017

 The output of HKDF-Expand-Label is interpreted as a big-endian
 number. "packet_number_secret" is derived from the TLS key exchange,
 as described in [QUIC-TLS] Section 5.6.

7.6.2. Address Validation for Migrated Connections

 TODO: see issue #161

7.7. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. A QUIC connection, once established, can
 be terminated in one of three ways:

 1. Explicit Shutdown: An endpoint sends a CONNECTION_CLOSE frame to
 initiate a connection termination. An endpoint may send a GOAWAY
 frame to the peer prior to a CONNECTION_CLOSE to indicate that
 the connection will soon be terminated. A GOAWAY frame signals
 to the peer that any active streams will continue to be
 processed, but the sender of the GOAWAY will not initiate any
 additional streams and will not accept any new incoming streams.
 On termination of the active streams, a CONNECTION_CLOSE may be
 sent. If an endpoint sends a CONNECTION_CLOSE frame while
 unterminated streams are active (no FIN bit or RST_STREAM frames
 have been sent or received for one or more streams), then the
 peer must assume that the streams were incomplete and were
 abnormally terminated.

 2. Implicit Shutdown: The default idle timeout is a required
 parameter in connection negotiation. The maximum is 10 minutes.
 If there is no network activity for the duration of the idle
 timeout, the connection is closed. By default a CONNECTION_CLOSE
 frame will be sent. A silent close option can be enabled when it
 is expensive to send an explicit close, such as mobile networks
 that must wake up the radio.

 3. Abrupt Shutdown: An endpoint may send a Public Reset packet at
 any time during the connection to abruptly terminate an active
 connection. A Public Reset packet SHOULD only be used as a final
 recourse. Commonly, a public reset is expected to be sent when a
 packet on an established connection is received by an endpoint
 that is unable decrypt the packet. For instance, if a server
 reboots mid-connection and loses any cryptographic state
 associated with open connections, and then receives a packet on
 an open connection, it should send a Public Reset packet in
 return. (TODO: articulate rules around when a public reset
 should be sent.)

Iyengar & Thomson Expires November 22, 2017 [Page 34]

Internet-Draft QUIC Transport Protocol May 2017

 TODO: Connections that are terminated are added to a TIME_WAIT list
 at the server, so as to absorb any straggler packets in the network.
 Discuss TIME_WAIT list.

8. Frame Types and Formats

 As described in Section 6, Regular packets contain one or more
 frames. We now describe the various QUIC frame types that can be
 present in a Regular packet. The use of these frames and various
 frame header bits are described in subsequent sections.

8.1. STREAM Frame

 STREAM frames implicitly create a stream and carry stream data. The
 type byte for a STREAM frame contains embedded flags, and is
 formatted as "11FDOOSS". These bits are parsed as follows:

 o The first two bits must be set to 11, indicating that this is a
 STREAM frame.

 o "F" is the FIN bit, which is used for stream termination.

 o The "D" bit indicates whether a Data Length field is present in
 the STREAM header. When set to 0, this field indicates that the
 Stream Data field extends to the end of the packet. When set to
 1, this field indicates that Data Length field contains the length
 (in bytes) of the Stream Data field. The option to omit the
 length should only be used when the packet is a "full-sized"
 packet, to avoid the risk of corruption via padding.

 o The "OO" bits encode the length of the Offset header field as 0,
 16, 32, or 64 bits long.

 o The "SS" bits encode the length of the Stream ID header field as
 8, 16, 24, or 32 bits.

 A STREAM frame is shown below.

Iyengar & Thomson Expires November 22, 2017 [Page 35]

Internet-Draft QUIC Transport Protocol May 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | [Data Length (16)] |
 +-+
 | Stream ID (8/16/24/32) ...
 +-+
 | Offset (0/16/32/64) ...
 +-+
 | Stream Data (*) ...
 +-+

 Figure 7: STREAM Frame Format

 The STREAM frame contains the following fields:

 Data Length: An optional 16-bit unsigned number specifying the
 length of the Stream Data field in this STREAM frame. This field
 is present when the "D" bit is set to 1.

 Stream ID: The stream ID of the stream (see Section 10.1).

 Offset: A variable-sized unsigned number specifying the byte offset
 in the stream for the data in this STREAM frame. When the offset
 length is 0, the offset is 0. The first byte in the stream has an
 offset of 0. The largest offset delivered on a stream - the sum
 of the re-constructed offset and data length - MUST be less than
 2^64.

 Stream Data: The bytes from the designated stream to be delivered.

 A STREAM frame MUST have either non-zero data length or the FIN bit
 set. When the FIN flag is sent on an empty STREAM frame, the offset
 in the STREAM frame MUST be one greater than the last data byte sent
 on this stream.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC packets. A single QUIC packet
 MAY bundle STREAM frames from multiple streams.

 Implementation note: One of the benefits of QUIC is avoidance of
 head-of-line blocking across multiple streams. When a packet loss
 occurs, only streams with data in that packet are blocked waiting for
 a retransmission to be received, while other streams can continue
 making progress. Note that when data from multiple streams is
 bundled into a single QUIC packet, loss of that packet blocks all
 those streams from making progress. An implementation is therefore

Iyengar & Thomson Expires November 22, 2017 [Page 36]

Internet-Draft QUIC Transport Protocol May 2017

 advised to bundle as few streams as necessary in outgoing packets
 without losing transmission efficiency to underfilled packets.

8.2. ACK Frame

 Receivers send ACK frames to inform senders which packets they have
 received and processed, as well as which packets are considered
 missing. The ACK frame contains between 1 and 256 ACK blocks. ACK
 blocks are ranges of acknowledged packets.

 To limit ACK blocks to those that have not yet been received by the
 sender, the receiver SHOULD track which ACK frames have been
 acknowledged by its peer. Once an ACK frame has been acknowledged,
 the packets it acknowledges SHOULD not be acknowledged again.

 A receiver that is only sending ACK frames will not receive
 acknowledgments for its packets. Sending an occasional MAX_DATA or
 MAX_STREAM_DATA frame as data is received will ensure that
 acknowledgements are generated by a peer. Otherwise, an endpoint MAY
 send a PING frame once per RTT to solicit an acknowledgment.

 To limit receiver state or the size of ACK frames, a receiver MAY
 limit the number of ACK blocks it sends. A receiver can do this even
 without receiving acknowledgment of its ACK frames, with the
 knowledge this could cause the sender to unnecessarily retransmit
 some data. When this is necessary, the receiver SHOULD acknowledge
 newly received packets and stop acknowledging packets received in the
 past.

 Unlike TCP SACKs, QUIC ACK blocks are cumulative and therefore
 irrevocable. Once a packet has been acknowledged, even if it does
 not appear in a future ACK frame, it is assumed to be acknowledged.

 QUIC ACK frames contain a timestamp section with up to 255
 timestamps. Timestamps enable better congestion control, but are not
 required for correct loss recovery, and old timestamps are less
 valuable, so it is not guaranteed every timestamp will be received by
 the sender. A receiver SHOULD send a timestamp exactly once for each
 received packet containing retransmittable frames. A receiver MAY
 send timestamps for non-retransmittable packets. A receiver MUST not
 send timestamps in unprotected packets.

 A sender MAY intentionally skip packet numbers to introduce entropy
 into the connection, to avoid opportunistic acknowledgement attacks.
 The sender MUST close the connection if an unsent packet number is
 acknowledged. The format of the ACK frame is efficient at expressing
 blocks of missing packets; skipping packet numbers between 1 and 255
 effectively provides up to 8 bits of efficient entropy on demand,

Iyengar & Thomson Expires November 22, 2017 [Page 37]

Internet-Draft QUIC Transport Protocol May 2017

 which should be adequate protection against most opportunistic
 acknowledgement attacks.

 The type byte for a ACK frame contains embedded flags, and is
 formatted as "101NLLMM". These bits are parsed as follows:

 o The first three bits must be set to 101 indicating that this is an
 ACK frame.

 o The "N" bit indicates whether the frame has more than 1 range of
 acknowledged packets (i.e., whether the ACK Block Section contains
 a Num Blocks field).

 o The two "LL" bits encode the length of the Largest Acknowledged
 field as 1, 2, 4, or 6 bytes long.

 o The two "MM" bits encode the length of the ACK Block Length fields
 as 1, 2, 4, or 6 bytes long.

 An ACK frame is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |[Num Blocks(8)]| NumTS (8) |
 +-+
 | Largest Acknowledged (8/16/32/48) ...
 +-+
 | ACK Delay (16) |
 +-+
 | ACK Block Section (*) ...
 +-+
 | Timestamp Section (*) ...
 +-+

 Figure 8: ACK Frame Format

 The fields in the ACK frame are as follows:

 Num Blocks (opt): An optional 8-bit unsigned value specifying the
 number of additional ACK blocks (besides the required First ACK
 Block) in this ACK frame. Only present if the 'N' flag bit is 1.

 Num Timestamps: An unsigned 8-bit number specifying the total number
 of <packet number, timestamp> pairs in the Timestamp Section.

Iyengar & Thomson Expires November 22, 2017 [Page 38]

Internet-Draft QUIC Transport Protocol May 2017

 Largest Acknowledged: A variable-sized unsigned value representing
 the largest packet number the peer is acknowledging in this packet
 (typically the largest that the peer has seen thus far.)

 ACK Delay: The time from when the largest acknowledged packet, as
 indicated in the Largest Acknowledged field, was received by this
 peer to when this ACK was sent.

 ACK Block Section: Contains one or more blocks of packet numbers
 which have been successfully received, see Section 8.2.1.

 Timestamp Section: Contains zero or more timestamps reporting
 transit delay of received packets. See Section 8.2.2.

8.2.1. ACK Block Section

 The ACK Block Section contains between one and 256 blocks of packet
 numbers which have been successfully received. If the Num Blocks
 field is absent, only the First ACK Block length is present in this
 section. Otherwise, the Num Blocks field indicates how many
 additional blocks follow the First ACK Block Length field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First ACK Block Length (8/16/32/48) ...
 +-+
 | [Gap 1 (8)] | [ACK Block 1 Length (8/16/32/48)] ...
 +-+
 | [Gap 2 (8)] | [ACK Block 2 Length (8/16/32/48)] ...
 +-+
 ...
 +-+
 | [Gap N (8)] | [ACK Block N Length (8/16/32/48)] ...
 +-+

 Figure 9: ACK Block Section

 The fields in the ACK Block Section are:

 First ACK Block Length: An unsigned packet number delta that
 indicates the number of contiguous additional packets being
 acknowledged starting at the Largest Acknowledged.

 Gap To Next Block (opt, repeated): An unsigned number specifying the
 number of contiguous missing packets from the end of the previous
 ACK block to the start of the next. Repeated "Num Blocks" times.

Iyengar & Thomson Expires November 22, 2017 [Page 39]

Internet-Draft QUIC Transport Protocol May 2017

 ACK Block Length (opt, repeated): An unsigned packet number delta
 that indicates the number of contiguous packets being acknowledged
 starting after the end of the previous gap. Repeated "Num Blocks"
 times.

8.2.2. Timestamp Section

 The Timestamp Section contains between zero and 255 measurements of
 packet receive times relative to the beginning of the connection.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | [Delta LA (8)]|
 +-+
 | [First Timestamp (32)] |
 +-+
 |[Delta LA 1(8)]| [Time Since Previous 1 (16)] |
 +-+
 |[Delta LA 2(8)]| [Time Since Previous 2 (16)] |
 +-+
 ...
 +-+
 |[Delta LA N(8)]| [Time Since Previous N (16)] |
 +-+

 Figure 10: Timestamp Section

 The fields in the Timestamp Section are:

 Delta Largest Acknowledged (opt): An optional 8-bit unsigned packet
 number delta specifying the delta between the largest acknowledged
 and the first packet whose timestamp is being reported. In other
 words, this first packet number may be computed as (Largest
 Acknowledged - Delta Largest Acknowledged.)

 First Timestamp (opt): An optional 32-bit unsigned value specifying
 the time delta in microseconds, from the beginning of the
 connection to the arrival of the packet indicated by Delta Largest
 Acknowledged.

 Delta Largest Acked 1..N (opt, repeated): This field has the same
 semantics and format as "Delta Largest Acknowledged". Repeated
 "Num Timestamps - 1" times.

 Time Since Previous Timestamp 1..N(opt, repeated): An optional
 16-bit unsigned value specifying time delta from the previous

Iyengar & Thomson Expires November 22, 2017 [Page 40]

Internet-Draft QUIC Transport Protocol May 2017

 reported timestamp. It is encoded in the same format as the ACK
 Delay. Repeated "Num Timestamps - 1" times.

 The timestamp section lists packet receipt timestamps ordered by
 timestamp.

8.2.2.1. Time Format

 DISCUSS_AND_REPLACE: Perhaps make this format simpler.

 The time format used in the ACK frame above is a 16-bit unsigned
 float with 11 explicit bits of mantissa and 5 bits of explicit
 exponent, specifying time in microseconds. The bit format is loosely
 modeled after IEEE 754. For example, 1 microsecond is represented as
 0x1, which has an exponent of zero, presented in the 5 high order
 bits, and mantissa of 1, presented in the 11 low order bits. When
 the explicit exponent is greater than zero, an implicit high-order
 12th bit of 1 is assumed in the mantissa. For example, a floating
 value of 0x800 has an explicit exponent of 1, as well as an explicit
 mantissa of 0, but then has an effective mantissa of 4096 (12th bit
 is assumed to be 1). Additionally, the actual exponent is one-less
 than the explicit exponent, and the value represents 4096
 microseconds. Any values larger than the representable range are
 clamped to 0xFFFF.

8.2.3. ACK Frames and Packet Protection

 ACK frames that acknowledge protected packets MUST be carried in a
 packet that has an equivalent or greater level of packet protection.

 Packets that are protected with 1-RTT keys MUST be acknowledged in
 packets that are also protected with 1-RTT keys.

 A packet that is not protected and claims to acknowledge a packet
 number that was sent with packet protection is not valid. An
 unprotected packet that carries acknowledgments for protected packets
 MUST be discarded in its entirety.

 Packets that a client sends with 0-RTT packet protection MUST be
 acknowledged by the server in packets protected by 1-RTT keys. This
 can mean that the client is unable to use these acknowledgments if
 the server cryptographic handshake messages are delayed or lost.
 Note that the same limitation applies to other data sent by the
 server protected by the 1-RTT keys.

 Unprotected packets, such as those that carry the initial
 cryptographic handshake messages, MAY be acknowledged in unprotected
 packets. Unprotected packets are vulnerable to falsification or

Iyengar & Thomson Expires November 22, 2017 [Page 41]

Internet-Draft QUIC Transport Protocol May 2017

 modification. Unprotected packets can be acknowledged along with
 protected packets in a protected packet.

 An endpoint SHOULD acknowledge packets containing cryptographic
 handshake messages in the next unprotected packet that it sends,
 unless it is able to acknowledge those packets in later packets
 protected by 1-RTT keys. At the completion of the cryptographic
 handshake, both peers send unprotected packets containing
 cryptographic handshake messages followed by packets protected by
 1-RTT keys. An endpoint SHOULD acknowledge the unprotected packets
 that complete the cryptographic handshake in a protected packet,
 because its peer is guaranteed to have access to 1-RTT packet
 protection keys.

 For instance, a server acknowledges a TLS ClientHello in the packet
 that carries the TLS ServerHello; similarly, a client can acknowledge
 a TLS HelloRetryRequest in the packet containing a second TLS
 ClientHello. The complete set of server handshake messages (TLS
 ServerHello through to Finished) might be acknowledged by a client in
 protected packets, because it is certain that the server is able to
 decipher the packet.

8.3. MAX_DATA Frame

 The MAX_DATA frame (type=0x04) is used in flow control to inform the
 peer of the maximum amount of data that can be sent on the connection
 as a whole.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Maximum Data (64) +
 | |
 +-+

 The fields in the MAX_DATA frame are as follows:

 Maximum Data: A 64-bit unsigned integer indicating the maximum
 amount of data that can be sent on the entire connection, in units
 of 1024 octets. That is, the updated connection-level data limit
 is determined by multiplying the encoded value by 1024.

 All data sent in STREAM frames counts toward this limit, with the
 exception of data on stream 0. The sum of the largest received
 offsets on all streams - including closed streams, but excluding

Iyengar & Thomson Expires November 22, 2017 [Page 42]

Internet-Draft QUIC Transport Protocol May 2017

 stream 0 - MUST NOT exceed the value advertised by a receiver. An
 endpoint MUST terminate a connection with a
 QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA error if it receives more
 data than the maximum data value that it has sent, unless this is a
 result of a change in the initial limits (see Section 7.3.2).

8.4. MAX_STREAM_DATA Frame

 The MAX_STREAM_DATA frame (type=0x05) is used in flow control to
 inform a peer of the maximum amount of data that can be sent on a
 stream.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (32) |
 +-+
 | |
 + Maximum Stream Data (64) +
 | |
 +-+

 The fields in the MAX_STREAM_DATA frame are as follows:

 Stream ID: The stream ID of the stream that is affected.

 Maximum Stream Data: A 64-bit unsigned integer indicating the
 maximum amount of data that can be sent on the identified stream,
 in units of octets.

 When counting data toward this limit, an endpoint accounts for the
 largest received offset of data that is sent or received on the
 stream. Loss or reordering can mean that the largest received offset
 on a stream can be greater than the total size of data received on
 that stream. Receiving STREAM frames might not increase the largest
 received offset.

 The data sent on a stream MUST NOT exceed the largest maximum stream
 data value advertised by the receiver. An endpoint MUST terminate a
 connection with a QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA error if
 it receives more data than the largest maximum stream data that it
 has sent for the affected stream, unless this is a result of a change
 in the initial limits (see Section 7.3.2).

Iyengar & Thomson Expires November 22, 2017 [Page 43]

Internet-Draft QUIC Transport Protocol May 2017

8.5. MAX_STREAM_ID Frame

 The MAX_STREAM_ID frame (type=0x06) informs the peer of the maximum
 stream ID that they are permitted to open.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Maximum Stream ID (32) |
 +-+

 The fields in the MAX_STREAM_ID frame are as follows:

 Maximum Stream ID: ID of the maximum peer-initiated stream ID for
 the connection.

 Loss or reordering can mean that a MAX_STREAM_ID frame can be
 received which states a lower stream limit than the client has
 previously received. MAX_STREAM_ID frames which do not increase the
 maximum stream ID MUST be ignored.

 A peer MUST NOT initiate a stream with a higher stream ID than the
 greatest maximum stream ID it has received. An endpoint MUST
 terminate a connection with a QUIC_TOO_MANY_OPEN_STREAMS error if a
 peer initiates a stream with a higher stream ID than it has sent,
 unless this is a result of a change in the initial limits (see

Section 7.3.2).

8.6. BLOCKED Frame

 A sender sends a BLOCKED frame (type=0x08) when it wishes to send
 data, but is unable to due to connection-level flow control (see

Section 11.2.1). BLOCKED frames can be used as input to tuning of
 flow control algorithms (see Section 11.1.2).

 The BLOCKED frame does not contain a payload.

8.7. STREAM_BLOCKED Frame

 A sender sends a STREAM_BLOCKED frame (type=0x09) when it wishes to
 send data, but is unable to due to stream-level flow control. This
 frame is analogous to BLOCKED (Section 8.6).

 The STREAM_BLOCKED frame is as follows:

Iyengar & Thomson Expires November 22, 2017 [Page 44]

Internet-Draft QUIC Transport Protocol May 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (32) |
 +-+

 The STREAM_BLOCKED frame contains a single field:

 Stream ID: A 32-bit unsigned number indicating the stream which is
 flow control blocked.

 An endpoint MAY send a STREAM_BLOCKED frame for a stream that exceeds
 the maximum stream ID set by its peer (see Section 8.5). This does
 not open the stream, but informs the peer that a new stream was
 needed, but the stream limit prevented the creation of the stream.

8.8. STREAM_ID_NEEDED Frame

 A sender sends a STREAM_ID_NEEDED frame (type=0x0a) when it wishes to
 open a stream, but is unable to due to the maximum stream ID limit.

 The STREAM_ID_NEEDED frame does not contain a payload.

8.9. RST_STREAM Frame

 An endpoint may use a RST_STREAM frame (type=0x01) to abruptly
 terminate a stream.

 After sending a RST_STREAM, an endpoint ceases transmission of STREAM
 frames on the identified stream. A receiver of RST_STREAM can
 discard any data that it already received on that stream. An
 endpoint sends a RST_STREAM in response to a RST_STREAM unless the
 stream is already closed.

 The RST_STREAM frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |
 +-+
 | Stream ID (32) |
 +-+
 | |
 + Final Offset (64) +
 | |
 +-+

Iyengar & Thomson Expires November 22, 2017 [Page 45]

Internet-Draft QUIC Transport Protocol May 2017

 The fields are:

 Error code: A 32-bit error code which indicates why the stream is
 being closed.

 Stream ID: The 32-bit Stream ID of the stream being terminated.

 Final offset: A 64-bit unsigned integer indicating the absolute byte
 offset of the end of data written on this stream by the RST_STREAM
 sender.

8.10. PADDING Frame

 The PADDING frame (type=0x00) has no semantic value. PADDING frames
 can be used to increase the size of a packet. Padding can be used to
 increase an initial client packet to the minimum required size, or to
 provide protection against traffic analysis for protected packets.

 A PADDING frame has no content. That is, a PADDING frame consists of
 the single octet that identifies the frame as a PADDING frame.

8.11. PING frame

 Endpoints can use PING frames (type=0x07) to verify that their peers
 are still alive or to check reachability to the peer. The PING frame
 contains no additional fields. The receiver of a PING frame simply
 needs to acknowledge the packet containing this frame. The PING
 frame SHOULD be used to keep a connection alive when a stream is
 open. The default is to send a PING frame after 15 seconds of
 quiescence. A PING frame has no additional fields.

8.12. NEW_CONNECTION_ID Frame

 A server sends a NEW_CONNECTION_ID to provide the client with
 alternative connection IDs that can be used to break linkability when
 migrating connections (see Section 7.6.1).

 The NEW_CONNECTION_ID is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence (16) |
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+

Iyengar & Thomson Expires November 22, 2017 [Page 46]

Internet-Draft QUIC Transport Protocol May 2017

 The fields are:

 Sequence: A 16-bit sequence number. This value starts at 0 and
 increases by 1 for each connection ID that is provided by the
 server. The sequence value can wrap; the value 65535 is followed
 by 0. When wrapping the sequence field, the server MUST ensure
 that a value with the same sequence has been received and
 acknowledged by the client. The connection ID that is assigned
 during the handshake is assumed to have a sequence of 65535.

 Connection ID: A 64-bit connection ID.

8.13. CONNECTION_CLOSE frame

 An endpoint sends a CONNECTION_CLOSE frame (type=0x02) to notify its
 peer that the connection is being closed. If there are open streams
 that haven't been explicitly closed, they are implicitly closed when
 the connection is closed. (Ideally, a GOAWAY frame would be sent
 with enough time that all streams are torn down.) The frame is as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |
 +-+
 | Reason Phrase Length (16) | [Reason Phrase (*)] ...
 +-+

 The fields of a CONNECTION_CLOSE frame are as follows:

 Error Code: A 32-bit error code which indicates the reason for
 closing this connection.

 Reason Phrase Length: A 16-bit unsigned number specifying the length
 of the reason phrase. Note that a CONNECTION_CLOSE frame cannot
 be split between packets, so in practice any limits on packet size
 will also limit the space available for a reason phrase.

 Reason Phrase: A human-readable explanation for why the connection
 was closed. This can be zero length if the sender chooses to not
 give details beyond the Error Code. This SHOULD be a UTF-8
 encoded string [RFC3629].

https://datatracker.ietf.org/doc/html/rfc3629

Iyengar & Thomson Expires November 22, 2017 [Page 47]

Internet-Draft QUIC Transport Protocol May 2017

8.14. GOAWAY Frame

 An endpoint uses a GOAWAY frame (type=0x03) to initiate a graceful
 shutdown of a connection. The endpoints will continue to use any
 active streams, but the sender of the GOAWAY will not initiate or
 accept any additional streams beyond those indicated. The GOAWAY
 frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Largest Client Stream ID (32) |
 +-+
 | Largest Server Stream ID (32) |
 +-+

 The fields of a GOAWAY frame are:

 Largest Client Stream ID: The highest-numbered, client-initiated
 stream on which the endpoint sending the GOAWAY frame either sent
 data, or received and delivered data. All higher-numbered,
 client-initiated streams (that is, odd-numbered streams) are
 implicitly reset by sending or receiving the GOAWAY frame.

 Largest Server Stream ID: The highest-numbered, server-initiated
 stream on which the endpoint sending the GOAWAY frame either sent
 data, or received and delivered data. All higher-numbered,
 server-initiated streams (that is, even-numbered streams) are
 implicitly reset by sending or receiving the GOAWAY frame.

 A GOAWAY frame indicates that any application layer actions on
 streams with higher numbers than those indicated can be safely
 retried because no data was exchanged. An endpoint MUST set the
 value of the Largest Client or Server Stream ID to be at least as
 high as the highest-numbered stream on which it either sent data or
 received and delivered data to the application protocol that uses
 QUIC.

 An endpoint MAY choose a larger stream identifier if it wishes to
 allow for a number of streams to be created. This is especially
 valuable for peer-initiated streams where packets creating new
 streams could be in transit; using a larger stream number allows
 those streams to complete.

 In addition to initiating a graceful shutdown of a connection, GOAWAY
 MAY be sent immediately prior to sending a CONNECTION_CLOSE frame
 that is sent as a result of detecting a fatal error. Higher-numbered
 streams than those indicated in the GOAWAY frame can then be retried.

Iyengar & Thomson Expires November 22, 2017 [Page 48]

Internet-Draft QUIC Transport Protocol May 2017

9. Packetization and Reliability

 The Path Maximum Transmission Unit (PTMU) is the maximum size of the
 entire IP header, UDP header, and UDP payload. The UDP payload
 includes the QUIC public header, protected payload, and any
 authentication fields.

 All QUIC packets SHOULD be sized to fit within the estimated PMTU to
 avoid IP fragmentation or packet drops. To optimize bandwidth
 efficiency, endpoints SHOULD use Packetization Layer PMTU Discovery
 ([RFC4821]) and MAY use PMTU Discovery ([RFC1191], [RFC1981]) for
 detecting the PMTU, setting the PMTU appropriately, and storing the
 result of previous PMTU determinations.

 In the absence of these mechanisms, QUIC endpoints SHOULD NOT send IP
 packets larger than 1280 octets. Assuming the minimum IP header
 size, this results in a QUIC packet size of 1232 octets for IPv6 and
 1252 octets for IPv4.

 QUIC endpoints that implement any kind of PMTU discovery SHOULD
 maintain an estimate for each combination of local and remote IP
 addresses (as each pairing could have a different maximum MTU in the
 path).

 QUIC depends on the network path supporting a MTU of at least 1280
 octets. This is the IPv6 minimum and therefore also supported by
 most modern IPv4 networks. An endpoint MUST NOT reduce their MTU
 below this number, even if it receives signals that indicate a
 smaller limit might exist.

 Clients MUST ensure that the first packet in a connection, and any
 retransmissions of those octets, has a QUIC packet size of least 1232
 octets for an IPv6 packet and 1252 octets for an IPv4 packet. In the
 absence of extensions to the IP header, padding to exactly these
 values will result in an IP packet that is 1280 octets.

 The initial client packet SHOULD be padded to exactly these values
 unless the client has a reasonable assurance that the PMTU is larger.
 Sending a packet of this size ensures that the network path supports
 an MTU of this size and helps reduce the amplitude of amplification
 attacks caused by server responses toward an unverified client
 address.

 Servers MUST ignore an initial plaintext packet from a client if its
 total size is less than 1232 octets for IPv6 or 1252 octets for IPv4.

 If a QUIC endpoint determines that the PMTU between any pair of local
 and remote IP addresses has fallen below 1280 octets, it MUST

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Iyengar & Thomson Expires November 22, 2017 [Page 49]

Internet-Draft QUIC Transport Protocol May 2017

 immediately cease sending QUIC packets on the affected path. This
 could result in termination of the connection if an alternative path
 cannot be found.

 A sender bundles one or more frames in a Regular QUIC packet (see
Section 6).

 A sender SHOULD minimize per-packet bandwidth and computational costs
 by bundling as many frames as possible within a QUIC packet. A
 sender MAY wait for a short period of time to bundle multiple frames
 before sending a packet that is not maximally packed, to avoid
 sending out large numbers of small packets. An implementation may
 use heuristics about expected application sending behavior to
 determine whether and for how long to wait. This waiting period is
 an implementation decision, and an implementation should be careful
 to delay conservatively, since any delay is likely to increase
 application-visible latency.

 Regular QUIC packets are "containers" of frames; a packet is never
 retransmitted whole. How an endpoint handles the loss of the frame
 depends on the type of the frame. Some frames are simply
 retransmitted, some have their contents moved to new frames, and
 others are never retransmitted.

 When a packet is detected as lost, the sender re-sends any frames as
 necessary:

 o All application data sent in STREAM frames MUST be retransmitted,
 unless the endpoint has sent a RST_STREAM for that stream. When
 an endpoint sends a RST_STREAM frame, data outstanding on that
 stream SHOULD NOT be retransmitted, since subsequent data on this
 stream is expected to not be delivered by the receiver.

 o ACK and PADDING frames MUST NOT be retransmitted. ACK frames are
 cumulative, so new frames containing updated information will be
 sent as described in Section 8.2.

 o All other frames MUST be retransmitted.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [QUIC-RECOVERY].

 A packet MUST NOT be acknowledged until packet protection has been
 successfully removed and all frames contained in the packet have been
 processed. For STREAM frames, this means the data has been queued
 (but not necessarily delivered to the application). This also means
 that any stream state transitions triggered by STREAM or RST_STREAM

Iyengar & Thomson Expires November 22, 2017 [Page 50]

Internet-Draft QUIC Transport Protocol May 2017

 frames have occurred. Once the packet has been fully processed, a
 receiver acknowledges receipt by sending one or more ACK frames
 containing the packet number of the received packet.

 To avoid creating an indefinite feedback loop, an endpoint MUST NOT
 generate an ACK frame in response to a packet containing only ACK or
 PADDING frames.

 Strategies and implications of the frequency of generating
 acknowledgments are discussed in more detail in [QUIC-RECOVERY].

9.1. Special Considerations for PMTU Discovery

 Traditional ICMP-based path MTU discovery in IPv4 [RFC1191] is
 potentially vulnerable to off-path attacks that successfully guess
 the IP/port 4-tuple and reduce the MTU to a bandwidth-inefficient
 value. TCP connections mitigate this risk by using the (at minimum)
 8 bytes of transport header echoed in the ICMP message to validate
 the TCP sequence number as valid for the current connection.
 However, as QUIC operates over UDP, in IPv4 the echoed information
 could consist only of the IP and UDP headers, which usually has
 insufficient entropy to mitigate off-path attacks.

 As a result, endpoints that implement PMTUD in IPv4 SHOULD take steps
 to mitigate this risk. For instance, an application could:

 o Set the IPv4 Don't Fragment (DF) bit on a small proportion of
 packets, so that most invalid ICMP messages arrive when there are
 no DF packets outstanding, and can therefore be identified as
 spurious.

 o Store additional information from the IP or UDP headers from DF
 packets (for example, the IP ID or UDP checksum) to further
 authenticate incoming Datagram Too Big messages.

 o Any reduction in PMTU due to a report contained in an ICMP packet
 is provisional until QUIC's loss detection algorithm determines
 that the packet is actually lost.

10. Streams: QUIC's Data Structuring Abstraction

 Streams in QUIC provide a lightweight, ordered, and bidirectional
 byte-stream abstraction modeled closely on HTTP/2 streams [RFC7540].

 Streams can be created either by the client or the server, can
 concurrently send data interleaved with other streams, and can be
 cancelled.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc7540

Iyengar & Thomson Expires November 22, 2017 [Page 51]

Internet-Draft QUIC Transport Protocol May 2017

 Data that is received on a stream is delivered in order within that
 stream, but there is no particular delivery order across streams.
 Transmit ordering among streams is left to the implementation.

 The creation and destruction of streams are expected to have minimal
 bandwidth and computational cost. A single STREAM frame may create,
 carry data for, and terminate a stream, or a stream may last the
 entire duration of a connection.

 Streams are individually flow controlled, allowing an endpoint to
 limit memory commitment and to apply back pressure. The creation of
 streams is also flow controlled, with each peer declaring the maximum
 stream ID it is willing to accept at a given time.

 An alternative view of QUIC streams is as an elastic "message"
 abstraction, similar to the way ephemeral streams are used in SST
 [SST], which may be a more appealing description for some
 applications.

10.1. Stream Identifiers

 Streams are identified by an unsigned 32-bit integer, referred to as
 the Stream ID. To avoid Stream ID collision, clients initiate
 streams using odd-numbered Stream IDs; streams initiated by the
 server use even-numbered Stream IDs.

 Stream ID 0 (0x0) is reserved for the cryptographic handshake.
 Stream 0 MUST NOT be used for application data, and is the first
 client-initiated stream.

 A QUIC endpoint cannot reuse a Stream ID. Streams MUST be created in
 sequential order. Open streams can be used in any order. Streams
 that are used out of order result in lower-numbered streams in the
 same direction being counted as open.

 Stream IDs are usually encoded as a 32-bit integer, though the STREAM
 frame (Section 8.1) permits a shorter encoding when the leading bits
 of the stream ID are zero.

10.2. Life of a Stream

 The semantics of QUIC streams is based on HTTP/2 streams, and the
 lifecycle of a QUIC stream therefore closely follows that of an
 HTTP/2 stream [RFC7540], with some differences to accommodate the
 possibility of out-of-order delivery due to the use of multiple
 streams in QUIC. The lifecycle of a QUIC stream is shown in the
 following figure and described below.

https://datatracker.ietf.org/doc/html/rfc7540

Iyengar & Thomson Expires November 22, 2017 [Page 52]

Internet-Draft QUIC Transport Protocol May 2017

 +--------+
 recv RST | | send RST
 ,-------------| idle |---------------.
 / | | \
 | +--------+ |
 | | |
 | send STREAM / recv STREAM |
 | | |
 | v |
 | recv FIN/ +--------+ send FIN/ |
 | recv RST | | send RST |
 | ,---------| open |-----------. |
 | / | | \ |
 v v +--------+ v v
 +----------+ +----------+
 | half | | half |
 | closed | | closed |
 | (remote) | | (local) |
 +----------+ +----------+
 | |
 | send FIN/ +--------+ recv FIN/ |
 \ send RST | | recv RST /
 `----------->| closed |<-------------'
 | |
 +--------+

 send: endpoint sends this frame
 recv: endpoint receives this frame

 STREAM: a STREAM frame
 FIN: FIN flag in a STREAM frame
 RST: RST_STREAM frame

 Figure 11: Lifecycle of a stream

 Note that this diagram shows stream state transitions and the frames
 and flags that affect those transitions only. For the purpose of
 state transitions, the FIN flag is processed as a separate event to
 the frame that bears it; a STREAM frame with the FIN flag set can
 cause two state transitions.

 The recipient of a frame which changes stream state will have a
 delayed view of the state of a stream while the frame is in transit.
 Endpoints do not coordinate the creation of streams; they are created
 unilaterally by either endpoint. Endpoints can use acknowledgments
 to understand the peer's subjective view of stream state at any given
 time.

Iyengar & Thomson Expires November 22, 2017 [Page 53]

Internet-Draft QUIC Transport Protocol May 2017

 In the absence of more specific guidance elsewhere in this document,
 implementations SHOULD treat the receipt of a frame that is not
 expressly permitted in the description of a state as a connection
 error (see Section 12).

10.2.1. idle

 All streams start in the "idle" state.

 The following transitions are valid from this state:

 Sending or receiving a STREAM frame causes the identified stream to
 become "open". The stream identifier for a new stream is selected as
 described in Section 10.1. The same STREAM frame can also cause a
 stream to immediately become "half-closed" if the FIN flag is set.

 Receiving a STREAM frame on a peer-initiated stream (that is, a
 packet sent by a server on an even-numbered stream or a client packet
 on an odd-numbered stream) also causes all lower-numbered "idle"
 streams in the same direction to become "open". This could occur if
 a peer begins sending on streams in a different order to their
 creation, or it could happen if packets are lost or reordered in
 transit.

 A RST_STREAM frame on an "idle" stream causes the stream to become
 "half-closed". Sending a RST_STREAM frame causes the stream to
 become "half-closed (local)"; receiving RST_STREAM causes the stream
 to become "half-closed (remote)".

 An endpoint might receive MAX_STREAM_DATA frames on peer-initiated
 streams that are "idle" if there is loss or reordering of packets.

 Receiving any frame other than STREAM, MAX_STREAM_DATA,
 STREAM_BLOCKED, or RST_STREAM on a stream in this state MUST be
 treated as a connection error (Section 12) of type YYYY.

 An endpoint MUST NOT send a STREAM or RST_STREAM frame for a stream
 ID that is higher than the peers advertised maximum stream ID (see

Section 8.5).

10.2.2. open

 A stream in the "open" state may be used by both peers to send frames
 of any type. In this state, endpoints can send MAX_STREAM_DATA and
 MUST observe the value advertised by its receiving peer (see

Section 11).

Iyengar & Thomson Expires November 22, 2017 [Page 54]

Internet-Draft QUIC Transport Protocol May 2017

 From this state, either endpoint can send a frame with the FIN flag
 set, which causes the stream to transition into one of the "half-
 closed" states. An endpoint sending an FIN flag causes the stream
 state to become "half-closed (local)". An endpoint receiving a FIN
 flag causes the stream state to become "half-closed (remote)" once
 all preceding data has arrived. The receiving endpoint MUST NOT
 consider the stream state to have changed until all data has arrived.

 A RST_STREAM frame on an "open" stream causes the stream to become
 "half-closed". Sending a RST_STREAM frame causes the stream to
 become "half-closed (local)"; receiving RST_STREAM causes the stream
 to become "half-closed (remote)".

 Any frame type that mentions a stream ID can be sent in this state.

10.2.3. half-closed (local)

 A stream that is in the "half-closed (local)" state MUST NOT be used
 for sending on new STREAM frames. Retransmission of data that has
 already been sent on STREAM frames is permitted. An endpoint MAY
 also send MAX_STREAM_DATA and RST_STREAM in this state.

 An endpoint that closes a stream MUST NOT send data beyond the final
 offset that it has chosen, see Section 10.2.5 for details.

 A stream transitions from this state to "closed" when a STREAM frame
 that contains a FIN flag is received and all prior data has arrived,
 or when a RST_STREAM frame is received.

 An endpoint can receive any frame that mentions a stream ID in this
 state. Providing flow-control credit using MAX_STREAM_DATA frames is
 necessary to continue receiving flow-controlled frames. In this
 state, a receiver MAY ignore MAX_STREAM_DATA frames for this stream,
 which might arrive for a short period after a frame bearing the FIN
 flag is sent.

10.2.4. half-closed (remote)

 A stream is "half-closed (remote)" when the stream is no longer being
 used by the peer to send any data. An endpoint will have either
 received all data that a peer has sent or will have received a
 RST_STREAM frame and discarded any received data.

 Once all data has been either received or discarded, a sender is no
 longer obligated to update the maximum received data for the
 connection.

Iyengar & Thomson Expires November 22, 2017 [Page 55]

Internet-Draft QUIC Transport Protocol May 2017

 An endpoint that receives a RST_STREAM frame (and which has not sent
 a FIN or a RST_STREAM) MUST immediately respond with a RST_STREAM
 frame, and MUST NOT send any more data on the stream.

 Due to reordering, an endpoint could continue receiving frames for
 the stream even after the stream is closed for sending. Frames
 received after a peer closes a stream SHOULD be discarded. An
 endpoint MAY choose to limit the period over which it ignores frames
 and treat frames that arrive after this time as being in error.

 An endpoint will know the final offset of the data it receives on a
 stream when it reaches the "half-closed (remote)" state, see

Section 11.3 for details.

 A stream in this state can be used by the endpoint to send any frame
 that mentions a stream ID. In this state, the endpoint MUST observe
 advertised stream and connection data limits (see Section 11).

 A stream can transition from this state to "closed" by completing
 transmission of all data. This includes sending all data carried in
 STREAM frames up including the terminal STREAM frame that contains a
 FIN flag and receiving acknowledgment from the peer for all data.

 A stream becomes "closed" when the endpoint sends and receives
 acknowledgment of a RST_STREAM frame.

10.2.5. closed

 The "closed" state is the terminal state for a stream.

 Once a stream reaches this state, no frames can be sent that mention
 the stream. Reordering might cause frames to be received after
 closing, see Section 10.2.4.

10.3. Stream Concurrency

 An endpoint limits the number of concurrently active incoming streams
 by adjusting the maximum stream ID. An initial value is set in the
 transport parameters (see Section 7.3.1) and is subsequently
 increased by MAX_STREAM_ID frames (see Section 8.5).

 The maximum stream ID is specific to each endpoint and applies only
 to the peer that receives the setting. That is, clients specify the
 maximum stream ID the server can initiate, and servers specify the
 maximum stream ID the client can initiate. Each endpoint may respond
 on streams initiated by the other peer, regardless of whether it is
 permitted to initiated new streams.

Iyengar & Thomson Expires November 22, 2017 [Page 56]

Internet-Draft QUIC Transport Protocol May 2017

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a STREAM frame with an ID greater than the limit it has
 sent MUST treat this as a stream error of type
 QUIC_TOO_MANY_OPEN_STREAMS (Section 12), unless this is a result of a
 change in the initial offsets (see Section 7.3.2).

 A receiver MUST NOT renege on an advertisement; that is, once a
 receiver advertises a stream ID via a MAX_STREAM_ID frame, it MUST
 NOT subsequently advertise a smaller maximum ID. A sender may
 receive MAX_STREAM_ID frames out of order; a sender MUST therefore
 ignore any MAX_STREAM_ID that does not increase the maximum.

10.4. Sending and Receiving Data

 Once a stream is created, endpoints may use the stream to send and
 receive data. Each endpoint may send a series of STREAM frames
 encapsulating data on a stream until the stream is terminated in that
 direction. Streams are an ordered byte-stream abstraction, and they
 have no other structure within them. STREAM frame boundaries are not
 expected to be preserved in retransmissions from the sender or during
 delivery to the application at the receiver.

 When new data is to be sent on a stream, a sender MUST set the
 encapsulating STREAM frame's offset field to the stream offset of the
 first byte of this new data. The first byte of data that is sent on
 a stream has the stream offset 0. The largest offset delivered on a
 stream MUST be less than 2^64. A receiver MUST ensure that received
 stream data is delivered to the application as an ordered byte-
 stream. Data received out of order MUST be buffered for later
 delivery, as long as it is not in violation of the receiver's flow
 control limits.

 An endpoint MUST NOT send data on any stream without ensuring that it
 is within the data limits set by its peer. The cryptographic
 handshake stream, Stream 0, is exempt from the connection-level data
 limits established by MAX_DATA. Stream 0 is still subject to stream-
 level data limits and MAX_STREAM_DATA.

 Flow control is described in detail in Section 11, and congestion
 control is described in the companion document [QUIC-RECOVERY].

10.5. Stream Prioritization

 Stream multiplexing has a significant effect on application
 performance if resources allocated to streams are correctly
 prioritized. Experience with other multiplexed protocols, such as
 HTTP/2 [RFC7540], shows that effective prioritization strategies have
 a significant positive impact on performance.

https://datatracker.ietf.org/doc/html/rfc7540

Iyengar & Thomson Expires November 22, 2017 [Page 57]

Internet-Draft QUIC Transport Protocol May 2017

 QUIC does not provide frames for exchanging prioritization
 information. Instead it relies on receiving priority information
 from the application that uses QUIC. Protocols that use QUIC are
 able to define any prioritization scheme that suits their application
 semantics. A protocol might define explicit messages for signaling
 priority, such as those defined in HTTP/2; it could define rules that
 allow an endpoint to determine priority based on context; or it could
 leave the determination to the application.

 A QUIC implementation SHOULD provide ways in which an application can
 indicate the relative priority of streams. When deciding which
 streams to dedicate resources to, QUIC SHOULD use the information
 provided by the application. Failure to account for priority of
 streams can result in suboptimal performance.

 Stream priority is most relevant when deciding which stream data will
 be transmitted. Often, there will be limits on what can be
 transmitted as a result of connection flow control or the current
 congestion controller state.

 Giving preference to the transmission of its own management frames
 ensures that the protocol functions efficiently. That is,
 prioritizing frames other than STREAM frames ensures that loss
 recovery, congestion control, and flow control operate effectively.

 Stream 0 MUST be prioritized over other streams prior to the
 completion of the cryptographic handshake. This includes the
 retransmission of the second flight of client handshake messages,
 that is, the TLS Finished and any client authentication messages.

 STREAM frames that are determined to be lost SHOULD be retransmitted
 before sending new data, unless application priorities indicate
 otherwise. Retransmitting lost STREAM frames can fill in gaps, which
 allows the peer to consume already received data and free up flow
 control window.

11. Flow Control

 It is necessary to limit the amount of data that a sender may have
 outstanding at any time, so as to prevent a fast sender from
 overwhelming a slow receiver, or to prevent a malicious sender from
 consuming significant resources at a receiver. This section
 describes QUIC's flow-control mechanisms.

 QUIC employs a credit-based flow-control scheme similar to HTTP/2's
 flow control [RFC7540]. A receiver advertises the number of octets
 it is prepared to receive on a given stream and for the entire
 connection. This leads to two levels of flow control in QUIC: (i)

https://datatracker.ietf.org/doc/html/rfc7540

Iyengar & Thomson Expires November 22, 2017 [Page 58]

Internet-Draft QUIC Transport Protocol May 2017

 Connection flow control, which prevents senders from exceeding a
 receiver's buffer capacity for the connection, and (ii) Stream flow
 control, which prevents a single stream from consuming the entire
 receive buffer for a connection.

 A receiver sends MAX_DATA or MAX_STREAM_DATA frames to the sender to
 advertise additional credit by sending the absolute byte offset in
 the connection or stream which it is willing to receive.

 A receiver MAY advertise a larger offset at any point by sending
 MAX_DATA or MAX_STREAM_DATA frames. A receiver MUST NOT renege on an
 advertisement; that is, once a receiver advertises an offset, it MUST
 NOT subsequently advertise a smaller offset. A sender could receive
 MAX_DATA or MAX_STREAM_DATA frames out of order; a sender MUST
 therefore ignore any flow control offset that does not move the
 window forward.

 A receiver MUST close the connection with a
 QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA error (Section 12) if the
 peer violates the advertised connection or stream data limits.

 A sender MUST send BLOCKED frames to indicate it has data to write
 but is blocked by lack of connection or stream flow control credit.
 BLOCKED frames are expected to be sent infrequently in common cases,
 but they are considered useful for debugging and monitoring purposes.

 A receiver advertises credit for a stream by sending a
 MAX_STREAM_DATA frame with the Stream ID set appropriately. A
 receiver could use the current offset of data consumed to determine
 the flow control offset to be advertised. A receiver MAY send
 MAX_STREAM_DATA frames in multiple packets in order to make sure that
 the sender receives an update before running out of flow control
 credit, even if one of the packets is lost.

 Connection flow control is a limit to the total bytes of stream data
 sent in STREAM frames on all streams. A receiver advertises credit
 for a connection by sending a MAX_DATA frame. A receiver maintains a
 cumulative sum of bytes received on all streams, which are used to
 check for flow control violations. A receiver might use a sum of
 bytes consumed on all contributing streams to determine the maximum
 data limit to be advertised.

11.1. Edge Cases and Other Considerations

 There are some edge cases which must be considered when dealing with
 stream and connection level flow control. Given enough time, both
 endpoints must agree on flow control state. If one end believes it

Iyengar & Thomson Expires November 22, 2017 [Page 59]

Internet-Draft QUIC Transport Protocol May 2017

 can send more than the other end is willing to receive, the
 connection will be torn down when too much data arrives.

 Conversely if a sender believes it is blocked, while endpoint B
 expects more data can be received, then the connection can be in a
 deadlock, with the sender waiting for a MAX_DATA or MAX_STREAM_DATA
 frame which will never come.

 On receipt of a RST_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. This could result in the endpoints getting out of sync,
 since the RST_STREAM frame may have arrived out of order and there
 may be further bytes in flight. The data sender would have counted
 the data against its connection level flow control budget, but a
 receiver that has not received these bytes would not know to include
 them as well. The receiver must learn the number of bytes that were
 sent on the stream to make the same adjustment in its connection flow
 controller.

 To avoid this de-synchronization, a RST_STREAM sender MUST include
 the final byte offset sent on the stream in the RST_STREAM frame. On
 receiving a RST_STREAM frame, a receiver definitively knows how many
 bytes were sent on that stream before the RST_STREAM frame, and the
 receiver MUST use the final offset to account for all bytes sent on
 the stream in its connection level flow controller.

11.1.1. Response to a RST_STREAM

 Since streams are bidirectional, a sender of a RST_STREAM needs to
 know how many bytes the peer has sent on the stream. If an endpoint
 receives a RST_STREAM frame and has sent neither a FIN nor a
 RST_STREAM, it MUST send a RST_STREAM in response, bearing the offset
 of the last byte sent on this stream as the final offset.

11.1.2. Data Limit Increments

 This document leaves when and how many bytes to advertise in a
 MAX_DATA or MAX_STREAM_DATA to implementations, but offers a few
 considerations. These frames contribute to connection overhead.
 Therefore frequently sending frames with small changes is
 undesirable. At the same time, infrequent updates require larger
 increments to limits if blocking is to be avoided. Thus, larger
 updates require a receiver to commit to larger resource commitments.
 Thus there is a tradeoff between resource commitment and overhead
 when determining how large a limit is advertised.

 A receiver MAY use an autotuning mechanism to tune the frequency and
 amount that it increases data limits based on a roundtrip time

Iyengar & Thomson Expires November 22, 2017 [Page 60]

Internet-Draft QUIC Transport Protocol May 2017

 estimate and the rate at which the receiving application consumes
 data, similar to common TCP implementations.

11.2. Stream Limit Increment

 As with flow control, this document leaves when and how many streams
 to make available to a peer via MAX_STREAM_ID to implementations, but
 offers a few considerations. MAX_STREAM_ID frames constitute minimal
 overhead, while withholding MAX_STREAM_ID frames can prevent the peer
 from using the available parallelism.

 Implementations will likely want to increase the maximum stream ID as
 peer-initiated streams close. A receiver MAY also advance the
 maximum stream ID based on current activity, system conditions, and
 other environmental factors.

11.2.1. Blocking on Flow Control

 If a sender does not receive a MAX_DATA or MAX_STREAM_DATA frame when
 it has run out of flow control credit, the sender will be blocked and
 MUST send a BLOCKED or STREAM_BLOCKED frame. These frames are
 expected to be useful for debugging at the receiver; they do not
 require any other action. A receiver SHOULD NOT wait for a BLOCKED
 or STREAM_BLOCKED frame before sending MAX_DATA or MAX_STREAM_DATA,
 since doing so will mean that a sender is unable to send for an
 entire round trip.

 For smooth operation of the congestion controller, it is generally
 considered best to not let the sender go into quiescence if
 avoidable. To avoid blocking a sender, and to reasonably account for
 the possibiity of loss, a receiver should send a MAX_DATA or
 MAX_STREAM_DATA frame at least two roundtrips before it expects the
 sender to get blocked.

 A sender sends a single BLOCKED or STREAM_BLOCKED frame only once
 when it reaches a data limit. A sender MUST NOT send multiple
 BLOCKED or STREAM_BLOCKED frames for the same data limit, unless the
 original frame is determined to be lost. Another BLOCKED or
 STREAM_BLOCKED frame can be sent after the data limit is increased.

11.3. Stream Final Offset

 The final offset is the count of the number of octets that are
 transmitted on a stream. For a stream that is reset, the final
 offset is carried explicitly in the RST_STREAM frame. Otherwise, the
 final offset is the offset of the end of the data carried in STREAM
 frame marked with a FIN flag.

Iyengar & Thomson Expires November 22, 2017 [Page 61]

Internet-Draft QUIC Transport Protocol May 2017

 An endpoint will know the final offset for a stream when the stream
 enters the "half-closed (remote)" state. However, if there is
 reordering or loss, an endpoint might learn the final offset prior to
 entering this state if it is carried on a STREAM frame.

 An endpoint MUST NOT send data on a stream at or beyond the final
 offset.

 Once a final offset for a stream is known, it cannot change. If a
 RST_STREAM or STREAM frame causes the final offset to change for a
 stream, an endpoint SHOULD respond with a
 QUIC_STREAM_DATA_AFTER_TERMINATION error (see Section 12). A
 receiver SHOULD treat receipt of data at or beyond the final offset
 as a QUIC_STREAM_DATA_AFTER_TERMINATION error, even after a stream is
 closed. Generating these errors is not mandatory, but only because
 requiring that an endpoint generate these errors also means that the
 endpoint needs to maintain the final offset state for closed streams,
 which could mean a significant state commitment.

12. Error Handling

 An endpoint that detects an error SHOULD signal the existence of that
 error to its peer. Errors can affect an entire connection (see

Section 12.1), or a single stream (see Section 12.2).

 The most appropriate error code (Section 12.3) SHOULD be included in
 the frame that signals the error. Where this specification
 identifies error conditions, it also identifies the error code that
 is used.

 Public Reset is not suitable for any error that can be signaled with
 a CONNECTION_CLOSE or RST_STREAM frame. Public Reset MUST NOT be
 sent by an endpoint that has the state necessary to send a frame on
 the connection.

12.1. Connection Errors

 Errors that result in the connection being unusable, such as an
 obvious violation of protocol semantics or corruption of state that
 affects an entire connection, MUST be signaled using a
 CONNECTION_CLOSE frame (Section 8.13). An endpoint MAY close the
 connection in this manner, even if the error only affects a single
 stream.

 A CONNECTION_CLOSE frame could be sent in a packet that is lost. An
 endpoint SHOULD be prepared to retransmit a packet containing a
 CONNECTION_CLOSE frame if it receives more packets on a terminated
 connection. Limiting the number of retransmissions and the time over

Iyengar & Thomson Expires November 22, 2017 [Page 62]

Internet-Draft QUIC Transport Protocol May 2017

 which this final packet is sent limits the effort expended on
 terminated connections.

 An endpoint that chooses not to retransmit packets containing
 CONNECTION_CLOSE risks a peer missing the first such packet. The
 only mechanism available to an endpoint that continues to receive
 data for a terminated connection is to send a Public Reset packet.

12.2. Stream Errors

 If the error affects a single stream, but otherwise leaves the
 connection in a recoverable state, the endpoint can sent a RST_STREAM
 frame (Section 8.9) with an appropriate error code to terminate just
 the affected stream.

 Stream 0 is critical to the functioning of the entire connection. If
 stream 0 is closed with either a RST_STREAM or STREAM frame bearing
 the FIN flag, an endpoint MUST generate a connection error of type
 QUIC_CLOSED_CRITICAL_STREAM.

 Some application protocols make other streams critical to that
 protocol. An application protocol does not need to inform the
 transport that a stream is critical; it can instead generate
 appropriate errors in response to being notified that the critical
 stream is closed.

 An endpoint MAY send a RST_STREAM frame in the same packet as a
 CONNECTION_CLOSE frame.

12.3. Error Codes

 Error codes are 32 bits long, with the first two bits indicating the
 source of the error code:

 0x00000000-0x3FFFFFFF: Application-specific error codes. Defined by
 each application-layer protocol.

 0x40000000-0x7FFFFFFF: Reserved for host-local error codes. These
 codes MUST NOT be sent to a peer, but MAY be used in API return
 codes and logs.

 0x80000000-0xBFFFFFFF: QUIC transport error codes, including packet
 protection errors. Applicable to all uses of QUIC.

 0xC0000000-0xFFFFFFFF: Cryptographic error codes. Defined by the
 cryptographic handshake protocol in use.

Iyengar & Thomson Expires November 22, 2017 [Page 63]

Internet-Draft QUIC Transport Protocol May 2017

 This section lists the defined QUIC transport error codes that may be
 used in a CONNECTION_CLOSE or RST_STREAM frame. Error codes share a
 common code space. Some error codes apply only to either streams or
 the entire connection and have no defined semantics in the other
 context.

 QUIC_INTERNAL_ERROR (0x80000001): Connection has reached an invalid
 state.

 QUIC_STREAM_DATA_AFTER_TERMINATION (0x80000002): There were data
 frames after the a fin or reset.

 QUIC_INVALID_PACKET_HEADER (0x80000003): Control frame is malformed.

 QUIC_INVALID_FRAME_DATA (0x80000004): Frame data is malformed.

 QUIC_MULTIPLE_TERMINATION_OFFSETS (0x80000005): Multiple final
 offset values were received on the same stream

 QUIC_STREAM_CANCELLED (0x80000006): The stream was cancelled

 QUIC_CLOSED_CRITICAL_STREAM (0x80000007): A stream that is critical
 to the protocol was closed.

 QUIC_MISSING_PAYLOAD (0x80000030): The packet contained no payload.

 QUIC_INVALID_STREAM_DATA (0x8000002E): STREAM frame data is
 malformed.

 QUIC_UNENCRYPTED_STREAM_DATA (0x8000003D): Received STREAM frame
 data is not encrypted.

 QUIC_MAYBE_CORRUPTED_MEMORY (0x80000059): Received a frame which is
 likely the result of memory corruption.

 QUIC_INVALID_RST_STREAM_DATA (0x80000006): RST_STREAM frame data is
 malformed.

 QUIC_INVALID_CONNECTION_CLOSE_DATA (0x80000007): CONNECTION_CLOSE
 frame data is malformed.

 QUIC_INVALID_GOAWAY_DATA (0x80000008): GOAWAY frame data is
 malformed.

 QUIC_INVALID_WINDOW_UPDATE_DATA (0x80000039): WINDOW_UPDATE frame
 data is malformed.

Iyengar & Thomson Expires November 22, 2017 [Page 64]

Internet-Draft QUIC Transport Protocol May 2017

 QUIC_INVALID_BLOCKED_DATA (0x8000003A): BLOCKED frame data is
 malformed.

 QUIC_INVALID_PATH_CLOSE_DATA (0x8000004E): PATH_CLOSE frame data is
 malformed.

 QUIC_INVALID_ACK_DATA (0x80000009): ACK frame data is malformed.

 QUIC_INVALID_VERSION_NEGOTIATION_PACKET (0x8000000A): Version
 negotiation packet is malformed.

 QUIC_INVALID_PUBLIC_RST_PACKET (0x8000000b): Public RST packet is
 malformed.

 QUIC_DECRYPTION_FAILURE (0x8000000c): There was an error decrypting.

 QUIC_ENCRYPTION_FAILURE (0x8000000d): There was an error encrypting.

 QUIC_PACKET_TOO_LARGE (0x8000000e): The packet exceeded
 kMaxPacketSize.

 QUIC_PEER_GOING_AWAY (0x80000010): The peer is going away. May be a
 client or server.

 QUIC_INVALID_STREAM_ID (0x80000011): A stream ID was invalid.

 QUIC_INVALID_PRIORITY (0x80000031): A priority was invalid.

 QUIC_TOO_MANY_OPEN_STREAMS (0x80000012): Too many streams already
 open.

 QUIC_TOO_MANY_AVAILABLE_STREAMS (0x8000004c): The peer created too
 many available streams.

 QUIC_PUBLIC_RESET (0x80000013): Received public reset for this
 connection.

 QUIC_INVALID_VERSION (0x80000014): Invalid protocol version.

 QUIC_INVALID_HEADER_ID (0x80000016): The Header ID for a stream was
 too far from the previous.

 QUIC_INVALID_NEGOTIATED_VALUE (0x80000017): Negotiable parameter
 received during handshake had invalid value.

 QUIC_DECOMPRESSION_FAILURE (0x80000018): There was an error
 decompressing data.

Iyengar & Thomson Expires November 22, 2017 [Page 65]

Internet-Draft QUIC Transport Protocol May 2017

 QUIC_NETWORK_IDLE_TIMEOUT (0x80000019): The connection timed out due
 to no network activity.

 QUIC_HANDSHAKE_TIMEOUT (0x80000043): The connection timed out
 waiting for the handshake to complete.

 QUIC_ERROR_MIGRATING_ADDRESS (0x8000001a): There was an error
 encountered migrating addresses.

 QUIC_ERROR_MIGRATING_PORT (0x80000056): There was an error
 encountered migrating port only.

 QUIC_EMPTY_STREAM_FRAME_NO_FIN (0x80000032): We received a
 STREAM_FRAME with no data and no fin flag set.

 QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA (0x8000003b): The peer
 received too much data, violating flow control.

 QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA (0x8000003f): The peer sent too
 much data, violating flow control.

 QUIC_FLOW_CONTROL_INVALID_WINDOW (0x80000040): The peer received an
 invalid flow control window.

 QUIC_CONNECTION_IP_POOLED (0x8000003e): The connection has been IP
 pooled into an existing connection.

 QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS (0x80000044): The connection
 has too many outstanding sent packets.

 QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS (0x80000045): The
 connection has too many outstanding received packets.

 QUIC_CONNECTION_CANCELLED (0x80000046): The QUIC connection has been
 cancelled.

 QUIC_BAD_PACKET_LOSS_RATE (0x80000047): Disabled QUIC because of
 high packet loss rate.

 QUIC_PUBLIC_RESETS_POST_HANDSHAKE (0x80000049): Disabled QUIC
 because of too many PUBLIC_RESETs post handshake.

 QUIC_TIMEOUTS_WITH_OPEN_STREAMS (0x8000004a): Disabled QUIC because
 of too many timeouts with streams open.

 QUIC_TOO_MANY_RTOS (0x80000055): QUIC timed out after too many RTOs.

Iyengar & Thomson Expires November 22, 2017 [Page 66]

Internet-Draft QUIC Transport Protocol May 2017

 QUIC_ENCRYPTION_LEVEL_INCORRECT (0x8000002c): A packet was received
 with the wrong encryption level (i.e. it should have been
 encrypted but was not.)

 QUIC_VERSION_NEGOTIATION_MISMATCH (0x80000037): This connection
 involved a version negotiation which appears to have been tampered
 with.

 QUIC_IP_ADDRESS_CHANGED (0x80000050): IP address changed causing
 connection close.

 QUIC_ADDRESS_VALIDATION_FAILURE (0x80000051): Client address
 validation failed.

 QUIC_TOO_MANY_FRAME_GAPS (0x8000005d): Stream frames arrived too
 discontiguously so that stream sequencer buffer maintains too many
 gaps.

 QUIC_TOO_MANY_SESSIONS_ON_SERVER (0x80000060): Connection closed
 because server hit max number of sessions allowed.

13. Security and Privacy Considerations

13.1. Spoofed ACK Attack

 An attacker receives an STK from the server and then releases the IP
 address on which it received the STK. The attacker may, in the
 future, spoof this same address (which now presumably addresses a
 different endpoint), and initiate a 0-RTT connection with a server on
 the victim's behalf. The attacker then spoofs ACK frames to the
 server which cause the server to potentially drown the victim in
 data.

 There are two possible mitigations to this attack. The simplest one
 is that a server can unilaterally create a gap in packet-number
 space. In the non-attack scenario, the client will send an ACK frame
 with the larger value for largest acknowledged. In the attack
 scenario, the attacker could acknowledge a packet in the gap. If the
 server sees an acknowledgment for a packet that was never sent, the
 connection can be aborted.

 The second mitigation is that the server can require that
 acknowledgments for sent packets match the encryption level of the
 sent packet. This mitigation is useful if the connection has an
 ephemeral forward-secure key that is generated and used for every new
 connection. If a packet sent is protected with a forward-secure key,
 then any acknowledgments that are received for them MUST also be
 forward-secure protected. Since the attacker will not have the

Iyengar & Thomson Expires November 22, 2017 [Page 67]

Internet-Draft QUIC Transport Protocol May 2017

 forward secure key, the attacker will not be able to generate
 forward-secure protected packets with ACK frames.

13.2. Slowloris Attacks

 The attacks commonly known as Slowloris [SLOWLORIS] try to keep many
 connections to the target endpoint open and hold them open as long as
 possible. These attacks can be executed against a QUIC endpoint by
 generating the minimum amount of activity necessary to avoid being
 closed for inactivity. This might involve sending small amounts of
 data, gradually opening flow control windows in order to control the
 sender rate, or manufacturing ACK frames that simulate a high loss
 rate.

 QUIC deployments SHOULD provide mitigations for the Slowloris
 attacks, such as increasing the maximum number of clients the server
 will allow, limiting the number of connections a single IP address is
 allowed to make, imposing restrictions on the minimum transfer speed
 a connection is allowed to have, and restricting the length of time
 an endpoint is allowed to stay connected.

13.3. Stream Fragmentation and Reassembly Attacks

 An adversarial endpoint might intentionally fragment the data on
 stream buffers in order to cause disproportionate memory commitment.
 An adversarial endpoint could open a stream and send some STREAM
 frames containing arbitrary fragments of the stream content.

 The attack is mitigated if flow control windows correspond to
 available memory. However, some receivers will over-commit memory
 and advertise flow control offsets in the aggregate that exceed
 actual available memory. The over-commitment strategy can lead to
 better performance when endpoints are well behaved, but renders
 endpoints vulnerable to the stream fragmentation attack.

 QUIC deployments SHOULD provide mitigations against the stream
 fragmentation attack. Mitigations could consist of avoiding over-
 committing memory, delaying reassembly of STREAM frames, implementing
 heuristics based on the age and duration of reassembly holes, or some
 combination.

13.4. Stream Commitment Attack

 An adversarial endpoint can open lots of streams, exhausting state on
 an endpoint. The adversarial endpoint could repeat the process on a
 large number of connections, in a manner similar to SYN flooding
 attacks in TCP.

Iyengar & Thomson Expires November 22, 2017 [Page 68]

Internet-Draft QUIC Transport Protocol May 2017

 Normally, clients will open streams sequentially, as explained in
Section 10.1. However, when several streams are initiated at short

 intervals, transmission error may cause STREAM DATA frames opening
 streams to be received out of sequence. A receiver is obligated to
 open intervening streams if a higher-numbered stream ID is received.
 Thus, on a new connection, opening stream 2000001 opens 1 million
 streams, as required by the specification.

 The number of active streams is limited by the concurrent stream
 limit transport parameter, as explained in Section 10.3. If chosen
 judisciously, this limit mitigates the effect of the stream
 commitment attack. However, setting the limit too low could affect
 performance when applications expect to open large number of streams.

14. IANA Considerations

14.1. QUIC Transport Parameter Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Parameters"
 under a "QUIC Protocol" heading.

 The "QUIC Transport Parameters" registry governs a 16-bit space.
 This space is split into two spaces that are governed by different
 policies. Values with the first byte in the range 0x00 to 0xfe (in
 hexadecimal) are assigned via the Specification Required policy
 [RFC5226]. Values with the first byte 0xff are reserved for Private
 Use [RFC5226].

 Registrations MUST include the following fields:

 Value: The numeric value of the assignment (registrations will be
 between 0x0000 and 0xfeff).

 Parameter Name: A short mnemonic for the parameter.

 Specification: A reference to a publicly available specification for
 the value.

 The nominated expert(s) verify that a specification exists and is
 readily accessible. The expert(s) are encouraged to be biased
 towards approving registrations unless they are abusive, frivolous,
 or actively harmful (not merely aesthetically displeasing, or
 architecturally dubious).

 The initial contents of this registry are shown in Table 4.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Iyengar & Thomson Expires November 22, 2017 [Page 69]

Internet-Draft QUIC Transport Protocol May 2017

 +--------+-------------------------+---------------+
 | Value | Parameter Name | Specification |
 +--------+-------------------------+---------------+
 | 0x0000 | initial_max_stream_data | Section 7.3.1 |
 | | | |
 | 0x0001 | initial_max_data | Section 7.3.1 |
 | | | |
 | 0x0002 | initial_max_stream_id | Section 7.3.1 |
 | | | |
 | 0x0003 | idle_timeout | Section 7.3.1 |
 | | | |
 | 0x0004 | truncate_connection_id | Section 7.3.1 |
 +--------+-------------------------+---------------+

 Table 4: Initial QUIC Transport Parameters Entries

15. References

15.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-20 (work in progress),
 April 2017.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery (work in
 progress), May 2017.

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using Transport
 Layer Security (TLS) to Secure QUIC", draft-ietf-quic-tls
 (work in progress), May 2017.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Iyengar & Thomson Expires November 22, 2017 [Page 70]

Internet-Draft QUIC Transport Protocol May 2017

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

15.2. Informative References

 [EARLY-DESIGN]
 Roskind, J., "QUIC: Multiplexed Transport Over UDP",
 December 2013, <https://goo.gl/dMVtFi>.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <http://www.rfc-editor.org/info/rfc2360>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [SLOWLORIS]
 RSnake Hansen, R., "Welcome to Slowloris...", June 2009,
 <https://web.archive.org/web/20150315054838/

http://ha.ckers.org/slowloris/>.

https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://goo.gl/dMVtFi
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
http://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://web.archive.org/web/20150315054838/
http://ha.ckers.org/slowloris/

Iyengar & Thomson Expires November 22, 2017 [Page 71]

Internet-Draft QUIC Transport Protocol May 2017

 [SST] Ford, B., "Structured streams", ACM SIGCOMM Computer
 Communication Review Vol. 37, pp. 361,
 DOI 10.1145/1282427.1282421, October 2007.

15.3. URIs

 [1] https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Appendix A. Contributors

 The original authors of this specification were Ryan Hamilton, Jana
 Iyengar, Ian Swett, and Alyssa Wilk.

 The original design and rationale behind this protocol draw
 significantly from work by Jim Roskind [EARLY-DESIGN]. In
 alphabetical order, the contributors to the pre-IETF QUIC project at
 Google are: Britt Cyr, Jeremy Dorfman, Ryan Hamilton, Jana Iyengar,
 Fedor Kouranov, Charles Krasic, Jo Kulik, Adam Langley, Jim Roskind,
 Robbie Shade, Satyam Shekhar, Cherie Shi, Ian Swett, Raman Tenneti,
 Victor Vasiliev, Antonio Vicente, Patrik Westin, Alyssa Wilk, Dale
 Worley, Fan Yang, Dan Zhang, Daniel Ziegler.

Appendix B. Acknowledgments

 Special thanks are due to the following for helping shape pre-IETF
 QUIC and its deployment: Chris Bentzel, Misha Efimov, Roberto Peon,
 Alistair Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund.

 This document has benefited immensely from various private
 discussions and public ones on the quic@ietf.org and proto-
 quic@chromium.org mailing lists. Our thanks to all.

Appendix C. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-transport-02

 o The size of the initial packet payload has a fixed minimum (#267,
 #472)

 o Define when Version Negotiation packets are ignored (#284, #294,
 #241, #143, #474)

https://github.com/quicwg/base-drafts/wiki/QUIC-Versions
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02

Iyengar & Thomson Expires November 22, 2017 [Page 72]

Internet-Draft QUIC Transport Protocol May 2017

 o The 64-bit FNV-1a algorithm is used for integrity protection of
 unprotected packets (#167, #480, #481, #517)

 o Rework initial packet types to change how the connection ID is
 chosen (#482, #442, #493)

 o No timestamps are forbidden in unprotected packets (#542, #429)

 o Cryptographic handshake is now on stream 0 (#456)

 o Remove congestion control exemption for cryptographic handshake
 (#248, #476)

 o Version 1 of QUIC uses TLS; a new version is needed to use a
 different handshake protocol (#516)

 o STREAM frames have a reduced number of offset lengths (#543, #430)

 o Split some frames into separate connection- and stream- level
 frames (#443)

 * WINDOW_UPDATE split into MAX_DATA and MAX_STREAM_DATA (#450)

 * BLOCKED split to match WINDOW_UPDATE split (#454)

 * Define STREAM_ID_NEEDED frame (#455)

 o A NEW_CONNECTION_ID frame supports connection migration without
 linkability (#232, #491, #496)

 o Transport parameters for 0-RTT are retained from a previous
 connection (#512)

 * A client in 0-RTT no longer required to reset excess streams
 (#425, #479)

 o Expanded security considerations (#440, #444, #445, #448)

C.2. Since draft-ietf-quic-transport-01

 o Defined short and long packet headers (#40, #148, #361)

 o Defined a versioning scheme and stable fields (#51, #361)

 o Define reserved version values for "greasing" negotiation (#112,
 #278)

 o The initial packet number is randomized (#35, #283)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01

Iyengar & Thomson Expires November 22, 2017 [Page 73]

Internet-Draft QUIC Transport Protocol May 2017

 o Narrow the packet number encoding range requirement (#67, #286,
 #299, #323, #356)

 o Defined client address validation (#52, #118, #120, #275)

 o Define transport parameters as a TLS extension (#49, #122)

 o SCUP and COPT parameters are no longer valid (#116, #117)

 o Transport parameters for 0-RTT are either remembered from before,
 or assume default values (#126)

 o The server chooses connection IDs in its final flight (#119, #349,
 #361)

 o The server echoes the Connection ID and packet number fields when
 sending a Version Negotiation packet (#133, #295, #244)

 o Defined a minimum packet size for the initial handshake packet
 from the client (#69, #136, #139, #164)

 o Path MTU Discovery (#64, #106)

 o The initial handshake packet from the client needs to fit in a
 single packet (#338)

 o Forbid acknowledgment of packets containing only ACK and PADDING
 (#291)

 o Require that frames are processed when packets are acknowledged
 (#381, #341)

 o Removed the STOP_WAITING frame (#66)

 o Don't require retransmission of old timestamps for lost ACK frames
 (#308)

 o Clarified that frames are not retransmitted, but the information
 in them can be (#157, #298)

 o Error handling definitions (#335)

 o Split error codes into four sections (#74)

 o Forbid the use of Public Reset where CONNECTION_CLOSE is possible
 (#289)

 o Define packet protection rules (#336)

Iyengar & Thomson Expires November 22, 2017 [Page 74]

Internet-Draft QUIC Transport Protocol May 2017

 o Require that stream be entirely delivered or reset, including
 acknowledgment of all STREAM frames or the RST_STREAM, before it
 closes (#381)

 o Remove stream reservation from state machine (#174, #280)

 o Only stream 1 does not contribute to connection-level flow control
 (#204)

 o Stream 1 counts towards the maximum concurrent stream limit (#201,
 #282)

 o Remove connection-level flow control exclusion for some streams
 (except 1) (#246)

 o RST_STREAM affects connection-level flow control (#162, #163)

 o Flow control accounting uses the maximum data offset on each
 stream, rather than bytes received (#378)

 o Moved length-determining fields to the start of STREAM and ACK
 (#168, #277)

 o Added the ability to pad between frames (#158, #276)

 o Remove error code and reason phrase from GOAWAY (#352, #355)

 o GOAWAY includes a final stream number for both directions (#347)

 o Error codes for RST_STREAM and CONNECTION_CLOSE are now at a
 consistent offset (#249)

 o Defined priority as the responsibility of the application protocol
 (#104, #303)

C.3. Since draft-ietf-quic-transport-00

 o Replaced DIVERSIFICATION_NONCE flag with KEY_PHASE flag

 o Defined versioning

 o Reworked description of packet and frame layout

 o Error code space is divided into regions for each component

 o Use big endian for all numeric values

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00

Iyengar & Thomson Expires November 22, 2017 [Page 75]

Internet-Draft QUIC Transport Protocol May 2017

C.4. Since draft-hamilton-quic-transport-protocol-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added IANA Considerations section

 o Moved Contributors and Acknowledgments to appendices

Authors' Addresses

 Jana Iyengar (editor)
 Google

 Email: jri@google.com

 Martin Thomson (editor)
 Mozilla

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Iyengar & Thomson Expires November 22, 2017 [Page 76]

